1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include "loop.h" 80 81 #include <linux/uaccess.h> 82 83 static DEFINE_IDR(loop_index_idr); 84 static DEFINE_MUTEX(loop_index_mutex); 85 86 static int max_part; 87 static int part_shift; 88 89 static int transfer_xor(struct loop_device *lo, int cmd, 90 struct page *raw_page, unsigned raw_off, 91 struct page *loop_page, unsigned loop_off, 92 int size, sector_t real_block) 93 { 94 char *raw_buf = kmap_atomic(raw_page) + raw_off; 95 char *loop_buf = kmap_atomic(loop_page) + loop_off; 96 char *in, *out, *key; 97 int i, keysize; 98 99 if (cmd == READ) { 100 in = raw_buf; 101 out = loop_buf; 102 } else { 103 in = loop_buf; 104 out = raw_buf; 105 } 106 107 key = lo->lo_encrypt_key; 108 keysize = lo->lo_encrypt_key_size; 109 for (i = 0; i < size; i++) 110 *out++ = *in++ ^ key[(i & 511) % keysize]; 111 112 kunmap_atomic(loop_buf); 113 kunmap_atomic(raw_buf); 114 cond_resched(); 115 return 0; 116 } 117 118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 119 { 120 if (unlikely(info->lo_encrypt_key_size <= 0)) 121 return -EINVAL; 122 return 0; 123 } 124 125 static struct loop_func_table none_funcs = { 126 .number = LO_CRYPT_NONE, 127 }; 128 129 static struct loop_func_table xor_funcs = { 130 .number = LO_CRYPT_XOR, 131 .transfer = transfer_xor, 132 .init = xor_init 133 }; 134 135 /* xfer_funcs[0] is special - its release function is never called */ 136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 137 &none_funcs, 138 &xor_funcs 139 }; 140 141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 142 { 143 loff_t loopsize; 144 145 /* Compute loopsize in bytes */ 146 loopsize = i_size_read(file->f_mapping->host); 147 if (offset > 0) 148 loopsize -= offset; 149 /* offset is beyond i_size, weird but possible */ 150 if (loopsize < 0) 151 return 0; 152 153 if (sizelimit > 0 && sizelimit < loopsize) 154 loopsize = sizelimit; 155 /* 156 * Unfortunately, if we want to do I/O on the device, 157 * the number of 512-byte sectors has to fit into a sector_t. 158 */ 159 return loopsize >> 9; 160 } 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 165 } 166 167 static void __loop_update_dio(struct loop_device *lo, bool dio) 168 { 169 struct file *file = lo->lo_backing_file; 170 struct address_space *mapping = file->f_mapping; 171 struct inode *inode = mapping->host; 172 unsigned short sb_bsize = 0; 173 unsigned dio_align = 0; 174 bool use_dio; 175 176 if (inode->i_sb->s_bdev) { 177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 178 dio_align = sb_bsize - 1; 179 } 180 181 /* 182 * We support direct I/O only if lo_offset is aligned with the 183 * logical I/O size of backing device, and the logical block 184 * size of loop is bigger than the backing device's and the loop 185 * needn't transform transfer. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane applications should be PAGE_SIZE aligned 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 mapping->a_ops->direct_IO && 195 !lo->transfer) 196 use_dio = true; 197 else 198 use_dio = false; 199 } else { 200 use_dio = false; 201 } 202 203 if (lo->use_dio == use_dio) 204 return; 205 206 /* flush dirty pages before changing direct IO */ 207 vfs_fsync(file, 0); 208 209 /* 210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 212 * will get updated by ioctl(LOOP_GET_STATUS) 213 */ 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) { 217 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 218 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 219 } else { 220 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 221 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 222 } 223 blk_mq_unfreeze_queue(lo->lo_queue); 224 } 225 226 static int 227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 228 { 229 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 230 sector_t x = (sector_t)size; 231 struct block_device *bdev = lo->lo_device; 232 233 if (unlikely((loff_t)x != size)) 234 return -EFBIG; 235 if (lo->lo_offset != offset) 236 lo->lo_offset = offset; 237 if (lo->lo_sizelimit != sizelimit) 238 lo->lo_sizelimit = sizelimit; 239 set_capacity(lo->lo_disk, x); 240 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 241 /* let user-space know about the new size */ 242 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 243 return 0; 244 } 245 246 static inline int 247 lo_do_transfer(struct loop_device *lo, int cmd, 248 struct page *rpage, unsigned roffs, 249 struct page *lpage, unsigned loffs, 250 int size, sector_t rblock) 251 { 252 int ret; 253 254 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 255 if (likely(!ret)) 256 return 0; 257 258 printk_ratelimited(KERN_ERR 259 "loop: Transfer error at byte offset %llu, length %i.\n", 260 (unsigned long long)rblock << 9, size); 261 return ret; 262 } 263 264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 265 { 266 struct iov_iter i; 267 ssize_t bw; 268 269 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len); 270 271 file_start_write(file); 272 bw = vfs_iter_write(file, &i, ppos, 0); 273 file_end_write(file); 274 275 if (likely(bw == bvec->bv_len)) 276 return 0; 277 278 printk_ratelimited(KERN_ERR 279 "loop: Write error at byte offset %llu, length %i.\n", 280 (unsigned long long)*ppos, bvec->bv_len); 281 if (bw >= 0) 282 bw = -EIO; 283 return bw; 284 } 285 286 static int lo_write_simple(struct loop_device *lo, struct request *rq, 287 loff_t pos) 288 { 289 struct bio_vec bvec; 290 struct req_iterator iter; 291 int ret = 0; 292 293 rq_for_each_segment(bvec, rq, iter) { 294 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 295 if (ret < 0) 296 break; 297 cond_resched(); 298 } 299 300 return ret; 301 } 302 303 /* 304 * This is the slow, transforming version that needs to double buffer the 305 * data as it cannot do the transformations in place without having direct 306 * access to the destination pages of the backing file. 307 */ 308 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 309 loff_t pos) 310 { 311 struct bio_vec bvec, b; 312 struct req_iterator iter; 313 struct page *page; 314 int ret = 0; 315 316 page = alloc_page(GFP_NOIO); 317 if (unlikely(!page)) 318 return -ENOMEM; 319 320 rq_for_each_segment(bvec, rq, iter) { 321 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 322 bvec.bv_offset, bvec.bv_len, pos >> 9); 323 if (unlikely(ret)) 324 break; 325 326 b.bv_page = page; 327 b.bv_offset = 0; 328 b.bv_len = bvec.bv_len; 329 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 330 if (ret < 0) 331 break; 332 } 333 334 __free_page(page); 335 return ret; 336 } 337 338 static int lo_read_simple(struct loop_device *lo, struct request *rq, 339 loff_t pos) 340 { 341 struct bio_vec bvec; 342 struct req_iterator iter; 343 struct iov_iter i; 344 ssize_t len; 345 346 rq_for_each_segment(bvec, rq, iter) { 347 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 348 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 349 if (len < 0) 350 return len; 351 352 flush_dcache_page(bvec.bv_page); 353 354 if (len != bvec.bv_len) { 355 struct bio *bio; 356 357 __rq_for_each_bio(bio, rq) 358 zero_fill_bio(bio); 359 break; 360 } 361 cond_resched(); 362 } 363 364 return 0; 365 } 366 367 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 368 loff_t pos) 369 { 370 struct bio_vec bvec, b; 371 struct req_iterator iter; 372 struct iov_iter i; 373 struct page *page; 374 ssize_t len; 375 int ret = 0; 376 377 page = alloc_page(GFP_NOIO); 378 if (unlikely(!page)) 379 return -ENOMEM; 380 381 rq_for_each_segment(bvec, rq, iter) { 382 loff_t offset = pos; 383 384 b.bv_page = page; 385 b.bv_offset = 0; 386 b.bv_len = bvec.bv_len; 387 388 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 389 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 390 if (len < 0) { 391 ret = len; 392 goto out_free_page; 393 } 394 395 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 396 bvec.bv_offset, len, offset >> 9); 397 if (ret) 398 goto out_free_page; 399 400 flush_dcache_page(bvec.bv_page); 401 402 if (len != bvec.bv_len) { 403 struct bio *bio; 404 405 __rq_for_each_bio(bio, rq) 406 zero_fill_bio(bio); 407 break; 408 } 409 } 410 411 ret = 0; 412 out_free_page: 413 __free_page(page); 414 return ret; 415 } 416 417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 418 { 419 /* 420 * We use punch hole to reclaim the free space used by the 421 * image a.k.a. discard. However we do not support discard if 422 * encryption is enabled, because it may give an attacker 423 * useful information. 424 */ 425 struct file *file = lo->lo_backing_file; 426 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 427 int ret; 428 429 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 430 ret = -EOPNOTSUPP; 431 goto out; 432 } 433 434 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 435 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 436 ret = -EIO; 437 out: 438 return ret; 439 } 440 441 static int lo_req_flush(struct loop_device *lo, struct request *rq) 442 { 443 struct file *file = lo->lo_backing_file; 444 int ret = vfs_fsync(file, 0); 445 if (unlikely(ret && ret != -EINVAL)) 446 ret = -EIO; 447 448 return ret; 449 } 450 451 static void lo_complete_rq(struct request *rq) 452 { 453 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 454 blk_status_t ret = BLK_STS_OK; 455 456 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 457 req_op(rq) != REQ_OP_READ) { 458 if (cmd->ret < 0) 459 ret = BLK_STS_IOERR; 460 goto end_io; 461 } 462 463 /* 464 * Short READ - if we got some data, advance our request and 465 * retry it. If we got no data, end the rest with EIO. 466 */ 467 if (cmd->ret) { 468 blk_update_request(rq, BLK_STS_OK, cmd->ret); 469 cmd->ret = 0; 470 blk_mq_requeue_request(rq, true); 471 } else { 472 if (cmd->use_aio) { 473 struct bio *bio = rq->bio; 474 475 while (bio) { 476 zero_fill_bio(bio); 477 bio = bio->bi_next; 478 } 479 } 480 ret = BLK_STS_IOERR; 481 end_io: 482 blk_mq_end_request(rq, ret); 483 } 484 } 485 486 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 487 { 488 struct request *rq = blk_mq_rq_from_pdu(cmd); 489 490 if (!atomic_dec_and_test(&cmd->ref)) 491 return; 492 kfree(cmd->bvec); 493 cmd->bvec = NULL; 494 blk_mq_complete_request(rq); 495 } 496 497 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 498 { 499 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 500 501 if (cmd->css) 502 css_put(cmd->css); 503 cmd->ret = ret; 504 lo_rw_aio_do_completion(cmd); 505 } 506 507 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 508 loff_t pos, bool rw) 509 { 510 struct iov_iter iter; 511 struct bio_vec *bvec; 512 struct request *rq = blk_mq_rq_from_pdu(cmd); 513 struct bio *bio = rq->bio; 514 struct file *file = lo->lo_backing_file; 515 unsigned int offset; 516 int segments = 0; 517 int ret; 518 519 if (rq->bio != rq->biotail) { 520 struct req_iterator iter; 521 struct bio_vec tmp; 522 523 __rq_for_each_bio(bio, rq) 524 segments += bio_segments(bio); 525 bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO); 526 if (!bvec) 527 return -EIO; 528 cmd->bvec = bvec; 529 530 /* 531 * The bios of the request may be started from the middle of 532 * the 'bvec' because of bio splitting, so we can't directly 533 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment 534 * API will take care of all details for us. 535 */ 536 rq_for_each_segment(tmp, rq, iter) { 537 *bvec = tmp; 538 bvec++; 539 } 540 bvec = cmd->bvec; 541 offset = 0; 542 } else { 543 /* 544 * Same here, this bio may be started from the middle of the 545 * 'bvec' because of bio splitting, so offset from the bvec 546 * must be passed to iov iterator 547 */ 548 offset = bio->bi_iter.bi_bvec_done; 549 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 550 segments = bio_segments(bio); 551 } 552 atomic_set(&cmd->ref, 2); 553 554 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 555 segments, blk_rq_bytes(rq)); 556 iter.iov_offset = offset; 557 558 cmd->iocb.ki_pos = pos; 559 cmd->iocb.ki_filp = file; 560 cmd->iocb.ki_complete = lo_rw_aio_complete; 561 cmd->iocb.ki_flags = IOCB_DIRECT; 562 if (cmd->css) 563 kthread_associate_blkcg(cmd->css); 564 565 if (rw == WRITE) 566 ret = call_write_iter(file, &cmd->iocb, &iter); 567 else 568 ret = call_read_iter(file, &cmd->iocb, &iter); 569 570 lo_rw_aio_do_completion(cmd); 571 kthread_associate_blkcg(NULL); 572 573 if (ret != -EIOCBQUEUED) 574 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 575 return 0; 576 } 577 578 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 579 { 580 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 581 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 582 583 /* 584 * lo_write_simple and lo_read_simple should have been covered 585 * by io submit style function like lo_rw_aio(), one blocker 586 * is that lo_read_simple() need to call flush_dcache_page after 587 * the page is written from kernel, and it isn't easy to handle 588 * this in io submit style function which submits all segments 589 * of the req at one time. And direct read IO doesn't need to 590 * run flush_dcache_page(). 591 */ 592 switch (req_op(rq)) { 593 case REQ_OP_FLUSH: 594 return lo_req_flush(lo, rq); 595 case REQ_OP_DISCARD: 596 case REQ_OP_WRITE_ZEROES: 597 return lo_discard(lo, rq, pos); 598 case REQ_OP_WRITE: 599 if (lo->transfer) 600 return lo_write_transfer(lo, rq, pos); 601 else if (cmd->use_aio) 602 return lo_rw_aio(lo, cmd, pos, WRITE); 603 else 604 return lo_write_simple(lo, rq, pos); 605 case REQ_OP_READ: 606 if (lo->transfer) 607 return lo_read_transfer(lo, rq, pos); 608 else if (cmd->use_aio) 609 return lo_rw_aio(lo, cmd, pos, READ); 610 else 611 return lo_read_simple(lo, rq, pos); 612 default: 613 WARN_ON_ONCE(1); 614 return -EIO; 615 break; 616 } 617 } 618 619 static inline void loop_update_dio(struct loop_device *lo) 620 { 621 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 622 lo->use_dio); 623 } 624 625 static void loop_reread_partitions(struct loop_device *lo, 626 struct block_device *bdev) 627 { 628 int rc; 629 630 /* 631 * bd_mutex has been held already in release path, so don't 632 * acquire it if this function is called in such case. 633 * 634 * If the reread partition isn't from release path, lo_refcnt 635 * must be at least one and it can only become zero when the 636 * current holder is released. 637 */ 638 if (!atomic_read(&lo->lo_refcnt)) 639 rc = __blkdev_reread_part(bdev); 640 else 641 rc = blkdev_reread_part(bdev); 642 if (rc) 643 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 644 __func__, lo->lo_number, lo->lo_file_name, rc); 645 } 646 647 /* 648 * loop_change_fd switched the backing store of a loopback device to 649 * a new file. This is useful for operating system installers to free up 650 * the original file and in High Availability environments to switch to 651 * an alternative location for the content in case of server meltdown. 652 * This can only work if the loop device is used read-only, and if the 653 * new backing store is the same size and type as the old backing store. 654 */ 655 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 656 unsigned int arg) 657 { 658 struct file *file, *old_file; 659 struct inode *inode; 660 int error; 661 662 error = -ENXIO; 663 if (lo->lo_state != Lo_bound) 664 goto out; 665 666 /* the loop device has to be read-only */ 667 error = -EINVAL; 668 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 669 goto out; 670 671 error = -EBADF; 672 file = fget(arg); 673 if (!file) 674 goto out; 675 676 inode = file->f_mapping->host; 677 old_file = lo->lo_backing_file; 678 679 error = -EINVAL; 680 681 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 682 goto out_putf; 683 684 /* size of the new backing store needs to be the same */ 685 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 686 goto out_putf; 687 688 /* and ... switch */ 689 blk_mq_freeze_queue(lo->lo_queue); 690 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 691 lo->lo_backing_file = file; 692 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 693 mapping_set_gfp_mask(file->f_mapping, 694 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 695 loop_update_dio(lo); 696 blk_mq_unfreeze_queue(lo->lo_queue); 697 698 fput(old_file); 699 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 700 loop_reread_partitions(lo, bdev); 701 return 0; 702 703 out_putf: 704 fput(file); 705 out: 706 return error; 707 } 708 709 static inline int is_loop_device(struct file *file) 710 { 711 struct inode *i = file->f_mapping->host; 712 713 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 714 } 715 716 /* loop sysfs attributes */ 717 718 static ssize_t loop_attr_show(struct device *dev, char *page, 719 ssize_t (*callback)(struct loop_device *, char *)) 720 { 721 struct gendisk *disk = dev_to_disk(dev); 722 struct loop_device *lo = disk->private_data; 723 724 return callback(lo, page); 725 } 726 727 #define LOOP_ATTR_RO(_name) \ 728 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 729 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 730 struct device_attribute *attr, char *b) \ 731 { \ 732 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 733 } \ 734 static struct device_attribute loop_attr_##_name = \ 735 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 736 737 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 738 { 739 ssize_t ret; 740 char *p = NULL; 741 742 spin_lock_irq(&lo->lo_lock); 743 if (lo->lo_backing_file) 744 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 745 spin_unlock_irq(&lo->lo_lock); 746 747 if (IS_ERR_OR_NULL(p)) 748 ret = PTR_ERR(p); 749 else { 750 ret = strlen(p); 751 memmove(buf, p, ret); 752 buf[ret++] = '\n'; 753 buf[ret] = 0; 754 } 755 756 return ret; 757 } 758 759 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 760 { 761 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 762 } 763 764 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 765 { 766 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 767 } 768 769 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 770 { 771 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 772 773 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 774 } 775 776 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 777 { 778 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 779 780 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 781 } 782 783 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 784 { 785 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 786 787 return sprintf(buf, "%s\n", dio ? "1" : "0"); 788 } 789 790 LOOP_ATTR_RO(backing_file); 791 LOOP_ATTR_RO(offset); 792 LOOP_ATTR_RO(sizelimit); 793 LOOP_ATTR_RO(autoclear); 794 LOOP_ATTR_RO(partscan); 795 LOOP_ATTR_RO(dio); 796 797 static struct attribute *loop_attrs[] = { 798 &loop_attr_backing_file.attr, 799 &loop_attr_offset.attr, 800 &loop_attr_sizelimit.attr, 801 &loop_attr_autoclear.attr, 802 &loop_attr_partscan.attr, 803 &loop_attr_dio.attr, 804 NULL, 805 }; 806 807 static struct attribute_group loop_attribute_group = { 808 .name = "loop", 809 .attrs= loop_attrs, 810 }; 811 812 static int loop_sysfs_init(struct loop_device *lo) 813 { 814 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 815 &loop_attribute_group); 816 } 817 818 static void loop_sysfs_exit(struct loop_device *lo) 819 { 820 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 821 &loop_attribute_group); 822 } 823 824 static void loop_config_discard(struct loop_device *lo) 825 { 826 struct file *file = lo->lo_backing_file; 827 struct inode *inode = file->f_mapping->host; 828 struct request_queue *q = lo->lo_queue; 829 830 /* 831 * We use punch hole to reclaim the free space used by the 832 * image a.k.a. discard. However we do not support discard if 833 * encryption is enabled, because it may give an attacker 834 * useful information. 835 */ 836 if ((!file->f_op->fallocate) || 837 lo->lo_encrypt_key_size) { 838 q->limits.discard_granularity = 0; 839 q->limits.discard_alignment = 0; 840 blk_queue_max_discard_sectors(q, 0); 841 blk_queue_max_write_zeroes_sectors(q, 0); 842 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 843 return; 844 } 845 846 q->limits.discard_granularity = inode->i_sb->s_blocksize; 847 q->limits.discard_alignment = 0; 848 849 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 850 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 851 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 852 } 853 854 static void loop_unprepare_queue(struct loop_device *lo) 855 { 856 kthread_flush_worker(&lo->worker); 857 kthread_stop(lo->worker_task); 858 } 859 860 static int loop_kthread_worker_fn(void *worker_ptr) 861 { 862 current->flags |= PF_LESS_THROTTLE; 863 return kthread_worker_fn(worker_ptr); 864 } 865 866 static int loop_prepare_queue(struct loop_device *lo) 867 { 868 kthread_init_worker(&lo->worker); 869 lo->worker_task = kthread_run(loop_kthread_worker_fn, 870 &lo->worker, "loop%d", lo->lo_number); 871 if (IS_ERR(lo->worker_task)) 872 return -ENOMEM; 873 set_user_nice(lo->worker_task, MIN_NICE); 874 return 0; 875 } 876 877 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 878 struct block_device *bdev, unsigned int arg) 879 { 880 struct file *file, *f; 881 struct inode *inode; 882 struct address_space *mapping; 883 int lo_flags = 0; 884 int error; 885 loff_t size; 886 887 /* This is safe, since we have a reference from open(). */ 888 __module_get(THIS_MODULE); 889 890 error = -EBADF; 891 file = fget(arg); 892 if (!file) 893 goto out; 894 895 error = -EBUSY; 896 if (lo->lo_state != Lo_unbound) 897 goto out_putf; 898 899 /* Avoid recursion */ 900 f = file; 901 while (is_loop_device(f)) { 902 struct loop_device *l; 903 904 if (f->f_mapping->host->i_bdev == bdev) 905 goto out_putf; 906 907 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 908 if (l->lo_state == Lo_unbound) { 909 error = -EINVAL; 910 goto out_putf; 911 } 912 f = l->lo_backing_file; 913 } 914 915 mapping = file->f_mapping; 916 inode = mapping->host; 917 918 error = -EINVAL; 919 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 920 goto out_putf; 921 922 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 923 !file->f_op->write_iter) 924 lo_flags |= LO_FLAGS_READ_ONLY; 925 926 error = -EFBIG; 927 size = get_loop_size(lo, file); 928 if ((loff_t)(sector_t)size != size) 929 goto out_putf; 930 error = loop_prepare_queue(lo); 931 if (error) 932 goto out_putf; 933 934 error = 0; 935 936 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 937 938 lo->use_dio = false; 939 lo->lo_device = bdev; 940 lo->lo_flags = lo_flags; 941 lo->lo_backing_file = file; 942 lo->transfer = NULL; 943 lo->ioctl = NULL; 944 lo->lo_sizelimit = 0; 945 lo->old_gfp_mask = mapping_gfp_mask(mapping); 946 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 947 948 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 949 blk_queue_write_cache(lo->lo_queue, true, false); 950 951 loop_update_dio(lo); 952 set_capacity(lo->lo_disk, size); 953 bd_set_size(bdev, size << 9); 954 loop_sysfs_init(lo); 955 /* let user-space know about the new size */ 956 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 957 958 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 959 block_size(inode->i_bdev) : PAGE_SIZE); 960 961 lo->lo_state = Lo_bound; 962 if (part_shift) 963 lo->lo_flags |= LO_FLAGS_PARTSCAN; 964 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 965 loop_reread_partitions(lo, bdev); 966 967 /* Grab the block_device to prevent its destruction after we 968 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 969 */ 970 bdgrab(bdev); 971 return 0; 972 973 out_putf: 974 fput(file); 975 out: 976 /* This is safe: open() is still holding a reference. */ 977 module_put(THIS_MODULE); 978 return error; 979 } 980 981 static int 982 loop_release_xfer(struct loop_device *lo) 983 { 984 int err = 0; 985 struct loop_func_table *xfer = lo->lo_encryption; 986 987 if (xfer) { 988 if (xfer->release) 989 err = xfer->release(lo); 990 lo->transfer = NULL; 991 lo->lo_encryption = NULL; 992 module_put(xfer->owner); 993 } 994 return err; 995 } 996 997 static int 998 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 999 const struct loop_info64 *i) 1000 { 1001 int err = 0; 1002 1003 if (xfer) { 1004 struct module *owner = xfer->owner; 1005 1006 if (!try_module_get(owner)) 1007 return -EINVAL; 1008 if (xfer->init) 1009 err = xfer->init(lo, i); 1010 if (err) 1011 module_put(owner); 1012 else 1013 lo->lo_encryption = xfer; 1014 } 1015 return err; 1016 } 1017 1018 static int loop_clr_fd(struct loop_device *lo) 1019 { 1020 struct file *filp = lo->lo_backing_file; 1021 gfp_t gfp = lo->old_gfp_mask; 1022 struct block_device *bdev = lo->lo_device; 1023 1024 if (lo->lo_state != Lo_bound) 1025 return -ENXIO; 1026 1027 /* 1028 * If we've explicitly asked to tear down the loop device, 1029 * and it has an elevated reference count, set it for auto-teardown when 1030 * the last reference goes away. This stops $!~#$@ udev from 1031 * preventing teardown because it decided that it needs to run blkid on 1032 * the loopback device whenever they appear. xfstests is notorious for 1033 * failing tests because blkid via udev races with a losetup 1034 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1035 * command to fail with EBUSY. 1036 */ 1037 if (atomic_read(&lo->lo_refcnt) > 1) { 1038 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1039 mutex_unlock(&lo->lo_ctl_mutex); 1040 return 0; 1041 } 1042 1043 if (filp == NULL) 1044 return -EINVAL; 1045 1046 /* freeze request queue during the transition */ 1047 blk_mq_freeze_queue(lo->lo_queue); 1048 1049 spin_lock_irq(&lo->lo_lock); 1050 lo->lo_state = Lo_rundown; 1051 lo->lo_backing_file = NULL; 1052 spin_unlock_irq(&lo->lo_lock); 1053 1054 loop_release_xfer(lo); 1055 lo->transfer = NULL; 1056 lo->ioctl = NULL; 1057 lo->lo_device = NULL; 1058 lo->lo_encryption = NULL; 1059 lo->lo_offset = 0; 1060 lo->lo_sizelimit = 0; 1061 lo->lo_encrypt_key_size = 0; 1062 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1063 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1064 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1065 blk_queue_logical_block_size(lo->lo_queue, 512); 1066 blk_queue_physical_block_size(lo->lo_queue, 512); 1067 blk_queue_io_min(lo->lo_queue, 512); 1068 if (bdev) { 1069 bdput(bdev); 1070 invalidate_bdev(bdev); 1071 } 1072 set_capacity(lo->lo_disk, 0); 1073 loop_sysfs_exit(lo); 1074 if (bdev) { 1075 bd_set_size(bdev, 0); 1076 /* let user-space know about this change */ 1077 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1078 } 1079 mapping_set_gfp_mask(filp->f_mapping, gfp); 1080 lo->lo_state = Lo_unbound; 1081 /* This is safe: open() is still holding a reference. */ 1082 module_put(THIS_MODULE); 1083 blk_mq_unfreeze_queue(lo->lo_queue); 1084 1085 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1086 loop_reread_partitions(lo, bdev); 1087 lo->lo_flags = 0; 1088 if (!part_shift) 1089 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1090 loop_unprepare_queue(lo); 1091 mutex_unlock(&lo->lo_ctl_mutex); 1092 /* 1093 * Need not hold lo_ctl_mutex to fput backing file. 1094 * Calling fput holding lo_ctl_mutex triggers a circular 1095 * lock dependency possibility warning as fput can take 1096 * bd_mutex which is usually taken before lo_ctl_mutex. 1097 */ 1098 fput(filp); 1099 return 0; 1100 } 1101 1102 static int 1103 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1104 { 1105 int err; 1106 struct loop_func_table *xfer; 1107 kuid_t uid = current_uid(); 1108 1109 if (lo->lo_encrypt_key_size && 1110 !uid_eq(lo->lo_key_owner, uid) && 1111 !capable(CAP_SYS_ADMIN)) 1112 return -EPERM; 1113 if (lo->lo_state != Lo_bound) 1114 return -ENXIO; 1115 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1116 return -EINVAL; 1117 1118 /* I/O need to be drained during transfer transition */ 1119 blk_mq_freeze_queue(lo->lo_queue); 1120 1121 err = loop_release_xfer(lo); 1122 if (err) 1123 goto exit; 1124 1125 if (info->lo_encrypt_type) { 1126 unsigned int type = info->lo_encrypt_type; 1127 1128 if (type >= MAX_LO_CRYPT) { 1129 err = -EINVAL; 1130 goto exit; 1131 } 1132 xfer = xfer_funcs[type]; 1133 if (xfer == NULL) { 1134 err = -EINVAL; 1135 goto exit; 1136 } 1137 } else 1138 xfer = NULL; 1139 1140 err = loop_init_xfer(lo, xfer, info); 1141 if (err) 1142 goto exit; 1143 1144 if (lo->lo_offset != info->lo_offset || 1145 lo->lo_sizelimit != info->lo_sizelimit) { 1146 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1147 err = -EFBIG; 1148 goto exit; 1149 } 1150 } 1151 1152 loop_config_discard(lo); 1153 1154 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1155 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1156 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1157 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1158 1159 if (!xfer) 1160 xfer = &none_funcs; 1161 lo->transfer = xfer->transfer; 1162 lo->ioctl = xfer->ioctl; 1163 1164 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1165 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1166 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1167 1168 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1169 lo->lo_init[0] = info->lo_init[0]; 1170 lo->lo_init[1] = info->lo_init[1]; 1171 if (info->lo_encrypt_key_size) { 1172 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1173 info->lo_encrypt_key_size); 1174 lo->lo_key_owner = uid; 1175 } 1176 1177 /* update dio if lo_offset or transfer is changed */ 1178 __loop_update_dio(lo, lo->use_dio); 1179 1180 exit: 1181 blk_mq_unfreeze_queue(lo->lo_queue); 1182 1183 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1184 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1185 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1186 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1187 loop_reread_partitions(lo, lo->lo_device); 1188 } 1189 1190 return err; 1191 } 1192 1193 static int 1194 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1195 { 1196 struct file *file; 1197 struct kstat stat; 1198 int ret; 1199 1200 if (lo->lo_state != Lo_bound) { 1201 mutex_unlock(&lo->lo_ctl_mutex); 1202 return -ENXIO; 1203 } 1204 1205 memset(info, 0, sizeof(*info)); 1206 info->lo_number = lo->lo_number; 1207 info->lo_offset = lo->lo_offset; 1208 info->lo_sizelimit = lo->lo_sizelimit; 1209 info->lo_flags = lo->lo_flags; 1210 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1211 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1212 info->lo_encrypt_type = 1213 lo->lo_encryption ? lo->lo_encryption->number : 0; 1214 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1215 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1216 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1217 lo->lo_encrypt_key_size); 1218 } 1219 1220 /* Drop lo_ctl_mutex while we call into the filesystem. */ 1221 file = get_file(lo->lo_backing_file); 1222 mutex_unlock(&lo->lo_ctl_mutex); 1223 ret = vfs_getattr(&file->f_path, &stat, STATX_INO, 1224 AT_STATX_SYNC_AS_STAT); 1225 if (!ret) { 1226 info->lo_device = huge_encode_dev(stat.dev); 1227 info->lo_inode = stat.ino; 1228 info->lo_rdevice = huge_encode_dev(stat.rdev); 1229 } 1230 fput(file); 1231 return ret; 1232 } 1233 1234 static void 1235 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1236 { 1237 memset(info64, 0, sizeof(*info64)); 1238 info64->lo_number = info->lo_number; 1239 info64->lo_device = info->lo_device; 1240 info64->lo_inode = info->lo_inode; 1241 info64->lo_rdevice = info->lo_rdevice; 1242 info64->lo_offset = info->lo_offset; 1243 info64->lo_sizelimit = 0; 1244 info64->lo_encrypt_type = info->lo_encrypt_type; 1245 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1246 info64->lo_flags = info->lo_flags; 1247 info64->lo_init[0] = info->lo_init[0]; 1248 info64->lo_init[1] = info->lo_init[1]; 1249 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1250 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1251 else 1252 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1253 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1254 } 1255 1256 static int 1257 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1258 { 1259 memset(info, 0, sizeof(*info)); 1260 info->lo_number = info64->lo_number; 1261 info->lo_device = info64->lo_device; 1262 info->lo_inode = info64->lo_inode; 1263 info->lo_rdevice = info64->lo_rdevice; 1264 info->lo_offset = info64->lo_offset; 1265 info->lo_encrypt_type = info64->lo_encrypt_type; 1266 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1267 info->lo_flags = info64->lo_flags; 1268 info->lo_init[0] = info64->lo_init[0]; 1269 info->lo_init[1] = info64->lo_init[1]; 1270 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1271 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1272 else 1273 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1274 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1275 1276 /* error in case values were truncated */ 1277 if (info->lo_device != info64->lo_device || 1278 info->lo_rdevice != info64->lo_rdevice || 1279 info->lo_inode != info64->lo_inode || 1280 info->lo_offset != info64->lo_offset) 1281 return -EOVERFLOW; 1282 1283 return 0; 1284 } 1285 1286 static int 1287 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1288 { 1289 struct loop_info info; 1290 struct loop_info64 info64; 1291 1292 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1293 return -EFAULT; 1294 loop_info64_from_old(&info, &info64); 1295 return loop_set_status(lo, &info64); 1296 } 1297 1298 static int 1299 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1300 { 1301 struct loop_info64 info64; 1302 1303 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1304 return -EFAULT; 1305 return loop_set_status(lo, &info64); 1306 } 1307 1308 static int 1309 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1310 struct loop_info info; 1311 struct loop_info64 info64; 1312 int err; 1313 1314 if (!arg) { 1315 mutex_unlock(&lo->lo_ctl_mutex); 1316 return -EINVAL; 1317 } 1318 err = loop_get_status(lo, &info64); 1319 if (!err) 1320 err = loop_info64_to_old(&info64, &info); 1321 if (!err && copy_to_user(arg, &info, sizeof(info))) 1322 err = -EFAULT; 1323 1324 return err; 1325 } 1326 1327 static int 1328 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1329 struct loop_info64 info64; 1330 int err; 1331 1332 if (!arg) { 1333 mutex_unlock(&lo->lo_ctl_mutex); 1334 return -EINVAL; 1335 } 1336 err = loop_get_status(lo, &info64); 1337 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1338 err = -EFAULT; 1339 1340 return err; 1341 } 1342 1343 static int loop_set_capacity(struct loop_device *lo) 1344 { 1345 if (unlikely(lo->lo_state != Lo_bound)) 1346 return -ENXIO; 1347 1348 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1349 } 1350 1351 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1352 { 1353 int error = -ENXIO; 1354 if (lo->lo_state != Lo_bound) 1355 goto out; 1356 1357 __loop_update_dio(lo, !!arg); 1358 if (lo->use_dio == !!arg) 1359 return 0; 1360 error = -EINVAL; 1361 out: 1362 return error; 1363 } 1364 1365 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1366 { 1367 if (lo->lo_state != Lo_bound) 1368 return -ENXIO; 1369 1370 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1371 return -EINVAL; 1372 1373 blk_mq_freeze_queue(lo->lo_queue); 1374 1375 blk_queue_logical_block_size(lo->lo_queue, arg); 1376 blk_queue_physical_block_size(lo->lo_queue, arg); 1377 blk_queue_io_min(lo->lo_queue, arg); 1378 loop_update_dio(lo); 1379 1380 blk_mq_unfreeze_queue(lo->lo_queue); 1381 1382 return 0; 1383 } 1384 1385 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1386 unsigned int cmd, unsigned long arg) 1387 { 1388 struct loop_device *lo = bdev->bd_disk->private_data; 1389 int err; 1390 1391 err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1); 1392 if (err) 1393 goto out_unlocked; 1394 1395 switch (cmd) { 1396 case LOOP_SET_FD: 1397 err = loop_set_fd(lo, mode, bdev, arg); 1398 break; 1399 case LOOP_CHANGE_FD: 1400 err = loop_change_fd(lo, bdev, arg); 1401 break; 1402 case LOOP_CLR_FD: 1403 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1404 err = loop_clr_fd(lo); 1405 if (!err) 1406 goto out_unlocked; 1407 break; 1408 case LOOP_SET_STATUS: 1409 err = -EPERM; 1410 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1411 err = loop_set_status_old(lo, 1412 (struct loop_info __user *)arg); 1413 break; 1414 case LOOP_GET_STATUS: 1415 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1416 /* loop_get_status() unlocks lo_ctl_mutex */ 1417 goto out_unlocked; 1418 case LOOP_SET_STATUS64: 1419 err = -EPERM; 1420 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1421 err = loop_set_status64(lo, 1422 (struct loop_info64 __user *) arg); 1423 break; 1424 case LOOP_GET_STATUS64: 1425 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1426 /* loop_get_status() unlocks lo_ctl_mutex */ 1427 goto out_unlocked; 1428 case LOOP_SET_CAPACITY: 1429 err = -EPERM; 1430 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1431 err = loop_set_capacity(lo); 1432 break; 1433 case LOOP_SET_DIRECT_IO: 1434 err = -EPERM; 1435 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1436 err = loop_set_dio(lo, arg); 1437 break; 1438 case LOOP_SET_BLOCK_SIZE: 1439 err = -EPERM; 1440 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1441 err = loop_set_block_size(lo, arg); 1442 break; 1443 default: 1444 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1445 } 1446 mutex_unlock(&lo->lo_ctl_mutex); 1447 1448 out_unlocked: 1449 return err; 1450 } 1451 1452 #ifdef CONFIG_COMPAT 1453 struct compat_loop_info { 1454 compat_int_t lo_number; /* ioctl r/o */ 1455 compat_dev_t lo_device; /* ioctl r/o */ 1456 compat_ulong_t lo_inode; /* ioctl r/o */ 1457 compat_dev_t lo_rdevice; /* ioctl r/o */ 1458 compat_int_t lo_offset; 1459 compat_int_t lo_encrypt_type; 1460 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1461 compat_int_t lo_flags; /* ioctl r/o */ 1462 char lo_name[LO_NAME_SIZE]; 1463 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1464 compat_ulong_t lo_init[2]; 1465 char reserved[4]; 1466 }; 1467 1468 /* 1469 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1470 * - noinlined to reduce stack space usage in main part of driver 1471 */ 1472 static noinline int 1473 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1474 struct loop_info64 *info64) 1475 { 1476 struct compat_loop_info info; 1477 1478 if (copy_from_user(&info, arg, sizeof(info))) 1479 return -EFAULT; 1480 1481 memset(info64, 0, sizeof(*info64)); 1482 info64->lo_number = info.lo_number; 1483 info64->lo_device = info.lo_device; 1484 info64->lo_inode = info.lo_inode; 1485 info64->lo_rdevice = info.lo_rdevice; 1486 info64->lo_offset = info.lo_offset; 1487 info64->lo_sizelimit = 0; 1488 info64->lo_encrypt_type = info.lo_encrypt_type; 1489 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1490 info64->lo_flags = info.lo_flags; 1491 info64->lo_init[0] = info.lo_init[0]; 1492 info64->lo_init[1] = info.lo_init[1]; 1493 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1494 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1495 else 1496 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1497 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1498 return 0; 1499 } 1500 1501 /* 1502 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1503 * - noinlined to reduce stack space usage in main part of driver 1504 */ 1505 static noinline int 1506 loop_info64_to_compat(const struct loop_info64 *info64, 1507 struct compat_loop_info __user *arg) 1508 { 1509 struct compat_loop_info info; 1510 1511 memset(&info, 0, sizeof(info)); 1512 info.lo_number = info64->lo_number; 1513 info.lo_device = info64->lo_device; 1514 info.lo_inode = info64->lo_inode; 1515 info.lo_rdevice = info64->lo_rdevice; 1516 info.lo_offset = info64->lo_offset; 1517 info.lo_encrypt_type = info64->lo_encrypt_type; 1518 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1519 info.lo_flags = info64->lo_flags; 1520 info.lo_init[0] = info64->lo_init[0]; 1521 info.lo_init[1] = info64->lo_init[1]; 1522 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1523 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1524 else 1525 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1526 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1527 1528 /* error in case values were truncated */ 1529 if (info.lo_device != info64->lo_device || 1530 info.lo_rdevice != info64->lo_rdevice || 1531 info.lo_inode != info64->lo_inode || 1532 info.lo_offset != info64->lo_offset || 1533 info.lo_init[0] != info64->lo_init[0] || 1534 info.lo_init[1] != info64->lo_init[1]) 1535 return -EOVERFLOW; 1536 1537 if (copy_to_user(arg, &info, sizeof(info))) 1538 return -EFAULT; 1539 return 0; 1540 } 1541 1542 static int 1543 loop_set_status_compat(struct loop_device *lo, 1544 const struct compat_loop_info __user *arg) 1545 { 1546 struct loop_info64 info64; 1547 int ret; 1548 1549 ret = loop_info64_from_compat(arg, &info64); 1550 if (ret < 0) 1551 return ret; 1552 return loop_set_status(lo, &info64); 1553 } 1554 1555 static int 1556 loop_get_status_compat(struct loop_device *lo, 1557 struct compat_loop_info __user *arg) 1558 { 1559 struct loop_info64 info64; 1560 int err; 1561 1562 if (!arg) { 1563 mutex_unlock(&lo->lo_ctl_mutex); 1564 return -EINVAL; 1565 } 1566 err = loop_get_status(lo, &info64); 1567 if (!err) 1568 err = loop_info64_to_compat(&info64, arg); 1569 return err; 1570 } 1571 1572 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1573 unsigned int cmd, unsigned long arg) 1574 { 1575 struct loop_device *lo = bdev->bd_disk->private_data; 1576 int err; 1577 1578 switch(cmd) { 1579 case LOOP_SET_STATUS: 1580 err = mutex_lock_killable(&lo->lo_ctl_mutex); 1581 if (!err) { 1582 err = loop_set_status_compat(lo, 1583 (const struct compat_loop_info __user *)arg); 1584 mutex_unlock(&lo->lo_ctl_mutex); 1585 } 1586 break; 1587 case LOOP_GET_STATUS: 1588 err = mutex_lock_killable(&lo->lo_ctl_mutex); 1589 if (!err) { 1590 err = loop_get_status_compat(lo, 1591 (struct compat_loop_info __user *)arg); 1592 /* loop_get_status() unlocks lo_ctl_mutex */ 1593 } 1594 break; 1595 case LOOP_SET_CAPACITY: 1596 case LOOP_CLR_FD: 1597 case LOOP_GET_STATUS64: 1598 case LOOP_SET_STATUS64: 1599 arg = (unsigned long) compat_ptr(arg); 1600 case LOOP_SET_FD: 1601 case LOOP_CHANGE_FD: 1602 err = lo_ioctl(bdev, mode, cmd, arg); 1603 break; 1604 default: 1605 err = -ENOIOCTLCMD; 1606 break; 1607 } 1608 return err; 1609 } 1610 #endif 1611 1612 static int lo_open(struct block_device *bdev, fmode_t mode) 1613 { 1614 struct loop_device *lo; 1615 int err = 0; 1616 1617 mutex_lock(&loop_index_mutex); 1618 lo = bdev->bd_disk->private_data; 1619 if (!lo) { 1620 err = -ENXIO; 1621 goto out; 1622 } 1623 1624 atomic_inc(&lo->lo_refcnt); 1625 out: 1626 mutex_unlock(&loop_index_mutex); 1627 return err; 1628 } 1629 1630 static void __lo_release(struct loop_device *lo) 1631 { 1632 int err; 1633 1634 if (atomic_dec_return(&lo->lo_refcnt)) 1635 return; 1636 1637 mutex_lock(&lo->lo_ctl_mutex); 1638 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1639 /* 1640 * In autoclear mode, stop the loop thread 1641 * and remove configuration after last close. 1642 */ 1643 err = loop_clr_fd(lo); 1644 if (!err) 1645 return; 1646 } else if (lo->lo_state == Lo_bound) { 1647 /* 1648 * Otherwise keep thread (if running) and config, 1649 * but flush possible ongoing bios in thread. 1650 */ 1651 blk_mq_freeze_queue(lo->lo_queue); 1652 blk_mq_unfreeze_queue(lo->lo_queue); 1653 } 1654 1655 mutex_unlock(&lo->lo_ctl_mutex); 1656 } 1657 1658 static void lo_release(struct gendisk *disk, fmode_t mode) 1659 { 1660 mutex_lock(&loop_index_mutex); 1661 __lo_release(disk->private_data); 1662 mutex_unlock(&loop_index_mutex); 1663 } 1664 1665 static const struct block_device_operations lo_fops = { 1666 .owner = THIS_MODULE, 1667 .open = lo_open, 1668 .release = lo_release, 1669 .ioctl = lo_ioctl, 1670 #ifdef CONFIG_COMPAT 1671 .compat_ioctl = lo_compat_ioctl, 1672 #endif 1673 }; 1674 1675 /* 1676 * And now the modules code and kernel interface. 1677 */ 1678 static int max_loop; 1679 module_param(max_loop, int, S_IRUGO); 1680 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1681 module_param(max_part, int, S_IRUGO); 1682 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1683 MODULE_LICENSE("GPL"); 1684 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1685 1686 int loop_register_transfer(struct loop_func_table *funcs) 1687 { 1688 unsigned int n = funcs->number; 1689 1690 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1691 return -EINVAL; 1692 xfer_funcs[n] = funcs; 1693 return 0; 1694 } 1695 1696 static int unregister_transfer_cb(int id, void *ptr, void *data) 1697 { 1698 struct loop_device *lo = ptr; 1699 struct loop_func_table *xfer = data; 1700 1701 mutex_lock(&lo->lo_ctl_mutex); 1702 if (lo->lo_encryption == xfer) 1703 loop_release_xfer(lo); 1704 mutex_unlock(&lo->lo_ctl_mutex); 1705 return 0; 1706 } 1707 1708 int loop_unregister_transfer(int number) 1709 { 1710 unsigned int n = number; 1711 struct loop_func_table *xfer; 1712 1713 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1714 return -EINVAL; 1715 1716 xfer_funcs[n] = NULL; 1717 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1718 return 0; 1719 } 1720 1721 EXPORT_SYMBOL(loop_register_transfer); 1722 EXPORT_SYMBOL(loop_unregister_transfer); 1723 1724 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1725 const struct blk_mq_queue_data *bd) 1726 { 1727 struct request *rq = bd->rq; 1728 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1729 struct loop_device *lo = rq->q->queuedata; 1730 1731 blk_mq_start_request(rq); 1732 1733 if (lo->lo_state != Lo_bound) 1734 return BLK_STS_IOERR; 1735 1736 switch (req_op(rq)) { 1737 case REQ_OP_FLUSH: 1738 case REQ_OP_DISCARD: 1739 case REQ_OP_WRITE_ZEROES: 1740 cmd->use_aio = false; 1741 break; 1742 default: 1743 cmd->use_aio = lo->use_dio; 1744 break; 1745 } 1746 1747 /* always use the first bio's css */ 1748 #ifdef CONFIG_BLK_CGROUP 1749 if (cmd->use_aio && rq->bio && rq->bio->bi_css) { 1750 cmd->css = rq->bio->bi_css; 1751 css_get(cmd->css); 1752 } else 1753 #endif 1754 cmd->css = NULL; 1755 kthread_queue_work(&lo->worker, &cmd->work); 1756 1757 return BLK_STS_OK; 1758 } 1759 1760 static void loop_handle_cmd(struct loop_cmd *cmd) 1761 { 1762 struct request *rq = blk_mq_rq_from_pdu(cmd); 1763 const bool write = op_is_write(req_op(rq)); 1764 struct loop_device *lo = rq->q->queuedata; 1765 int ret = 0; 1766 1767 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1768 ret = -EIO; 1769 goto failed; 1770 } 1771 1772 ret = do_req_filebacked(lo, rq); 1773 failed: 1774 /* complete non-aio request */ 1775 if (!cmd->use_aio || ret) { 1776 cmd->ret = ret ? -EIO : 0; 1777 blk_mq_complete_request(rq); 1778 } 1779 } 1780 1781 static void loop_queue_work(struct kthread_work *work) 1782 { 1783 struct loop_cmd *cmd = 1784 container_of(work, struct loop_cmd, work); 1785 1786 loop_handle_cmd(cmd); 1787 } 1788 1789 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1790 unsigned int hctx_idx, unsigned int numa_node) 1791 { 1792 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1793 1794 kthread_init_work(&cmd->work, loop_queue_work); 1795 return 0; 1796 } 1797 1798 static const struct blk_mq_ops loop_mq_ops = { 1799 .queue_rq = loop_queue_rq, 1800 .init_request = loop_init_request, 1801 .complete = lo_complete_rq, 1802 }; 1803 1804 static int loop_add(struct loop_device **l, int i) 1805 { 1806 struct loop_device *lo; 1807 struct gendisk *disk; 1808 int err; 1809 1810 err = -ENOMEM; 1811 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1812 if (!lo) 1813 goto out; 1814 1815 lo->lo_state = Lo_unbound; 1816 1817 /* allocate id, if @id >= 0, we're requesting that specific id */ 1818 if (i >= 0) { 1819 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1820 if (err == -ENOSPC) 1821 err = -EEXIST; 1822 } else { 1823 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1824 } 1825 if (err < 0) 1826 goto out_free_dev; 1827 i = err; 1828 1829 err = -ENOMEM; 1830 lo->tag_set.ops = &loop_mq_ops; 1831 lo->tag_set.nr_hw_queues = 1; 1832 lo->tag_set.queue_depth = 128; 1833 lo->tag_set.numa_node = NUMA_NO_NODE; 1834 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1835 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1836 lo->tag_set.driver_data = lo; 1837 1838 err = blk_mq_alloc_tag_set(&lo->tag_set); 1839 if (err) 1840 goto out_free_idr; 1841 1842 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1843 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1844 err = PTR_ERR(lo->lo_queue); 1845 goto out_cleanup_tags; 1846 } 1847 lo->lo_queue->queuedata = lo; 1848 1849 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 1850 1851 /* 1852 * By default, we do buffer IO, so it doesn't make sense to enable 1853 * merge because the I/O submitted to backing file is handled page by 1854 * page. For directio mode, merge does help to dispatch bigger request 1855 * to underlayer disk. We will enable merge once directio is enabled. 1856 */ 1857 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1858 1859 err = -ENOMEM; 1860 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1861 if (!disk) 1862 goto out_free_queue; 1863 1864 /* 1865 * Disable partition scanning by default. The in-kernel partition 1866 * scanning can be requested individually per-device during its 1867 * setup. Userspace can always add and remove partitions from all 1868 * devices. The needed partition minors are allocated from the 1869 * extended minor space, the main loop device numbers will continue 1870 * to match the loop minors, regardless of the number of partitions 1871 * used. 1872 * 1873 * If max_part is given, partition scanning is globally enabled for 1874 * all loop devices. The minors for the main loop devices will be 1875 * multiples of max_part. 1876 * 1877 * Note: Global-for-all-devices, set-only-at-init, read-only module 1878 * parameteters like 'max_loop' and 'max_part' make things needlessly 1879 * complicated, are too static, inflexible and may surprise 1880 * userspace tools. Parameters like this in general should be avoided. 1881 */ 1882 if (!part_shift) 1883 disk->flags |= GENHD_FL_NO_PART_SCAN; 1884 disk->flags |= GENHD_FL_EXT_DEVT; 1885 mutex_init(&lo->lo_ctl_mutex); 1886 atomic_set(&lo->lo_refcnt, 0); 1887 lo->lo_number = i; 1888 spin_lock_init(&lo->lo_lock); 1889 disk->major = LOOP_MAJOR; 1890 disk->first_minor = i << part_shift; 1891 disk->fops = &lo_fops; 1892 disk->private_data = lo; 1893 disk->queue = lo->lo_queue; 1894 sprintf(disk->disk_name, "loop%d", i); 1895 add_disk(disk); 1896 *l = lo; 1897 return lo->lo_number; 1898 1899 out_free_queue: 1900 blk_cleanup_queue(lo->lo_queue); 1901 out_cleanup_tags: 1902 blk_mq_free_tag_set(&lo->tag_set); 1903 out_free_idr: 1904 idr_remove(&loop_index_idr, i); 1905 out_free_dev: 1906 kfree(lo); 1907 out: 1908 return err; 1909 } 1910 1911 static void loop_remove(struct loop_device *lo) 1912 { 1913 del_gendisk(lo->lo_disk); 1914 blk_cleanup_queue(lo->lo_queue); 1915 blk_mq_free_tag_set(&lo->tag_set); 1916 put_disk(lo->lo_disk); 1917 kfree(lo); 1918 } 1919 1920 static int find_free_cb(int id, void *ptr, void *data) 1921 { 1922 struct loop_device *lo = ptr; 1923 struct loop_device **l = data; 1924 1925 if (lo->lo_state == Lo_unbound) { 1926 *l = lo; 1927 return 1; 1928 } 1929 return 0; 1930 } 1931 1932 static int loop_lookup(struct loop_device **l, int i) 1933 { 1934 struct loop_device *lo; 1935 int ret = -ENODEV; 1936 1937 if (i < 0) { 1938 int err; 1939 1940 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1941 if (err == 1) { 1942 *l = lo; 1943 ret = lo->lo_number; 1944 } 1945 goto out; 1946 } 1947 1948 /* lookup and return a specific i */ 1949 lo = idr_find(&loop_index_idr, i); 1950 if (lo) { 1951 *l = lo; 1952 ret = lo->lo_number; 1953 } 1954 out: 1955 return ret; 1956 } 1957 1958 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1959 { 1960 struct loop_device *lo; 1961 struct kobject *kobj; 1962 int err; 1963 1964 mutex_lock(&loop_index_mutex); 1965 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1966 if (err < 0) 1967 err = loop_add(&lo, MINOR(dev) >> part_shift); 1968 if (err < 0) 1969 kobj = NULL; 1970 else 1971 kobj = get_disk_and_module(lo->lo_disk); 1972 mutex_unlock(&loop_index_mutex); 1973 1974 *part = 0; 1975 return kobj; 1976 } 1977 1978 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1979 unsigned long parm) 1980 { 1981 struct loop_device *lo; 1982 int ret = -ENOSYS; 1983 1984 mutex_lock(&loop_index_mutex); 1985 switch (cmd) { 1986 case LOOP_CTL_ADD: 1987 ret = loop_lookup(&lo, parm); 1988 if (ret >= 0) { 1989 ret = -EEXIST; 1990 break; 1991 } 1992 ret = loop_add(&lo, parm); 1993 break; 1994 case LOOP_CTL_REMOVE: 1995 ret = loop_lookup(&lo, parm); 1996 if (ret < 0) 1997 break; 1998 ret = mutex_lock_killable(&lo->lo_ctl_mutex); 1999 if (ret) 2000 break; 2001 if (lo->lo_state != Lo_unbound) { 2002 ret = -EBUSY; 2003 mutex_unlock(&lo->lo_ctl_mutex); 2004 break; 2005 } 2006 if (atomic_read(&lo->lo_refcnt) > 0) { 2007 ret = -EBUSY; 2008 mutex_unlock(&lo->lo_ctl_mutex); 2009 break; 2010 } 2011 lo->lo_disk->private_data = NULL; 2012 mutex_unlock(&lo->lo_ctl_mutex); 2013 idr_remove(&loop_index_idr, lo->lo_number); 2014 loop_remove(lo); 2015 break; 2016 case LOOP_CTL_GET_FREE: 2017 ret = loop_lookup(&lo, -1); 2018 if (ret >= 0) 2019 break; 2020 ret = loop_add(&lo, -1); 2021 } 2022 mutex_unlock(&loop_index_mutex); 2023 2024 return ret; 2025 } 2026 2027 static const struct file_operations loop_ctl_fops = { 2028 .open = nonseekable_open, 2029 .unlocked_ioctl = loop_control_ioctl, 2030 .compat_ioctl = loop_control_ioctl, 2031 .owner = THIS_MODULE, 2032 .llseek = noop_llseek, 2033 }; 2034 2035 static struct miscdevice loop_misc = { 2036 .minor = LOOP_CTRL_MINOR, 2037 .name = "loop-control", 2038 .fops = &loop_ctl_fops, 2039 }; 2040 2041 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2042 MODULE_ALIAS("devname:loop-control"); 2043 2044 static int __init loop_init(void) 2045 { 2046 int i, nr; 2047 unsigned long range; 2048 struct loop_device *lo; 2049 int err; 2050 2051 part_shift = 0; 2052 if (max_part > 0) { 2053 part_shift = fls(max_part); 2054 2055 /* 2056 * Adjust max_part according to part_shift as it is exported 2057 * to user space so that user can decide correct minor number 2058 * if [s]he want to create more devices. 2059 * 2060 * Note that -1 is required because partition 0 is reserved 2061 * for the whole disk. 2062 */ 2063 max_part = (1UL << part_shift) - 1; 2064 } 2065 2066 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2067 err = -EINVAL; 2068 goto err_out; 2069 } 2070 2071 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2072 err = -EINVAL; 2073 goto err_out; 2074 } 2075 2076 /* 2077 * If max_loop is specified, create that many devices upfront. 2078 * This also becomes a hard limit. If max_loop is not specified, 2079 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2080 * init time. Loop devices can be requested on-demand with the 2081 * /dev/loop-control interface, or be instantiated by accessing 2082 * a 'dead' device node. 2083 */ 2084 if (max_loop) { 2085 nr = max_loop; 2086 range = max_loop << part_shift; 2087 } else { 2088 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2089 range = 1UL << MINORBITS; 2090 } 2091 2092 err = misc_register(&loop_misc); 2093 if (err < 0) 2094 goto err_out; 2095 2096 2097 if (register_blkdev(LOOP_MAJOR, "loop")) { 2098 err = -EIO; 2099 goto misc_out; 2100 } 2101 2102 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2103 THIS_MODULE, loop_probe, NULL, NULL); 2104 2105 /* pre-create number of devices given by config or max_loop */ 2106 mutex_lock(&loop_index_mutex); 2107 for (i = 0; i < nr; i++) 2108 loop_add(&lo, i); 2109 mutex_unlock(&loop_index_mutex); 2110 2111 printk(KERN_INFO "loop: module loaded\n"); 2112 return 0; 2113 2114 misc_out: 2115 misc_deregister(&loop_misc); 2116 err_out: 2117 return err; 2118 } 2119 2120 static int loop_exit_cb(int id, void *ptr, void *data) 2121 { 2122 struct loop_device *lo = ptr; 2123 2124 loop_remove(lo); 2125 return 0; 2126 } 2127 2128 static void __exit loop_exit(void) 2129 { 2130 unsigned long range; 2131 2132 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2133 2134 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2135 idr_destroy(&loop_index_idr); 2136 2137 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2138 unregister_blkdev(LOOP_MAJOR, "loop"); 2139 2140 misc_deregister(&loop_misc); 2141 } 2142 2143 module_init(loop_init); 2144 module_exit(loop_exit); 2145 2146 #ifndef MODULE 2147 static int __init max_loop_setup(char *str) 2148 { 2149 max_loop = simple_strtol(str, NULL, 0); 2150 return 1; 2151 } 2152 2153 __setup("max_loop=", max_loop_setup); 2154 #endif 2155