xref: /openbmc/linux/drivers/block/loop.c (revision bc07c10a)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane appplications should be PAGE_SIZE algined
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio)
217 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 	else
219 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 	blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222 
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 	sector_t x = (sector_t)size;
228 	struct block_device *bdev = lo->lo_device;
229 
230 	if (unlikely((loff_t)x != size))
231 		return -EFBIG;
232 	if (lo->lo_offset != offset)
233 		lo->lo_offset = offset;
234 	if (lo->lo_sizelimit != sizelimit)
235 		lo->lo_sizelimit = sizelimit;
236 	set_capacity(lo->lo_disk, x);
237 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 	/* let user-space know about the new size */
239 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 	return 0;
241 }
242 
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 	       struct page *rpage, unsigned roffs,
246 	       struct page *lpage, unsigned loffs,
247 	       int size, sector_t rblock)
248 {
249 	int ret;
250 
251 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 	if (likely(!ret))
253 		return 0;
254 
255 	printk_ratelimited(KERN_ERR
256 		"loop: Transfer error at byte offset %llu, length %i.\n",
257 		(unsigned long long)rblock << 9, size);
258 	return ret;
259 }
260 
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 	struct iov_iter i;
264 	ssize_t bw;
265 
266 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267 
268 	file_start_write(file);
269 	bw = vfs_iter_write(file, &i, ppos);
270 	file_end_write(file);
271 
272 	if (likely(bw ==  bvec->bv_len))
273 		return 0;
274 
275 	printk_ratelimited(KERN_ERR
276 		"loop: Write error at byte offset %llu, length %i.\n",
277 		(unsigned long long)*ppos, bvec->bv_len);
278 	if (bw >= 0)
279 		bw = -EIO;
280 	return bw;
281 }
282 
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 		loff_t pos)
285 {
286 	struct bio_vec bvec;
287 	struct req_iterator iter;
288 	int ret = 0;
289 
290 	rq_for_each_segment(bvec, rq, iter) {
291 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 		if (ret < 0)
293 			break;
294 		cond_resched();
295 	}
296 
297 	return ret;
298 }
299 
300 /*
301  * This is the slow, transforming version that needs to double buffer the
302  * data as it cannot do the transformations in place without having direct
303  * access to the destination pages of the backing file.
304  */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 		loff_t pos)
307 {
308 	struct bio_vec bvec, b;
309 	struct req_iterator iter;
310 	struct page *page;
311 	int ret = 0;
312 
313 	page = alloc_page(GFP_NOIO);
314 	if (unlikely(!page))
315 		return -ENOMEM;
316 
317 	rq_for_each_segment(bvec, rq, iter) {
318 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 			bvec.bv_offset, bvec.bv_len, pos >> 9);
320 		if (unlikely(ret))
321 			break;
322 
323 		b.bv_page = page;
324 		b.bv_offset = 0;
325 		b.bv_len = bvec.bv_len;
326 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 		if (ret < 0)
328 			break;
329 	}
330 
331 	__free_page(page);
332 	return ret;
333 }
334 
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 		loff_t pos)
337 {
338 	struct bio_vec bvec;
339 	struct req_iterator iter;
340 	struct iov_iter i;
341 	ssize_t len;
342 
343 	rq_for_each_segment(bvec, rq, iter) {
344 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 		if (len < 0)
347 			return len;
348 
349 		flush_dcache_page(bvec.bv_page);
350 
351 		if (len != bvec.bv_len) {
352 			struct bio *bio;
353 
354 			__rq_for_each_bio(bio, rq)
355 				zero_fill_bio(bio);
356 			break;
357 		}
358 		cond_resched();
359 	}
360 
361 	return 0;
362 }
363 
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 		loff_t pos)
366 {
367 	struct bio_vec bvec, b;
368 	struct req_iterator iter;
369 	struct iov_iter i;
370 	struct page *page;
371 	ssize_t len;
372 	int ret = 0;
373 
374 	page = alloc_page(GFP_NOIO);
375 	if (unlikely(!page))
376 		return -ENOMEM;
377 
378 	rq_for_each_segment(bvec, rq, iter) {
379 		loff_t offset = pos;
380 
381 		b.bv_page = page;
382 		b.bv_offset = 0;
383 		b.bv_len = bvec.bv_len;
384 
385 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 		if (len < 0) {
388 			ret = len;
389 			goto out_free_page;
390 		}
391 
392 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 			bvec.bv_offset, len, offset >> 9);
394 		if (ret)
395 			goto out_free_page;
396 
397 		flush_dcache_page(bvec.bv_page);
398 
399 		if (len != bvec.bv_len) {
400 			struct bio *bio;
401 
402 			__rq_for_each_bio(bio, rq)
403 				zero_fill_bio(bio);
404 			break;
405 		}
406 	}
407 
408 	ret = 0;
409 out_free_page:
410 	__free_page(page);
411 	return ret;
412 }
413 
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 	/*
417 	 * We use punch hole to reclaim the free space used by the
418 	 * image a.k.a. discard. However we do not support discard if
419 	 * encryption is enabled, because it may give an attacker
420 	 * useful information.
421 	 */
422 	struct file *file = lo->lo_backing_file;
423 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 	int ret;
425 
426 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 		ret = -EOPNOTSUPP;
428 		goto out;
429 	}
430 
431 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 		ret = -EIO;
434  out:
435 	return ret;
436 }
437 
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 	struct file *file = lo->lo_backing_file;
441 	int ret = vfs_fsync(file, 0);
442 	if (unlikely(ret && ret != -EINVAL))
443 		ret = -EIO;
444 
445 	return ret;
446 }
447 
448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
449 {
450 	if (bytes < 0 || (cmd->rq->cmd_flags & REQ_WRITE))
451 		return;
452 
453 	if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
454 		struct bio *bio = cmd->rq->bio;
455 
456 		bio_advance(bio, bytes);
457 		zero_fill_bio(bio);
458 	}
459 }
460 
461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
462 {
463 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
464 	struct request *rq = cmd->rq;
465 
466 	handle_partial_read(cmd, ret);
467 
468 	if (ret > 0)
469 		ret = 0;
470 	else if (ret < 0)
471 		ret = -EIO;
472 
473 	rq->errors = ret;
474 	blk_mq_complete_request(rq);
475 }
476 
477 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
478 		     loff_t pos, bool rw)
479 {
480 	struct iov_iter iter;
481 	struct bio_vec *bvec;
482 	struct bio *bio = cmd->rq->bio;
483 	struct file *file = lo->lo_backing_file;
484 	int ret;
485 
486 	/* nomerge for loop request queue */
487 	WARN_ON(cmd->rq->bio != cmd->rq->biotail);
488 
489 	bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
490 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
491 		      bio_segments(bio), blk_rq_bytes(cmd->rq));
492 
493 	cmd->iocb.ki_pos = pos;
494 	cmd->iocb.ki_filp = file;
495 	cmd->iocb.ki_complete = lo_rw_aio_complete;
496 	cmd->iocb.ki_flags = IOCB_DIRECT;
497 
498 	if (rw == WRITE)
499 		ret = file->f_op->write_iter(&cmd->iocb, &iter);
500 	else
501 		ret = file->f_op->read_iter(&cmd->iocb, &iter);
502 
503 	if (ret != -EIOCBQUEUED)
504 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
505 	return 0;
506 }
507 
508 
509 static inline int lo_rw_simple(struct loop_device *lo,
510 		struct request *rq, loff_t pos, bool rw)
511 {
512 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
513 
514 	if (cmd->use_aio)
515 		return lo_rw_aio(lo, cmd, pos, rw);
516 
517 	/*
518 	 * lo_write_simple and lo_read_simple should have been covered
519 	 * by io submit style function like lo_rw_aio(), one blocker
520 	 * is that lo_read_simple() need to call flush_dcache_page after
521 	 * the page is written from kernel, and it isn't easy to handle
522 	 * this in io submit style function which submits all segments
523 	 * of the req at one time. And direct read IO doesn't need to
524 	 * run flush_dcache_page().
525 	 */
526 	if (rw == WRITE)
527 		return lo_write_simple(lo, rq, pos);
528 	else
529 		return lo_read_simple(lo, rq, pos);
530 }
531 
532 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
533 {
534 	loff_t pos;
535 	int ret;
536 
537 	pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
538 
539 	if (rq->cmd_flags & REQ_WRITE) {
540 		if (rq->cmd_flags & REQ_FLUSH)
541 			ret = lo_req_flush(lo, rq);
542 		else if (rq->cmd_flags & REQ_DISCARD)
543 			ret = lo_discard(lo, rq, pos);
544 		else if (lo->transfer)
545 			ret = lo_write_transfer(lo, rq, pos);
546 		else
547 			ret = lo_rw_simple(lo, rq, pos, WRITE);
548 
549 	} else {
550 		if (lo->transfer)
551 			ret = lo_read_transfer(lo, rq, pos);
552 		else
553 			ret = lo_rw_simple(lo, rq, pos, READ);
554 	}
555 
556 	return ret;
557 }
558 
559 struct switch_request {
560 	struct file *file;
561 	struct completion wait;
562 };
563 
564 static inline void loop_update_dio(struct loop_device *lo)
565 {
566 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
567 			lo->use_dio);
568 }
569 
570 /*
571  * Do the actual switch; called from the BIO completion routine
572  */
573 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
574 {
575 	struct file *file = p->file;
576 	struct file *old_file = lo->lo_backing_file;
577 	struct address_space *mapping;
578 
579 	/* if no new file, only flush of queued bios requested */
580 	if (!file)
581 		return;
582 
583 	mapping = file->f_mapping;
584 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
585 	lo->lo_backing_file = file;
586 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
587 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
588 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
589 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
590 	loop_update_dio(lo);
591 }
592 
593 /*
594  * loop_switch performs the hard work of switching a backing store.
595  * First it needs to flush existing IO, it does this by sending a magic
596  * BIO down the pipe. The completion of this BIO does the actual switch.
597  */
598 static int loop_switch(struct loop_device *lo, struct file *file)
599 {
600 	struct switch_request w;
601 
602 	w.file = file;
603 
604 	/* freeze queue and wait for completion of scheduled requests */
605 	blk_mq_freeze_queue(lo->lo_queue);
606 
607 	/* do the switch action */
608 	do_loop_switch(lo, &w);
609 
610 	/* unfreeze */
611 	blk_mq_unfreeze_queue(lo->lo_queue);
612 
613 	return 0;
614 }
615 
616 /*
617  * Helper to flush the IOs in loop, but keeping loop thread running
618  */
619 static int loop_flush(struct loop_device *lo)
620 {
621 	return loop_switch(lo, NULL);
622 }
623 
624 static void loop_reread_partitions(struct loop_device *lo,
625 				   struct block_device *bdev)
626 {
627 	int rc;
628 
629 	/*
630 	 * bd_mutex has been held already in release path, so don't
631 	 * acquire it if this function is called in such case.
632 	 *
633 	 * If the reread partition isn't from release path, lo_refcnt
634 	 * must be at least one and it can only become zero when the
635 	 * current holder is released.
636 	 */
637 	if (!atomic_read(&lo->lo_refcnt))
638 		rc = __blkdev_reread_part(bdev);
639 	else
640 		rc = blkdev_reread_part(bdev);
641 	if (rc)
642 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
643 			__func__, lo->lo_number, lo->lo_file_name, rc);
644 }
645 
646 /*
647  * loop_change_fd switched the backing store of a loopback device to
648  * a new file. This is useful for operating system installers to free up
649  * the original file and in High Availability environments to switch to
650  * an alternative location for the content in case of server meltdown.
651  * This can only work if the loop device is used read-only, and if the
652  * new backing store is the same size and type as the old backing store.
653  */
654 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
655 			  unsigned int arg)
656 {
657 	struct file	*file, *old_file;
658 	struct inode	*inode;
659 	int		error;
660 
661 	error = -ENXIO;
662 	if (lo->lo_state != Lo_bound)
663 		goto out;
664 
665 	/* the loop device has to be read-only */
666 	error = -EINVAL;
667 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
668 		goto out;
669 
670 	error = -EBADF;
671 	file = fget(arg);
672 	if (!file)
673 		goto out;
674 
675 	inode = file->f_mapping->host;
676 	old_file = lo->lo_backing_file;
677 
678 	error = -EINVAL;
679 
680 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
681 		goto out_putf;
682 
683 	/* size of the new backing store needs to be the same */
684 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
685 		goto out_putf;
686 
687 	/* and ... switch */
688 	error = loop_switch(lo, file);
689 	if (error)
690 		goto out_putf;
691 
692 	fput(old_file);
693 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
694 		loop_reread_partitions(lo, bdev);
695 	return 0;
696 
697  out_putf:
698 	fput(file);
699  out:
700 	return error;
701 }
702 
703 static inline int is_loop_device(struct file *file)
704 {
705 	struct inode *i = file->f_mapping->host;
706 
707 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
708 }
709 
710 /* loop sysfs attributes */
711 
712 static ssize_t loop_attr_show(struct device *dev, char *page,
713 			      ssize_t (*callback)(struct loop_device *, char *))
714 {
715 	struct gendisk *disk = dev_to_disk(dev);
716 	struct loop_device *lo = disk->private_data;
717 
718 	return callback(lo, page);
719 }
720 
721 #define LOOP_ATTR_RO(_name)						\
722 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
723 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
724 				struct device_attribute *attr, char *b)	\
725 {									\
726 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
727 }									\
728 static struct device_attribute loop_attr_##_name =			\
729 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
730 
731 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
732 {
733 	ssize_t ret;
734 	char *p = NULL;
735 
736 	spin_lock_irq(&lo->lo_lock);
737 	if (lo->lo_backing_file)
738 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
739 	spin_unlock_irq(&lo->lo_lock);
740 
741 	if (IS_ERR_OR_NULL(p))
742 		ret = PTR_ERR(p);
743 	else {
744 		ret = strlen(p);
745 		memmove(buf, p, ret);
746 		buf[ret++] = '\n';
747 		buf[ret] = 0;
748 	}
749 
750 	return ret;
751 }
752 
753 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
754 {
755 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
756 }
757 
758 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
759 {
760 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
761 }
762 
763 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
764 {
765 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
766 
767 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
768 }
769 
770 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
771 {
772 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
773 
774 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
775 }
776 
777 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
778 {
779 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
780 
781 	return sprintf(buf, "%s\n", dio ? "1" : "0");
782 }
783 
784 LOOP_ATTR_RO(backing_file);
785 LOOP_ATTR_RO(offset);
786 LOOP_ATTR_RO(sizelimit);
787 LOOP_ATTR_RO(autoclear);
788 LOOP_ATTR_RO(partscan);
789 LOOP_ATTR_RO(dio);
790 
791 static struct attribute *loop_attrs[] = {
792 	&loop_attr_backing_file.attr,
793 	&loop_attr_offset.attr,
794 	&loop_attr_sizelimit.attr,
795 	&loop_attr_autoclear.attr,
796 	&loop_attr_partscan.attr,
797 	&loop_attr_dio.attr,
798 	NULL,
799 };
800 
801 static struct attribute_group loop_attribute_group = {
802 	.name = "loop",
803 	.attrs= loop_attrs,
804 };
805 
806 static int loop_sysfs_init(struct loop_device *lo)
807 {
808 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
809 				  &loop_attribute_group);
810 }
811 
812 static void loop_sysfs_exit(struct loop_device *lo)
813 {
814 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
815 			   &loop_attribute_group);
816 }
817 
818 static void loop_config_discard(struct loop_device *lo)
819 {
820 	struct file *file = lo->lo_backing_file;
821 	struct inode *inode = file->f_mapping->host;
822 	struct request_queue *q = lo->lo_queue;
823 
824 	/*
825 	 * We use punch hole to reclaim the free space used by the
826 	 * image a.k.a. discard. However we do not support discard if
827 	 * encryption is enabled, because it may give an attacker
828 	 * useful information.
829 	 */
830 	if ((!file->f_op->fallocate) ||
831 	    lo->lo_encrypt_key_size) {
832 		q->limits.discard_granularity = 0;
833 		q->limits.discard_alignment = 0;
834 		blk_queue_max_discard_sectors(q, 0);
835 		q->limits.discard_zeroes_data = 0;
836 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
837 		return;
838 	}
839 
840 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
841 	q->limits.discard_alignment = 0;
842 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
843 	q->limits.discard_zeroes_data = 1;
844 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
845 }
846 
847 static void loop_unprepare_queue(struct loop_device *lo)
848 {
849 	flush_kthread_worker(&lo->worker);
850 	kthread_stop(lo->worker_task);
851 }
852 
853 static int loop_prepare_queue(struct loop_device *lo)
854 {
855 	init_kthread_worker(&lo->worker);
856 	lo->worker_task = kthread_run(kthread_worker_fn,
857 			&lo->worker, "loop%d", lo->lo_number);
858 	if (IS_ERR(lo->worker_task))
859 		return -ENOMEM;
860 	set_user_nice(lo->worker_task, MIN_NICE);
861 	return 0;
862 }
863 
864 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
865 		       struct block_device *bdev, unsigned int arg)
866 {
867 	struct file	*file, *f;
868 	struct inode	*inode;
869 	struct address_space *mapping;
870 	unsigned lo_blocksize;
871 	int		lo_flags = 0;
872 	int		error;
873 	loff_t		size;
874 
875 	/* This is safe, since we have a reference from open(). */
876 	__module_get(THIS_MODULE);
877 
878 	error = -EBADF;
879 	file = fget(arg);
880 	if (!file)
881 		goto out;
882 
883 	error = -EBUSY;
884 	if (lo->lo_state != Lo_unbound)
885 		goto out_putf;
886 
887 	/* Avoid recursion */
888 	f = file;
889 	while (is_loop_device(f)) {
890 		struct loop_device *l;
891 
892 		if (f->f_mapping->host->i_bdev == bdev)
893 			goto out_putf;
894 
895 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
896 		if (l->lo_state == Lo_unbound) {
897 			error = -EINVAL;
898 			goto out_putf;
899 		}
900 		f = l->lo_backing_file;
901 	}
902 
903 	mapping = file->f_mapping;
904 	inode = mapping->host;
905 
906 	error = -EINVAL;
907 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
908 		goto out_putf;
909 
910 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
911 	    !file->f_op->write_iter)
912 		lo_flags |= LO_FLAGS_READ_ONLY;
913 
914 	lo_blocksize = S_ISBLK(inode->i_mode) ?
915 		inode->i_bdev->bd_block_size : PAGE_SIZE;
916 
917 	error = -EFBIG;
918 	size = get_loop_size(lo, file);
919 	if ((loff_t)(sector_t)size != size)
920 		goto out_putf;
921 	error = loop_prepare_queue(lo);
922 	if (error)
923 		goto out_putf;
924 
925 	error = 0;
926 
927 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
928 
929 	lo->use_dio = false;
930 	lo->lo_blocksize = lo_blocksize;
931 	lo->lo_device = bdev;
932 	lo->lo_flags = lo_flags;
933 	lo->lo_backing_file = file;
934 	lo->transfer = NULL;
935 	lo->ioctl = NULL;
936 	lo->lo_sizelimit = 0;
937 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
938 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
939 
940 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
941 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
942 
943 	loop_update_dio(lo);
944 	set_capacity(lo->lo_disk, size);
945 	bd_set_size(bdev, size << 9);
946 	loop_sysfs_init(lo);
947 	/* let user-space know about the new size */
948 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
949 
950 	set_blocksize(bdev, lo_blocksize);
951 
952 	lo->lo_state = Lo_bound;
953 	if (part_shift)
954 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
955 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
956 		loop_reread_partitions(lo, bdev);
957 
958 	/* Grab the block_device to prevent its destruction after we
959 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
960 	 */
961 	bdgrab(bdev);
962 	return 0;
963 
964  out_putf:
965 	fput(file);
966  out:
967 	/* This is safe: open() is still holding a reference. */
968 	module_put(THIS_MODULE);
969 	return error;
970 }
971 
972 static int
973 loop_release_xfer(struct loop_device *lo)
974 {
975 	int err = 0;
976 	struct loop_func_table *xfer = lo->lo_encryption;
977 
978 	if (xfer) {
979 		if (xfer->release)
980 			err = xfer->release(lo);
981 		lo->transfer = NULL;
982 		lo->lo_encryption = NULL;
983 		module_put(xfer->owner);
984 	}
985 	return err;
986 }
987 
988 static int
989 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
990 	       const struct loop_info64 *i)
991 {
992 	int err = 0;
993 
994 	if (xfer) {
995 		struct module *owner = xfer->owner;
996 
997 		if (!try_module_get(owner))
998 			return -EINVAL;
999 		if (xfer->init)
1000 			err = xfer->init(lo, i);
1001 		if (err)
1002 			module_put(owner);
1003 		else
1004 			lo->lo_encryption = xfer;
1005 	}
1006 	return err;
1007 }
1008 
1009 static int loop_clr_fd(struct loop_device *lo)
1010 {
1011 	struct file *filp = lo->lo_backing_file;
1012 	gfp_t gfp = lo->old_gfp_mask;
1013 	struct block_device *bdev = lo->lo_device;
1014 
1015 	if (lo->lo_state != Lo_bound)
1016 		return -ENXIO;
1017 
1018 	/*
1019 	 * If we've explicitly asked to tear down the loop device,
1020 	 * and it has an elevated reference count, set it for auto-teardown when
1021 	 * the last reference goes away. This stops $!~#$@ udev from
1022 	 * preventing teardown because it decided that it needs to run blkid on
1023 	 * the loopback device whenever they appear. xfstests is notorious for
1024 	 * failing tests because blkid via udev races with a losetup
1025 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1026 	 * command to fail with EBUSY.
1027 	 */
1028 	if (atomic_read(&lo->lo_refcnt) > 1) {
1029 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1030 		mutex_unlock(&lo->lo_ctl_mutex);
1031 		return 0;
1032 	}
1033 
1034 	if (filp == NULL)
1035 		return -EINVAL;
1036 
1037 	/* freeze request queue during the transition */
1038 	blk_mq_freeze_queue(lo->lo_queue);
1039 
1040 	spin_lock_irq(&lo->lo_lock);
1041 	lo->lo_state = Lo_rundown;
1042 	lo->lo_backing_file = NULL;
1043 	spin_unlock_irq(&lo->lo_lock);
1044 
1045 	loop_release_xfer(lo);
1046 	lo->transfer = NULL;
1047 	lo->ioctl = NULL;
1048 	lo->lo_device = NULL;
1049 	lo->lo_encryption = NULL;
1050 	lo->lo_offset = 0;
1051 	lo->lo_sizelimit = 0;
1052 	lo->lo_encrypt_key_size = 0;
1053 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1054 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1055 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1056 	if (bdev) {
1057 		bdput(bdev);
1058 		invalidate_bdev(bdev);
1059 	}
1060 	set_capacity(lo->lo_disk, 0);
1061 	loop_sysfs_exit(lo);
1062 	if (bdev) {
1063 		bd_set_size(bdev, 0);
1064 		/* let user-space know about this change */
1065 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1066 	}
1067 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1068 	lo->lo_state = Lo_unbound;
1069 	/* This is safe: open() is still holding a reference. */
1070 	module_put(THIS_MODULE);
1071 	blk_mq_unfreeze_queue(lo->lo_queue);
1072 
1073 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1074 		loop_reread_partitions(lo, bdev);
1075 	lo->lo_flags = 0;
1076 	if (!part_shift)
1077 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1078 	loop_unprepare_queue(lo);
1079 	mutex_unlock(&lo->lo_ctl_mutex);
1080 	/*
1081 	 * Need not hold lo_ctl_mutex to fput backing file.
1082 	 * Calling fput holding lo_ctl_mutex triggers a circular
1083 	 * lock dependency possibility warning as fput can take
1084 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1085 	 */
1086 	fput(filp);
1087 	return 0;
1088 }
1089 
1090 static int
1091 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1092 {
1093 	int err;
1094 	struct loop_func_table *xfer;
1095 	kuid_t uid = current_uid();
1096 
1097 	if (lo->lo_encrypt_key_size &&
1098 	    !uid_eq(lo->lo_key_owner, uid) &&
1099 	    !capable(CAP_SYS_ADMIN))
1100 		return -EPERM;
1101 	if (lo->lo_state != Lo_bound)
1102 		return -ENXIO;
1103 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1104 		return -EINVAL;
1105 
1106 	err = loop_release_xfer(lo);
1107 	if (err)
1108 		return err;
1109 
1110 	if (info->lo_encrypt_type) {
1111 		unsigned int type = info->lo_encrypt_type;
1112 
1113 		if (type >= MAX_LO_CRYPT)
1114 			return -EINVAL;
1115 		xfer = xfer_funcs[type];
1116 		if (xfer == NULL)
1117 			return -EINVAL;
1118 	} else
1119 		xfer = NULL;
1120 
1121 	err = loop_init_xfer(lo, xfer, info);
1122 	if (err)
1123 		return err;
1124 
1125 	if (lo->lo_offset != info->lo_offset ||
1126 	    lo->lo_sizelimit != info->lo_sizelimit)
1127 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1128 			return -EFBIG;
1129 
1130 	loop_config_discard(lo);
1131 
1132 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1133 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1134 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1135 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1136 
1137 	if (!xfer)
1138 		xfer = &none_funcs;
1139 	lo->transfer = xfer->transfer;
1140 	lo->ioctl = xfer->ioctl;
1141 
1142 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1143 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1144 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1145 
1146 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1147 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1148 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1149 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1150 		loop_reread_partitions(lo, lo->lo_device);
1151 	}
1152 
1153 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1154 	lo->lo_init[0] = info->lo_init[0];
1155 	lo->lo_init[1] = info->lo_init[1];
1156 	if (info->lo_encrypt_key_size) {
1157 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1158 		       info->lo_encrypt_key_size);
1159 		lo->lo_key_owner = uid;
1160 	}
1161 
1162 	/* update dio if lo_offset or transfer is changed */
1163 	__loop_update_dio(lo, lo->use_dio);
1164 
1165 	return 0;
1166 }
1167 
1168 static int
1169 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1170 {
1171 	struct file *file = lo->lo_backing_file;
1172 	struct kstat stat;
1173 	int error;
1174 
1175 	if (lo->lo_state != Lo_bound)
1176 		return -ENXIO;
1177 	error = vfs_getattr(&file->f_path, &stat);
1178 	if (error)
1179 		return error;
1180 	memset(info, 0, sizeof(*info));
1181 	info->lo_number = lo->lo_number;
1182 	info->lo_device = huge_encode_dev(stat.dev);
1183 	info->lo_inode = stat.ino;
1184 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1185 	info->lo_offset = lo->lo_offset;
1186 	info->lo_sizelimit = lo->lo_sizelimit;
1187 	info->lo_flags = lo->lo_flags;
1188 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1189 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1190 	info->lo_encrypt_type =
1191 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1192 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1193 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1194 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1195 		       lo->lo_encrypt_key_size);
1196 	}
1197 	return 0;
1198 }
1199 
1200 static void
1201 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1202 {
1203 	memset(info64, 0, sizeof(*info64));
1204 	info64->lo_number = info->lo_number;
1205 	info64->lo_device = info->lo_device;
1206 	info64->lo_inode = info->lo_inode;
1207 	info64->lo_rdevice = info->lo_rdevice;
1208 	info64->lo_offset = info->lo_offset;
1209 	info64->lo_sizelimit = 0;
1210 	info64->lo_encrypt_type = info->lo_encrypt_type;
1211 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1212 	info64->lo_flags = info->lo_flags;
1213 	info64->lo_init[0] = info->lo_init[0];
1214 	info64->lo_init[1] = info->lo_init[1];
1215 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1216 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1217 	else
1218 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1219 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1220 }
1221 
1222 static int
1223 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1224 {
1225 	memset(info, 0, sizeof(*info));
1226 	info->lo_number = info64->lo_number;
1227 	info->lo_device = info64->lo_device;
1228 	info->lo_inode = info64->lo_inode;
1229 	info->lo_rdevice = info64->lo_rdevice;
1230 	info->lo_offset = info64->lo_offset;
1231 	info->lo_encrypt_type = info64->lo_encrypt_type;
1232 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1233 	info->lo_flags = info64->lo_flags;
1234 	info->lo_init[0] = info64->lo_init[0];
1235 	info->lo_init[1] = info64->lo_init[1];
1236 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1237 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1238 	else
1239 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1240 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1241 
1242 	/* error in case values were truncated */
1243 	if (info->lo_device != info64->lo_device ||
1244 	    info->lo_rdevice != info64->lo_rdevice ||
1245 	    info->lo_inode != info64->lo_inode ||
1246 	    info->lo_offset != info64->lo_offset)
1247 		return -EOVERFLOW;
1248 
1249 	return 0;
1250 }
1251 
1252 static int
1253 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1254 {
1255 	struct loop_info info;
1256 	struct loop_info64 info64;
1257 
1258 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1259 		return -EFAULT;
1260 	loop_info64_from_old(&info, &info64);
1261 	return loop_set_status(lo, &info64);
1262 }
1263 
1264 static int
1265 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1266 {
1267 	struct loop_info64 info64;
1268 
1269 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1270 		return -EFAULT;
1271 	return loop_set_status(lo, &info64);
1272 }
1273 
1274 static int
1275 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1276 	struct loop_info info;
1277 	struct loop_info64 info64;
1278 	int err = 0;
1279 
1280 	if (!arg)
1281 		err = -EINVAL;
1282 	if (!err)
1283 		err = loop_get_status(lo, &info64);
1284 	if (!err)
1285 		err = loop_info64_to_old(&info64, &info);
1286 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1287 		err = -EFAULT;
1288 
1289 	return err;
1290 }
1291 
1292 static int
1293 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1294 	struct loop_info64 info64;
1295 	int err = 0;
1296 
1297 	if (!arg)
1298 		err = -EINVAL;
1299 	if (!err)
1300 		err = loop_get_status(lo, &info64);
1301 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1302 		err = -EFAULT;
1303 
1304 	return err;
1305 }
1306 
1307 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1308 {
1309 	if (unlikely(lo->lo_state != Lo_bound))
1310 		return -ENXIO;
1311 
1312 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1313 }
1314 
1315 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1316 {
1317 	int error = -ENXIO;
1318 	if (lo->lo_state != Lo_bound)
1319 		goto out;
1320 
1321 	__loop_update_dio(lo, !!arg);
1322 	if (lo->use_dio == !!arg)
1323 		return 0;
1324 	error = -EINVAL;
1325  out:
1326 	return error;
1327 }
1328 
1329 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1330 	unsigned int cmd, unsigned long arg)
1331 {
1332 	struct loop_device *lo = bdev->bd_disk->private_data;
1333 	int err;
1334 
1335 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1336 	switch (cmd) {
1337 	case LOOP_SET_FD:
1338 		err = loop_set_fd(lo, mode, bdev, arg);
1339 		break;
1340 	case LOOP_CHANGE_FD:
1341 		err = loop_change_fd(lo, bdev, arg);
1342 		break;
1343 	case LOOP_CLR_FD:
1344 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1345 		err = loop_clr_fd(lo);
1346 		if (!err)
1347 			goto out_unlocked;
1348 		break;
1349 	case LOOP_SET_STATUS:
1350 		err = -EPERM;
1351 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1352 			err = loop_set_status_old(lo,
1353 					(struct loop_info __user *)arg);
1354 		break;
1355 	case LOOP_GET_STATUS:
1356 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1357 		break;
1358 	case LOOP_SET_STATUS64:
1359 		err = -EPERM;
1360 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1361 			err = loop_set_status64(lo,
1362 					(struct loop_info64 __user *) arg);
1363 		break;
1364 	case LOOP_GET_STATUS64:
1365 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1366 		break;
1367 	case LOOP_SET_CAPACITY:
1368 		err = -EPERM;
1369 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1370 			err = loop_set_capacity(lo, bdev);
1371 		break;
1372 	case LOOP_SET_DIRECT_IO:
1373 		err = -EPERM;
1374 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1375 			err = loop_set_dio(lo, arg);
1376 		break;
1377 	default:
1378 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1379 	}
1380 	mutex_unlock(&lo->lo_ctl_mutex);
1381 
1382 out_unlocked:
1383 	return err;
1384 }
1385 
1386 #ifdef CONFIG_COMPAT
1387 struct compat_loop_info {
1388 	compat_int_t	lo_number;      /* ioctl r/o */
1389 	compat_dev_t	lo_device;      /* ioctl r/o */
1390 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1391 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1392 	compat_int_t	lo_offset;
1393 	compat_int_t	lo_encrypt_type;
1394 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1395 	compat_int_t	lo_flags;       /* ioctl r/o */
1396 	char		lo_name[LO_NAME_SIZE];
1397 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1398 	compat_ulong_t	lo_init[2];
1399 	char		reserved[4];
1400 };
1401 
1402 /*
1403  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1404  * - noinlined to reduce stack space usage in main part of driver
1405  */
1406 static noinline int
1407 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1408 			struct loop_info64 *info64)
1409 {
1410 	struct compat_loop_info info;
1411 
1412 	if (copy_from_user(&info, arg, sizeof(info)))
1413 		return -EFAULT;
1414 
1415 	memset(info64, 0, sizeof(*info64));
1416 	info64->lo_number = info.lo_number;
1417 	info64->lo_device = info.lo_device;
1418 	info64->lo_inode = info.lo_inode;
1419 	info64->lo_rdevice = info.lo_rdevice;
1420 	info64->lo_offset = info.lo_offset;
1421 	info64->lo_sizelimit = 0;
1422 	info64->lo_encrypt_type = info.lo_encrypt_type;
1423 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1424 	info64->lo_flags = info.lo_flags;
1425 	info64->lo_init[0] = info.lo_init[0];
1426 	info64->lo_init[1] = info.lo_init[1];
1427 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1428 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1429 	else
1430 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1431 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1432 	return 0;
1433 }
1434 
1435 /*
1436  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1437  * - noinlined to reduce stack space usage in main part of driver
1438  */
1439 static noinline int
1440 loop_info64_to_compat(const struct loop_info64 *info64,
1441 		      struct compat_loop_info __user *arg)
1442 {
1443 	struct compat_loop_info info;
1444 
1445 	memset(&info, 0, sizeof(info));
1446 	info.lo_number = info64->lo_number;
1447 	info.lo_device = info64->lo_device;
1448 	info.lo_inode = info64->lo_inode;
1449 	info.lo_rdevice = info64->lo_rdevice;
1450 	info.lo_offset = info64->lo_offset;
1451 	info.lo_encrypt_type = info64->lo_encrypt_type;
1452 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1453 	info.lo_flags = info64->lo_flags;
1454 	info.lo_init[0] = info64->lo_init[0];
1455 	info.lo_init[1] = info64->lo_init[1];
1456 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1457 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1458 	else
1459 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1460 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1461 
1462 	/* error in case values were truncated */
1463 	if (info.lo_device != info64->lo_device ||
1464 	    info.lo_rdevice != info64->lo_rdevice ||
1465 	    info.lo_inode != info64->lo_inode ||
1466 	    info.lo_offset != info64->lo_offset ||
1467 	    info.lo_init[0] != info64->lo_init[0] ||
1468 	    info.lo_init[1] != info64->lo_init[1])
1469 		return -EOVERFLOW;
1470 
1471 	if (copy_to_user(arg, &info, sizeof(info)))
1472 		return -EFAULT;
1473 	return 0;
1474 }
1475 
1476 static int
1477 loop_set_status_compat(struct loop_device *lo,
1478 		       const struct compat_loop_info __user *arg)
1479 {
1480 	struct loop_info64 info64;
1481 	int ret;
1482 
1483 	ret = loop_info64_from_compat(arg, &info64);
1484 	if (ret < 0)
1485 		return ret;
1486 	return loop_set_status(lo, &info64);
1487 }
1488 
1489 static int
1490 loop_get_status_compat(struct loop_device *lo,
1491 		       struct compat_loop_info __user *arg)
1492 {
1493 	struct loop_info64 info64;
1494 	int err = 0;
1495 
1496 	if (!arg)
1497 		err = -EINVAL;
1498 	if (!err)
1499 		err = loop_get_status(lo, &info64);
1500 	if (!err)
1501 		err = loop_info64_to_compat(&info64, arg);
1502 	return err;
1503 }
1504 
1505 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1506 			   unsigned int cmd, unsigned long arg)
1507 {
1508 	struct loop_device *lo = bdev->bd_disk->private_data;
1509 	int err;
1510 
1511 	switch(cmd) {
1512 	case LOOP_SET_STATUS:
1513 		mutex_lock(&lo->lo_ctl_mutex);
1514 		err = loop_set_status_compat(
1515 			lo, (const struct compat_loop_info __user *) arg);
1516 		mutex_unlock(&lo->lo_ctl_mutex);
1517 		break;
1518 	case LOOP_GET_STATUS:
1519 		mutex_lock(&lo->lo_ctl_mutex);
1520 		err = loop_get_status_compat(
1521 			lo, (struct compat_loop_info __user *) arg);
1522 		mutex_unlock(&lo->lo_ctl_mutex);
1523 		break;
1524 	case LOOP_SET_CAPACITY:
1525 	case LOOP_CLR_FD:
1526 	case LOOP_GET_STATUS64:
1527 	case LOOP_SET_STATUS64:
1528 		arg = (unsigned long) compat_ptr(arg);
1529 	case LOOP_SET_FD:
1530 	case LOOP_CHANGE_FD:
1531 		err = lo_ioctl(bdev, mode, cmd, arg);
1532 		break;
1533 	default:
1534 		err = -ENOIOCTLCMD;
1535 		break;
1536 	}
1537 	return err;
1538 }
1539 #endif
1540 
1541 static int lo_open(struct block_device *bdev, fmode_t mode)
1542 {
1543 	struct loop_device *lo;
1544 	int err = 0;
1545 
1546 	mutex_lock(&loop_index_mutex);
1547 	lo = bdev->bd_disk->private_data;
1548 	if (!lo) {
1549 		err = -ENXIO;
1550 		goto out;
1551 	}
1552 
1553 	atomic_inc(&lo->lo_refcnt);
1554 out:
1555 	mutex_unlock(&loop_index_mutex);
1556 	return err;
1557 }
1558 
1559 static void lo_release(struct gendisk *disk, fmode_t mode)
1560 {
1561 	struct loop_device *lo = disk->private_data;
1562 	int err;
1563 
1564 	if (atomic_dec_return(&lo->lo_refcnt))
1565 		return;
1566 
1567 	mutex_lock(&lo->lo_ctl_mutex);
1568 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1569 		/*
1570 		 * In autoclear mode, stop the loop thread
1571 		 * and remove configuration after last close.
1572 		 */
1573 		err = loop_clr_fd(lo);
1574 		if (!err)
1575 			return;
1576 	} else {
1577 		/*
1578 		 * Otherwise keep thread (if running) and config,
1579 		 * but flush possible ongoing bios in thread.
1580 		 */
1581 		loop_flush(lo);
1582 	}
1583 
1584 	mutex_unlock(&lo->lo_ctl_mutex);
1585 }
1586 
1587 static const struct block_device_operations lo_fops = {
1588 	.owner =	THIS_MODULE,
1589 	.open =		lo_open,
1590 	.release =	lo_release,
1591 	.ioctl =	lo_ioctl,
1592 #ifdef CONFIG_COMPAT
1593 	.compat_ioctl =	lo_compat_ioctl,
1594 #endif
1595 };
1596 
1597 /*
1598  * And now the modules code and kernel interface.
1599  */
1600 static int max_loop;
1601 module_param(max_loop, int, S_IRUGO);
1602 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1603 module_param(max_part, int, S_IRUGO);
1604 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1605 MODULE_LICENSE("GPL");
1606 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1607 
1608 int loop_register_transfer(struct loop_func_table *funcs)
1609 {
1610 	unsigned int n = funcs->number;
1611 
1612 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1613 		return -EINVAL;
1614 	xfer_funcs[n] = funcs;
1615 	return 0;
1616 }
1617 
1618 static int unregister_transfer_cb(int id, void *ptr, void *data)
1619 {
1620 	struct loop_device *lo = ptr;
1621 	struct loop_func_table *xfer = data;
1622 
1623 	mutex_lock(&lo->lo_ctl_mutex);
1624 	if (lo->lo_encryption == xfer)
1625 		loop_release_xfer(lo);
1626 	mutex_unlock(&lo->lo_ctl_mutex);
1627 	return 0;
1628 }
1629 
1630 int loop_unregister_transfer(int number)
1631 {
1632 	unsigned int n = number;
1633 	struct loop_func_table *xfer;
1634 
1635 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1636 		return -EINVAL;
1637 
1638 	xfer_funcs[n] = NULL;
1639 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1640 	return 0;
1641 }
1642 
1643 EXPORT_SYMBOL(loop_register_transfer);
1644 EXPORT_SYMBOL(loop_unregister_transfer);
1645 
1646 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1647 		const struct blk_mq_queue_data *bd)
1648 {
1649 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1650 	struct loop_device *lo = cmd->rq->q->queuedata;
1651 
1652 	blk_mq_start_request(bd->rq);
1653 
1654 	if (lo->lo_state != Lo_bound)
1655 		return -EIO;
1656 
1657 	if (lo->use_dio && !(cmd->rq->cmd_flags & (REQ_FLUSH |
1658 					REQ_DISCARD)))
1659 		cmd->use_aio = true;
1660 	else
1661 		cmd->use_aio = false;
1662 
1663 	queue_kthread_work(&lo->worker, &cmd->work);
1664 
1665 	return BLK_MQ_RQ_QUEUE_OK;
1666 }
1667 
1668 static void loop_handle_cmd(struct loop_cmd *cmd)
1669 {
1670 	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1671 	struct loop_device *lo = cmd->rq->q->queuedata;
1672 	int ret = -EIO;
1673 
1674 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1675 		goto failed;
1676 
1677 	ret = do_req_filebacked(lo, cmd->rq);
1678 
1679  failed:
1680 	if (ret)
1681 		cmd->rq->errors = -EIO;
1682 	/* complete non-aio request */
1683 	if (!cmd->use_aio || ret)
1684 		blk_mq_complete_request(cmd->rq);
1685 }
1686 
1687 static void loop_queue_work(struct kthread_work *work)
1688 {
1689 	struct loop_cmd *cmd =
1690 		container_of(work, struct loop_cmd, work);
1691 
1692 	loop_handle_cmd(cmd);
1693 }
1694 
1695 static int loop_init_request(void *data, struct request *rq,
1696 		unsigned int hctx_idx, unsigned int request_idx,
1697 		unsigned int numa_node)
1698 {
1699 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1700 
1701 	cmd->rq = rq;
1702 	init_kthread_work(&cmd->work, loop_queue_work);
1703 
1704 	return 0;
1705 }
1706 
1707 static struct blk_mq_ops loop_mq_ops = {
1708 	.queue_rq       = loop_queue_rq,
1709 	.map_queue      = blk_mq_map_queue,
1710 	.init_request	= loop_init_request,
1711 };
1712 
1713 static int loop_add(struct loop_device **l, int i)
1714 {
1715 	struct loop_device *lo;
1716 	struct gendisk *disk;
1717 	int err;
1718 
1719 	err = -ENOMEM;
1720 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1721 	if (!lo)
1722 		goto out;
1723 
1724 	lo->lo_state = Lo_unbound;
1725 
1726 	/* allocate id, if @id >= 0, we're requesting that specific id */
1727 	if (i >= 0) {
1728 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1729 		if (err == -ENOSPC)
1730 			err = -EEXIST;
1731 	} else {
1732 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1733 	}
1734 	if (err < 0)
1735 		goto out_free_dev;
1736 	i = err;
1737 
1738 	err = -ENOMEM;
1739 	lo->tag_set.ops = &loop_mq_ops;
1740 	lo->tag_set.nr_hw_queues = 1;
1741 	lo->tag_set.queue_depth = 128;
1742 	lo->tag_set.numa_node = NUMA_NO_NODE;
1743 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1744 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1745 	lo->tag_set.driver_data = lo;
1746 
1747 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1748 	if (err)
1749 		goto out_free_idr;
1750 
1751 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1752 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1753 		err = PTR_ERR(lo->lo_queue);
1754 		goto out_cleanup_tags;
1755 	}
1756 	lo->lo_queue->queuedata = lo;
1757 
1758 	/*
1759 	 * It doesn't make sense to enable merge because the I/O
1760 	 * submitted to backing file is handled page by page.
1761 	 */
1762 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1763 
1764 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1765 	if (!disk)
1766 		goto out_free_queue;
1767 
1768 	/*
1769 	 * Disable partition scanning by default. The in-kernel partition
1770 	 * scanning can be requested individually per-device during its
1771 	 * setup. Userspace can always add and remove partitions from all
1772 	 * devices. The needed partition minors are allocated from the
1773 	 * extended minor space, the main loop device numbers will continue
1774 	 * to match the loop minors, regardless of the number of partitions
1775 	 * used.
1776 	 *
1777 	 * If max_part is given, partition scanning is globally enabled for
1778 	 * all loop devices. The minors for the main loop devices will be
1779 	 * multiples of max_part.
1780 	 *
1781 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1782 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1783 	 * complicated, are too static, inflexible and may surprise
1784 	 * userspace tools. Parameters like this in general should be avoided.
1785 	 */
1786 	if (!part_shift)
1787 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1788 	disk->flags |= GENHD_FL_EXT_DEVT;
1789 	mutex_init(&lo->lo_ctl_mutex);
1790 	atomic_set(&lo->lo_refcnt, 0);
1791 	lo->lo_number		= i;
1792 	spin_lock_init(&lo->lo_lock);
1793 	disk->major		= LOOP_MAJOR;
1794 	disk->first_minor	= i << part_shift;
1795 	disk->fops		= &lo_fops;
1796 	disk->private_data	= lo;
1797 	disk->queue		= lo->lo_queue;
1798 	sprintf(disk->disk_name, "loop%d", i);
1799 	add_disk(disk);
1800 	*l = lo;
1801 	return lo->lo_number;
1802 
1803 out_free_queue:
1804 	blk_cleanup_queue(lo->lo_queue);
1805 out_cleanup_tags:
1806 	blk_mq_free_tag_set(&lo->tag_set);
1807 out_free_idr:
1808 	idr_remove(&loop_index_idr, i);
1809 out_free_dev:
1810 	kfree(lo);
1811 out:
1812 	return err;
1813 }
1814 
1815 static void loop_remove(struct loop_device *lo)
1816 {
1817 	blk_cleanup_queue(lo->lo_queue);
1818 	del_gendisk(lo->lo_disk);
1819 	blk_mq_free_tag_set(&lo->tag_set);
1820 	put_disk(lo->lo_disk);
1821 	kfree(lo);
1822 }
1823 
1824 static int find_free_cb(int id, void *ptr, void *data)
1825 {
1826 	struct loop_device *lo = ptr;
1827 	struct loop_device **l = data;
1828 
1829 	if (lo->lo_state == Lo_unbound) {
1830 		*l = lo;
1831 		return 1;
1832 	}
1833 	return 0;
1834 }
1835 
1836 static int loop_lookup(struct loop_device **l, int i)
1837 {
1838 	struct loop_device *lo;
1839 	int ret = -ENODEV;
1840 
1841 	if (i < 0) {
1842 		int err;
1843 
1844 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1845 		if (err == 1) {
1846 			*l = lo;
1847 			ret = lo->lo_number;
1848 		}
1849 		goto out;
1850 	}
1851 
1852 	/* lookup and return a specific i */
1853 	lo = idr_find(&loop_index_idr, i);
1854 	if (lo) {
1855 		*l = lo;
1856 		ret = lo->lo_number;
1857 	}
1858 out:
1859 	return ret;
1860 }
1861 
1862 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1863 {
1864 	struct loop_device *lo;
1865 	struct kobject *kobj;
1866 	int err;
1867 
1868 	mutex_lock(&loop_index_mutex);
1869 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1870 	if (err < 0)
1871 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1872 	if (err < 0)
1873 		kobj = NULL;
1874 	else
1875 		kobj = get_disk(lo->lo_disk);
1876 	mutex_unlock(&loop_index_mutex);
1877 
1878 	*part = 0;
1879 	return kobj;
1880 }
1881 
1882 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1883 			       unsigned long parm)
1884 {
1885 	struct loop_device *lo;
1886 	int ret = -ENOSYS;
1887 
1888 	mutex_lock(&loop_index_mutex);
1889 	switch (cmd) {
1890 	case LOOP_CTL_ADD:
1891 		ret = loop_lookup(&lo, parm);
1892 		if (ret >= 0) {
1893 			ret = -EEXIST;
1894 			break;
1895 		}
1896 		ret = loop_add(&lo, parm);
1897 		break;
1898 	case LOOP_CTL_REMOVE:
1899 		ret = loop_lookup(&lo, parm);
1900 		if (ret < 0)
1901 			break;
1902 		mutex_lock(&lo->lo_ctl_mutex);
1903 		if (lo->lo_state != Lo_unbound) {
1904 			ret = -EBUSY;
1905 			mutex_unlock(&lo->lo_ctl_mutex);
1906 			break;
1907 		}
1908 		if (atomic_read(&lo->lo_refcnt) > 0) {
1909 			ret = -EBUSY;
1910 			mutex_unlock(&lo->lo_ctl_mutex);
1911 			break;
1912 		}
1913 		lo->lo_disk->private_data = NULL;
1914 		mutex_unlock(&lo->lo_ctl_mutex);
1915 		idr_remove(&loop_index_idr, lo->lo_number);
1916 		loop_remove(lo);
1917 		break;
1918 	case LOOP_CTL_GET_FREE:
1919 		ret = loop_lookup(&lo, -1);
1920 		if (ret >= 0)
1921 			break;
1922 		ret = loop_add(&lo, -1);
1923 	}
1924 	mutex_unlock(&loop_index_mutex);
1925 
1926 	return ret;
1927 }
1928 
1929 static const struct file_operations loop_ctl_fops = {
1930 	.open		= nonseekable_open,
1931 	.unlocked_ioctl	= loop_control_ioctl,
1932 	.compat_ioctl	= loop_control_ioctl,
1933 	.owner		= THIS_MODULE,
1934 	.llseek		= noop_llseek,
1935 };
1936 
1937 static struct miscdevice loop_misc = {
1938 	.minor		= LOOP_CTRL_MINOR,
1939 	.name		= "loop-control",
1940 	.fops		= &loop_ctl_fops,
1941 };
1942 
1943 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1944 MODULE_ALIAS("devname:loop-control");
1945 
1946 static int __init loop_init(void)
1947 {
1948 	int i, nr;
1949 	unsigned long range;
1950 	struct loop_device *lo;
1951 	int err;
1952 
1953 	err = misc_register(&loop_misc);
1954 	if (err < 0)
1955 		return err;
1956 
1957 	part_shift = 0;
1958 	if (max_part > 0) {
1959 		part_shift = fls(max_part);
1960 
1961 		/*
1962 		 * Adjust max_part according to part_shift as it is exported
1963 		 * to user space so that user can decide correct minor number
1964 		 * if [s]he want to create more devices.
1965 		 *
1966 		 * Note that -1 is required because partition 0 is reserved
1967 		 * for the whole disk.
1968 		 */
1969 		max_part = (1UL << part_shift) - 1;
1970 	}
1971 
1972 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1973 		err = -EINVAL;
1974 		goto misc_out;
1975 	}
1976 
1977 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1978 		err = -EINVAL;
1979 		goto misc_out;
1980 	}
1981 
1982 	/*
1983 	 * If max_loop is specified, create that many devices upfront.
1984 	 * This also becomes a hard limit. If max_loop is not specified,
1985 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1986 	 * init time. Loop devices can be requested on-demand with the
1987 	 * /dev/loop-control interface, or be instantiated by accessing
1988 	 * a 'dead' device node.
1989 	 */
1990 	if (max_loop) {
1991 		nr = max_loop;
1992 		range = max_loop << part_shift;
1993 	} else {
1994 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1995 		range = 1UL << MINORBITS;
1996 	}
1997 
1998 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1999 		err = -EIO;
2000 		goto misc_out;
2001 	}
2002 
2003 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2004 				  THIS_MODULE, loop_probe, NULL, NULL);
2005 
2006 	/* pre-create number of devices given by config or max_loop */
2007 	mutex_lock(&loop_index_mutex);
2008 	for (i = 0; i < nr; i++)
2009 		loop_add(&lo, i);
2010 	mutex_unlock(&loop_index_mutex);
2011 
2012 	printk(KERN_INFO "loop: module loaded\n");
2013 	return 0;
2014 
2015 misc_out:
2016 	misc_deregister(&loop_misc);
2017 	return err;
2018 }
2019 
2020 static int loop_exit_cb(int id, void *ptr, void *data)
2021 {
2022 	struct loop_device *lo = ptr;
2023 
2024 	loop_remove(lo);
2025 	return 0;
2026 }
2027 
2028 static void __exit loop_exit(void)
2029 {
2030 	unsigned long range;
2031 
2032 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2033 
2034 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2035 	idr_destroy(&loop_index_idr);
2036 
2037 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2038 	unregister_blkdev(LOOP_MAJOR, "loop");
2039 
2040 	misc_deregister(&loop_misc);
2041 }
2042 
2043 module_init(loop_init);
2044 module_exit(loop_exit);
2045 
2046 #ifndef MODULE
2047 static int __init max_loop_setup(char *str)
2048 {
2049 	max_loop = simple_strtol(str, NULL, 0);
2050 	return 1;
2051 }
2052 
2053 __setup("max_loop=", max_loop_setup);
2054 #endif
2055