xref: /openbmc/linux/drivers/block/loop.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 
79 #include <asm/uaccess.h>
80 
81 static DEFINE_MUTEX(loop_mutex);
82 static LIST_HEAD(loop_devices);
83 static DEFINE_MUTEX(loop_devices_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(loop_buf, KM_USER1);
105 	kunmap_atomic(raw_buf, KM_USER0);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(loop_buf, KM_USER1);
134 	kunmap_atomic(raw_buf, KM_USER0);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 	loff_t size, offset, loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	size = i_size_read(file->f_mapping->host);
169 	offset = lo->lo_offset;
170 	loopsize = size - offset;
171 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
172 		loopsize = lo->lo_sizelimit;
173 
174 	/*
175 	 * Unfortunately, if we want to do I/O on the device,
176 	 * the number of 512-byte sectors has to fit into a sector_t.
177 	 */
178 	return loopsize >> 9;
179 }
180 
181 static int
182 figure_loop_size(struct loop_device *lo)
183 {
184 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
185 	sector_t x = (sector_t)size;
186 
187 	if (unlikely((loff_t)x != size))
188 		return -EFBIG;
189 
190 	set_capacity(lo->lo_disk, x);
191 	return 0;
192 }
193 
194 static inline int
195 lo_do_transfer(struct loop_device *lo, int cmd,
196 	       struct page *rpage, unsigned roffs,
197 	       struct page *lpage, unsigned loffs,
198 	       int size, sector_t rblock)
199 {
200 	if (unlikely(!lo->transfer))
201 		return 0;
202 
203 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
204 }
205 
206 /**
207  * do_lo_send_aops - helper for writing data to a loop device
208  *
209  * This is the fast version for backing filesystems which implement the address
210  * space operations write_begin and write_end.
211  */
212 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
213 		loff_t pos, struct page *unused)
214 {
215 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
216 	struct address_space *mapping = file->f_mapping;
217 	pgoff_t index;
218 	unsigned offset, bv_offs;
219 	int len, ret;
220 
221 	mutex_lock(&mapping->host->i_mutex);
222 	index = pos >> PAGE_CACHE_SHIFT;
223 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
224 	bv_offs = bvec->bv_offset;
225 	len = bvec->bv_len;
226 	while (len > 0) {
227 		sector_t IV;
228 		unsigned size, copied;
229 		int transfer_result;
230 		struct page *page;
231 		void *fsdata;
232 
233 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
234 		size = PAGE_CACHE_SIZE - offset;
235 		if (size > len)
236 			size = len;
237 
238 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
239 							&page, &fsdata);
240 		if (ret)
241 			goto fail;
242 
243 		file_update_time(file);
244 
245 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
246 				bvec->bv_page, bv_offs, size, IV);
247 		copied = size;
248 		if (unlikely(transfer_result))
249 			copied = 0;
250 
251 		ret = pagecache_write_end(file, mapping, pos, size, copied,
252 							page, fsdata);
253 		if (ret < 0 || ret != copied)
254 			goto fail;
255 
256 		if (unlikely(transfer_result))
257 			goto fail;
258 
259 		bv_offs += copied;
260 		len -= copied;
261 		offset = 0;
262 		index++;
263 		pos += copied;
264 	}
265 	ret = 0;
266 out:
267 	mutex_unlock(&mapping->host->i_mutex);
268 	return ret;
269 fail:
270 	ret = -1;
271 	goto out;
272 }
273 
274 /**
275  * __do_lo_send_write - helper for writing data to a loop device
276  *
277  * This helper just factors out common code between do_lo_send_direct_write()
278  * and do_lo_send_write().
279  */
280 static int __do_lo_send_write(struct file *file,
281 		u8 *buf, const int len, loff_t pos)
282 {
283 	ssize_t bw;
284 	mm_segment_t old_fs = get_fs();
285 
286 	set_fs(get_ds());
287 	bw = file->f_op->write(file, buf, len, &pos);
288 	set_fs(old_fs);
289 	if (likely(bw == len))
290 		return 0;
291 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
292 			(unsigned long long)pos, len);
293 	if (bw >= 0)
294 		bw = -EIO;
295 	return bw;
296 }
297 
298 /**
299  * do_lo_send_direct_write - helper for writing data to a loop device
300  *
301  * This is the fast, non-transforming version for backing filesystems which do
302  * not implement the address space operations write_begin and write_end.
303  * It uses the write file operation which should be present on all writeable
304  * filesystems.
305  */
306 static int do_lo_send_direct_write(struct loop_device *lo,
307 		struct bio_vec *bvec, loff_t pos, struct page *page)
308 {
309 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
310 			kmap(bvec->bv_page) + bvec->bv_offset,
311 			bvec->bv_len, pos);
312 	kunmap(bvec->bv_page);
313 	cond_resched();
314 	return bw;
315 }
316 
317 /**
318  * do_lo_send_write - helper for writing data to a loop device
319  *
320  * This is the slow, transforming version for filesystems which do not
321  * implement the address space operations write_begin and write_end.  It
322  * uses the write file operation which should be present on all writeable
323  * filesystems.
324  *
325  * Using fops->write is slower than using aops->{prepare,commit}_write in the
326  * transforming case because we need to double buffer the data as we cannot do
327  * the transformations in place as we do not have direct access to the
328  * destination pages of the backing file.
329  */
330 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
331 		loff_t pos, struct page *page)
332 {
333 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
334 			bvec->bv_offset, bvec->bv_len, pos >> 9);
335 	if (likely(!ret))
336 		return __do_lo_send_write(lo->lo_backing_file,
337 				page_address(page), bvec->bv_len,
338 				pos);
339 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
340 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
341 	if (ret > 0)
342 		ret = -EIO;
343 	return ret;
344 }
345 
346 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
347 {
348 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
349 			struct page *page);
350 	struct bio_vec *bvec;
351 	struct page *page = NULL;
352 	int i, ret = 0;
353 
354 	do_lo_send = do_lo_send_aops;
355 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
356 		do_lo_send = do_lo_send_direct_write;
357 		if (lo->transfer != transfer_none) {
358 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
359 			if (unlikely(!page))
360 				goto fail;
361 			kmap(page);
362 			do_lo_send = do_lo_send_write;
363 		}
364 	}
365 	bio_for_each_segment(bvec, bio, i) {
366 		ret = do_lo_send(lo, bvec, pos, page);
367 		if (ret < 0)
368 			break;
369 		pos += bvec->bv_len;
370 	}
371 	if (page) {
372 		kunmap(page);
373 		__free_page(page);
374 	}
375 out:
376 	return ret;
377 fail:
378 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
379 	ret = -ENOMEM;
380 	goto out;
381 }
382 
383 struct lo_read_data {
384 	struct loop_device *lo;
385 	struct page *page;
386 	unsigned offset;
387 	int bsize;
388 };
389 
390 static int
391 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
392 		struct splice_desc *sd)
393 {
394 	struct lo_read_data *p = sd->u.data;
395 	struct loop_device *lo = p->lo;
396 	struct page *page = buf->page;
397 	sector_t IV;
398 	int size, ret;
399 
400 	ret = buf->ops->confirm(pipe, buf);
401 	if (unlikely(ret))
402 		return ret;
403 
404 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
405 							(buf->offset >> 9);
406 	size = sd->len;
407 	if (size > p->bsize)
408 		size = p->bsize;
409 
410 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
411 		printk(KERN_ERR "loop: transfer error block %ld\n",
412 		       page->index);
413 		size = -EINVAL;
414 	}
415 
416 	flush_dcache_page(p->page);
417 
418 	if (size > 0)
419 		p->offset += size;
420 
421 	return size;
422 }
423 
424 static int
425 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
426 {
427 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
428 }
429 
430 static int
431 do_lo_receive(struct loop_device *lo,
432 	      struct bio_vec *bvec, int bsize, loff_t pos)
433 {
434 	struct lo_read_data cookie;
435 	struct splice_desc sd;
436 	struct file *file;
437 	long retval;
438 
439 	cookie.lo = lo;
440 	cookie.page = bvec->bv_page;
441 	cookie.offset = bvec->bv_offset;
442 	cookie.bsize = bsize;
443 
444 	sd.len = 0;
445 	sd.total_len = bvec->bv_len;
446 	sd.flags = 0;
447 	sd.pos = pos;
448 	sd.u.data = &cookie;
449 
450 	file = lo->lo_backing_file;
451 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
452 
453 	if (retval < 0)
454 		return retval;
455 
456 	return 0;
457 }
458 
459 static int
460 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
461 {
462 	struct bio_vec *bvec;
463 	int i, ret = 0;
464 
465 	bio_for_each_segment(bvec, bio, i) {
466 		ret = do_lo_receive(lo, bvec, bsize, pos);
467 		if (ret < 0)
468 			break;
469 		pos += bvec->bv_len;
470 	}
471 	return ret;
472 }
473 
474 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
475 {
476 	loff_t pos;
477 	int ret;
478 
479 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
480 
481 	if (bio_rw(bio) == WRITE) {
482 		struct file *file = lo->lo_backing_file;
483 
484 		if (bio->bi_rw & REQ_FLUSH) {
485 			ret = vfs_fsync(file, 0);
486 			if (unlikely(ret && ret != -EINVAL)) {
487 				ret = -EIO;
488 				goto out;
489 			}
490 		}
491 
492 		ret = lo_send(lo, bio, pos);
493 
494 		if ((bio->bi_rw & REQ_FUA) && !ret) {
495 			ret = vfs_fsync(file, 0);
496 			if (unlikely(ret && ret != -EINVAL))
497 				ret = -EIO;
498 		}
499 	} else
500 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
501 
502 out:
503 	return ret;
504 }
505 
506 /*
507  * Add bio to back of pending list
508  */
509 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
510 {
511 	bio_list_add(&lo->lo_bio_list, bio);
512 }
513 
514 /*
515  * Grab first pending buffer
516  */
517 static struct bio *loop_get_bio(struct loop_device *lo)
518 {
519 	return bio_list_pop(&lo->lo_bio_list);
520 }
521 
522 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
523 {
524 	struct loop_device *lo = q->queuedata;
525 	int rw = bio_rw(old_bio);
526 
527 	if (rw == READA)
528 		rw = READ;
529 
530 	BUG_ON(!lo || (rw != READ && rw != WRITE));
531 
532 	spin_lock_irq(&lo->lo_lock);
533 	if (lo->lo_state != Lo_bound)
534 		goto out;
535 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
536 		goto out;
537 	loop_add_bio(lo, old_bio);
538 	wake_up(&lo->lo_event);
539 	spin_unlock_irq(&lo->lo_lock);
540 	return 0;
541 
542 out:
543 	spin_unlock_irq(&lo->lo_lock);
544 	bio_io_error(old_bio);
545 	return 0;
546 }
547 
548 /*
549  * kick off io on the underlying address space
550  */
551 static void loop_unplug(struct request_queue *q)
552 {
553 	struct loop_device *lo = q->queuedata;
554 
555 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
556 	blk_run_address_space(lo->lo_backing_file->f_mapping);
557 }
558 
559 struct switch_request {
560 	struct file *file;
561 	struct completion wait;
562 };
563 
564 static void do_loop_switch(struct loop_device *, struct switch_request *);
565 
566 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
567 {
568 	if (unlikely(!bio->bi_bdev)) {
569 		do_loop_switch(lo, bio->bi_private);
570 		bio_put(bio);
571 	} else {
572 		int ret = do_bio_filebacked(lo, bio);
573 		bio_endio(bio, ret);
574 	}
575 }
576 
577 /*
578  * worker thread that handles reads/writes to file backed loop devices,
579  * to avoid blocking in our make_request_fn. it also does loop decrypting
580  * on reads for block backed loop, as that is too heavy to do from
581  * b_end_io context where irqs may be disabled.
582  *
583  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
584  * calling kthread_stop().  Therefore once kthread_should_stop() is
585  * true, make_request will not place any more requests.  Therefore
586  * once kthread_should_stop() is true and lo_bio is NULL, we are
587  * done with the loop.
588  */
589 static int loop_thread(void *data)
590 {
591 	struct loop_device *lo = data;
592 	struct bio *bio;
593 
594 	set_user_nice(current, -20);
595 
596 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
597 
598 		wait_event_interruptible(lo->lo_event,
599 				!bio_list_empty(&lo->lo_bio_list) ||
600 				kthread_should_stop());
601 
602 		if (bio_list_empty(&lo->lo_bio_list))
603 			continue;
604 		spin_lock_irq(&lo->lo_lock);
605 		bio = loop_get_bio(lo);
606 		spin_unlock_irq(&lo->lo_lock);
607 
608 		BUG_ON(!bio);
609 		loop_handle_bio(lo, bio);
610 	}
611 
612 	return 0;
613 }
614 
615 /*
616  * loop_switch performs the hard work of switching a backing store.
617  * First it needs to flush existing IO, it does this by sending a magic
618  * BIO down the pipe. The completion of this BIO does the actual switch.
619  */
620 static int loop_switch(struct loop_device *lo, struct file *file)
621 {
622 	struct switch_request w;
623 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
624 	if (!bio)
625 		return -ENOMEM;
626 	init_completion(&w.wait);
627 	w.file = file;
628 	bio->bi_private = &w;
629 	bio->bi_bdev = NULL;
630 	loop_make_request(lo->lo_queue, bio);
631 	wait_for_completion(&w.wait);
632 	return 0;
633 }
634 
635 /*
636  * Helper to flush the IOs in loop, but keeping loop thread running
637  */
638 static int loop_flush(struct loop_device *lo)
639 {
640 	/* loop not yet configured, no running thread, nothing to flush */
641 	if (!lo->lo_thread)
642 		return 0;
643 
644 	return loop_switch(lo, NULL);
645 }
646 
647 /*
648  * Do the actual switch; called from the BIO completion routine
649  */
650 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
651 {
652 	struct file *file = p->file;
653 	struct file *old_file = lo->lo_backing_file;
654 	struct address_space *mapping;
655 
656 	/* if no new file, only flush of queued bios requested */
657 	if (!file)
658 		goto out;
659 
660 	mapping = file->f_mapping;
661 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
662 	lo->lo_backing_file = file;
663 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
664 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
665 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
666 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
667 out:
668 	complete(&p->wait);
669 }
670 
671 
672 /*
673  * loop_change_fd switched the backing store of a loopback device to
674  * a new file. This is useful for operating system installers to free up
675  * the original file and in High Availability environments to switch to
676  * an alternative location for the content in case of server meltdown.
677  * This can only work if the loop device is used read-only, and if the
678  * new backing store is the same size and type as the old backing store.
679  */
680 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
681 			  unsigned int arg)
682 {
683 	struct file	*file, *old_file;
684 	struct inode	*inode;
685 	int		error;
686 
687 	error = -ENXIO;
688 	if (lo->lo_state != Lo_bound)
689 		goto out;
690 
691 	/* the loop device has to be read-only */
692 	error = -EINVAL;
693 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
694 		goto out;
695 
696 	error = -EBADF;
697 	file = fget(arg);
698 	if (!file)
699 		goto out;
700 
701 	inode = file->f_mapping->host;
702 	old_file = lo->lo_backing_file;
703 
704 	error = -EINVAL;
705 
706 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
707 		goto out_putf;
708 
709 	/* size of the new backing store needs to be the same */
710 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
711 		goto out_putf;
712 
713 	/* and ... switch */
714 	error = loop_switch(lo, file);
715 	if (error)
716 		goto out_putf;
717 
718 	fput(old_file);
719 	if (max_part > 0)
720 		ioctl_by_bdev(bdev, BLKRRPART, 0);
721 	return 0;
722 
723  out_putf:
724 	fput(file);
725  out:
726 	return error;
727 }
728 
729 static inline int is_loop_device(struct file *file)
730 {
731 	struct inode *i = file->f_mapping->host;
732 
733 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
734 }
735 
736 /* loop sysfs attributes */
737 
738 static ssize_t loop_attr_show(struct device *dev, char *page,
739 			      ssize_t (*callback)(struct loop_device *, char *))
740 {
741 	struct loop_device *l, *lo = NULL;
742 
743 	mutex_lock(&loop_devices_mutex);
744 	list_for_each_entry(l, &loop_devices, lo_list)
745 		if (disk_to_dev(l->lo_disk) == dev) {
746 			lo = l;
747 			break;
748 		}
749 	mutex_unlock(&loop_devices_mutex);
750 
751 	return lo ? callback(lo, page) : -EIO;
752 }
753 
754 #define LOOP_ATTR_RO(_name)						\
755 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
756 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
757 				struct device_attribute *attr, char *b)	\
758 {									\
759 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
760 }									\
761 static struct device_attribute loop_attr_##_name =			\
762 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
763 
764 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
765 {
766 	ssize_t ret;
767 	char *p = NULL;
768 
769 	mutex_lock(&lo->lo_ctl_mutex);
770 	if (lo->lo_backing_file)
771 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
772 	mutex_unlock(&lo->lo_ctl_mutex);
773 
774 	if (IS_ERR_OR_NULL(p))
775 		ret = PTR_ERR(p);
776 	else {
777 		ret = strlen(p);
778 		memmove(buf, p, ret);
779 		buf[ret++] = '\n';
780 		buf[ret] = 0;
781 	}
782 
783 	return ret;
784 }
785 
786 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
787 {
788 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
789 }
790 
791 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
792 {
793 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
794 }
795 
796 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
797 {
798 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
799 
800 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
801 }
802 
803 LOOP_ATTR_RO(backing_file);
804 LOOP_ATTR_RO(offset);
805 LOOP_ATTR_RO(sizelimit);
806 LOOP_ATTR_RO(autoclear);
807 
808 static struct attribute *loop_attrs[] = {
809 	&loop_attr_backing_file.attr,
810 	&loop_attr_offset.attr,
811 	&loop_attr_sizelimit.attr,
812 	&loop_attr_autoclear.attr,
813 	NULL,
814 };
815 
816 static struct attribute_group loop_attribute_group = {
817 	.name = "loop",
818 	.attrs= loop_attrs,
819 };
820 
821 static int loop_sysfs_init(struct loop_device *lo)
822 {
823 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
824 				  &loop_attribute_group);
825 }
826 
827 static void loop_sysfs_exit(struct loop_device *lo)
828 {
829 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
830 			   &loop_attribute_group);
831 }
832 
833 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
834 		       struct block_device *bdev, unsigned int arg)
835 {
836 	struct file	*file, *f;
837 	struct inode	*inode;
838 	struct address_space *mapping;
839 	unsigned lo_blocksize;
840 	int		lo_flags = 0;
841 	int		error;
842 	loff_t		size;
843 
844 	/* This is safe, since we have a reference from open(). */
845 	__module_get(THIS_MODULE);
846 
847 	error = -EBADF;
848 	file = fget(arg);
849 	if (!file)
850 		goto out;
851 
852 	error = -EBUSY;
853 	if (lo->lo_state != Lo_unbound)
854 		goto out_putf;
855 
856 	/* Avoid recursion */
857 	f = file;
858 	while (is_loop_device(f)) {
859 		struct loop_device *l;
860 
861 		if (f->f_mapping->host->i_bdev == bdev)
862 			goto out_putf;
863 
864 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
865 		if (l->lo_state == Lo_unbound) {
866 			error = -EINVAL;
867 			goto out_putf;
868 		}
869 		f = l->lo_backing_file;
870 	}
871 
872 	mapping = file->f_mapping;
873 	inode = mapping->host;
874 
875 	if (!(file->f_mode & FMODE_WRITE))
876 		lo_flags |= LO_FLAGS_READ_ONLY;
877 
878 	error = -EINVAL;
879 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
880 		const struct address_space_operations *aops = mapping->a_ops;
881 
882 		if (aops->write_begin)
883 			lo_flags |= LO_FLAGS_USE_AOPS;
884 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
885 			lo_flags |= LO_FLAGS_READ_ONLY;
886 
887 		lo_blocksize = S_ISBLK(inode->i_mode) ?
888 			inode->i_bdev->bd_block_size : PAGE_SIZE;
889 
890 		error = 0;
891 	} else {
892 		goto out_putf;
893 	}
894 
895 	size = get_loop_size(lo, file);
896 
897 	if ((loff_t)(sector_t)size != size) {
898 		error = -EFBIG;
899 		goto out_putf;
900 	}
901 
902 	if (!(mode & FMODE_WRITE))
903 		lo_flags |= LO_FLAGS_READ_ONLY;
904 
905 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
906 
907 	lo->lo_blocksize = lo_blocksize;
908 	lo->lo_device = bdev;
909 	lo->lo_flags = lo_flags;
910 	lo->lo_backing_file = file;
911 	lo->transfer = transfer_none;
912 	lo->ioctl = NULL;
913 	lo->lo_sizelimit = 0;
914 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
915 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
916 
917 	bio_list_init(&lo->lo_bio_list);
918 
919 	/*
920 	 * set queue make_request_fn, and add limits based on lower level
921 	 * device
922 	 */
923 	blk_queue_make_request(lo->lo_queue, loop_make_request);
924 	lo->lo_queue->queuedata = lo;
925 	lo->lo_queue->unplug_fn = loop_unplug;
926 
927 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
928 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
929 
930 	set_capacity(lo->lo_disk, size);
931 	bd_set_size(bdev, size << 9);
932 	loop_sysfs_init(lo);
933 	/* let user-space know about the new size */
934 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
935 
936 	set_blocksize(bdev, lo_blocksize);
937 
938 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
939 						lo->lo_number);
940 	if (IS_ERR(lo->lo_thread)) {
941 		error = PTR_ERR(lo->lo_thread);
942 		goto out_clr;
943 	}
944 	lo->lo_state = Lo_bound;
945 	wake_up_process(lo->lo_thread);
946 	if (max_part > 0)
947 		ioctl_by_bdev(bdev, BLKRRPART, 0);
948 	return 0;
949 
950 out_clr:
951 	loop_sysfs_exit(lo);
952 	lo->lo_thread = NULL;
953 	lo->lo_device = NULL;
954 	lo->lo_backing_file = NULL;
955 	lo->lo_flags = 0;
956 	set_capacity(lo->lo_disk, 0);
957 	invalidate_bdev(bdev);
958 	bd_set_size(bdev, 0);
959 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
960 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
961 	lo->lo_state = Lo_unbound;
962  out_putf:
963 	fput(file);
964  out:
965 	/* This is safe: open() is still holding a reference. */
966 	module_put(THIS_MODULE);
967 	return error;
968 }
969 
970 static int
971 loop_release_xfer(struct loop_device *lo)
972 {
973 	int err = 0;
974 	struct loop_func_table *xfer = lo->lo_encryption;
975 
976 	if (xfer) {
977 		if (xfer->release)
978 			err = xfer->release(lo);
979 		lo->transfer = NULL;
980 		lo->lo_encryption = NULL;
981 		module_put(xfer->owner);
982 	}
983 	return err;
984 }
985 
986 static int
987 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
988 	       const struct loop_info64 *i)
989 {
990 	int err = 0;
991 
992 	if (xfer) {
993 		struct module *owner = xfer->owner;
994 
995 		if (!try_module_get(owner))
996 			return -EINVAL;
997 		if (xfer->init)
998 			err = xfer->init(lo, i);
999 		if (err)
1000 			module_put(owner);
1001 		else
1002 			lo->lo_encryption = xfer;
1003 	}
1004 	return err;
1005 }
1006 
1007 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
1008 {
1009 	struct file *filp = lo->lo_backing_file;
1010 	gfp_t gfp = lo->old_gfp_mask;
1011 
1012 	if (lo->lo_state != Lo_bound)
1013 		return -ENXIO;
1014 
1015 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
1016 		return -EBUSY;
1017 
1018 	if (filp == NULL)
1019 		return -EINVAL;
1020 
1021 	spin_lock_irq(&lo->lo_lock);
1022 	lo->lo_state = Lo_rundown;
1023 	spin_unlock_irq(&lo->lo_lock);
1024 
1025 	kthread_stop(lo->lo_thread);
1026 
1027 	lo->lo_queue->unplug_fn = NULL;
1028 	lo->lo_backing_file = NULL;
1029 
1030 	loop_release_xfer(lo);
1031 	lo->transfer = NULL;
1032 	lo->ioctl = NULL;
1033 	lo->lo_device = NULL;
1034 	lo->lo_encryption = NULL;
1035 	lo->lo_offset = 0;
1036 	lo->lo_sizelimit = 0;
1037 	lo->lo_encrypt_key_size = 0;
1038 	lo->lo_flags = 0;
1039 	lo->lo_thread = NULL;
1040 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1041 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1042 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1043 	if (bdev)
1044 		invalidate_bdev(bdev);
1045 	set_capacity(lo->lo_disk, 0);
1046 	loop_sysfs_exit(lo);
1047 	if (bdev) {
1048 		bd_set_size(bdev, 0);
1049 		/* let user-space know about this change */
1050 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1051 	}
1052 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1053 	lo->lo_state = Lo_unbound;
1054 	/* This is safe: open() is still holding a reference. */
1055 	module_put(THIS_MODULE);
1056 	if (max_part > 0 && bdev)
1057 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1058 	mutex_unlock(&lo->lo_ctl_mutex);
1059 	/*
1060 	 * Need not hold lo_ctl_mutex to fput backing file.
1061 	 * Calling fput holding lo_ctl_mutex triggers a circular
1062 	 * lock dependency possibility warning as fput can take
1063 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1064 	 */
1065 	fput(filp);
1066 	return 0;
1067 }
1068 
1069 static int
1070 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1071 {
1072 	int err;
1073 	struct loop_func_table *xfer;
1074 	uid_t uid = current_uid();
1075 
1076 	if (lo->lo_encrypt_key_size &&
1077 	    lo->lo_key_owner != uid &&
1078 	    !capable(CAP_SYS_ADMIN))
1079 		return -EPERM;
1080 	if (lo->lo_state != Lo_bound)
1081 		return -ENXIO;
1082 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1083 		return -EINVAL;
1084 
1085 	err = loop_release_xfer(lo);
1086 	if (err)
1087 		return err;
1088 
1089 	if (info->lo_encrypt_type) {
1090 		unsigned int type = info->lo_encrypt_type;
1091 
1092 		if (type >= MAX_LO_CRYPT)
1093 			return -EINVAL;
1094 		xfer = xfer_funcs[type];
1095 		if (xfer == NULL)
1096 			return -EINVAL;
1097 	} else
1098 		xfer = NULL;
1099 
1100 	err = loop_init_xfer(lo, xfer, info);
1101 	if (err)
1102 		return err;
1103 
1104 	if (lo->lo_offset != info->lo_offset ||
1105 	    lo->lo_sizelimit != info->lo_sizelimit) {
1106 		lo->lo_offset = info->lo_offset;
1107 		lo->lo_sizelimit = info->lo_sizelimit;
1108 		if (figure_loop_size(lo))
1109 			return -EFBIG;
1110 	}
1111 
1112 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1113 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1114 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1115 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1116 
1117 	if (!xfer)
1118 		xfer = &none_funcs;
1119 	lo->transfer = xfer->transfer;
1120 	lo->ioctl = xfer->ioctl;
1121 
1122 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1123 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1124 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1125 
1126 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1127 	lo->lo_init[0] = info->lo_init[0];
1128 	lo->lo_init[1] = info->lo_init[1];
1129 	if (info->lo_encrypt_key_size) {
1130 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1131 		       info->lo_encrypt_key_size);
1132 		lo->lo_key_owner = uid;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static int
1139 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1140 {
1141 	struct file *file = lo->lo_backing_file;
1142 	struct kstat stat;
1143 	int error;
1144 
1145 	if (lo->lo_state != Lo_bound)
1146 		return -ENXIO;
1147 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1148 	if (error)
1149 		return error;
1150 	memset(info, 0, sizeof(*info));
1151 	info->lo_number = lo->lo_number;
1152 	info->lo_device = huge_encode_dev(stat.dev);
1153 	info->lo_inode = stat.ino;
1154 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1155 	info->lo_offset = lo->lo_offset;
1156 	info->lo_sizelimit = lo->lo_sizelimit;
1157 	info->lo_flags = lo->lo_flags;
1158 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1159 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1160 	info->lo_encrypt_type =
1161 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1162 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1163 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1164 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1165 		       lo->lo_encrypt_key_size);
1166 	}
1167 	return 0;
1168 }
1169 
1170 static void
1171 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1172 {
1173 	memset(info64, 0, sizeof(*info64));
1174 	info64->lo_number = info->lo_number;
1175 	info64->lo_device = info->lo_device;
1176 	info64->lo_inode = info->lo_inode;
1177 	info64->lo_rdevice = info->lo_rdevice;
1178 	info64->lo_offset = info->lo_offset;
1179 	info64->lo_sizelimit = 0;
1180 	info64->lo_encrypt_type = info->lo_encrypt_type;
1181 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1182 	info64->lo_flags = info->lo_flags;
1183 	info64->lo_init[0] = info->lo_init[0];
1184 	info64->lo_init[1] = info->lo_init[1];
1185 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1186 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1187 	else
1188 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1189 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1190 }
1191 
1192 static int
1193 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1194 {
1195 	memset(info, 0, sizeof(*info));
1196 	info->lo_number = info64->lo_number;
1197 	info->lo_device = info64->lo_device;
1198 	info->lo_inode = info64->lo_inode;
1199 	info->lo_rdevice = info64->lo_rdevice;
1200 	info->lo_offset = info64->lo_offset;
1201 	info->lo_encrypt_type = info64->lo_encrypt_type;
1202 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1203 	info->lo_flags = info64->lo_flags;
1204 	info->lo_init[0] = info64->lo_init[0];
1205 	info->lo_init[1] = info64->lo_init[1];
1206 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1207 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1208 	else
1209 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1210 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1211 
1212 	/* error in case values were truncated */
1213 	if (info->lo_device != info64->lo_device ||
1214 	    info->lo_rdevice != info64->lo_rdevice ||
1215 	    info->lo_inode != info64->lo_inode ||
1216 	    info->lo_offset != info64->lo_offset)
1217 		return -EOVERFLOW;
1218 
1219 	return 0;
1220 }
1221 
1222 static int
1223 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1224 {
1225 	struct loop_info info;
1226 	struct loop_info64 info64;
1227 
1228 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1229 		return -EFAULT;
1230 	loop_info64_from_old(&info, &info64);
1231 	return loop_set_status(lo, &info64);
1232 }
1233 
1234 static int
1235 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1236 {
1237 	struct loop_info64 info64;
1238 
1239 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1240 		return -EFAULT;
1241 	return loop_set_status(lo, &info64);
1242 }
1243 
1244 static int
1245 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1246 	struct loop_info info;
1247 	struct loop_info64 info64;
1248 	int err = 0;
1249 
1250 	if (!arg)
1251 		err = -EINVAL;
1252 	if (!err)
1253 		err = loop_get_status(lo, &info64);
1254 	if (!err)
1255 		err = loop_info64_to_old(&info64, &info);
1256 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1257 		err = -EFAULT;
1258 
1259 	return err;
1260 }
1261 
1262 static int
1263 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1264 	struct loop_info64 info64;
1265 	int err = 0;
1266 
1267 	if (!arg)
1268 		err = -EINVAL;
1269 	if (!err)
1270 		err = loop_get_status(lo, &info64);
1271 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1272 		err = -EFAULT;
1273 
1274 	return err;
1275 }
1276 
1277 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1278 {
1279 	int err;
1280 	sector_t sec;
1281 	loff_t sz;
1282 
1283 	err = -ENXIO;
1284 	if (unlikely(lo->lo_state != Lo_bound))
1285 		goto out;
1286 	err = figure_loop_size(lo);
1287 	if (unlikely(err))
1288 		goto out;
1289 	sec = get_capacity(lo->lo_disk);
1290 	/* the width of sector_t may be narrow for bit-shift */
1291 	sz = sec;
1292 	sz <<= 9;
1293 	mutex_lock(&bdev->bd_mutex);
1294 	bd_set_size(bdev, sz);
1295 	/* let user-space know about the new size */
1296 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1297 	mutex_unlock(&bdev->bd_mutex);
1298 
1299  out:
1300 	return err;
1301 }
1302 
1303 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1304 	unsigned int cmd, unsigned long arg)
1305 {
1306 	struct loop_device *lo = bdev->bd_disk->private_data;
1307 	int err;
1308 
1309 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1310 	switch (cmd) {
1311 	case LOOP_SET_FD:
1312 		err = loop_set_fd(lo, mode, bdev, arg);
1313 		break;
1314 	case LOOP_CHANGE_FD:
1315 		err = loop_change_fd(lo, bdev, arg);
1316 		break;
1317 	case LOOP_CLR_FD:
1318 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1319 		err = loop_clr_fd(lo, bdev);
1320 		if (!err)
1321 			goto out_unlocked;
1322 		break;
1323 	case LOOP_SET_STATUS:
1324 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1325 		break;
1326 	case LOOP_GET_STATUS:
1327 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1328 		break;
1329 	case LOOP_SET_STATUS64:
1330 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1331 		break;
1332 	case LOOP_GET_STATUS64:
1333 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1334 		break;
1335 	case LOOP_SET_CAPACITY:
1336 		err = -EPERM;
1337 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1338 			err = loop_set_capacity(lo, bdev);
1339 		break;
1340 	default:
1341 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1342 	}
1343 	mutex_unlock(&lo->lo_ctl_mutex);
1344 
1345 out_unlocked:
1346 	return err;
1347 }
1348 
1349 #ifdef CONFIG_COMPAT
1350 struct compat_loop_info {
1351 	compat_int_t	lo_number;      /* ioctl r/o */
1352 	compat_dev_t	lo_device;      /* ioctl r/o */
1353 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1354 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1355 	compat_int_t	lo_offset;
1356 	compat_int_t	lo_encrypt_type;
1357 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1358 	compat_int_t	lo_flags;       /* ioctl r/o */
1359 	char		lo_name[LO_NAME_SIZE];
1360 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1361 	compat_ulong_t	lo_init[2];
1362 	char		reserved[4];
1363 };
1364 
1365 /*
1366  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1367  * - noinlined to reduce stack space usage in main part of driver
1368  */
1369 static noinline int
1370 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1371 			struct loop_info64 *info64)
1372 {
1373 	struct compat_loop_info info;
1374 
1375 	if (copy_from_user(&info, arg, sizeof(info)))
1376 		return -EFAULT;
1377 
1378 	memset(info64, 0, sizeof(*info64));
1379 	info64->lo_number = info.lo_number;
1380 	info64->lo_device = info.lo_device;
1381 	info64->lo_inode = info.lo_inode;
1382 	info64->lo_rdevice = info.lo_rdevice;
1383 	info64->lo_offset = info.lo_offset;
1384 	info64->lo_sizelimit = 0;
1385 	info64->lo_encrypt_type = info.lo_encrypt_type;
1386 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1387 	info64->lo_flags = info.lo_flags;
1388 	info64->lo_init[0] = info.lo_init[0];
1389 	info64->lo_init[1] = info.lo_init[1];
1390 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1391 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1392 	else
1393 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1394 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1395 	return 0;
1396 }
1397 
1398 /*
1399  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1400  * - noinlined to reduce stack space usage in main part of driver
1401  */
1402 static noinline int
1403 loop_info64_to_compat(const struct loop_info64 *info64,
1404 		      struct compat_loop_info __user *arg)
1405 {
1406 	struct compat_loop_info info;
1407 
1408 	memset(&info, 0, sizeof(info));
1409 	info.lo_number = info64->lo_number;
1410 	info.lo_device = info64->lo_device;
1411 	info.lo_inode = info64->lo_inode;
1412 	info.lo_rdevice = info64->lo_rdevice;
1413 	info.lo_offset = info64->lo_offset;
1414 	info.lo_encrypt_type = info64->lo_encrypt_type;
1415 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1416 	info.lo_flags = info64->lo_flags;
1417 	info.lo_init[0] = info64->lo_init[0];
1418 	info.lo_init[1] = info64->lo_init[1];
1419 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1420 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1421 	else
1422 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1423 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1424 
1425 	/* error in case values were truncated */
1426 	if (info.lo_device != info64->lo_device ||
1427 	    info.lo_rdevice != info64->lo_rdevice ||
1428 	    info.lo_inode != info64->lo_inode ||
1429 	    info.lo_offset != info64->lo_offset ||
1430 	    info.lo_init[0] != info64->lo_init[0] ||
1431 	    info.lo_init[1] != info64->lo_init[1])
1432 		return -EOVERFLOW;
1433 
1434 	if (copy_to_user(arg, &info, sizeof(info)))
1435 		return -EFAULT;
1436 	return 0;
1437 }
1438 
1439 static int
1440 loop_set_status_compat(struct loop_device *lo,
1441 		       const struct compat_loop_info __user *arg)
1442 {
1443 	struct loop_info64 info64;
1444 	int ret;
1445 
1446 	ret = loop_info64_from_compat(arg, &info64);
1447 	if (ret < 0)
1448 		return ret;
1449 	return loop_set_status(lo, &info64);
1450 }
1451 
1452 static int
1453 loop_get_status_compat(struct loop_device *lo,
1454 		       struct compat_loop_info __user *arg)
1455 {
1456 	struct loop_info64 info64;
1457 	int err = 0;
1458 
1459 	if (!arg)
1460 		err = -EINVAL;
1461 	if (!err)
1462 		err = loop_get_status(lo, &info64);
1463 	if (!err)
1464 		err = loop_info64_to_compat(&info64, arg);
1465 	return err;
1466 }
1467 
1468 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1469 			   unsigned int cmd, unsigned long arg)
1470 {
1471 	struct loop_device *lo = bdev->bd_disk->private_data;
1472 	int err;
1473 
1474 	switch(cmd) {
1475 	case LOOP_SET_STATUS:
1476 		mutex_lock(&lo->lo_ctl_mutex);
1477 		err = loop_set_status_compat(
1478 			lo, (const struct compat_loop_info __user *) arg);
1479 		mutex_unlock(&lo->lo_ctl_mutex);
1480 		break;
1481 	case LOOP_GET_STATUS:
1482 		mutex_lock(&lo->lo_ctl_mutex);
1483 		err = loop_get_status_compat(
1484 			lo, (struct compat_loop_info __user *) arg);
1485 		mutex_unlock(&lo->lo_ctl_mutex);
1486 		break;
1487 	case LOOP_SET_CAPACITY:
1488 	case LOOP_CLR_FD:
1489 	case LOOP_GET_STATUS64:
1490 	case LOOP_SET_STATUS64:
1491 		arg = (unsigned long) compat_ptr(arg);
1492 	case LOOP_SET_FD:
1493 	case LOOP_CHANGE_FD:
1494 		err = lo_ioctl(bdev, mode, cmd, arg);
1495 		break;
1496 	default:
1497 		err = -ENOIOCTLCMD;
1498 		break;
1499 	}
1500 	return err;
1501 }
1502 #endif
1503 
1504 static int lo_open(struct block_device *bdev, fmode_t mode)
1505 {
1506 	struct loop_device *lo = bdev->bd_disk->private_data;
1507 
1508 	mutex_lock(&loop_mutex);
1509 	mutex_lock(&lo->lo_ctl_mutex);
1510 	lo->lo_refcnt++;
1511 	mutex_unlock(&lo->lo_ctl_mutex);
1512 	mutex_unlock(&loop_mutex);
1513 
1514 	return 0;
1515 }
1516 
1517 static int lo_release(struct gendisk *disk, fmode_t mode)
1518 {
1519 	struct loop_device *lo = disk->private_data;
1520 	int err;
1521 
1522 	mutex_lock(&loop_mutex);
1523 	mutex_lock(&lo->lo_ctl_mutex);
1524 
1525 	if (--lo->lo_refcnt)
1526 		goto out;
1527 
1528 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1529 		/*
1530 		 * In autoclear mode, stop the loop thread
1531 		 * and remove configuration after last close.
1532 		 */
1533 		err = loop_clr_fd(lo, NULL);
1534 		if (!err)
1535 			goto out_unlocked;
1536 	} else {
1537 		/*
1538 		 * Otherwise keep thread (if running) and config,
1539 		 * but flush possible ongoing bios in thread.
1540 		 */
1541 		loop_flush(lo);
1542 	}
1543 
1544 out:
1545 	mutex_unlock(&lo->lo_ctl_mutex);
1546 out_unlocked:
1547 	mutex_unlock(&loop_mutex);
1548 	return 0;
1549 }
1550 
1551 static const struct block_device_operations lo_fops = {
1552 	.owner =	THIS_MODULE,
1553 	.open =		lo_open,
1554 	.release =	lo_release,
1555 	.ioctl =	lo_ioctl,
1556 #ifdef CONFIG_COMPAT
1557 	.compat_ioctl =	lo_compat_ioctl,
1558 #endif
1559 };
1560 
1561 /*
1562  * And now the modules code and kernel interface.
1563  */
1564 static int max_loop;
1565 module_param(max_loop, int, 0);
1566 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1567 module_param(max_part, int, 0);
1568 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1569 MODULE_LICENSE("GPL");
1570 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1571 
1572 int loop_register_transfer(struct loop_func_table *funcs)
1573 {
1574 	unsigned int n = funcs->number;
1575 
1576 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1577 		return -EINVAL;
1578 	xfer_funcs[n] = funcs;
1579 	return 0;
1580 }
1581 
1582 int loop_unregister_transfer(int number)
1583 {
1584 	unsigned int n = number;
1585 	struct loop_device *lo;
1586 	struct loop_func_table *xfer;
1587 
1588 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1589 		return -EINVAL;
1590 
1591 	xfer_funcs[n] = NULL;
1592 
1593 	list_for_each_entry(lo, &loop_devices, lo_list) {
1594 		mutex_lock(&lo->lo_ctl_mutex);
1595 
1596 		if (lo->lo_encryption == xfer)
1597 			loop_release_xfer(lo);
1598 
1599 		mutex_unlock(&lo->lo_ctl_mutex);
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 EXPORT_SYMBOL(loop_register_transfer);
1606 EXPORT_SYMBOL(loop_unregister_transfer);
1607 
1608 static struct loop_device *loop_alloc(int i)
1609 {
1610 	struct loop_device *lo;
1611 	struct gendisk *disk;
1612 
1613 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1614 	if (!lo)
1615 		goto out;
1616 
1617 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1618 	if (!lo->lo_queue)
1619 		goto out_free_dev;
1620 
1621 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1622 	if (!disk)
1623 		goto out_free_queue;
1624 
1625 	mutex_init(&lo->lo_ctl_mutex);
1626 	lo->lo_number		= i;
1627 	lo->lo_thread		= NULL;
1628 	init_waitqueue_head(&lo->lo_event);
1629 	spin_lock_init(&lo->lo_lock);
1630 	disk->major		= LOOP_MAJOR;
1631 	disk->first_minor	= i << part_shift;
1632 	disk->fops		= &lo_fops;
1633 	disk->private_data	= lo;
1634 	disk->queue		= lo->lo_queue;
1635 	sprintf(disk->disk_name, "loop%d", i);
1636 	return lo;
1637 
1638 out_free_queue:
1639 	blk_cleanup_queue(lo->lo_queue);
1640 out_free_dev:
1641 	kfree(lo);
1642 out:
1643 	return NULL;
1644 }
1645 
1646 static void loop_free(struct loop_device *lo)
1647 {
1648 	blk_cleanup_queue(lo->lo_queue);
1649 	put_disk(lo->lo_disk);
1650 	list_del(&lo->lo_list);
1651 	kfree(lo);
1652 }
1653 
1654 static struct loop_device *loop_init_one(int i)
1655 {
1656 	struct loop_device *lo;
1657 
1658 	list_for_each_entry(lo, &loop_devices, lo_list) {
1659 		if (lo->lo_number == i)
1660 			return lo;
1661 	}
1662 
1663 	lo = loop_alloc(i);
1664 	if (lo) {
1665 		add_disk(lo->lo_disk);
1666 		list_add_tail(&lo->lo_list, &loop_devices);
1667 	}
1668 	return lo;
1669 }
1670 
1671 static void loop_del_one(struct loop_device *lo)
1672 {
1673 	del_gendisk(lo->lo_disk);
1674 	loop_free(lo);
1675 }
1676 
1677 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1678 {
1679 	struct loop_device *lo;
1680 	struct kobject *kobj;
1681 
1682 	mutex_lock(&loop_devices_mutex);
1683 	lo = loop_init_one(dev & MINORMASK);
1684 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1685 	mutex_unlock(&loop_devices_mutex);
1686 
1687 	*part = 0;
1688 	return kobj;
1689 }
1690 
1691 static int __init loop_init(void)
1692 {
1693 	int i, nr;
1694 	unsigned long range;
1695 	struct loop_device *lo, *next;
1696 
1697 	/*
1698 	 * loop module now has a feature to instantiate underlying device
1699 	 * structure on-demand, provided that there is an access dev node.
1700 	 * However, this will not work well with user space tool that doesn't
1701 	 * know about such "feature".  In order to not break any existing
1702 	 * tool, we do the following:
1703 	 *
1704 	 * (1) if max_loop is specified, create that many upfront, and this
1705 	 *     also becomes a hard limit.
1706 	 * (2) if max_loop is not specified, create 8 loop device on module
1707 	 *     load, user can further extend loop device by create dev node
1708 	 *     themselves and have kernel automatically instantiate actual
1709 	 *     device on-demand.
1710 	 */
1711 
1712 	part_shift = 0;
1713 	if (max_part > 0)
1714 		part_shift = fls(max_part);
1715 
1716 	if (max_loop > 1UL << (MINORBITS - part_shift))
1717 		return -EINVAL;
1718 
1719 	if (max_loop) {
1720 		nr = max_loop;
1721 		range = max_loop;
1722 	} else {
1723 		nr = 8;
1724 		range = 1UL << (MINORBITS - part_shift);
1725 	}
1726 
1727 	if (register_blkdev(LOOP_MAJOR, "loop"))
1728 		return -EIO;
1729 
1730 	for (i = 0; i < nr; i++) {
1731 		lo = loop_alloc(i);
1732 		if (!lo)
1733 			goto Enomem;
1734 		list_add_tail(&lo->lo_list, &loop_devices);
1735 	}
1736 
1737 	/* point of no return */
1738 
1739 	list_for_each_entry(lo, &loop_devices, lo_list)
1740 		add_disk(lo->lo_disk);
1741 
1742 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1743 				  THIS_MODULE, loop_probe, NULL, NULL);
1744 
1745 	printk(KERN_INFO "loop: module loaded\n");
1746 	return 0;
1747 
1748 Enomem:
1749 	printk(KERN_INFO "loop: out of memory\n");
1750 
1751 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1752 		loop_free(lo);
1753 
1754 	unregister_blkdev(LOOP_MAJOR, "loop");
1755 	return -ENOMEM;
1756 }
1757 
1758 static void __exit loop_exit(void)
1759 {
1760 	unsigned long range;
1761 	struct loop_device *lo, *next;
1762 
1763 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1764 
1765 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1766 		loop_del_one(lo);
1767 
1768 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1769 	unregister_blkdev(LOOP_MAJOR, "loop");
1770 }
1771 
1772 module_init(loop_init);
1773 module_exit(loop_exit);
1774 
1775 #ifndef MODULE
1776 static int __init max_loop_setup(char *str)
1777 {
1778 	max_loop = simple_strtol(str, NULL, 0);
1779 	return 1;
1780 }
1781 
1782 __setup("max_loop=", max_loop_setup);
1783 #endif
1784