1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/loop.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/kthread.h> 76 #include <linux/splice.h> 77 #include <linux/sysfs.h> 78 79 #include <asm/uaccess.h> 80 81 static DEFINE_MUTEX(loop_mutex); 82 static LIST_HEAD(loop_devices); 83 static DEFINE_MUTEX(loop_devices_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf, KM_USER1); 105 kunmap_atomic(raw_buf, KM_USER0); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf, KM_USER1); 134 kunmap_atomic(raw_buf, KM_USER0); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 loff_t size, offset, loopsize; 166 167 /* Compute loopsize in bytes */ 168 size = i_size_read(file->f_mapping->host); 169 offset = lo->lo_offset; 170 loopsize = size - offset; 171 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 172 loopsize = lo->lo_sizelimit; 173 174 /* 175 * Unfortunately, if we want to do I/O on the device, 176 * the number of 512-byte sectors has to fit into a sector_t. 177 */ 178 return loopsize >> 9; 179 } 180 181 static int 182 figure_loop_size(struct loop_device *lo) 183 { 184 loff_t size = get_loop_size(lo, lo->lo_backing_file); 185 sector_t x = (sector_t)size; 186 187 if (unlikely((loff_t)x != size)) 188 return -EFBIG; 189 190 set_capacity(lo->lo_disk, x); 191 return 0; 192 } 193 194 static inline int 195 lo_do_transfer(struct loop_device *lo, int cmd, 196 struct page *rpage, unsigned roffs, 197 struct page *lpage, unsigned loffs, 198 int size, sector_t rblock) 199 { 200 if (unlikely(!lo->transfer)) 201 return 0; 202 203 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 204 } 205 206 /** 207 * do_lo_send_aops - helper for writing data to a loop device 208 * 209 * This is the fast version for backing filesystems which implement the address 210 * space operations write_begin and write_end. 211 */ 212 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 213 loff_t pos, struct page *unused) 214 { 215 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 216 struct address_space *mapping = file->f_mapping; 217 pgoff_t index; 218 unsigned offset, bv_offs; 219 int len, ret; 220 221 mutex_lock(&mapping->host->i_mutex); 222 index = pos >> PAGE_CACHE_SHIFT; 223 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 224 bv_offs = bvec->bv_offset; 225 len = bvec->bv_len; 226 while (len > 0) { 227 sector_t IV; 228 unsigned size, copied; 229 int transfer_result; 230 struct page *page; 231 void *fsdata; 232 233 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 234 size = PAGE_CACHE_SIZE - offset; 235 if (size > len) 236 size = len; 237 238 ret = pagecache_write_begin(file, mapping, pos, size, 0, 239 &page, &fsdata); 240 if (ret) 241 goto fail; 242 243 file_update_time(file); 244 245 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 246 bvec->bv_page, bv_offs, size, IV); 247 copied = size; 248 if (unlikely(transfer_result)) 249 copied = 0; 250 251 ret = pagecache_write_end(file, mapping, pos, size, copied, 252 page, fsdata); 253 if (ret < 0 || ret != copied) 254 goto fail; 255 256 if (unlikely(transfer_result)) 257 goto fail; 258 259 bv_offs += copied; 260 len -= copied; 261 offset = 0; 262 index++; 263 pos += copied; 264 } 265 ret = 0; 266 out: 267 mutex_unlock(&mapping->host->i_mutex); 268 return ret; 269 fail: 270 ret = -1; 271 goto out; 272 } 273 274 /** 275 * __do_lo_send_write - helper for writing data to a loop device 276 * 277 * This helper just factors out common code between do_lo_send_direct_write() 278 * and do_lo_send_write(). 279 */ 280 static int __do_lo_send_write(struct file *file, 281 u8 *buf, const int len, loff_t pos) 282 { 283 ssize_t bw; 284 mm_segment_t old_fs = get_fs(); 285 286 set_fs(get_ds()); 287 bw = file->f_op->write(file, buf, len, &pos); 288 set_fs(old_fs); 289 if (likely(bw == len)) 290 return 0; 291 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 292 (unsigned long long)pos, len); 293 if (bw >= 0) 294 bw = -EIO; 295 return bw; 296 } 297 298 /** 299 * do_lo_send_direct_write - helper for writing data to a loop device 300 * 301 * This is the fast, non-transforming version for backing filesystems which do 302 * not implement the address space operations write_begin and write_end. 303 * It uses the write file operation which should be present on all writeable 304 * filesystems. 305 */ 306 static int do_lo_send_direct_write(struct loop_device *lo, 307 struct bio_vec *bvec, loff_t pos, struct page *page) 308 { 309 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 310 kmap(bvec->bv_page) + bvec->bv_offset, 311 bvec->bv_len, pos); 312 kunmap(bvec->bv_page); 313 cond_resched(); 314 return bw; 315 } 316 317 /** 318 * do_lo_send_write - helper for writing data to a loop device 319 * 320 * This is the slow, transforming version for filesystems which do not 321 * implement the address space operations write_begin and write_end. It 322 * uses the write file operation which should be present on all writeable 323 * filesystems. 324 * 325 * Using fops->write is slower than using aops->{prepare,commit}_write in the 326 * transforming case because we need to double buffer the data as we cannot do 327 * the transformations in place as we do not have direct access to the 328 * destination pages of the backing file. 329 */ 330 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 331 loff_t pos, struct page *page) 332 { 333 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 334 bvec->bv_offset, bvec->bv_len, pos >> 9); 335 if (likely(!ret)) 336 return __do_lo_send_write(lo->lo_backing_file, 337 page_address(page), bvec->bv_len, 338 pos); 339 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 340 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 341 if (ret > 0) 342 ret = -EIO; 343 return ret; 344 } 345 346 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 347 { 348 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 349 struct page *page); 350 struct bio_vec *bvec; 351 struct page *page = NULL; 352 int i, ret = 0; 353 354 do_lo_send = do_lo_send_aops; 355 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 356 do_lo_send = do_lo_send_direct_write; 357 if (lo->transfer != transfer_none) { 358 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 359 if (unlikely(!page)) 360 goto fail; 361 kmap(page); 362 do_lo_send = do_lo_send_write; 363 } 364 } 365 bio_for_each_segment(bvec, bio, i) { 366 ret = do_lo_send(lo, bvec, pos, page); 367 if (ret < 0) 368 break; 369 pos += bvec->bv_len; 370 } 371 if (page) { 372 kunmap(page); 373 __free_page(page); 374 } 375 out: 376 return ret; 377 fail: 378 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 379 ret = -ENOMEM; 380 goto out; 381 } 382 383 struct lo_read_data { 384 struct loop_device *lo; 385 struct page *page; 386 unsigned offset; 387 int bsize; 388 }; 389 390 static int 391 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 392 struct splice_desc *sd) 393 { 394 struct lo_read_data *p = sd->u.data; 395 struct loop_device *lo = p->lo; 396 struct page *page = buf->page; 397 sector_t IV; 398 int size, ret; 399 400 ret = buf->ops->confirm(pipe, buf); 401 if (unlikely(ret)) 402 return ret; 403 404 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 405 (buf->offset >> 9); 406 size = sd->len; 407 if (size > p->bsize) 408 size = p->bsize; 409 410 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 411 printk(KERN_ERR "loop: transfer error block %ld\n", 412 page->index); 413 size = -EINVAL; 414 } 415 416 flush_dcache_page(p->page); 417 418 if (size > 0) 419 p->offset += size; 420 421 return size; 422 } 423 424 static int 425 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 426 { 427 return __splice_from_pipe(pipe, sd, lo_splice_actor); 428 } 429 430 static int 431 do_lo_receive(struct loop_device *lo, 432 struct bio_vec *bvec, int bsize, loff_t pos) 433 { 434 struct lo_read_data cookie; 435 struct splice_desc sd; 436 struct file *file; 437 long retval; 438 439 cookie.lo = lo; 440 cookie.page = bvec->bv_page; 441 cookie.offset = bvec->bv_offset; 442 cookie.bsize = bsize; 443 444 sd.len = 0; 445 sd.total_len = bvec->bv_len; 446 sd.flags = 0; 447 sd.pos = pos; 448 sd.u.data = &cookie; 449 450 file = lo->lo_backing_file; 451 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 452 453 if (retval < 0) 454 return retval; 455 456 return 0; 457 } 458 459 static int 460 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 461 { 462 struct bio_vec *bvec; 463 int i, ret = 0; 464 465 bio_for_each_segment(bvec, bio, i) { 466 ret = do_lo_receive(lo, bvec, bsize, pos); 467 if (ret < 0) 468 break; 469 pos += bvec->bv_len; 470 } 471 return ret; 472 } 473 474 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 475 { 476 loff_t pos; 477 int ret; 478 479 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 480 481 if (bio_rw(bio) == WRITE) { 482 struct file *file = lo->lo_backing_file; 483 484 if (bio->bi_rw & REQ_FLUSH) { 485 ret = vfs_fsync(file, 0); 486 if (unlikely(ret && ret != -EINVAL)) { 487 ret = -EIO; 488 goto out; 489 } 490 } 491 492 ret = lo_send(lo, bio, pos); 493 494 if ((bio->bi_rw & REQ_FUA) && !ret) { 495 ret = vfs_fsync(file, 0); 496 if (unlikely(ret && ret != -EINVAL)) 497 ret = -EIO; 498 } 499 } else 500 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 501 502 out: 503 return ret; 504 } 505 506 /* 507 * Add bio to back of pending list 508 */ 509 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 510 { 511 bio_list_add(&lo->lo_bio_list, bio); 512 } 513 514 /* 515 * Grab first pending buffer 516 */ 517 static struct bio *loop_get_bio(struct loop_device *lo) 518 { 519 return bio_list_pop(&lo->lo_bio_list); 520 } 521 522 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 523 { 524 struct loop_device *lo = q->queuedata; 525 int rw = bio_rw(old_bio); 526 527 if (rw == READA) 528 rw = READ; 529 530 BUG_ON(!lo || (rw != READ && rw != WRITE)); 531 532 spin_lock_irq(&lo->lo_lock); 533 if (lo->lo_state != Lo_bound) 534 goto out; 535 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 536 goto out; 537 loop_add_bio(lo, old_bio); 538 wake_up(&lo->lo_event); 539 spin_unlock_irq(&lo->lo_lock); 540 return 0; 541 542 out: 543 spin_unlock_irq(&lo->lo_lock); 544 bio_io_error(old_bio); 545 return 0; 546 } 547 548 /* 549 * kick off io on the underlying address space 550 */ 551 static void loop_unplug(struct request_queue *q) 552 { 553 struct loop_device *lo = q->queuedata; 554 555 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 556 blk_run_address_space(lo->lo_backing_file->f_mapping); 557 } 558 559 struct switch_request { 560 struct file *file; 561 struct completion wait; 562 }; 563 564 static void do_loop_switch(struct loop_device *, struct switch_request *); 565 566 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 567 { 568 if (unlikely(!bio->bi_bdev)) { 569 do_loop_switch(lo, bio->bi_private); 570 bio_put(bio); 571 } else { 572 int ret = do_bio_filebacked(lo, bio); 573 bio_endio(bio, ret); 574 } 575 } 576 577 /* 578 * worker thread that handles reads/writes to file backed loop devices, 579 * to avoid blocking in our make_request_fn. it also does loop decrypting 580 * on reads for block backed loop, as that is too heavy to do from 581 * b_end_io context where irqs may be disabled. 582 * 583 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 584 * calling kthread_stop(). Therefore once kthread_should_stop() is 585 * true, make_request will not place any more requests. Therefore 586 * once kthread_should_stop() is true and lo_bio is NULL, we are 587 * done with the loop. 588 */ 589 static int loop_thread(void *data) 590 { 591 struct loop_device *lo = data; 592 struct bio *bio; 593 594 set_user_nice(current, -20); 595 596 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 597 598 wait_event_interruptible(lo->lo_event, 599 !bio_list_empty(&lo->lo_bio_list) || 600 kthread_should_stop()); 601 602 if (bio_list_empty(&lo->lo_bio_list)) 603 continue; 604 spin_lock_irq(&lo->lo_lock); 605 bio = loop_get_bio(lo); 606 spin_unlock_irq(&lo->lo_lock); 607 608 BUG_ON(!bio); 609 loop_handle_bio(lo, bio); 610 } 611 612 return 0; 613 } 614 615 /* 616 * loop_switch performs the hard work of switching a backing store. 617 * First it needs to flush existing IO, it does this by sending a magic 618 * BIO down the pipe. The completion of this BIO does the actual switch. 619 */ 620 static int loop_switch(struct loop_device *lo, struct file *file) 621 { 622 struct switch_request w; 623 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 624 if (!bio) 625 return -ENOMEM; 626 init_completion(&w.wait); 627 w.file = file; 628 bio->bi_private = &w; 629 bio->bi_bdev = NULL; 630 loop_make_request(lo->lo_queue, bio); 631 wait_for_completion(&w.wait); 632 return 0; 633 } 634 635 /* 636 * Helper to flush the IOs in loop, but keeping loop thread running 637 */ 638 static int loop_flush(struct loop_device *lo) 639 { 640 /* loop not yet configured, no running thread, nothing to flush */ 641 if (!lo->lo_thread) 642 return 0; 643 644 return loop_switch(lo, NULL); 645 } 646 647 /* 648 * Do the actual switch; called from the BIO completion routine 649 */ 650 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 651 { 652 struct file *file = p->file; 653 struct file *old_file = lo->lo_backing_file; 654 struct address_space *mapping; 655 656 /* if no new file, only flush of queued bios requested */ 657 if (!file) 658 goto out; 659 660 mapping = file->f_mapping; 661 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 662 lo->lo_backing_file = file; 663 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 664 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 665 lo->old_gfp_mask = mapping_gfp_mask(mapping); 666 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 667 out: 668 complete(&p->wait); 669 } 670 671 672 /* 673 * loop_change_fd switched the backing store of a loopback device to 674 * a new file. This is useful for operating system installers to free up 675 * the original file and in High Availability environments to switch to 676 * an alternative location for the content in case of server meltdown. 677 * This can only work if the loop device is used read-only, and if the 678 * new backing store is the same size and type as the old backing store. 679 */ 680 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 681 unsigned int arg) 682 { 683 struct file *file, *old_file; 684 struct inode *inode; 685 int error; 686 687 error = -ENXIO; 688 if (lo->lo_state != Lo_bound) 689 goto out; 690 691 /* the loop device has to be read-only */ 692 error = -EINVAL; 693 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 694 goto out; 695 696 error = -EBADF; 697 file = fget(arg); 698 if (!file) 699 goto out; 700 701 inode = file->f_mapping->host; 702 old_file = lo->lo_backing_file; 703 704 error = -EINVAL; 705 706 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 707 goto out_putf; 708 709 /* size of the new backing store needs to be the same */ 710 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 711 goto out_putf; 712 713 /* and ... switch */ 714 error = loop_switch(lo, file); 715 if (error) 716 goto out_putf; 717 718 fput(old_file); 719 if (max_part > 0) 720 ioctl_by_bdev(bdev, BLKRRPART, 0); 721 return 0; 722 723 out_putf: 724 fput(file); 725 out: 726 return error; 727 } 728 729 static inline int is_loop_device(struct file *file) 730 { 731 struct inode *i = file->f_mapping->host; 732 733 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 734 } 735 736 /* loop sysfs attributes */ 737 738 static ssize_t loop_attr_show(struct device *dev, char *page, 739 ssize_t (*callback)(struct loop_device *, char *)) 740 { 741 struct loop_device *l, *lo = NULL; 742 743 mutex_lock(&loop_devices_mutex); 744 list_for_each_entry(l, &loop_devices, lo_list) 745 if (disk_to_dev(l->lo_disk) == dev) { 746 lo = l; 747 break; 748 } 749 mutex_unlock(&loop_devices_mutex); 750 751 return lo ? callback(lo, page) : -EIO; 752 } 753 754 #define LOOP_ATTR_RO(_name) \ 755 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 756 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 757 struct device_attribute *attr, char *b) \ 758 { \ 759 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 760 } \ 761 static struct device_attribute loop_attr_##_name = \ 762 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 763 764 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 765 { 766 ssize_t ret; 767 char *p = NULL; 768 769 mutex_lock(&lo->lo_ctl_mutex); 770 if (lo->lo_backing_file) 771 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 772 mutex_unlock(&lo->lo_ctl_mutex); 773 774 if (IS_ERR_OR_NULL(p)) 775 ret = PTR_ERR(p); 776 else { 777 ret = strlen(p); 778 memmove(buf, p, ret); 779 buf[ret++] = '\n'; 780 buf[ret] = 0; 781 } 782 783 return ret; 784 } 785 786 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 787 { 788 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 789 } 790 791 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 792 { 793 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 794 } 795 796 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 797 { 798 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 799 800 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 801 } 802 803 LOOP_ATTR_RO(backing_file); 804 LOOP_ATTR_RO(offset); 805 LOOP_ATTR_RO(sizelimit); 806 LOOP_ATTR_RO(autoclear); 807 808 static struct attribute *loop_attrs[] = { 809 &loop_attr_backing_file.attr, 810 &loop_attr_offset.attr, 811 &loop_attr_sizelimit.attr, 812 &loop_attr_autoclear.attr, 813 NULL, 814 }; 815 816 static struct attribute_group loop_attribute_group = { 817 .name = "loop", 818 .attrs= loop_attrs, 819 }; 820 821 static int loop_sysfs_init(struct loop_device *lo) 822 { 823 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 824 &loop_attribute_group); 825 } 826 827 static void loop_sysfs_exit(struct loop_device *lo) 828 { 829 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 830 &loop_attribute_group); 831 } 832 833 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 834 struct block_device *bdev, unsigned int arg) 835 { 836 struct file *file, *f; 837 struct inode *inode; 838 struct address_space *mapping; 839 unsigned lo_blocksize; 840 int lo_flags = 0; 841 int error; 842 loff_t size; 843 844 /* This is safe, since we have a reference from open(). */ 845 __module_get(THIS_MODULE); 846 847 error = -EBADF; 848 file = fget(arg); 849 if (!file) 850 goto out; 851 852 error = -EBUSY; 853 if (lo->lo_state != Lo_unbound) 854 goto out_putf; 855 856 /* Avoid recursion */ 857 f = file; 858 while (is_loop_device(f)) { 859 struct loop_device *l; 860 861 if (f->f_mapping->host->i_bdev == bdev) 862 goto out_putf; 863 864 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 865 if (l->lo_state == Lo_unbound) { 866 error = -EINVAL; 867 goto out_putf; 868 } 869 f = l->lo_backing_file; 870 } 871 872 mapping = file->f_mapping; 873 inode = mapping->host; 874 875 if (!(file->f_mode & FMODE_WRITE)) 876 lo_flags |= LO_FLAGS_READ_ONLY; 877 878 error = -EINVAL; 879 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 880 const struct address_space_operations *aops = mapping->a_ops; 881 882 if (aops->write_begin) 883 lo_flags |= LO_FLAGS_USE_AOPS; 884 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 885 lo_flags |= LO_FLAGS_READ_ONLY; 886 887 lo_blocksize = S_ISBLK(inode->i_mode) ? 888 inode->i_bdev->bd_block_size : PAGE_SIZE; 889 890 error = 0; 891 } else { 892 goto out_putf; 893 } 894 895 size = get_loop_size(lo, file); 896 897 if ((loff_t)(sector_t)size != size) { 898 error = -EFBIG; 899 goto out_putf; 900 } 901 902 if (!(mode & FMODE_WRITE)) 903 lo_flags |= LO_FLAGS_READ_ONLY; 904 905 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 906 907 lo->lo_blocksize = lo_blocksize; 908 lo->lo_device = bdev; 909 lo->lo_flags = lo_flags; 910 lo->lo_backing_file = file; 911 lo->transfer = transfer_none; 912 lo->ioctl = NULL; 913 lo->lo_sizelimit = 0; 914 lo->old_gfp_mask = mapping_gfp_mask(mapping); 915 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 916 917 bio_list_init(&lo->lo_bio_list); 918 919 /* 920 * set queue make_request_fn, and add limits based on lower level 921 * device 922 */ 923 blk_queue_make_request(lo->lo_queue, loop_make_request); 924 lo->lo_queue->queuedata = lo; 925 lo->lo_queue->unplug_fn = loop_unplug; 926 927 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 928 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 929 930 set_capacity(lo->lo_disk, size); 931 bd_set_size(bdev, size << 9); 932 loop_sysfs_init(lo); 933 /* let user-space know about the new size */ 934 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 935 936 set_blocksize(bdev, lo_blocksize); 937 938 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 939 lo->lo_number); 940 if (IS_ERR(lo->lo_thread)) { 941 error = PTR_ERR(lo->lo_thread); 942 goto out_clr; 943 } 944 lo->lo_state = Lo_bound; 945 wake_up_process(lo->lo_thread); 946 if (max_part > 0) 947 ioctl_by_bdev(bdev, BLKRRPART, 0); 948 return 0; 949 950 out_clr: 951 loop_sysfs_exit(lo); 952 lo->lo_thread = NULL; 953 lo->lo_device = NULL; 954 lo->lo_backing_file = NULL; 955 lo->lo_flags = 0; 956 set_capacity(lo->lo_disk, 0); 957 invalidate_bdev(bdev); 958 bd_set_size(bdev, 0); 959 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 960 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 961 lo->lo_state = Lo_unbound; 962 out_putf: 963 fput(file); 964 out: 965 /* This is safe: open() is still holding a reference. */ 966 module_put(THIS_MODULE); 967 return error; 968 } 969 970 static int 971 loop_release_xfer(struct loop_device *lo) 972 { 973 int err = 0; 974 struct loop_func_table *xfer = lo->lo_encryption; 975 976 if (xfer) { 977 if (xfer->release) 978 err = xfer->release(lo); 979 lo->transfer = NULL; 980 lo->lo_encryption = NULL; 981 module_put(xfer->owner); 982 } 983 return err; 984 } 985 986 static int 987 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 988 const struct loop_info64 *i) 989 { 990 int err = 0; 991 992 if (xfer) { 993 struct module *owner = xfer->owner; 994 995 if (!try_module_get(owner)) 996 return -EINVAL; 997 if (xfer->init) 998 err = xfer->init(lo, i); 999 if (err) 1000 module_put(owner); 1001 else 1002 lo->lo_encryption = xfer; 1003 } 1004 return err; 1005 } 1006 1007 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 1008 { 1009 struct file *filp = lo->lo_backing_file; 1010 gfp_t gfp = lo->old_gfp_mask; 1011 1012 if (lo->lo_state != Lo_bound) 1013 return -ENXIO; 1014 1015 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 1016 return -EBUSY; 1017 1018 if (filp == NULL) 1019 return -EINVAL; 1020 1021 spin_lock_irq(&lo->lo_lock); 1022 lo->lo_state = Lo_rundown; 1023 spin_unlock_irq(&lo->lo_lock); 1024 1025 kthread_stop(lo->lo_thread); 1026 1027 lo->lo_queue->unplug_fn = NULL; 1028 lo->lo_backing_file = NULL; 1029 1030 loop_release_xfer(lo); 1031 lo->transfer = NULL; 1032 lo->ioctl = NULL; 1033 lo->lo_device = NULL; 1034 lo->lo_encryption = NULL; 1035 lo->lo_offset = 0; 1036 lo->lo_sizelimit = 0; 1037 lo->lo_encrypt_key_size = 0; 1038 lo->lo_flags = 0; 1039 lo->lo_thread = NULL; 1040 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1041 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1042 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1043 if (bdev) 1044 invalidate_bdev(bdev); 1045 set_capacity(lo->lo_disk, 0); 1046 loop_sysfs_exit(lo); 1047 if (bdev) { 1048 bd_set_size(bdev, 0); 1049 /* let user-space know about this change */ 1050 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1051 } 1052 mapping_set_gfp_mask(filp->f_mapping, gfp); 1053 lo->lo_state = Lo_unbound; 1054 /* This is safe: open() is still holding a reference. */ 1055 module_put(THIS_MODULE); 1056 if (max_part > 0 && bdev) 1057 ioctl_by_bdev(bdev, BLKRRPART, 0); 1058 mutex_unlock(&lo->lo_ctl_mutex); 1059 /* 1060 * Need not hold lo_ctl_mutex to fput backing file. 1061 * Calling fput holding lo_ctl_mutex triggers a circular 1062 * lock dependency possibility warning as fput can take 1063 * bd_mutex which is usually taken before lo_ctl_mutex. 1064 */ 1065 fput(filp); 1066 return 0; 1067 } 1068 1069 static int 1070 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1071 { 1072 int err; 1073 struct loop_func_table *xfer; 1074 uid_t uid = current_uid(); 1075 1076 if (lo->lo_encrypt_key_size && 1077 lo->lo_key_owner != uid && 1078 !capable(CAP_SYS_ADMIN)) 1079 return -EPERM; 1080 if (lo->lo_state != Lo_bound) 1081 return -ENXIO; 1082 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1083 return -EINVAL; 1084 1085 err = loop_release_xfer(lo); 1086 if (err) 1087 return err; 1088 1089 if (info->lo_encrypt_type) { 1090 unsigned int type = info->lo_encrypt_type; 1091 1092 if (type >= MAX_LO_CRYPT) 1093 return -EINVAL; 1094 xfer = xfer_funcs[type]; 1095 if (xfer == NULL) 1096 return -EINVAL; 1097 } else 1098 xfer = NULL; 1099 1100 err = loop_init_xfer(lo, xfer, info); 1101 if (err) 1102 return err; 1103 1104 if (lo->lo_offset != info->lo_offset || 1105 lo->lo_sizelimit != info->lo_sizelimit) { 1106 lo->lo_offset = info->lo_offset; 1107 lo->lo_sizelimit = info->lo_sizelimit; 1108 if (figure_loop_size(lo)) 1109 return -EFBIG; 1110 } 1111 1112 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1113 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1114 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1115 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1116 1117 if (!xfer) 1118 xfer = &none_funcs; 1119 lo->transfer = xfer->transfer; 1120 lo->ioctl = xfer->ioctl; 1121 1122 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1123 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1124 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1125 1126 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1127 lo->lo_init[0] = info->lo_init[0]; 1128 lo->lo_init[1] = info->lo_init[1]; 1129 if (info->lo_encrypt_key_size) { 1130 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1131 info->lo_encrypt_key_size); 1132 lo->lo_key_owner = uid; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int 1139 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1140 { 1141 struct file *file = lo->lo_backing_file; 1142 struct kstat stat; 1143 int error; 1144 1145 if (lo->lo_state != Lo_bound) 1146 return -ENXIO; 1147 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1148 if (error) 1149 return error; 1150 memset(info, 0, sizeof(*info)); 1151 info->lo_number = lo->lo_number; 1152 info->lo_device = huge_encode_dev(stat.dev); 1153 info->lo_inode = stat.ino; 1154 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1155 info->lo_offset = lo->lo_offset; 1156 info->lo_sizelimit = lo->lo_sizelimit; 1157 info->lo_flags = lo->lo_flags; 1158 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1159 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1160 info->lo_encrypt_type = 1161 lo->lo_encryption ? lo->lo_encryption->number : 0; 1162 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1163 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1164 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1165 lo->lo_encrypt_key_size); 1166 } 1167 return 0; 1168 } 1169 1170 static void 1171 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1172 { 1173 memset(info64, 0, sizeof(*info64)); 1174 info64->lo_number = info->lo_number; 1175 info64->lo_device = info->lo_device; 1176 info64->lo_inode = info->lo_inode; 1177 info64->lo_rdevice = info->lo_rdevice; 1178 info64->lo_offset = info->lo_offset; 1179 info64->lo_sizelimit = 0; 1180 info64->lo_encrypt_type = info->lo_encrypt_type; 1181 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1182 info64->lo_flags = info->lo_flags; 1183 info64->lo_init[0] = info->lo_init[0]; 1184 info64->lo_init[1] = info->lo_init[1]; 1185 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1186 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1187 else 1188 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1189 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1190 } 1191 1192 static int 1193 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1194 { 1195 memset(info, 0, sizeof(*info)); 1196 info->lo_number = info64->lo_number; 1197 info->lo_device = info64->lo_device; 1198 info->lo_inode = info64->lo_inode; 1199 info->lo_rdevice = info64->lo_rdevice; 1200 info->lo_offset = info64->lo_offset; 1201 info->lo_encrypt_type = info64->lo_encrypt_type; 1202 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1203 info->lo_flags = info64->lo_flags; 1204 info->lo_init[0] = info64->lo_init[0]; 1205 info->lo_init[1] = info64->lo_init[1]; 1206 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1207 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1208 else 1209 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1210 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1211 1212 /* error in case values were truncated */ 1213 if (info->lo_device != info64->lo_device || 1214 info->lo_rdevice != info64->lo_rdevice || 1215 info->lo_inode != info64->lo_inode || 1216 info->lo_offset != info64->lo_offset) 1217 return -EOVERFLOW; 1218 1219 return 0; 1220 } 1221 1222 static int 1223 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1224 { 1225 struct loop_info info; 1226 struct loop_info64 info64; 1227 1228 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1229 return -EFAULT; 1230 loop_info64_from_old(&info, &info64); 1231 return loop_set_status(lo, &info64); 1232 } 1233 1234 static int 1235 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1236 { 1237 struct loop_info64 info64; 1238 1239 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1240 return -EFAULT; 1241 return loop_set_status(lo, &info64); 1242 } 1243 1244 static int 1245 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1246 struct loop_info info; 1247 struct loop_info64 info64; 1248 int err = 0; 1249 1250 if (!arg) 1251 err = -EINVAL; 1252 if (!err) 1253 err = loop_get_status(lo, &info64); 1254 if (!err) 1255 err = loop_info64_to_old(&info64, &info); 1256 if (!err && copy_to_user(arg, &info, sizeof(info))) 1257 err = -EFAULT; 1258 1259 return err; 1260 } 1261 1262 static int 1263 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1264 struct loop_info64 info64; 1265 int err = 0; 1266 1267 if (!arg) 1268 err = -EINVAL; 1269 if (!err) 1270 err = loop_get_status(lo, &info64); 1271 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1272 err = -EFAULT; 1273 1274 return err; 1275 } 1276 1277 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1278 { 1279 int err; 1280 sector_t sec; 1281 loff_t sz; 1282 1283 err = -ENXIO; 1284 if (unlikely(lo->lo_state != Lo_bound)) 1285 goto out; 1286 err = figure_loop_size(lo); 1287 if (unlikely(err)) 1288 goto out; 1289 sec = get_capacity(lo->lo_disk); 1290 /* the width of sector_t may be narrow for bit-shift */ 1291 sz = sec; 1292 sz <<= 9; 1293 mutex_lock(&bdev->bd_mutex); 1294 bd_set_size(bdev, sz); 1295 /* let user-space know about the new size */ 1296 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1297 mutex_unlock(&bdev->bd_mutex); 1298 1299 out: 1300 return err; 1301 } 1302 1303 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1304 unsigned int cmd, unsigned long arg) 1305 { 1306 struct loop_device *lo = bdev->bd_disk->private_data; 1307 int err; 1308 1309 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1310 switch (cmd) { 1311 case LOOP_SET_FD: 1312 err = loop_set_fd(lo, mode, bdev, arg); 1313 break; 1314 case LOOP_CHANGE_FD: 1315 err = loop_change_fd(lo, bdev, arg); 1316 break; 1317 case LOOP_CLR_FD: 1318 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1319 err = loop_clr_fd(lo, bdev); 1320 if (!err) 1321 goto out_unlocked; 1322 break; 1323 case LOOP_SET_STATUS: 1324 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1325 break; 1326 case LOOP_GET_STATUS: 1327 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1328 break; 1329 case LOOP_SET_STATUS64: 1330 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1331 break; 1332 case LOOP_GET_STATUS64: 1333 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1334 break; 1335 case LOOP_SET_CAPACITY: 1336 err = -EPERM; 1337 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1338 err = loop_set_capacity(lo, bdev); 1339 break; 1340 default: 1341 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1342 } 1343 mutex_unlock(&lo->lo_ctl_mutex); 1344 1345 out_unlocked: 1346 return err; 1347 } 1348 1349 #ifdef CONFIG_COMPAT 1350 struct compat_loop_info { 1351 compat_int_t lo_number; /* ioctl r/o */ 1352 compat_dev_t lo_device; /* ioctl r/o */ 1353 compat_ulong_t lo_inode; /* ioctl r/o */ 1354 compat_dev_t lo_rdevice; /* ioctl r/o */ 1355 compat_int_t lo_offset; 1356 compat_int_t lo_encrypt_type; 1357 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1358 compat_int_t lo_flags; /* ioctl r/o */ 1359 char lo_name[LO_NAME_SIZE]; 1360 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1361 compat_ulong_t lo_init[2]; 1362 char reserved[4]; 1363 }; 1364 1365 /* 1366 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1367 * - noinlined to reduce stack space usage in main part of driver 1368 */ 1369 static noinline int 1370 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1371 struct loop_info64 *info64) 1372 { 1373 struct compat_loop_info info; 1374 1375 if (copy_from_user(&info, arg, sizeof(info))) 1376 return -EFAULT; 1377 1378 memset(info64, 0, sizeof(*info64)); 1379 info64->lo_number = info.lo_number; 1380 info64->lo_device = info.lo_device; 1381 info64->lo_inode = info.lo_inode; 1382 info64->lo_rdevice = info.lo_rdevice; 1383 info64->lo_offset = info.lo_offset; 1384 info64->lo_sizelimit = 0; 1385 info64->lo_encrypt_type = info.lo_encrypt_type; 1386 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1387 info64->lo_flags = info.lo_flags; 1388 info64->lo_init[0] = info.lo_init[0]; 1389 info64->lo_init[1] = info.lo_init[1]; 1390 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1391 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1392 else 1393 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1394 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1395 return 0; 1396 } 1397 1398 /* 1399 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1400 * - noinlined to reduce stack space usage in main part of driver 1401 */ 1402 static noinline int 1403 loop_info64_to_compat(const struct loop_info64 *info64, 1404 struct compat_loop_info __user *arg) 1405 { 1406 struct compat_loop_info info; 1407 1408 memset(&info, 0, sizeof(info)); 1409 info.lo_number = info64->lo_number; 1410 info.lo_device = info64->lo_device; 1411 info.lo_inode = info64->lo_inode; 1412 info.lo_rdevice = info64->lo_rdevice; 1413 info.lo_offset = info64->lo_offset; 1414 info.lo_encrypt_type = info64->lo_encrypt_type; 1415 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1416 info.lo_flags = info64->lo_flags; 1417 info.lo_init[0] = info64->lo_init[0]; 1418 info.lo_init[1] = info64->lo_init[1]; 1419 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1420 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1421 else 1422 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1423 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1424 1425 /* error in case values were truncated */ 1426 if (info.lo_device != info64->lo_device || 1427 info.lo_rdevice != info64->lo_rdevice || 1428 info.lo_inode != info64->lo_inode || 1429 info.lo_offset != info64->lo_offset || 1430 info.lo_init[0] != info64->lo_init[0] || 1431 info.lo_init[1] != info64->lo_init[1]) 1432 return -EOVERFLOW; 1433 1434 if (copy_to_user(arg, &info, sizeof(info))) 1435 return -EFAULT; 1436 return 0; 1437 } 1438 1439 static int 1440 loop_set_status_compat(struct loop_device *lo, 1441 const struct compat_loop_info __user *arg) 1442 { 1443 struct loop_info64 info64; 1444 int ret; 1445 1446 ret = loop_info64_from_compat(arg, &info64); 1447 if (ret < 0) 1448 return ret; 1449 return loop_set_status(lo, &info64); 1450 } 1451 1452 static int 1453 loop_get_status_compat(struct loop_device *lo, 1454 struct compat_loop_info __user *arg) 1455 { 1456 struct loop_info64 info64; 1457 int err = 0; 1458 1459 if (!arg) 1460 err = -EINVAL; 1461 if (!err) 1462 err = loop_get_status(lo, &info64); 1463 if (!err) 1464 err = loop_info64_to_compat(&info64, arg); 1465 return err; 1466 } 1467 1468 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1469 unsigned int cmd, unsigned long arg) 1470 { 1471 struct loop_device *lo = bdev->bd_disk->private_data; 1472 int err; 1473 1474 switch(cmd) { 1475 case LOOP_SET_STATUS: 1476 mutex_lock(&lo->lo_ctl_mutex); 1477 err = loop_set_status_compat( 1478 lo, (const struct compat_loop_info __user *) arg); 1479 mutex_unlock(&lo->lo_ctl_mutex); 1480 break; 1481 case LOOP_GET_STATUS: 1482 mutex_lock(&lo->lo_ctl_mutex); 1483 err = loop_get_status_compat( 1484 lo, (struct compat_loop_info __user *) arg); 1485 mutex_unlock(&lo->lo_ctl_mutex); 1486 break; 1487 case LOOP_SET_CAPACITY: 1488 case LOOP_CLR_FD: 1489 case LOOP_GET_STATUS64: 1490 case LOOP_SET_STATUS64: 1491 arg = (unsigned long) compat_ptr(arg); 1492 case LOOP_SET_FD: 1493 case LOOP_CHANGE_FD: 1494 err = lo_ioctl(bdev, mode, cmd, arg); 1495 break; 1496 default: 1497 err = -ENOIOCTLCMD; 1498 break; 1499 } 1500 return err; 1501 } 1502 #endif 1503 1504 static int lo_open(struct block_device *bdev, fmode_t mode) 1505 { 1506 struct loop_device *lo = bdev->bd_disk->private_data; 1507 1508 mutex_lock(&loop_mutex); 1509 mutex_lock(&lo->lo_ctl_mutex); 1510 lo->lo_refcnt++; 1511 mutex_unlock(&lo->lo_ctl_mutex); 1512 mutex_unlock(&loop_mutex); 1513 1514 return 0; 1515 } 1516 1517 static int lo_release(struct gendisk *disk, fmode_t mode) 1518 { 1519 struct loop_device *lo = disk->private_data; 1520 int err; 1521 1522 mutex_lock(&loop_mutex); 1523 mutex_lock(&lo->lo_ctl_mutex); 1524 1525 if (--lo->lo_refcnt) 1526 goto out; 1527 1528 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1529 /* 1530 * In autoclear mode, stop the loop thread 1531 * and remove configuration after last close. 1532 */ 1533 err = loop_clr_fd(lo, NULL); 1534 if (!err) 1535 goto out_unlocked; 1536 } else { 1537 /* 1538 * Otherwise keep thread (if running) and config, 1539 * but flush possible ongoing bios in thread. 1540 */ 1541 loop_flush(lo); 1542 } 1543 1544 out: 1545 mutex_unlock(&lo->lo_ctl_mutex); 1546 out_unlocked: 1547 mutex_unlock(&loop_mutex); 1548 return 0; 1549 } 1550 1551 static const struct block_device_operations lo_fops = { 1552 .owner = THIS_MODULE, 1553 .open = lo_open, 1554 .release = lo_release, 1555 .ioctl = lo_ioctl, 1556 #ifdef CONFIG_COMPAT 1557 .compat_ioctl = lo_compat_ioctl, 1558 #endif 1559 }; 1560 1561 /* 1562 * And now the modules code and kernel interface. 1563 */ 1564 static int max_loop; 1565 module_param(max_loop, int, 0); 1566 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1567 module_param(max_part, int, 0); 1568 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1569 MODULE_LICENSE("GPL"); 1570 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1571 1572 int loop_register_transfer(struct loop_func_table *funcs) 1573 { 1574 unsigned int n = funcs->number; 1575 1576 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1577 return -EINVAL; 1578 xfer_funcs[n] = funcs; 1579 return 0; 1580 } 1581 1582 int loop_unregister_transfer(int number) 1583 { 1584 unsigned int n = number; 1585 struct loop_device *lo; 1586 struct loop_func_table *xfer; 1587 1588 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1589 return -EINVAL; 1590 1591 xfer_funcs[n] = NULL; 1592 1593 list_for_each_entry(lo, &loop_devices, lo_list) { 1594 mutex_lock(&lo->lo_ctl_mutex); 1595 1596 if (lo->lo_encryption == xfer) 1597 loop_release_xfer(lo); 1598 1599 mutex_unlock(&lo->lo_ctl_mutex); 1600 } 1601 1602 return 0; 1603 } 1604 1605 EXPORT_SYMBOL(loop_register_transfer); 1606 EXPORT_SYMBOL(loop_unregister_transfer); 1607 1608 static struct loop_device *loop_alloc(int i) 1609 { 1610 struct loop_device *lo; 1611 struct gendisk *disk; 1612 1613 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1614 if (!lo) 1615 goto out; 1616 1617 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1618 if (!lo->lo_queue) 1619 goto out_free_dev; 1620 1621 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1622 if (!disk) 1623 goto out_free_queue; 1624 1625 mutex_init(&lo->lo_ctl_mutex); 1626 lo->lo_number = i; 1627 lo->lo_thread = NULL; 1628 init_waitqueue_head(&lo->lo_event); 1629 spin_lock_init(&lo->lo_lock); 1630 disk->major = LOOP_MAJOR; 1631 disk->first_minor = i << part_shift; 1632 disk->fops = &lo_fops; 1633 disk->private_data = lo; 1634 disk->queue = lo->lo_queue; 1635 sprintf(disk->disk_name, "loop%d", i); 1636 return lo; 1637 1638 out_free_queue: 1639 blk_cleanup_queue(lo->lo_queue); 1640 out_free_dev: 1641 kfree(lo); 1642 out: 1643 return NULL; 1644 } 1645 1646 static void loop_free(struct loop_device *lo) 1647 { 1648 blk_cleanup_queue(lo->lo_queue); 1649 put_disk(lo->lo_disk); 1650 list_del(&lo->lo_list); 1651 kfree(lo); 1652 } 1653 1654 static struct loop_device *loop_init_one(int i) 1655 { 1656 struct loop_device *lo; 1657 1658 list_for_each_entry(lo, &loop_devices, lo_list) { 1659 if (lo->lo_number == i) 1660 return lo; 1661 } 1662 1663 lo = loop_alloc(i); 1664 if (lo) { 1665 add_disk(lo->lo_disk); 1666 list_add_tail(&lo->lo_list, &loop_devices); 1667 } 1668 return lo; 1669 } 1670 1671 static void loop_del_one(struct loop_device *lo) 1672 { 1673 del_gendisk(lo->lo_disk); 1674 loop_free(lo); 1675 } 1676 1677 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1678 { 1679 struct loop_device *lo; 1680 struct kobject *kobj; 1681 1682 mutex_lock(&loop_devices_mutex); 1683 lo = loop_init_one(dev & MINORMASK); 1684 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1685 mutex_unlock(&loop_devices_mutex); 1686 1687 *part = 0; 1688 return kobj; 1689 } 1690 1691 static int __init loop_init(void) 1692 { 1693 int i, nr; 1694 unsigned long range; 1695 struct loop_device *lo, *next; 1696 1697 /* 1698 * loop module now has a feature to instantiate underlying device 1699 * structure on-demand, provided that there is an access dev node. 1700 * However, this will not work well with user space tool that doesn't 1701 * know about such "feature". In order to not break any existing 1702 * tool, we do the following: 1703 * 1704 * (1) if max_loop is specified, create that many upfront, and this 1705 * also becomes a hard limit. 1706 * (2) if max_loop is not specified, create 8 loop device on module 1707 * load, user can further extend loop device by create dev node 1708 * themselves and have kernel automatically instantiate actual 1709 * device on-demand. 1710 */ 1711 1712 part_shift = 0; 1713 if (max_part > 0) 1714 part_shift = fls(max_part); 1715 1716 if (max_loop > 1UL << (MINORBITS - part_shift)) 1717 return -EINVAL; 1718 1719 if (max_loop) { 1720 nr = max_loop; 1721 range = max_loop; 1722 } else { 1723 nr = 8; 1724 range = 1UL << (MINORBITS - part_shift); 1725 } 1726 1727 if (register_blkdev(LOOP_MAJOR, "loop")) 1728 return -EIO; 1729 1730 for (i = 0; i < nr; i++) { 1731 lo = loop_alloc(i); 1732 if (!lo) 1733 goto Enomem; 1734 list_add_tail(&lo->lo_list, &loop_devices); 1735 } 1736 1737 /* point of no return */ 1738 1739 list_for_each_entry(lo, &loop_devices, lo_list) 1740 add_disk(lo->lo_disk); 1741 1742 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1743 THIS_MODULE, loop_probe, NULL, NULL); 1744 1745 printk(KERN_INFO "loop: module loaded\n"); 1746 return 0; 1747 1748 Enomem: 1749 printk(KERN_INFO "loop: out of memory\n"); 1750 1751 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1752 loop_free(lo); 1753 1754 unregister_blkdev(LOOP_MAJOR, "loop"); 1755 return -ENOMEM; 1756 } 1757 1758 static void __exit loop_exit(void) 1759 { 1760 unsigned long range; 1761 struct loop_device *lo, *next; 1762 1763 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1764 1765 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1766 loop_del_one(lo); 1767 1768 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1769 unregister_blkdev(LOOP_MAJOR, "loop"); 1770 } 1771 1772 module_init(loop_init); 1773 module_exit(loop_exit); 1774 1775 #ifndef MODULE 1776 static int __init max_loop_setup(char *str) 1777 { 1778 max_loop = simple_strtol(str, NULL, 0); 1779 return 1; 1780 } 1781 1782 __setup("max_loop=", max_loop_setup); 1783 #endif 1784