1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 blk_mq_freeze_queue(lo->lo_queue); 218 lo->use_dio = use_dio; 219 if (use_dio) { 220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 221 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 222 } else { 223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 224 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 225 } 226 blk_mq_unfreeze_queue(lo->lo_queue); 227 } 228 229 static int 230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 231 { 232 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 233 sector_t x = (sector_t)size; 234 struct block_device *bdev = lo->lo_device; 235 236 if (unlikely((loff_t)x != size)) 237 return -EFBIG; 238 if (lo->lo_offset != offset) 239 lo->lo_offset = offset; 240 if (lo->lo_sizelimit != sizelimit) 241 lo->lo_sizelimit = sizelimit; 242 set_capacity(lo->lo_disk, x); 243 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 244 /* let user-space know about the new size */ 245 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 246 return 0; 247 } 248 249 static inline int 250 lo_do_transfer(struct loop_device *lo, int cmd, 251 struct page *rpage, unsigned roffs, 252 struct page *lpage, unsigned loffs, 253 int size, sector_t rblock) 254 { 255 int ret; 256 257 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 258 if (likely(!ret)) 259 return 0; 260 261 printk_ratelimited(KERN_ERR 262 "loop: Transfer error at byte offset %llu, length %i.\n", 263 (unsigned long long)rblock << 9, size); 264 return ret; 265 } 266 267 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 268 { 269 struct iov_iter i; 270 ssize_t bw; 271 272 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 273 274 file_start_write(file); 275 bw = vfs_iter_write(file, &i, ppos, 0); 276 file_end_write(file); 277 278 if (likely(bw == bvec->bv_len)) 279 return 0; 280 281 printk_ratelimited(KERN_ERR 282 "loop: Write error at byte offset %llu, length %i.\n", 283 (unsigned long long)*ppos, bvec->bv_len); 284 if (bw >= 0) 285 bw = -EIO; 286 return bw; 287 } 288 289 static int lo_write_simple(struct loop_device *lo, struct request *rq, 290 loff_t pos) 291 { 292 struct bio_vec bvec; 293 struct req_iterator iter; 294 int ret = 0; 295 296 rq_for_each_segment(bvec, rq, iter) { 297 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 298 if (ret < 0) 299 break; 300 cond_resched(); 301 } 302 303 return ret; 304 } 305 306 /* 307 * This is the slow, transforming version that needs to double buffer the 308 * data as it cannot do the transformations in place without having direct 309 * access to the destination pages of the backing file. 310 */ 311 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 312 loff_t pos) 313 { 314 struct bio_vec bvec, b; 315 struct req_iterator iter; 316 struct page *page; 317 int ret = 0; 318 319 page = alloc_page(GFP_NOIO); 320 if (unlikely(!page)) 321 return -ENOMEM; 322 323 rq_for_each_segment(bvec, rq, iter) { 324 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 325 bvec.bv_offset, bvec.bv_len, pos >> 9); 326 if (unlikely(ret)) 327 break; 328 329 b.bv_page = page; 330 b.bv_offset = 0; 331 b.bv_len = bvec.bv_len; 332 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 333 if (ret < 0) 334 break; 335 } 336 337 __free_page(page); 338 return ret; 339 } 340 341 static int lo_read_simple(struct loop_device *lo, struct request *rq, 342 loff_t pos) 343 { 344 struct bio_vec bvec; 345 struct req_iterator iter; 346 struct iov_iter i; 347 ssize_t len; 348 349 rq_for_each_segment(bvec, rq, iter) { 350 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 351 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 352 if (len < 0) 353 return len; 354 355 flush_dcache_page(bvec.bv_page); 356 357 if (len != bvec.bv_len) { 358 struct bio *bio; 359 360 __rq_for_each_bio(bio, rq) 361 zero_fill_bio(bio); 362 break; 363 } 364 cond_resched(); 365 } 366 367 return 0; 368 } 369 370 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 371 loff_t pos) 372 { 373 struct bio_vec bvec, b; 374 struct req_iterator iter; 375 struct iov_iter i; 376 struct page *page; 377 ssize_t len; 378 int ret = 0; 379 380 page = alloc_page(GFP_NOIO); 381 if (unlikely(!page)) 382 return -ENOMEM; 383 384 rq_for_each_segment(bvec, rq, iter) { 385 loff_t offset = pos; 386 387 b.bv_page = page; 388 b.bv_offset = 0; 389 b.bv_len = bvec.bv_len; 390 391 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 392 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 393 if (len < 0) { 394 ret = len; 395 goto out_free_page; 396 } 397 398 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 399 bvec.bv_offset, len, offset >> 9); 400 if (ret) 401 goto out_free_page; 402 403 flush_dcache_page(bvec.bv_page); 404 405 if (len != bvec.bv_len) { 406 struct bio *bio; 407 408 __rq_for_each_bio(bio, rq) 409 zero_fill_bio(bio); 410 break; 411 } 412 } 413 414 ret = 0; 415 out_free_page: 416 __free_page(page); 417 return ret; 418 } 419 420 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 421 { 422 /* 423 * We use punch hole to reclaim the free space used by the 424 * image a.k.a. discard. However we do not support discard if 425 * encryption is enabled, because it may give an attacker 426 * useful information. 427 */ 428 struct file *file = lo->lo_backing_file; 429 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 430 int ret; 431 432 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 433 ret = -EOPNOTSUPP; 434 goto out; 435 } 436 437 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 438 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 439 ret = -EIO; 440 out: 441 return ret; 442 } 443 444 static int lo_req_flush(struct loop_device *lo, struct request *rq) 445 { 446 struct file *file = lo->lo_backing_file; 447 int ret = vfs_fsync(file, 0); 448 if (unlikely(ret && ret != -EINVAL)) 449 ret = -EIO; 450 451 return ret; 452 } 453 454 static void lo_complete_rq(struct request *rq) 455 { 456 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 457 blk_status_t ret = BLK_STS_OK; 458 459 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 460 req_op(rq) != REQ_OP_READ) { 461 if (cmd->ret < 0) 462 ret = BLK_STS_IOERR; 463 goto end_io; 464 } 465 466 /* 467 * Short READ - if we got some data, advance our request and 468 * retry it. If we got no data, end the rest with EIO. 469 */ 470 if (cmd->ret) { 471 blk_update_request(rq, BLK_STS_OK, cmd->ret); 472 cmd->ret = 0; 473 blk_mq_requeue_request(rq, true); 474 } else { 475 if (cmd->use_aio) { 476 struct bio *bio = rq->bio; 477 478 while (bio) { 479 zero_fill_bio(bio); 480 bio = bio->bi_next; 481 } 482 } 483 ret = BLK_STS_IOERR; 484 end_io: 485 blk_mq_end_request(rq, ret); 486 } 487 } 488 489 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 490 { 491 struct request *rq = blk_mq_rq_from_pdu(cmd); 492 493 if (!atomic_dec_and_test(&cmd->ref)) 494 return; 495 kfree(cmd->bvec); 496 cmd->bvec = NULL; 497 blk_mq_complete_request(rq); 498 } 499 500 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 501 { 502 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 503 504 if (cmd->css) 505 css_put(cmd->css); 506 cmd->ret = ret; 507 lo_rw_aio_do_completion(cmd); 508 } 509 510 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 511 loff_t pos, bool rw) 512 { 513 struct iov_iter iter; 514 struct req_iterator rq_iter; 515 struct bio_vec *bvec; 516 struct request *rq = blk_mq_rq_from_pdu(cmd); 517 struct bio *bio = rq->bio; 518 struct file *file = lo->lo_backing_file; 519 struct bio_vec tmp; 520 unsigned int offset; 521 int nr_bvec = 0; 522 int ret; 523 524 rq_for_each_bvec(tmp, rq, rq_iter) 525 nr_bvec++; 526 527 if (rq->bio != rq->biotail) { 528 529 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 530 GFP_NOIO); 531 if (!bvec) 532 return -EIO; 533 cmd->bvec = bvec; 534 535 /* 536 * The bios of the request may be started from the middle of 537 * the 'bvec' because of bio splitting, so we can't directly 538 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 539 * API will take care of all details for us. 540 */ 541 rq_for_each_bvec(tmp, rq, rq_iter) { 542 *bvec = tmp; 543 bvec++; 544 } 545 bvec = cmd->bvec; 546 offset = 0; 547 } else { 548 /* 549 * Same here, this bio may be started from the middle of the 550 * 'bvec' because of bio splitting, so offset from the bvec 551 * must be passed to iov iterator 552 */ 553 offset = bio->bi_iter.bi_bvec_done; 554 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 555 } 556 atomic_set(&cmd->ref, 2); 557 558 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 559 iter.iov_offset = offset; 560 561 cmd->iocb.ki_pos = pos; 562 cmd->iocb.ki_filp = file; 563 cmd->iocb.ki_complete = lo_rw_aio_complete; 564 cmd->iocb.ki_flags = IOCB_DIRECT; 565 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 566 if (cmd->css) 567 kthread_associate_blkcg(cmd->css); 568 569 if (rw == WRITE) 570 ret = call_write_iter(file, &cmd->iocb, &iter); 571 else 572 ret = call_read_iter(file, &cmd->iocb, &iter); 573 574 lo_rw_aio_do_completion(cmd); 575 kthread_associate_blkcg(NULL); 576 577 if (ret != -EIOCBQUEUED) 578 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 579 return 0; 580 } 581 582 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 583 { 584 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 585 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 586 587 /* 588 * lo_write_simple and lo_read_simple should have been covered 589 * by io submit style function like lo_rw_aio(), one blocker 590 * is that lo_read_simple() need to call flush_dcache_page after 591 * the page is written from kernel, and it isn't easy to handle 592 * this in io submit style function which submits all segments 593 * of the req at one time. And direct read IO doesn't need to 594 * run flush_dcache_page(). 595 */ 596 switch (req_op(rq)) { 597 case REQ_OP_FLUSH: 598 return lo_req_flush(lo, rq); 599 case REQ_OP_DISCARD: 600 case REQ_OP_WRITE_ZEROES: 601 return lo_discard(lo, rq, pos); 602 case REQ_OP_WRITE: 603 if (lo->transfer) 604 return lo_write_transfer(lo, rq, pos); 605 else if (cmd->use_aio) 606 return lo_rw_aio(lo, cmd, pos, WRITE); 607 else 608 return lo_write_simple(lo, rq, pos); 609 case REQ_OP_READ: 610 if (lo->transfer) 611 return lo_read_transfer(lo, rq, pos); 612 else if (cmd->use_aio) 613 return lo_rw_aio(lo, cmd, pos, READ); 614 else 615 return lo_read_simple(lo, rq, pos); 616 default: 617 WARN_ON_ONCE(1); 618 return -EIO; 619 } 620 } 621 622 static inline void loop_update_dio(struct loop_device *lo) 623 { 624 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 625 lo->use_dio); 626 } 627 628 static void loop_reread_partitions(struct loop_device *lo, 629 struct block_device *bdev) 630 { 631 int rc; 632 633 rc = blkdev_reread_part(bdev); 634 if (rc) 635 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 636 __func__, lo->lo_number, lo->lo_file_name, rc); 637 } 638 639 static inline int is_loop_device(struct file *file) 640 { 641 struct inode *i = file->f_mapping->host; 642 643 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 644 } 645 646 static int loop_validate_file(struct file *file, struct block_device *bdev) 647 { 648 struct inode *inode = file->f_mapping->host; 649 struct file *f = file; 650 651 /* Avoid recursion */ 652 while (is_loop_device(f)) { 653 struct loop_device *l; 654 655 if (f->f_mapping->host->i_bdev == bdev) 656 return -EBADF; 657 658 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 659 if (l->lo_state != Lo_bound) { 660 return -EINVAL; 661 } 662 f = l->lo_backing_file; 663 } 664 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 665 return -EINVAL; 666 return 0; 667 } 668 669 /* 670 * loop_change_fd switched the backing store of a loopback device to 671 * a new file. This is useful for operating system installers to free up 672 * the original file and in High Availability environments to switch to 673 * an alternative location for the content in case of server meltdown. 674 * This can only work if the loop device is used read-only, and if the 675 * new backing store is the same size and type as the old backing store. 676 */ 677 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 678 unsigned int arg) 679 { 680 struct file *file = NULL, *old_file; 681 int error; 682 bool partscan; 683 684 error = mutex_lock_killable(&loop_ctl_mutex); 685 if (error) 686 return error; 687 error = -ENXIO; 688 if (lo->lo_state != Lo_bound) 689 goto out_err; 690 691 /* the loop device has to be read-only */ 692 error = -EINVAL; 693 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 694 goto out_err; 695 696 error = -EBADF; 697 file = fget(arg); 698 if (!file) 699 goto out_err; 700 701 error = loop_validate_file(file, bdev); 702 if (error) 703 goto out_err; 704 705 old_file = lo->lo_backing_file; 706 707 error = -EINVAL; 708 709 /* size of the new backing store needs to be the same */ 710 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 711 goto out_err; 712 713 /* and ... switch */ 714 blk_mq_freeze_queue(lo->lo_queue); 715 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 716 lo->lo_backing_file = file; 717 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 718 mapping_set_gfp_mask(file->f_mapping, 719 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 720 loop_update_dio(lo); 721 blk_mq_unfreeze_queue(lo->lo_queue); 722 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 723 mutex_unlock(&loop_ctl_mutex); 724 /* 725 * We must drop file reference outside of loop_ctl_mutex as dropping 726 * the file ref can take bd_mutex which creates circular locking 727 * dependency. 728 */ 729 fput(old_file); 730 if (partscan) 731 loop_reread_partitions(lo, bdev); 732 return 0; 733 734 out_err: 735 mutex_unlock(&loop_ctl_mutex); 736 if (file) 737 fput(file); 738 return error; 739 } 740 741 /* loop sysfs attributes */ 742 743 static ssize_t loop_attr_show(struct device *dev, char *page, 744 ssize_t (*callback)(struct loop_device *, char *)) 745 { 746 struct gendisk *disk = dev_to_disk(dev); 747 struct loop_device *lo = disk->private_data; 748 749 return callback(lo, page); 750 } 751 752 #define LOOP_ATTR_RO(_name) \ 753 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 754 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 755 struct device_attribute *attr, char *b) \ 756 { \ 757 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 758 } \ 759 static struct device_attribute loop_attr_##_name = \ 760 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 761 762 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 763 { 764 ssize_t ret; 765 char *p = NULL; 766 767 spin_lock_irq(&lo->lo_lock); 768 if (lo->lo_backing_file) 769 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 770 spin_unlock_irq(&lo->lo_lock); 771 772 if (IS_ERR_OR_NULL(p)) 773 ret = PTR_ERR(p); 774 else { 775 ret = strlen(p); 776 memmove(buf, p, ret); 777 buf[ret++] = '\n'; 778 buf[ret] = 0; 779 } 780 781 return ret; 782 } 783 784 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 785 { 786 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 787 } 788 789 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 790 { 791 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 792 } 793 794 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 795 { 796 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 797 798 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 799 } 800 801 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 802 { 803 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 804 805 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 806 } 807 808 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 809 { 810 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 811 812 return sprintf(buf, "%s\n", dio ? "1" : "0"); 813 } 814 815 LOOP_ATTR_RO(backing_file); 816 LOOP_ATTR_RO(offset); 817 LOOP_ATTR_RO(sizelimit); 818 LOOP_ATTR_RO(autoclear); 819 LOOP_ATTR_RO(partscan); 820 LOOP_ATTR_RO(dio); 821 822 static struct attribute *loop_attrs[] = { 823 &loop_attr_backing_file.attr, 824 &loop_attr_offset.attr, 825 &loop_attr_sizelimit.attr, 826 &loop_attr_autoclear.attr, 827 &loop_attr_partscan.attr, 828 &loop_attr_dio.attr, 829 NULL, 830 }; 831 832 static struct attribute_group loop_attribute_group = { 833 .name = "loop", 834 .attrs= loop_attrs, 835 }; 836 837 static void loop_sysfs_init(struct loop_device *lo) 838 { 839 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 840 &loop_attribute_group); 841 } 842 843 static void loop_sysfs_exit(struct loop_device *lo) 844 { 845 if (lo->sysfs_inited) 846 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 847 &loop_attribute_group); 848 } 849 850 static void loop_config_discard(struct loop_device *lo) 851 { 852 struct file *file = lo->lo_backing_file; 853 struct inode *inode = file->f_mapping->host; 854 struct request_queue *q = lo->lo_queue; 855 856 /* 857 * We use punch hole to reclaim the free space used by the 858 * image a.k.a. discard. However we do not support discard if 859 * encryption is enabled, because it may give an attacker 860 * useful information. 861 */ 862 if ((!file->f_op->fallocate) || 863 lo->lo_encrypt_key_size) { 864 q->limits.discard_granularity = 0; 865 q->limits.discard_alignment = 0; 866 blk_queue_max_discard_sectors(q, 0); 867 blk_queue_max_write_zeroes_sectors(q, 0); 868 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 869 return; 870 } 871 872 q->limits.discard_granularity = inode->i_sb->s_blocksize; 873 q->limits.discard_alignment = 0; 874 875 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 876 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 877 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 878 } 879 880 static void loop_unprepare_queue(struct loop_device *lo) 881 { 882 kthread_flush_worker(&lo->worker); 883 kthread_stop(lo->worker_task); 884 } 885 886 static int loop_kthread_worker_fn(void *worker_ptr) 887 { 888 current->flags |= PF_LESS_THROTTLE; 889 return kthread_worker_fn(worker_ptr); 890 } 891 892 static int loop_prepare_queue(struct loop_device *lo) 893 { 894 kthread_init_worker(&lo->worker); 895 lo->worker_task = kthread_run(loop_kthread_worker_fn, 896 &lo->worker, "loop%d", lo->lo_number); 897 if (IS_ERR(lo->worker_task)) 898 return -ENOMEM; 899 set_user_nice(lo->worker_task, MIN_NICE); 900 return 0; 901 } 902 903 static void loop_update_rotational(struct loop_device *lo) 904 { 905 struct file *file = lo->lo_backing_file; 906 struct inode *file_inode = file->f_mapping->host; 907 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 908 struct request_queue *q = lo->lo_queue; 909 bool nonrot = true; 910 911 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 912 if (file_bdev) 913 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 914 915 if (nonrot) 916 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 917 else 918 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 919 } 920 921 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 922 struct block_device *bdev, unsigned int arg) 923 { 924 struct file *file; 925 struct inode *inode; 926 struct address_space *mapping; 927 int lo_flags = 0; 928 int error; 929 loff_t size; 930 bool partscan; 931 932 /* This is safe, since we have a reference from open(). */ 933 __module_get(THIS_MODULE); 934 935 error = -EBADF; 936 file = fget(arg); 937 if (!file) 938 goto out; 939 940 /* 941 * If we don't hold exclusive handle for the device, upgrade to it 942 * here to avoid changing device under exclusive owner. 943 */ 944 if (!(mode & FMODE_EXCL)) { 945 bdgrab(bdev); 946 error = blkdev_get(bdev, mode | FMODE_EXCL, loop_set_fd); 947 if (error) 948 goto out_putf; 949 } 950 951 error = mutex_lock_killable(&loop_ctl_mutex); 952 if (error) 953 goto out_bdev; 954 955 error = -EBUSY; 956 if (lo->lo_state != Lo_unbound) 957 goto out_unlock; 958 959 error = loop_validate_file(file, bdev); 960 if (error) 961 goto out_unlock; 962 963 mapping = file->f_mapping; 964 inode = mapping->host; 965 966 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 967 !file->f_op->write_iter) 968 lo_flags |= LO_FLAGS_READ_ONLY; 969 970 error = -EFBIG; 971 size = get_loop_size(lo, file); 972 if ((loff_t)(sector_t)size != size) 973 goto out_unlock; 974 error = loop_prepare_queue(lo); 975 if (error) 976 goto out_unlock; 977 978 error = 0; 979 980 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 981 982 lo->use_dio = false; 983 lo->lo_device = bdev; 984 lo->lo_flags = lo_flags; 985 lo->lo_backing_file = file; 986 lo->transfer = NULL; 987 lo->ioctl = NULL; 988 lo->lo_sizelimit = 0; 989 lo->old_gfp_mask = mapping_gfp_mask(mapping); 990 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 991 992 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 993 blk_queue_write_cache(lo->lo_queue, true, false); 994 995 loop_update_rotational(lo); 996 loop_update_dio(lo); 997 set_capacity(lo->lo_disk, size); 998 bd_set_size(bdev, size << 9); 999 loop_sysfs_init(lo); 1000 /* let user-space know about the new size */ 1001 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1002 1003 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1004 block_size(inode->i_bdev) : PAGE_SIZE); 1005 1006 lo->lo_state = Lo_bound; 1007 if (part_shift) 1008 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1009 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1010 1011 /* Grab the block_device to prevent its destruction after we 1012 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1013 */ 1014 bdgrab(bdev); 1015 mutex_unlock(&loop_ctl_mutex); 1016 if (partscan) 1017 loop_reread_partitions(lo, bdev); 1018 if (!(mode & FMODE_EXCL)) 1019 blkdev_put(bdev, mode | FMODE_EXCL); 1020 return 0; 1021 1022 out_unlock: 1023 mutex_unlock(&loop_ctl_mutex); 1024 out_bdev: 1025 if (!(mode & FMODE_EXCL)) 1026 blkdev_put(bdev, mode | FMODE_EXCL); 1027 out_putf: 1028 fput(file); 1029 out: 1030 /* This is safe: open() is still holding a reference. */ 1031 module_put(THIS_MODULE); 1032 return error; 1033 } 1034 1035 static int 1036 loop_release_xfer(struct loop_device *lo) 1037 { 1038 int err = 0; 1039 struct loop_func_table *xfer = lo->lo_encryption; 1040 1041 if (xfer) { 1042 if (xfer->release) 1043 err = xfer->release(lo); 1044 lo->transfer = NULL; 1045 lo->lo_encryption = NULL; 1046 module_put(xfer->owner); 1047 } 1048 return err; 1049 } 1050 1051 static int 1052 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1053 const struct loop_info64 *i) 1054 { 1055 int err = 0; 1056 1057 if (xfer) { 1058 struct module *owner = xfer->owner; 1059 1060 if (!try_module_get(owner)) 1061 return -EINVAL; 1062 if (xfer->init) 1063 err = xfer->init(lo, i); 1064 if (err) 1065 module_put(owner); 1066 else 1067 lo->lo_encryption = xfer; 1068 } 1069 return err; 1070 } 1071 1072 static int __loop_clr_fd(struct loop_device *lo, bool release) 1073 { 1074 struct file *filp = NULL; 1075 gfp_t gfp = lo->old_gfp_mask; 1076 struct block_device *bdev = lo->lo_device; 1077 int err = 0; 1078 bool partscan = false; 1079 int lo_number; 1080 1081 mutex_lock(&loop_ctl_mutex); 1082 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1083 err = -ENXIO; 1084 goto out_unlock; 1085 } 1086 1087 filp = lo->lo_backing_file; 1088 if (filp == NULL) { 1089 err = -EINVAL; 1090 goto out_unlock; 1091 } 1092 1093 /* freeze request queue during the transition */ 1094 blk_mq_freeze_queue(lo->lo_queue); 1095 1096 spin_lock_irq(&lo->lo_lock); 1097 lo->lo_backing_file = NULL; 1098 spin_unlock_irq(&lo->lo_lock); 1099 1100 loop_release_xfer(lo); 1101 lo->transfer = NULL; 1102 lo->ioctl = NULL; 1103 lo->lo_device = NULL; 1104 lo->lo_encryption = NULL; 1105 lo->lo_offset = 0; 1106 lo->lo_sizelimit = 0; 1107 lo->lo_encrypt_key_size = 0; 1108 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1109 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1110 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1111 blk_queue_logical_block_size(lo->lo_queue, 512); 1112 blk_queue_physical_block_size(lo->lo_queue, 512); 1113 blk_queue_io_min(lo->lo_queue, 512); 1114 if (bdev) { 1115 bdput(bdev); 1116 invalidate_bdev(bdev); 1117 bdev->bd_inode->i_mapping->wb_err = 0; 1118 } 1119 set_capacity(lo->lo_disk, 0); 1120 loop_sysfs_exit(lo); 1121 if (bdev) { 1122 bd_set_size(bdev, 0); 1123 /* let user-space know about this change */ 1124 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1125 } 1126 mapping_set_gfp_mask(filp->f_mapping, gfp); 1127 /* This is safe: open() is still holding a reference. */ 1128 module_put(THIS_MODULE); 1129 blk_mq_unfreeze_queue(lo->lo_queue); 1130 1131 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1132 lo_number = lo->lo_number; 1133 loop_unprepare_queue(lo); 1134 out_unlock: 1135 mutex_unlock(&loop_ctl_mutex); 1136 if (partscan) { 1137 /* 1138 * bd_mutex has been held already in release path, so don't 1139 * acquire it if this function is called in such case. 1140 * 1141 * If the reread partition isn't from release path, lo_refcnt 1142 * must be at least one and it can only become zero when the 1143 * current holder is released. 1144 */ 1145 if (release) 1146 err = __blkdev_reread_part(bdev); 1147 else 1148 err = blkdev_reread_part(bdev); 1149 if (err) 1150 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1151 __func__, lo_number, err); 1152 /* Device is gone, no point in returning error */ 1153 err = 0; 1154 } 1155 1156 /* 1157 * lo->lo_state is set to Lo_unbound here after above partscan has 1158 * finished. 1159 * 1160 * There cannot be anybody else entering __loop_clr_fd() as 1161 * lo->lo_backing_file is already cleared and Lo_rundown state 1162 * protects us from all the other places trying to change the 'lo' 1163 * device. 1164 */ 1165 mutex_lock(&loop_ctl_mutex); 1166 lo->lo_flags = 0; 1167 if (!part_shift) 1168 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1169 lo->lo_state = Lo_unbound; 1170 mutex_unlock(&loop_ctl_mutex); 1171 1172 /* 1173 * Need not hold loop_ctl_mutex to fput backing file. 1174 * Calling fput holding loop_ctl_mutex triggers a circular 1175 * lock dependency possibility warning as fput can take 1176 * bd_mutex which is usually taken before loop_ctl_mutex. 1177 */ 1178 if (filp) 1179 fput(filp); 1180 return err; 1181 } 1182 1183 static int loop_clr_fd(struct loop_device *lo) 1184 { 1185 int err; 1186 1187 err = mutex_lock_killable(&loop_ctl_mutex); 1188 if (err) 1189 return err; 1190 if (lo->lo_state != Lo_bound) { 1191 mutex_unlock(&loop_ctl_mutex); 1192 return -ENXIO; 1193 } 1194 /* 1195 * If we've explicitly asked to tear down the loop device, 1196 * and it has an elevated reference count, set it for auto-teardown when 1197 * the last reference goes away. This stops $!~#$@ udev from 1198 * preventing teardown because it decided that it needs to run blkid on 1199 * the loopback device whenever they appear. xfstests is notorious for 1200 * failing tests because blkid via udev races with a losetup 1201 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1202 * command to fail with EBUSY. 1203 */ 1204 if (atomic_read(&lo->lo_refcnt) > 1) { 1205 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1206 mutex_unlock(&loop_ctl_mutex); 1207 return 0; 1208 } 1209 lo->lo_state = Lo_rundown; 1210 mutex_unlock(&loop_ctl_mutex); 1211 1212 return __loop_clr_fd(lo, false); 1213 } 1214 1215 static int 1216 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1217 { 1218 int err; 1219 struct loop_func_table *xfer; 1220 kuid_t uid = current_uid(); 1221 struct block_device *bdev; 1222 bool partscan = false; 1223 1224 err = mutex_lock_killable(&loop_ctl_mutex); 1225 if (err) 1226 return err; 1227 if (lo->lo_encrypt_key_size && 1228 !uid_eq(lo->lo_key_owner, uid) && 1229 !capable(CAP_SYS_ADMIN)) { 1230 err = -EPERM; 1231 goto out_unlock; 1232 } 1233 if (lo->lo_state != Lo_bound) { 1234 err = -ENXIO; 1235 goto out_unlock; 1236 } 1237 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) { 1238 err = -EINVAL; 1239 goto out_unlock; 1240 } 1241 1242 if (lo->lo_offset != info->lo_offset || 1243 lo->lo_sizelimit != info->lo_sizelimit) { 1244 sync_blockdev(lo->lo_device); 1245 kill_bdev(lo->lo_device); 1246 } 1247 1248 /* I/O need to be drained during transfer transition */ 1249 blk_mq_freeze_queue(lo->lo_queue); 1250 1251 err = loop_release_xfer(lo); 1252 if (err) 1253 goto out_unfreeze; 1254 1255 if (info->lo_encrypt_type) { 1256 unsigned int type = info->lo_encrypt_type; 1257 1258 if (type >= MAX_LO_CRYPT) { 1259 err = -EINVAL; 1260 goto out_unfreeze; 1261 } 1262 xfer = xfer_funcs[type]; 1263 if (xfer == NULL) { 1264 err = -EINVAL; 1265 goto out_unfreeze; 1266 } 1267 } else 1268 xfer = NULL; 1269 1270 err = loop_init_xfer(lo, xfer, info); 1271 if (err) 1272 goto out_unfreeze; 1273 1274 if (lo->lo_offset != info->lo_offset || 1275 lo->lo_sizelimit != info->lo_sizelimit) { 1276 /* kill_bdev should have truncated all the pages */ 1277 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1278 err = -EAGAIN; 1279 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1280 __func__, lo->lo_number, lo->lo_file_name, 1281 lo->lo_device->bd_inode->i_mapping->nrpages); 1282 goto out_unfreeze; 1283 } 1284 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1285 err = -EFBIG; 1286 goto out_unfreeze; 1287 } 1288 } 1289 1290 loop_config_discard(lo); 1291 1292 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1293 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1294 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1295 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1296 1297 if (!xfer) 1298 xfer = &none_funcs; 1299 lo->transfer = xfer->transfer; 1300 lo->ioctl = xfer->ioctl; 1301 1302 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1303 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1304 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1305 1306 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1307 lo->lo_init[0] = info->lo_init[0]; 1308 lo->lo_init[1] = info->lo_init[1]; 1309 if (info->lo_encrypt_key_size) { 1310 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1311 info->lo_encrypt_key_size); 1312 lo->lo_key_owner = uid; 1313 } 1314 1315 /* update dio if lo_offset or transfer is changed */ 1316 __loop_update_dio(lo, lo->use_dio); 1317 1318 out_unfreeze: 1319 blk_mq_unfreeze_queue(lo->lo_queue); 1320 1321 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1322 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1323 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1324 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1325 bdev = lo->lo_device; 1326 partscan = true; 1327 } 1328 out_unlock: 1329 mutex_unlock(&loop_ctl_mutex); 1330 if (partscan) 1331 loop_reread_partitions(lo, bdev); 1332 1333 return err; 1334 } 1335 1336 static int 1337 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1338 { 1339 struct path path; 1340 struct kstat stat; 1341 int ret; 1342 1343 ret = mutex_lock_killable(&loop_ctl_mutex); 1344 if (ret) 1345 return ret; 1346 if (lo->lo_state != Lo_bound) { 1347 mutex_unlock(&loop_ctl_mutex); 1348 return -ENXIO; 1349 } 1350 1351 memset(info, 0, sizeof(*info)); 1352 info->lo_number = lo->lo_number; 1353 info->lo_offset = lo->lo_offset; 1354 info->lo_sizelimit = lo->lo_sizelimit; 1355 info->lo_flags = lo->lo_flags; 1356 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1357 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1358 info->lo_encrypt_type = 1359 lo->lo_encryption ? lo->lo_encryption->number : 0; 1360 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1361 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1362 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1363 lo->lo_encrypt_key_size); 1364 } 1365 1366 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1367 path = lo->lo_backing_file->f_path; 1368 path_get(&path); 1369 mutex_unlock(&loop_ctl_mutex); 1370 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1371 if (!ret) { 1372 info->lo_device = huge_encode_dev(stat.dev); 1373 info->lo_inode = stat.ino; 1374 info->lo_rdevice = huge_encode_dev(stat.rdev); 1375 } 1376 path_put(&path); 1377 return ret; 1378 } 1379 1380 static void 1381 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1382 { 1383 memset(info64, 0, sizeof(*info64)); 1384 info64->lo_number = info->lo_number; 1385 info64->lo_device = info->lo_device; 1386 info64->lo_inode = info->lo_inode; 1387 info64->lo_rdevice = info->lo_rdevice; 1388 info64->lo_offset = info->lo_offset; 1389 info64->lo_sizelimit = 0; 1390 info64->lo_encrypt_type = info->lo_encrypt_type; 1391 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1392 info64->lo_flags = info->lo_flags; 1393 info64->lo_init[0] = info->lo_init[0]; 1394 info64->lo_init[1] = info->lo_init[1]; 1395 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1396 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1397 else 1398 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1399 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1400 } 1401 1402 static int 1403 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1404 { 1405 memset(info, 0, sizeof(*info)); 1406 info->lo_number = info64->lo_number; 1407 info->lo_device = info64->lo_device; 1408 info->lo_inode = info64->lo_inode; 1409 info->lo_rdevice = info64->lo_rdevice; 1410 info->lo_offset = info64->lo_offset; 1411 info->lo_encrypt_type = info64->lo_encrypt_type; 1412 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1413 info->lo_flags = info64->lo_flags; 1414 info->lo_init[0] = info64->lo_init[0]; 1415 info->lo_init[1] = info64->lo_init[1]; 1416 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1417 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1418 else 1419 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1420 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1421 1422 /* error in case values were truncated */ 1423 if (info->lo_device != info64->lo_device || 1424 info->lo_rdevice != info64->lo_rdevice || 1425 info->lo_inode != info64->lo_inode || 1426 info->lo_offset != info64->lo_offset) 1427 return -EOVERFLOW; 1428 1429 return 0; 1430 } 1431 1432 static int 1433 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1434 { 1435 struct loop_info info; 1436 struct loop_info64 info64; 1437 1438 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1439 return -EFAULT; 1440 loop_info64_from_old(&info, &info64); 1441 return loop_set_status(lo, &info64); 1442 } 1443 1444 static int 1445 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1446 { 1447 struct loop_info64 info64; 1448 1449 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1450 return -EFAULT; 1451 return loop_set_status(lo, &info64); 1452 } 1453 1454 static int 1455 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1456 struct loop_info info; 1457 struct loop_info64 info64; 1458 int err; 1459 1460 if (!arg) 1461 return -EINVAL; 1462 err = loop_get_status(lo, &info64); 1463 if (!err) 1464 err = loop_info64_to_old(&info64, &info); 1465 if (!err && copy_to_user(arg, &info, sizeof(info))) 1466 err = -EFAULT; 1467 1468 return err; 1469 } 1470 1471 static int 1472 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1473 struct loop_info64 info64; 1474 int err; 1475 1476 if (!arg) 1477 return -EINVAL; 1478 err = loop_get_status(lo, &info64); 1479 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1480 err = -EFAULT; 1481 1482 return err; 1483 } 1484 1485 static int loop_set_capacity(struct loop_device *lo) 1486 { 1487 if (unlikely(lo->lo_state != Lo_bound)) 1488 return -ENXIO; 1489 1490 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1491 } 1492 1493 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1494 { 1495 int error = -ENXIO; 1496 if (lo->lo_state != Lo_bound) 1497 goto out; 1498 1499 __loop_update_dio(lo, !!arg); 1500 if (lo->use_dio == !!arg) 1501 return 0; 1502 error = -EINVAL; 1503 out: 1504 return error; 1505 } 1506 1507 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1508 { 1509 int err = 0; 1510 1511 if (lo->lo_state != Lo_bound) 1512 return -ENXIO; 1513 1514 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1515 return -EINVAL; 1516 1517 if (lo->lo_queue->limits.logical_block_size != arg) { 1518 sync_blockdev(lo->lo_device); 1519 kill_bdev(lo->lo_device); 1520 } 1521 1522 blk_mq_freeze_queue(lo->lo_queue); 1523 1524 /* kill_bdev should have truncated all the pages */ 1525 if (lo->lo_queue->limits.logical_block_size != arg && 1526 lo->lo_device->bd_inode->i_mapping->nrpages) { 1527 err = -EAGAIN; 1528 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1529 __func__, lo->lo_number, lo->lo_file_name, 1530 lo->lo_device->bd_inode->i_mapping->nrpages); 1531 goto out_unfreeze; 1532 } 1533 1534 blk_queue_logical_block_size(lo->lo_queue, arg); 1535 blk_queue_physical_block_size(lo->lo_queue, arg); 1536 blk_queue_io_min(lo->lo_queue, arg); 1537 loop_update_dio(lo); 1538 out_unfreeze: 1539 blk_mq_unfreeze_queue(lo->lo_queue); 1540 1541 return err; 1542 } 1543 1544 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1545 unsigned long arg) 1546 { 1547 int err; 1548 1549 err = mutex_lock_killable(&loop_ctl_mutex); 1550 if (err) 1551 return err; 1552 switch (cmd) { 1553 case LOOP_SET_CAPACITY: 1554 err = loop_set_capacity(lo); 1555 break; 1556 case LOOP_SET_DIRECT_IO: 1557 err = loop_set_dio(lo, arg); 1558 break; 1559 case LOOP_SET_BLOCK_SIZE: 1560 err = loop_set_block_size(lo, arg); 1561 break; 1562 default: 1563 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1564 } 1565 mutex_unlock(&loop_ctl_mutex); 1566 return err; 1567 } 1568 1569 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1570 unsigned int cmd, unsigned long arg) 1571 { 1572 struct loop_device *lo = bdev->bd_disk->private_data; 1573 int err; 1574 1575 switch (cmd) { 1576 case LOOP_SET_FD: 1577 return loop_set_fd(lo, mode, bdev, arg); 1578 case LOOP_CHANGE_FD: 1579 return loop_change_fd(lo, bdev, arg); 1580 case LOOP_CLR_FD: 1581 return loop_clr_fd(lo); 1582 case LOOP_SET_STATUS: 1583 err = -EPERM; 1584 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1585 err = loop_set_status_old(lo, 1586 (struct loop_info __user *)arg); 1587 } 1588 break; 1589 case LOOP_GET_STATUS: 1590 return loop_get_status_old(lo, (struct loop_info __user *) arg); 1591 case LOOP_SET_STATUS64: 1592 err = -EPERM; 1593 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1594 err = loop_set_status64(lo, 1595 (struct loop_info64 __user *) arg); 1596 } 1597 break; 1598 case LOOP_GET_STATUS64: 1599 return loop_get_status64(lo, (struct loop_info64 __user *) arg); 1600 case LOOP_SET_CAPACITY: 1601 case LOOP_SET_DIRECT_IO: 1602 case LOOP_SET_BLOCK_SIZE: 1603 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1604 return -EPERM; 1605 /* Fall through */ 1606 default: 1607 err = lo_simple_ioctl(lo, cmd, arg); 1608 break; 1609 } 1610 1611 return err; 1612 } 1613 1614 #ifdef CONFIG_COMPAT 1615 struct compat_loop_info { 1616 compat_int_t lo_number; /* ioctl r/o */ 1617 compat_dev_t lo_device; /* ioctl r/o */ 1618 compat_ulong_t lo_inode; /* ioctl r/o */ 1619 compat_dev_t lo_rdevice; /* ioctl r/o */ 1620 compat_int_t lo_offset; 1621 compat_int_t lo_encrypt_type; 1622 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1623 compat_int_t lo_flags; /* ioctl r/o */ 1624 char lo_name[LO_NAME_SIZE]; 1625 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1626 compat_ulong_t lo_init[2]; 1627 char reserved[4]; 1628 }; 1629 1630 /* 1631 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1632 * - noinlined to reduce stack space usage in main part of driver 1633 */ 1634 static noinline int 1635 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1636 struct loop_info64 *info64) 1637 { 1638 struct compat_loop_info info; 1639 1640 if (copy_from_user(&info, arg, sizeof(info))) 1641 return -EFAULT; 1642 1643 memset(info64, 0, sizeof(*info64)); 1644 info64->lo_number = info.lo_number; 1645 info64->lo_device = info.lo_device; 1646 info64->lo_inode = info.lo_inode; 1647 info64->lo_rdevice = info.lo_rdevice; 1648 info64->lo_offset = info.lo_offset; 1649 info64->lo_sizelimit = 0; 1650 info64->lo_encrypt_type = info.lo_encrypt_type; 1651 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1652 info64->lo_flags = info.lo_flags; 1653 info64->lo_init[0] = info.lo_init[0]; 1654 info64->lo_init[1] = info.lo_init[1]; 1655 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1656 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1657 else 1658 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1659 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1660 return 0; 1661 } 1662 1663 /* 1664 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1665 * - noinlined to reduce stack space usage in main part of driver 1666 */ 1667 static noinline int 1668 loop_info64_to_compat(const struct loop_info64 *info64, 1669 struct compat_loop_info __user *arg) 1670 { 1671 struct compat_loop_info info; 1672 1673 memset(&info, 0, sizeof(info)); 1674 info.lo_number = info64->lo_number; 1675 info.lo_device = info64->lo_device; 1676 info.lo_inode = info64->lo_inode; 1677 info.lo_rdevice = info64->lo_rdevice; 1678 info.lo_offset = info64->lo_offset; 1679 info.lo_encrypt_type = info64->lo_encrypt_type; 1680 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1681 info.lo_flags = info64->lo_flags; 1682 info.lo_init[0] = info64->lo_init[0]; 1683 info.lo_init[1] = info64->lo_init[1]; 1684 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1685 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1686 else 1687 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1688 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1689 1690 /* error in case values were truncated */ 1691 if (info.lo_device != info64->lo_device || 1692 info.lo_rdevice != info64->lo_rdevice || 1693 info.lo_inode != info64->lo_inode || 1694 info.lo_offset != info64->lo_offset || 1695 info.lo_init[0] != info64->lo_init[0] || 1696 info.lo_init[1] != info64->lo_init[1]) 1697 return -EOVERFLOW; 1698 1699 if (copy_to_user(arg, &info, sizeof(info))) 1700 return -EFAULT; 1701 return 0; 1702 } 1703 1704 static int 1705 loop_set_status_compat(struct loop_device *lo, 1706 const struct compat_loop_info __user *arg) 1707 { 1708 struct loop_info64 info64; 1709 int ret; 1710 1711 ret = loop_info64_from_compat(arg, &info64); 1712 if (ret < 0) 1713 return ret; 1714 return loop_set_status(lo, &info64); 1715 } 1716 1717 static int 1718 loop_get_status_compat(struct loop_device *lo, 1719 struct compat_loop_info __user *arg) 1720 { 1721 struct loop_info64 info64; 1722 int err; 1723 1724 if (!arg) 1725 return -EINVAL; 1726 err = loop_get_status(lo, &info64); 1727 if (!err) 1728 err = loop_info64_to_compat(&info64, arg); 1729 return err; 1730 } 1731 1732 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1733 unsigned int cmd, unsigned long arg) 1734 { 1735 struct loop_device *lo = bdev->bd_disk->private_data; 1736 int err; 1737 1738 switch(cmd) { 1739 case LOOP_SET_STATUS: 1740 err = loop_set_status_compat(lo, 1741 (const struct compat_loop_info __user *)arg); 1742 break; 1743 case LOOP_GET_STATUS: 1744 err = loop_get_status_compat(lo, 1745 (struct compat_loop_info __user *)arg); 1746 break; 1747 case LOOP_SET_CAPACITY: 1748 case LOOP_CLR_FD: 1749 case LOOP_GET_STATUS64: 1750 case LOOP_SET_STATUS64: 1751 arg = (unsigned long) compat_ptr(arg); 1752 /* fall through */ 1753 case LOOP_SET_FD: 1754 case LOOP_CHANGE_FD: 1755 case LOOP_SET_BLOCK_SIZE: 1756 err = lo_ioctl(bdev, mode, cmd, arg); 1757 break; 1758 default: 1759 err = -ENOIOCTLCMD; 1760 break; 1761 } 1762 return err; 1763 } 1764 #endif 1765 1766 static int lo_open(struct block_device *bdev, fmode_t mode) 1767 { 1768 struct loop_device *lo; 1769 int err; 1770 1771 err = mutex_lock_killable(&loop_ctl_mutex); 1772 if (err) 1773 return err; 1774 lo = bdev->bd_disk->private_data; 1775 if (!lo) { 1776 err = -ENXIO; 1777 goto out; 1778 } 1779 1780 atomic_inc(&lo->lo_refcnt); 1781 out: 1782 mutex_unlock(&loop_ctl_mutex); 1783 return err; 1784 } 1785 1786 static void lo_release(struct gendisk *disk, fmode_t mode) 1787 { 1788 struct loop_device *lo; 1789 1790 mutex_lock(&loop_ctl_mutex); 1791 lo = disk->private_data; 1792 if (atomic_dec_return(&lo->lo_refcnt)) 1793 goto out_unlock; 1794 1795 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1796 if (lo->lo_state != Lo_bound) 1797 goto out_unlock; 1798 lo->lo_state = Lo_rundown; 1799 mutex_unlock(&loop_ctl_mutex); 1800 /* 1801 * In autoclear mode, stop the loop thread 1802 * and remove configuration after last close. 1803 */ 1804 __loop_clr_fd(lo, true); 1805 return; 1806 } else if (lo->lo_state == Lo_bound) { 1807 /* 1808 * Otherwise keep thread (if running) and config, 1809 * but flush possible ongoing bios in thread. 1810 */ 1811 blk_mq_freeze_queue(lo->lo_queue); 1812 blk_mq_unfreeze_queue(lo->lo_queue); 1813 } 1814 1815 out_unlock: 1816 mutex_unlock(&loop_ctl_mutex); 1817 } 1818 1819 static const struct block_device_operations lo_fops = { 1820 .owner = THIS_MODULE, 1821 .open = lo_open, 1822 .release = lo_release, 1823 .ioctl = lo_ioctl, 1824 #ifdef CONFIG_COMPAT 1825 .compat_ioctl = lo_compat_ioctl, 1826 #endif 1827 }; 1828 1829 /* 1830 * And now the modules code and kernel interface. 1831 */ 1832 static int max_loop; 1833 module_param(max_loop, int, 0444); 1834 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1835 module_param(max_part, int, 0444); 1836 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1837 MODULE_LICENSE("GPL"); 1838 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1839 1840 int loop_register_transfer(struct loop_func_table *funcs) 1841 { 1842 unsigned int n = funcs->number; 1843 1844 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1845 return -EINVAL; 1846 xfer_funcs[n] = funcs; 1847 return 0; 1848 } 1849 1850 static int unregister_transfer_cb(int id, void *ptr, void *data) 1851 { 1852 struct loop_device *lo = ptr; 1853 struct loop_func_table *xfer = data; 1854 1855 mutex_lock(&loop_ctl_mutex); 1856 if (lo->lo_encryption == xfer) 1857 loop_release_xfer(lo); 1858 mutex_unlock(&loop_ctl_mutex); 1859 return 0; 1860 } 1861 1862 int loop_unregister_transfer(int number) 1863 { 1864 unsigned int n = number; 1865 struct loop_func_table *xfer; 1866 1867 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1868 return -EINVAL; 1869 1870 xfer_funcs[n] = NULL; 1871 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1872 return 0; 1873 } 1874 1875 EXPORT_SYMBOL(loop_register_transfer); 1876 EXPORT_SYMBOL(loop_unregister_transfer); 1877 1878 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1879 const struct blk_mq_queue_data *bd) 1880 { 1881 struct request *rq = bd->rq; 1882 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1883 struct loop_device *lo = rq->q->queuedata; 1884 1885 blk_mq_start_request(rq); 1886 1887 if (lo->lo_state != Lo_bound) 1888 return BLK_STS_IOERR; 1889 1890 switch (req_op(rq)) { 1891 case REQ_OP_FLUSH: 1892 case REQ_OP_DISCARD: 1893 case REQ_OP_WRITE_ZEROES: 1894 cmd->use_aio = false; 1895 break; 1896 default: 1897 cmd->use_aio = lo->use_dio; 1898 break; 1899 } 1900 1901 /* always use the first bio's css */ 1902 #ifdef CONFIG_BLK_CGROUP 1903 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 1904 cmd->css = &bio_blkcg(rq->bio)->css; 1905 css_get(cmd->css); 1906 } else 1907 #endif 1908 cmd->css = NULL; 1909 kthread_queue_work(&lo->worker, &cmd->work); 1910 1911 return BLK_STS_OK; 1912 } 1913 1914 static void loop_handle_cmd(struct loop_cmd *cmd) 1915 { 1916 struct request *rq = blk_mq_rq_from_pdu(cmd); 1917 const bool write = op_is_write(req_op(rq)); 1918 struct loop_device *lo = rq->q->queuedata; 1919 int ret = 0; 1920 1921 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1922 ret = -EIO; 1923 goto failed; 1924 } 1925 1926 ret = do_req_filebacked(lo, rq); 1927 failed: 1928 /* complete non-aio request */ 1929 if (!cmd->use_aio || ret) { 1930 cmd->ret = ret ? -EIO : 0; 1931 blk_mq_complete_request(rq); 1932 } 1933 } 1934 1935 static void loop_queue_work(struct kthread_work *work) 1936 { 1937 struct loop_cmd *cmd = 1938 container_of(work, struct loop_cmd, work); 1939 1940 loop_handle_cmd(cmd); 1941 } 1942 1943 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1944 unsigned int hctx_idx, unsigned int numa_node) 1945 { 1946 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1947 1948 kthread_init_work(&cmd->work, loop_queue_work); 1949 return 0; 1950 } 1951 1952 static const struct blk_mq_ops loop_mq_ops = { 1953 .queue_rq = loop_queue_rq, 1954 .init_request = loop_init_request, 1955 .complete = lo_complete_rq, 1956 }; 1957 1958 static int loop_add(struct loop_device **l, int i) 1959 { 1960 struct loop_device *lo; 1961 struct gendisk *disk; 1962 int err; 1963 1964 err = -ENOMEM; 1965 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1966 if (!lo) 1967 goto out; 1968 1969 lo->lo_state = Lo_unbound; 1970 1971 /* allocate id, if @id >= 0, we're requesting that specific id */ 1972 if (i >= 0) { 1973 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1974 if (err == -ENOSPC) 1975 err = -EEXIST; 1976 } else { 1977 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1978 } 1979 if (err < 0) 1980 goto out_free_dev; 1981 i = err; 1982 1983 err = -ENOMEM; 1984 lo->tag_set.ops = &loop_mq_ops; 1985 lo->tag_set.nr_hw_queues = 1; 1986 lo->tag_set.queue_depth = 128; 1987 lo->tag_set.numa_node = NUMA_NO_NODE; 1988 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1989 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1990 lo->tag_set.driver_data = lo; 1991 1992 err = blk_mq_alloc_tag_set(&lo->tag_set); 1993 if (err) 1994 goto out_free_idr; 1995 1996 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1997 if (IS_ERR(lo->lo_queue)) { 1998 err = PTR_ERR(lo->lo_queue); 1999 goto out_cleanup_tags; 2000 } 2001 lo->lo_queue->queuedata = lo; 2002 2003 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2004 2005 /* 2006 * By default, we do buffer IO, so it doesn't make sense to enable 2007 * merge because the I/O submitted to backing file is handled page by 2008 * page. For directio mode, merge does help to dispatch bigger request 2009 * to underlayer disk. We will enable merge once directio is enabled. 2010 */ 2011 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2012 2013 err = -ENOMEM; 2014 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2015 if (!disk) 2016 goto out_free_queue; 2017 2018 /* 2019 * Disable partition scanning by default. The in-kernel partition 2020 * scanning can be requested individually per-device during its 2021 * setup. Userspace can always add and remove partitions from all 2022 * devices. The needed partition minors are allocated from the 2023 * extended minor space, the main loop device numbers will continue 2024 * to match the loop minors, regardless of the number of partitions 2025 * used. 2026 * 2027 * If max_part is given, partition scanning is globally enabled for 2028 * all loop devices. The minors for the main loop devices will be 2029 * multiples of max_part. 2030 * 2031 * Note: Global-for-all-devices, set-only-at-init, read-only module 2032 * parameteters like 'max_loop' and 'max_part' make things needlessly 2033 * complicated, are too static, inflexible and may surprise 2034 * userspace tools. Parameters like this in general should be avoided. 2035 */ 2036 if (!part_shift) 2037 disk->flags |= GENHD_FL_NO_PART_SCAN; 2038 disk->flags |= GENHD_FL_EXT_DEVT; 2039 atomic_set(&lo->lo_refcnt, 0); 2040 lo->lo_number = i; 2041 spin_lock_init(&lo->lo_lock); 2042 disk->major = LOOP_MAJOR; 2043 disk->first_minor = i << part_shift; 2044 disk->fops = &lo_fops; 2045 disk->private_data = lo; 2046 disk->queue = lo->lo_queue; 2047 sprintf(disk->disk_name, "loop%d", i); 2048 add_disk(disk); 2049 *l = lo; 2050 return lo->lo_number; 2051 2052 out_free_queue: 2053 blk_cleanup_queue(lo->lo_queue); 2054 out_cleanup_tags: 2055 blk_mq_free_tag_set(&lo->tag_set); 2056 out_free_idr: 2057 idr_remove(&loop_index_idr, i); 2058 out_free_dev: 2059 kfree(lo); 2060 out: 2061 return err; 2062 } 2063 2064 static void loop_remove(struct loop_device *lo) 2065 { 2066 del_gendisk(lo->lo_disk); 2067 blk_cleanup_queue(lo->lo_queue); 2068 blk_mq_free_tag_set(&lo->tag_set); 2069 put_disk(lo->lo_disk); 2070 kfree(lo); 2071 } 2072 2073 static int find_free_cb(int id, void *ptr, void *data) 2074 { 2075 struct loop_device *lo = ptr; 2076 struct loop_device **l = data; 2077 2078 if (lo->lo_state == Lo_unbound) { 2079 *l = lo; 2080 return 1; 2081 } 2082 return 0; 2083 } 2084 2085 static int loop_lookup(struct loop_device **l, int i) 2086 { 2087 struct loop_device *lo; 2088 int ret = -ENODEV; 2089 2090 if (i < 0) { 2091 int err; 2092 2093 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2094 if (err == 1) { 2095 *l = lo; 2096 ret = lo->lo_number; 2097 } 2098 goto out; 2099 } 2100 2101 /* lookup and return a specific i */ 2102 lo = idr_find(&loop_index_idr, i); 2103 if (lo) { 2104 *l = lo; 2105 ret = lo->lo_number; 2106 } 2107 out: 2108 return ret; 2109 } 2110 2111 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2112 { 2113 struct loop_device *lo; 2114 struct kobject *kobj; 2115 int err; 2116 2117 mutex_lock(&loop_ctl_mutex); 2118 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2119 if (err < 0) 2120 err = loop_add(&lo, MINOR(dev) >> part_shift); 2121 if (err < 0) 2122 kobj = NULL; 2123 else 2124 kobj = get_disk_and_module(lo->lo_disk); 2125 mutex_unlock(&loop_ctl_mutex); 2126 2127 *part = 0; 2128 return kobj; 2129 } 2130 2131 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2132 unsigned long parm) 2133 { 2134 struct loop_device *lo; 2135 int ret; 2136 2137 ret = mutex_lock_killable(&loop_ctl_mutex); 2138 if (ret) 2139 return ret; 2140 2141 ret = -ENOSYS; 2142 switch (cmd) { 2143 case LOOP_CTL_ADD: 2144 ret = loop_lookup(&lo, parm); 2145 if (ret >= 0) { 2146 ret = -EEXIST; 2147 break; 2148 } 2149 ret = loop_add(&lo, parm); 2150 break; 2151 case LOOP_CTL_REMOVE: 2152 ret = loop_lookup(&lo, parm); 2153 if (ret < 0) 2154 break; 2155 if (lo->lo_state != Lo_unbound) { 2156 ret = -EBUSY; 2157 break; 2158 } 2159 if (atomic_read(&lo->lo_refcnt) > 0) { 2160 ret = -EBUSY; 2161 break; 2162 } 2163 lo->lo_disk->private_data = NULL; 2164 idr_remove(&loop_index_idr, lo->lo_number); 2165 loop_remove(lo); 2166 break; 2167 case LOOP_CTL_GET_FREE: 2168 ret = loop_lookup(&lo, -1); 2169 if (ret >= 0) 2170 break; 2171 ret = loop_add(&lo, -1); 2172 } 2173 mutex_unlock(&loop_ctl_mutex); 2174 2175 return ret; 2176 } 2177 2178 static const struct file_operations loop_ctl_fops = { 2179 .open = nonseekable_open, 2180 .unlocked_ioctl = loop_control_ioctl, 2181 .compat_ioctl = loop_control_ioctl, 2182 .owner = THIS_MODULE, 2183 .llseek = noop_llseek, 2184 }; 2185 2186 static struct miscdevice loop_misc = { 2187 .minor = LOOP_CTRL_MINOR, 2188 .name = "loop-control", 2189 .fops = &loop_ctl_fops, 2190 }; 2191 2192 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2193 MODULE_ALIAS("devname:loop-control"); 2194 2195 static int __init loop_init(void) 2196 { 2197 int i, nr; 2198 unsigned long range; 2199 struct loop_device *lo; 2200 int err; 2201 2202 part_shift = 0; 2203 if (max_part > 0) { 2204 part_shift = fls(max_part); 2205 2206 /* 2207 * Adjust max_part according to part_shift as it is exported 2208 * to user space so that user can decide correct minor number 2209 * if [s]he want to create more devices. 2210 * 2211 * Note that -1 is required because partition 0 is reserved 2212 * for the whole disk. 2213 */ 2214 max_part = (1UL << part_shift) - 1; 2215 } 2216 2217 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2218 err = -EINVAL; 2219 goto err_out; 2220 } 2221 2222 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2223 err = -EINVAL; 2224 goto err_out; 2225 } 2226 2227 /* 2228 * If max_loop is specified, create that many devices upfront. 2229 * This also becomes a hard limit. If max_loop is not specified, 2230 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2231 * init time. Loop devices can be requested on-demand with the 2232 * /dev/loop-control interface, or be instantiated by accessing 2233 * a 'dead' device node. 2234 */ 2235 if (max_loop) { 2236 nr = max_loop; 2237 range = max_loop << part_shift; 2238 } else { 2239 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2240 range = 1UL << MINORBITS; 2241 } 2242 2243 err = misc_register(&loop_misc); 2244 if (err < 0) 2245 goto err_out; 2246 2247 2248 if (register_blkdev(LOOP_MAJOR, "loop")) { 2249 err = -EIO; 2250 goto misc_out; 2251 } 2252 2253 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2254 THIS_MODULE, loop_probe, NULL, NULL); 2255 2256 /* pre-create number of devices given by config or max_loop */ 2257 mutex_lock(&loop_ctl_mutex); 2258 for (i = 0; i < nr; i++) 2259 loop_add(&lo, i); 2260 mutex_unlock(&loop_ctl_mutex); 2261 2262 printk(KERN_INFO "loop: module loaded\n"); 2263 return 0; 2264 2265 misc_out: 2266 misc_deregister(&loop_misc); 2267 err_out: 2268 return err; 2269 } 2270 2271 static int loop_exit_cb(int id, void *ptr, void *data) 2272 { 2273 struct loop_device *lo = ptr; 2274 2275 loop_remove(lo); 2276 return 0; 2277 } 2278 2279 static void __exit loop_exit(void) 2280 { 2281 unsigned long range; 2282 2283 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2284 2285 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2286 idr_destroy(&loop_index_idr); 2287 2288 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2289 unregister_blkdev(LOOP_MAJOR, "loop"); 2290 2291 misc_deregister(&loop_misc); 2292 } 2293 2294 module_init(loop_init); 2295 module_exit(loop_exit); 2296 2297 #ifndef MODULE 2298 static int __init max_loop_setup(char *str) 2299 { 2300 max_loop = simple_strtol(str, NULL, 0); 2301 return 1; 2302 } 2303 2304 __setup("max_loop=", max_loop_setup); 2305 #endif 2306