xref: /openbmc/linux/drivers/block/loop.c (revision b5dd2f60)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/blk-mq.h>
79 #include "loop.h"
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static struct workqueue_struct *loop_wq;
90 
91 /*
92  * Transfer functions
93  */
94 static int transfer_none(struct loop_device *lo, int cmd,
95 			 struct page *raw_page, unsigned raw_off,
96 			 struct page *loop_page, unsigned loop_off,
97 			 int size, sector_t real_block)
98 {
99 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
100 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
101 
102 	if (cmd == READ)
103 		memcpy(loop_buf, raw_buf, size);
104 	else
105 		memcpy(raw_buf, loop_buf, size);
106 
107 	kunmap_atomic(loop_buf);
108 	kunmap_atomic(raw_buf);
109 	cond_resched();
110 	return 0;
111 }
112 
113 static int transfer_xor(struct loop_device *lo, int cmd,
114 			struct page *raw_page, unsigned raw_off,
115 			struct page *loop_page, unsigned loop_off,
116 			int size, sector_t real_block)
117 {
118 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
119 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
120 	char *in, *out, *key;
121 	int i, keysize;
122 
123 	if (cmd == READ) {
124 		in = raw_buf;
125 		out = loop_buf;
126 	} else {
127 		in = loop_buf;
128 		out = raw_buf;
129 	}
130 
131 	key = lo->lo_encrypt_key;
132 	keysize = lo->lo_encrypt_key_size;
133 	for (i = 0; i < size; i++)
134 		*out++ = *in++ ^ key[(i & 511) % keysize];
135 
136 	kunmap_atomic(loop_buf);
137 	kunmap_atomic(raw_buf);
138 	cond_resched();
139 	return 0;
140 }
141 
142 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
143 {
144 	if (unlikely(info->lo_encrypt_key_size <= 0))
145 		return -EINVAL;
146 	return 0;
147 }
148 
149 static struct loop_func_table none_funcs = {
150 	.number = LO_CRYPT_NONE,
151 	.transfer = transfer_none,
152 };
153 
154 static struct loop_func_table xor_funcs = {
155 	.number = LO_CRYPT_XOR,
156 	.transfer = transfer_xor,
157 	.init = xor_init
158 };
159 
160 /* xfer_funcs[0] is special - its release function is never called */
161 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
162 	&none_funcs,
163 	&xor_funcs
164 };
165 
166 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
167 {
168 	loff_t loopsize;
169 
170 	/* Compute loopsize in bytes */
171 	loopsize = i_size_read(file->f_mapping->host);
172 	if (offset > 0)
173 		loopsize -= offset;
174 	/* offset is beyond i_size, weird but possible */
175 	if (loopsize < 0)
176 		return 0;
177 
178 	if (sizelimit > 0 && sizelimit < loopsize)
179 		loopsize = sizelimit;
180 	/*
181 	 * Unfortunately, if we want to do I/O on the device,
182 	 * the number of 512-byte sectors has to fit into a sector_t.
183 	 */
184 	return loopsize >> 9;
185 }
186 
187 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
188 {
189 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
190 }
191 
192 static int
193 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
194 {
195 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
196 	sector_t x = (sector_t)size;
197 	struct block_device *bdev = lo->lo_device;
198 
199 	if (unlikely((loff_t)x != size))
200 		return -EFBIG;
201 	if (lo->lo_offset != offset)
202 		lo->lo_offset = offset;
203 	if (lo->lo_sizelimit != sizelimit)
204 		lo->lo_sizelimit = sizelimit;
205 	set_capacity(lo->lo_disk, x);
206 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
207 	/* let user-space know about the new size */
208 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
209 	return 0;
210 }
211 
212 static inline int
213 lo_do_transfer(struct loop_device *lo, int cmd,
214 	       struct page *rpage, unsigned roffs,
215 	       struct page *lpage, unsigned loffs,
216 	       int size, sector_t rblock)
217 {
218 	if (unlikely(!lo->transfer))
219 		return 0;
220 
221 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
222 }
223 
224 /**
225  * __do_lo_send_write - helper for writing data to a loop device
226  *
227  * This helper just factors out common code between do_lo_send_direct_write()
228  * and do_lo_send_write().
229  */
230 static int __do_lo_send_write(struct file *file,
231 		u8 *buf, const int len, loff_t pos)
232 {
233 	ssize_t bw;
234 	mm_segment_t old_fs = get_fs();
235 
236 	file_start_write(file);
237 	set_fs(get_ds());
238 	bw = file->f_op->write(file, buf, len, &pos);
239 	set_fs(old_fs);
240 	file_end_write(file);
241 	if (likely(bw == len))
242 		return 0;
243 	printk_ratelimited(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
244 			(unsigned long long)pos, len);
245 	if (bw >= 0)
246 		bw = -EIO;
247 	return bw;
248 }
249 
250 /**
251  * do_lo_send_direct_write - helper for writing data to a loop device
252  *
253  * This is the fast, non-transforming version that does not need double
254  * buffering.
255  */
256 static int do_lo_send_direct_write(struct loop_device *lo,
257 		struct bio_vec *bvec, loff_t pos, struct page *page)
258 {
259 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
260 			kmap(bvec->bv_page) + bvec->bv_offset,
261 			bvec->bv_len, pos);
262 	kunmap(bvec->bv_page);
263 	cond_resched();
264 	return bw;
265 }
266 
267 /**
268  * do_lo_send_write - helper for writing data to a loop device
269  *
270  * This is the slow, transforming version that needs to double buffer the
271  * data as it cannot do the transformations in place without having direct
272  * access to the destination pages of the backing file.
273  */
274 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
275 		loff_t pos, struct page *page)
276 {
277 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
278 			bvec->bv_offset, bvec->bv_len, pos >> 9);
279 	if (likely(!ret))
280 		return __do_lo_send_write(lo->lo_backing_file,
281 				page_address(page), bvec->bv_len,
282 				pos);
283 	printk_ratelimited(KERN_ERR "loop: Transfer error at byte offset %llu, "
284 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
285 	if (ret > 0)
286 		ret = -EIO;
287 	return ret;
288 }
289 
290 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
291 {
292 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
293 			struct page *page);
294 	struct bio_vec bvec;
295 	struct bvec_iter iter;
296 	struct page *page = NULL;
297 	int ret = 0;
298 
299 	if (lo->transfer != transfer_none) {
300 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
301 		if (unlikely(!page))
302 			goto fail;
303 		kmap(page);
304 		do_lo_send = do_lo_send_write;
305 	} else {
306 		do_lo_send = do_lo_send_direct_write;
307 	}
308 
309 	bio_for_each_segment(bvec, bio, iter) {
310 		ret = do_lo_send(lo, &bvec, pos, page);
311 		if (ret < 0)
312 			break;
313 		pos += bvec.bv_len;
314 	}
315 	if (page) {
316 		kunmap(page);
317 		__free_page(page);
318 	}
319 out:
320 	return ret;
321 fail:
322 	printk_ratelimited(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
323 	ret = -ENOMEM;
324 	goto out;
325 }
326 
327 struct lo_read_data {
328 	struct loop_device *lo;
329 	struct page *page;
330 	unsigned offset;
331 	int bsize;
332 };
333 
334 static int
335 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
336 		struct splice_desc *sd)
337 {
338 	struct lo_read_data *p = sd->u.data;
339 	struct loop_device *lo = p->lo;
340 	struct page *page = buf->page;
341 	sector_t IV;
342 	int size;
343 
344 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
345 							(buf->offset >> 9);
346 	size = sd->len;
347 	if (size > p->bsize)
348 		size = p->bsize;
349 
350 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
351 		printk_ratelimited(KERN_ERR "loop: transfer error block %ld\n",
352 		       page->index);
353 		size = -EINVAL;
354 	}
355 
356 	flush_dcache_page(p->page);
357 
358 	if (size > 0)
359 		p->offset += size;
360 
361 	return size;
362 }
363 
364 static int
365 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
366 {
367 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
368 }
369 
370 static ssize_t
371 do_lo_receive(struct loop_device *lo,
372 	      struct bio_vec *bvec, int bsize, loff_t pos)
373 {
374 	struct lo_read_data cookie;
375 	struct splice_desc sd;
376 	struct file *file;
377 	ssize_t retval;
378 
379 	cookie.lo = lo;
380 	cookie.page = bvec->bv_page;
381 	cookie.offset = bvec->bv_offset;
382 	cookie.bsize = bsize;
383 
384 	sd.len = 0;
385 	sd.total_len = bvec->bv_len;
386 	sd.flags = 0;
387 	sd.pos = pos;
388 	sd.u.data = &cookie;
389 
390 	file = lo->lo_backing_file;
391 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
392 
393 	return retval;
394 }
395 
396 static int
397 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
398 {
399 	struct bio_vec bvec;
400 	struct bvec_iter iter;
401 	ssize_t s;
402 
403 	bio_for_each_segment(bvec, bio, iter) {
404 		s = do_lo_receive(lo, &bvec, bsize, pos);
405 		if (s < 0)
406 			return s;
407 
408 		if (s != bvec.bv_len) {
409 			zero_fill_bio(bio);
410 			break;
411 		}
412 		pos += bvec.bv_len;
413 	}
414 	return 0;
415 }
416 
417 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
418 {
419 	loff_t pos;
420 	int ret;
421 
422 	pos = ((loff_t) bio->bi_iter.bi_sector << 9) + lo->lo_offset;
423 
424 	if (bio_rw(bio) == WRITE) {
425 		struct file *file = lo->lo_backing_file;
426 
427 		if (bio->bi_rw & REQ_FLUSH) {
428 			ret = vfs_fsync(file, 0);
429 			if (unlikely(ret && ret != -EINVAL)) {
430 				ret = -EIO;
431 				goto out;
432 			}
433 		}
434 
435 		/*
436 		 * We use punch hole to reclaim the free space used by the
437 		 * image a.k.a. discard. However we do not support discard if
438 		 * encryption is enabled, because it may give an attacker
439 		 * useful information.
440 		 */
441 		if (bio->bi_rw & REQ_DISCARD) {
442 			struct file *file = lo->lo_backing_file;
443 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
444 
445 			if ((!file->f_op->fallocate) ||
446 			    lo->lo_encrypt_key_size) {
447 				ret = -EOPNOTSUPP;
448 				goto out;
449 			}
450 			ret = file->f_op->fallocate(file, mode, pos,
451 						    bio->bi_iter.bi_size);
452 			if (unlikely(ret && ret != -EINVAL &&
453 				     ret != -EOPNOTSUPP))
454 				ret = -EIO;
455 			goto out;
456 		}
457 
458 		ret = lo_send(lo, bio, pos);
459 
460 		if ((bio->bi_rw & REQ_FUA) && !ret) {
461 			ret = vfs_fsync(file, 0);
462 			if (unlikely(ret && ret != -EINVAL))
463 				ret = -EIO;
464 		}
465 	} else
466 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
467 
468 out:
469 	return ret;
470 }
471 
472 struct switch_request {
473 	struct file *file;
474 	struct completion wait;
475 };
476 
477 static inline int loop_handle_bio(struct loop_device *lo, struct bio *bio)
478 {
479 	return do_bio_filebacked(lo, bio);
480 }
481 
482 /*
483  * Do the actual switch; called from the BIO completion routine
484  */
485 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
486 {
487 	struct file *file = p->file;
488 	struct file *old_file = lo->lo_backing_file;
489 	struct address_space *mapping;
490 
491 	/* if no new file, only flush of queued bios requested */
492 	if (!file)
493 		return;
494 
495 	mapping = file->f_mapping;
496 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
497 	lo->lo_backing_file = file;
498 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
499 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
500 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
501 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
502 }
503 
504 /*
505  * loop_switch performs the hard work of switching a backing store.
506  * First it needs to flush existing IO, it does this by sending a magic
507  * BIO down the pipe. The completion of this BIO does the actual switch.
508  */
509 static int loop_switch(struct loop_device *lo, struct file *file)
510 {
511 	struct switch_request w;
512 
513 	w.file = file;
514 
515 	/* freeze queue and wait for completion of scheduled requests */
516 	blk_mq_freeze_queue(lo->lo_queue);
517 
518 	/* do the switch action */
519 	do_loop_switch(lo, &w);
520 
521 	/* unfreeze */
522 	blk_mq_unfreeze_queue(lo->lo_queue);
523 
524 	return 0;
525 }
526 
527 /*
528  * Helper to flush the IOs in loop, but keeping loop thread running
529  */
530 static int loop_flush(struct loop_device *lo)
531 {
532 	return loop_switch(lo, NULL);
533 }
534 
535 /*
536  * loop_change_fd switched the backing store of a loopback device to
537  * a new file. This is useful for operating system installers to free up
538  * the original file and in High Availability environments to switch to
539  * an alternative location for the content in case of server meltdown.
540  * This can only work if the loop device is used read-only, and if the
541  * new backing store is the same size and type as the old backing store.
542  */
543 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
544 			  unsigned int arg)
545 {
546 	struct file	*file, *old_file;
547 	struct inode	*inode;
548 	int		error;
549 
550 	error = -ENXIO;
551 	if (lo->lo_state != Lo_bound)
552 		goto out;
553 
554 	/* the loop device has to be read-only */
555 	error = -EINVAL;
556 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
557 		goto out;
558 
559 	error = -EBADF;
560 	file = fget(arg);
561 	if (!file)
562 		goto out;
563 
564 	inode = file->f_mapping->host;
565 	old_file = lo->lo_backing_file;
566 
567 	error = -EINVAL;
568 
569 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
570 		goto out_putf;
571 
572 	/* size of the new backing store needs to be the same */
573 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
574 		goto out_putf;
575 
576 	/* and ... switch */
577 	error = loop_switch(lo, file);
578 	if (error)
579 		goto out_putf;
580 
581 	fput(old_file);
582 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
583 		ioctl_by_bdev(bdev, BLKRRPART, 0);
584 	return 0;
585 
586  out_putf:
587 	fput(file);
588  out:
589 	return error;
590 }
591 
592 static inline int is_loop_device(struct file *file)
593 {
594 	struct inode *i = file->f_mapping->host;
595 
596 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
597 }
598 
599 /* loop sysfs attributes */
600 
601 static ssize_t loop_attr_show(struct device *dev, char *page,
602 			      ssize_t (*callback)(struct loop_device *, char *))
603 {
604 	struct gendisk *disk = dev_to_disk(dev);
605 	struct loop_device *lo = disk->private_data;
606 
607 	return callback(lo, page);
608 }
609 
610 #define LOOP_ATTR_RO(_name)						\
611 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
612 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
613 				struct device_attribute *attr, char *b)	\
614 {									\
615 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
616 }									\
617 static struct device_attribute loop_attr_##_name =			\
618 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
619 
620 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
621 {
622 	ssize_t ret;
623 	char *p = NULL;
624 
625 	spin_lock_irq(&lo->lo_lock);
626 	if (lo->lo_backing_file)
627 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
628 	spin_unlock_irq(&lo->lo_lock);
629 
630 	if (IS_ERR_OR_NULL(p))
631 		ret = PTR_ERR(p);
632 	else {
633 		ret = strlen(p);
634 		memmove(buf, p, ret);
635 		buf[ret++] = '\n';
636 		buf[ret] = 0;
637 	}
638 
639 	return ret;
640 }
641 
642 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
643 {
644 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
645 }
646 
647 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
648 {
649 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
650 }
651 
652 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
653 {
654 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
655 
656 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
657 }
658 
659 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
660 {
661 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
662 
663 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
664 }
665 
666 LOOP_ATTR_RO(backing_file);
667 LOOP_ATTR_RO(offset);
668 LOOP_ATTR_RO(sizelimit);
669 LOOP_ATTR_RO(autoclear);
670 LOOP_ATTR_RO(partscan);
671 
672 static struct attribute *loop_attrs[] = {
673 	&loop_attr_backing_file.attr,
674 	&loop_attr_offset.attr,
675 	&loop_attr_sizelimit.attr,
676 	&loop_attr_autoclear.attr,
677 	&loop_attr_partscan.attr,
678 	NULL,
679 };
680 
681 static struct attribute_group loop_attribute_group = {
682 	.name = "loop",
683 	.attrs= loop_attrs,
684 };
685 
686 static int loop_sysfs_init(struct loop_device *lo)
687 {
688 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
689 				  &loop_attribute_group);
690 }
691 
692 static void loop_sysfs_exit(struct loop_device *lo)
693 {
694 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
695 			   &loop_attribute_group);
696 }
697 
698 static void loop_config_discard(struct loop_device *lo)
699 {
700 	struct file *file = lo->lo_backing_file;
701 	struct inode *inode = file->f_mapping->host;
702 	struct request_queue *q = lo->lo_queue;
703 
704 	/*
705 	 * We use punch hole to reclaim the free space used by the
706 	 * image a.k.a. discard. However we do not support discard if
707 	 * encryption is enabled, because it may give an attacker
708 	 * useful information.
709 	 */
710 	if ((!file->f_op->fallocate) ||
711 	    lo->lo_encrypt_key_size) {
712 		q->limits.discard_granularity = 0;
713 		q->limits.discard_alignment = 0;
714 		q->limits.max_discard_sectors = 0;
715 		q->limits.discard_zeroes_data = 0;
716 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
717 		return;
718 	}
719 
720 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
721 	q->limits.discard_alignment = 0;
722 	q->limits.max_discard_sectors = UINT_MAX >> 9;
723 	q->limits.discard_zeroes_data = 1;
724 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
725 }
726 
727 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
728 		       struct block_device *bdev, unsigned int arg)
729 {
730 	struct file	*file, *f;
731 	struct inode	*inode;
732 	struct address_space *mapping;
733 	unsigned lo_blocksize;
734 	int		lo_flags = 0;
735 	int		error;
736 	loff_t		size;
737 
738 	/* This is safe, since we have a reference from open(). */
739 	__module_get(THIS_MODULE);
740 
741 	error = -EBADF;
742 	file = fget(arg);
743 	if (!file)
744 		goto out;
745 
746 	error = -EBUSY;
747 	if (lo->lo_state != Lo_unbound)
748 		goto out_putf;
749 
750 	/* Avoid recursion */
751 	f = file;
752 	while (is_loop_device(f)) {
753 		struct loop_device *l;
754 
755 		if (f->f_mapping->host->i_bdev == bdev)
756 			goto out_putf;
757 
758 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
759 		if (l->lo_state == Lo_unbound) {
760 			error = -EINVAL;
761 			goto out_putf;
762 		}
763 		f = l->lo_backing_file;
764 	}
765 
766 	mapping = file->f_mapping;
767 	inode = mapping->host;
768 
769 	error = -EINVAL;
770 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
771 		goto out_putf;
772 
773 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
774 	    !file->f_op->write)
775 		lo_flags |= LO_FLAGS_READ_ONLY;
776 
777 	lo_blocksize = S_ISBLK(inode->i_mode) ?
778 		inode->i_bdev->bd_block_size : PAGE_SIZE;
779 
780 	error = -EFBIG;
781 	size = get_loop_size(lo, file);
782 	if ((loff_t)(sector_t)size != size)
783 		goto out_putf;
784 
785 	error = 0;
786 
787 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
788 
789 	lo->lo_blocksize = lo_blocksize;
790 	lo->lo_device = bdev;
791 	lo->lo_flags = lo_flags;
792 	lo->lo_backing_file = file;
793 	lo->transfer = transfer_none;
794 	lo->ioctl = NULL;
795 	lo->lo_sizelimit = 0;
796 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
797 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
798 
799 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
800 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
801 
802 	set_capacity(lo->lo_disk, size);
803 	bd_set_size(bdev, size << 9);
804 	loop_sysfs_init(lo);
805 	/* let user-space know about the new size */
806 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
807 
808 	set_blocksize(bdev, lo_blocksize);
809 
810 	lo->lo_state = Lo_bound;
811 	if (part_shift)
812 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
813 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
814 		ioctl_by_bdev(bdev, BLKRRPART, 0);
815 
816 	/* Grab the block_device to prevent its destruction after we
817 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
818 	 */
819 	bdgrab(bdev);
820 	return 0;
821 
822  out_putf:
823 	fput(file);
824  out:
825 	/* This is safe: open() is still holding a reference. */
826 	module_put(THIS_MODULE);
827 	return error;
828 }
829 
830 static int
831 loop_release_xfer(struct loop_device *lo)
832 {
833 	int err = 0;
834 	struct loop_func_table *xfer = lo->lo_encryption;
835 
836 	if (xfer) {
837 		if (xfer->release)
838 			err = xfer->release(lo);
839 		lo->transfer = NULL;
840 		lo->lo_encryption = NULL;
841 		module_put(xfer->owner);
842 	}
843 	return err;
844 }
845 
846 static int
847 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
848 	       const struct loop_info64 *i)
849 {
850 	int err = 0;
851 
852 	if (xfer) {
853 		struct module *owner = xfer->owner;
854 
855 		if (!try_module_get(owner))
856 			return -EINVAL;
857 		if (xfer->init)
858 			err = xfer->init(lo, i);
859 		if (err)
860 			module_put(owner);
861 		else
862 			lo->lo_encryption = xfer;
863 	}
864 	return err;
865 }
866 
867 static int loop_clr_fd(struct loop_device *lo)
868 {
869 	struct file *filp = lo->lo_backing_file;
870 	gfp_t gfp = lo->old_gfp_mask;
871 	struct block_device *bdev = lo->lo_device;
872 
873 	if (lo->lo_state != Lo_bound)
874 		return -ENXIO;
875 
876 	/*
877 	 * If we've explicitly asked to tear down the loop device,
878 	 * and it has an elevated reference count, set it for auto-teardown when
879 	 * the last reference goes away. This stops $!~#$@ udev from
880 	 * preventing teardown because it decided that it needs to run blkid on
881 	 * the loopback device whenever they appear. xfstests is notorious for
882 	 * failing tests because blkid via udev races with a losetup
883 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
884 	 * command to fail with EBUSY.
885 	 */
886 	if (lo->lo_refcnt > 1) {
887 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
888 		mutex_unlock(&lo->lo_ctl_mutex);
889 		return 0;
890 	}
891 
892 	if (filp == NULL)
893 		return -EINVAL;
894 
895 	spin_lock_irq(&lo->lo_lock);
896 	lo->lo_state = Lo_rundown;
897 	lo->lo_backing_file = NULL;
898 	spin_unlock_irq(&lo->lo_lock);
899 
900 	loop_release_xfer(lo);
901 	lo->transfer = NULL;
902 	lo->ioctl = NULL;
903 	lo->lo_device = NULL;
904 	lo->lo_encryption = NULL;
905 	lo->lo_offset = 0;
906 	lo->lo_sizelimit = 0;
907 	lo->lo_encrypt_key_size = 0;
908 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
909 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
910 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
911 	if (bdev) {
912 		bdput(bdev);
913 		invalidate_bdev(bdev);
914 	}
915 	set_capacity(lo->lo_disk, 0);
916 	loop_sysfs_exit(lo);
917 	if (bdev) {
918 		bd_set_size(bdev, 0);
919 		/* let user-space know about this change */
920 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
921 	}
922 	mapping_set_gfp_mask(filp->f_mapping, gfp);
923 	lo->lo_state = Lo_unbound;
924 	/* This is safe: open() is still holding a reference. */
925 	module_put(THIS_MODULE);
926 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
927 		ioctl_by_bdev(bdev, BLKRRPART, 0);
928 	lo->lo_flags = 0;
929 	if (!part_shift)
930 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
931 	mutex_unlock(&lo->lo_ctl_mutex);
932 	/*
933 	 * Need not hold lo_ctl_mutex to fput backing file.
934 	 * Calling fput holding lo_ctl_mutex triggers a circular
935 	 * lock dependency possibility warning as fput can take
936 	 * bd_mutex which is usually taken before lo_ctl_mutex.
937 	 */
938 	fput(filp);
939 	return 0;
940 }
941 
942 static int
943 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
944 {
945 	int err;
946 	struct loop_func_table *xfer;
947 	kuid_t uid = current_uid();
948 
949 	if (lo->lo_encrypt_key_size &&
950 	    !uid_eq(lo->lo_key_owner, uid) &&
951 	    !capable(CAP_SYS_ADMIN))
952 		return -EPERM;
953 	if (lo->lo_state != Lo_bound)
954 		return -ENXIO;
955 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
956 		return -EINVAL;
957 
958 	err = loop_release_xfer(lo);
959 	if (err)
960 		return err;
961 
962 	if (info->lo_encrypt_type) {
963 		unsigned int type = info->lo_encrypt_type;
964 
965 		if (type >= MAX_LO_CRYPT)
966 			return -EINVAL;
967 		xfer = xfer_funcs[type];
968 		if (xfer == NULL)
969 			return -EINVAL;
970 	} else
971 		xfer = NULL;
972 
973 	err = loop_init_xfer(lo, xfer, info);
974 	if (err)
975 		return err;
976 
977 	if (lo->lo_offset != info->lo_offset ||
978 	    lo->lo_sizelimit != info->lo_sizelimit)
979 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
980 			return -EFBIG;
981 
982 	loop_config_discard(lo);
983 
984 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
985 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
986 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
987 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
988 
989 	if (!xfer)
990 		xfer = &none_funcs;
991 	lo->transfer = xfer->transfer;
992 	lo->ioctl = xfer->ioctl;
993 
994 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
995 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
996 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
997 
998 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
999 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1000 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1001 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1002 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1003 	}
1004 
1005 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1006 	lo->lo_init[0] = info->lo_init[0];
1007 	lo->lo_init[1] = info->lo_init[1];
1008 	if (info->lo_encrypt_key_size) {
1009 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1010 		       info->lo_encrypt_key_size);
1011 		lo->lo_key_owner = uid;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 static int
1018 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1019 {
1020 	struct file *file = lo->lo_backing_file;
1021 	struct kstat stat;
1022 	int error;
1023 
1024 	if (lo->lo_state != Lo_bound)
1025 		return -ENXIO;
1026 	error = vfs_getattr(&file->f_path, &stat);
1027 	if (error)
1028 		return error;
1029 	memset(info, 0, sizeof(*info));
1030 	info->lo_number = lo->lo_number;
1031 	info->lo_device = huge_encode_dev(stat.dev);
1032 	info->lo_inode = stat.ino;
1033 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1034 	info->lo_offset = lo->lo_offset;
1035 	info->lo_sizelimit = lo->lo_sizelimit;
1036 	info->lo_flags = lo->lo_flags;
1037 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1038 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1039 	info->lo_encrypt_type =
1040 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1041 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1042 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1043 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1044 		       lo->lo_encrypt_key_size);
1045 	}
1046 	return 0;
1047 }
1048 
1049 static void
1050 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1051 {
1052 	memset(info64, 0, sizeof(*info64));
1053 	info64->lo_number = info->lo_number;
1054 	info64->lo_device = info->lo_device;
1055 	info64->lo_inode = info->lo_inode;
1056 	info64->lo_rdevice = info->lo_rdevice;
1057 	info64->lo_offset = info->lo_offset;
1058 	info64->lo_sizelimit = 0;
1059 	info64->lo_encrypt_type = info->lo_encrypt_type;
1060 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1061 	info64->lo_flags = info->lo_flags;
1062 	info64->lo_init[0] = info->lo_init[0];
1063 	info64->lo_init[1] = info->lo_init[1];
1064 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1065 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1066 	else
1067 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1068 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1069 }
1070 
1071 static int
1072 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1073 {
1074 	memset(info, 0, sizeof(*info));
1075 	info->lo_number = info64->lo_number;
1076 	info->lo_device = info64->lo_device;
1077 	info->lo_inode = info64->lo_inode;
1078 	info->lo_rdevice = info64->lo_rdevice;
1079 	info->lo_offset = info64->lo_offset;
1080 	info->lo_encrypt_type = info64->lo_encrypt_type;
1081 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1082 	info->lo_flags = info64->lo_flags;
1083 	info->lo_init[0] = info64->lo_init[0];
1084 	info->lo_init[1] = info64->lo_init[1];
1085 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1086 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1087 	else
1088 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1089 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1090 
1091 	/* error in case values were truncated */
1092 	if (info->lo_device != info64->lo_device ||
1093 	    info->lo_rdevice != info64->lo_rdevice ||
1094 	    info->lo_inode != info64->lo_inode ||
1095 	    info->lo_offset != info64->lo_offset)
1096 		return -EOVERFLOW;
1097 
1098 	return 0;
1099 }
1100 
1101 static int
1102 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1103 {
1104 	struct loop_info info;
1105 	struct loop_info64 info64;
1106 
1107 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1108 		return -EFAULT;
1109 	loop_info64_from_old(&info, &info64);
1110 	return loop_set_status(lo, &info64);
1111 }
1112 
1113 static int
1114 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1115 {
1116 	struct loop_info64 info64;
1117 
1118 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1119 		return -EFAULT;
1120 	return loop_set_status(lo, &info64);
1121 }
1122 
1123 static int
1124 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1125 	struct loop_info info;
1126 	struct loop_info64 info64;
1127 	int err = 0;
1128 
1129 	if (!arg)
1130 		err = -EINVAL;
1131 	if (!err)
1132 		err = loop_get_status(lo, &info64);
1133 	if (!err)
1134 		err = loop_info64_to_old(&info64, &info);
1135 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1136 		err = -EFAULT;
1137 
1138 	return err;
1139 }
1140 
1141 static int
1142 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1143 	struct loop_info64 info64;
1144 	int err = 0;
1145 
1146 	if (!arg)
1147 		err = -EINVAL;
1148 	if (!err)
1149 		err = loop_get_status(lo, &info64);
1150 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1151 		err = -EFAULT;
1152 
1153 	return err;
1154 }
1155 
1156 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1157 {
1158 	if (unlikely(lo->lo_state != Lo_bound))
1159 		return -ENXIO;
1160 
1161 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1162 }
1163 
1164 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1165 	unsigned int cmd, unsigned long arg)
1166 {
1167 	struct loop_device *lo = bdev->bd_disk->private_data;
1168 	int err;
1169 
1170 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1171 	switch (cmd) {
1172 	case LOOP_SET_FD:
1173 		err = loop_set_fd(lo, mode, bdev, arg);
1174 		break;
1175 	case LOOP_CHANGE_FD:
1176 		err = loop_change_fd(lo, bdev, arg);
1177 		break;
1178 	case LOOP_CLR_FD:
1179 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1180 		err = loop_clr_fd(lo);
1181 		if (!err)
1182 			goto out_unlocked;
1183 		break;
1184 	case LOOP_SET_STATUS:
1185 		err = -EPERM;
1186 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1187 			err = loop_set_status_old(lo,
1188 					(struct loop_info __user *)arg);
1189 		break;
1190 	case LOOP_GET_STATUS:
1191 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1192 		break;
1193 	case LOOP_SET_STATUS64:
1194 		err = -EPERM;
1195 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1196 			err = loop_set_status64(lo,
1197 					(struct loop_info64 __user *) arg);
1198 		break;
1199 	case LOOP_GET_STATUS64:
1200 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1201 		break;
1202 	case LOOP_SET_CAPACITY:
1203 		err = -EPERM;
1204 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1205 			err = loop_set_capacity(lo, bdev);
1206 		break;
1207 	default:
1208 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1209 	}
1210 	mutex_unlock(&lo->lo_ctl_mutex);
1211 
1212 out_unlocked:
1213 	return err;
1214 }
1215 
1216 #ifdef CONFIG_COMPAT
1217 struct compat_loop_info {
1218 	compat_int_t	lo_number;      /* ioctl r/o */
1219 	compat_dev_t	lo_device;      /* ioctl r/o */
1220 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1221 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1222 	compat_int_t	lo_offset;
1223 	compat_int_t	lo_encrypt_type;
1224 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1225 	compat_int_t	lo_flags;       /* ioctl r/o */
1226 	char		lo_name[LO_NAME_SIZE];
1227 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1228 	compat_ulong_t	lo_init[2];
1229 	char		reserved[4];
1230 };
1231 
1232 /*
1233  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1234  * - noinlined to reduce stack space usage in main part of driver
1235  */
1236 static noinline int
1237 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1238 			struct loop_info64 *info64)
1239 {
1240 	struct compat_loop_info info;
1241 
1242 	if (copy_from_user(&info, arg, sizeof(info)))
1243 		return -EFAULT;
1244 
1245 	memset(info64, 0, sizeof(*info64));
1246 	info64->lo_number = info.lo_number;
1247 	info64->lo_device = info.lo_device;
1248 	info64->lo_inode = info.lo_inode;
1249 	info64->lo_rdevice = info.lo_rdevice;
1250 	info64->lo_offset = info.lo_offset;
1251 	info64->lo_sizelimit = 0;
1252 	info64->lo_encrypt_type = info.lo_encrypt_type;
1253 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1254 	info64->lo_flags = info.lo_flags;
1255 	info64->lo_init[0] = info.lo_init[0];
1256 	info64->lo_init[1] = info.lo_init[1];
1257 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1258 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1259 	else
1260 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1261 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1267  * - noinlined to reduce stack space usage in main part of driver
1268  */
1269 static noinline int
1270 loop_info64_to_compat(const struct loop_info64 *info64,
1271 		      struct compat_loop_info __user *arg)
1272 {
1273 	struct compat_loop_info info;
1274 
1275 	memset(&info, 0, sizeof(info));
1276 	info.lo_number = info64->lo_number;
1277 	info.lo_device = info64->lo_device;
1278 	info.lo_inode = info64->lo_inode;
1279 	info.lo_rdevice = info64->lo_rdevice;
1280 	info.lo_offset = info64->lo_offset;
1281 	info.lo_encrypt_type = info64->lo_encrypt_type;
1282 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1283 	info.lo_flags = info64->lo_flags;
1284 	info.lo_init[0] = info64->lo_init[0];
1285 	info.lo_init[1] = info64->lo_init[1];
1286 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1287 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1288 	else
1289 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1290 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1291 
1292 	/* error in case values were truncated */
1293 	if (info.lo_device != info64->lo_device ||
1294 	    info.lo_rdevice != info64->lo_rdevice ||
1295 	    info.lo_inode != info64->lo_inode ||
1296 	    info.lo_offset != info64->lo_offset ||
1297 	    info.lo_init[0] != info64->lo_init[0] ||
1298 	    info.lo_init[1] != info64->lo_init[1])
1299 		return -EOVERFLOW;
1300 
1301 	if (copy_to_user(arg, &info, sizeof(info)))
1302 		return -EFAULT;
1303 	return 0;
1304 }
1305 
1306 static int
1307 loop_set_status_compat(struct loop_device *lo,
1308 		       const struct compat_loop_info __user *arg)
1309 {
1310 	struct loop_info64 info64;
1311 	int ret;
1312 
1313 	ret = loop_info64_from_compat(arg, &info64);
1314 	if (ret < 0)
1315 		return ret;
1316 	return loop_set_status(lo, &info64);
1317 }
1318 
1319 static int
1320 loop_get_status_compat(struct loop_device *lo,
1321 		       struct compat_loop_info __user *arg)
1322 {
1323 	struct loop_info64 info64;
1324 	int err = 0;
1325 
1326 	if (!arg)
1327 		err = -EINVAL;
1328 	if (!err)
1329 		err = loop_get_status(lo, &info64);
1330 	if (!err)
1331 		err = loop_info64_to_compat(&info64, arg);
1332 	return err;
1333 }
1334 
1335 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1336 			   unsigned int cmd, unsigned long arg)
1337 {
1338 	struct loop_device *lo = bdev->bd_disk->private_data;
1339 	int err;
1340 
1341 	switch(cmd) {
1342 	case LOOP_SET_STATUS:
1343 		mutex_lock(&lo->lo_ctl_mutex);
1344 		err = loop_set_status_compat(
1345 			lo, (const struct compat_loop_info __user *) arg);
1346 		mutex_unlock(&lo->lo_ctl_mutex);
1347 		break;
1348 	case LOOP_GET_STATUS:
1349 		mutex_lock(&lo->lo_ctl_mutex);
1350 		err = loop_get_status_compat(
1351 			lo, (struct compat_loop_info __user *) arg);
1352 		mutex_unlock(&lo->lo_ctl_mutex);
1353 		break;
1354 	case LOOP_SET_CAPACITY:
1355 	case LOOP_CLR_FD:
1356 	case LOOP_GET_STATUS64:
1357 	case LOOP_SET_STATUS64:
1358 		arg = (unsigned long) compat_ptr(arg);
1359 	case LOOP_SET_FD:
1360 	case LOOP_CHANGE_FD:
1361 		err = lo_ioctl(bdev, mode, cmd, arg);
1362 		break;
1363 	default:
1364 		err = -ENOIOCTLCMD;
1365 		break;
1366 	}
1367 	return err;
1368 }
1369 #endif
1370 
1371 static int lo_open(struct block_device *bdev, fmode_t mode)
1372 {
1373 	struct loop_device *lo;
1374 	int err = 0;
1375 
1376 	mutex_lock(&loop_index_mutex);
1377 	lo = bdev->bd_disk->private_data;
1378 	if (!lo) {
1379 		err = -ENXIO;
1380 		goto out;
1381 	}
1382 
1383 	mutex_lock(&lo->lo_ctl_mutex);
1384 	lo->lo_refcnt++;
1385 	mutex_unlock(&lo->lo_ctl_mutex);
1386 out:
1387 	mutex_unlock(&loop_index_mutex);
1388 	return err;
1389 }
1390 
1391 static void lo_release(struct gendisk *disk, fmode_t mode)
1392 {
1393 	struct loop_device *lo = disk->private_data;
1394 	int err;
1395 
1396 	mutex_lock(&lo->lo_ctl_mutex);
1397 
1398 	if (--lo->lo_refcnt)
1399 		goto out;
1400 
1401 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1402 		/*
1403 		 * In autoclear mode, stop the loop thread
1404 		 * and remove configuration after last close.
1405 		 */
1406 		err = loop_clr_fd(lo);
1407 		if (!err)
1408 			return;
1409 	} else {
1410 		/*
1411 		 * Otherwise keep thread (if running) and config,
1412 		 * but flush possible ongoing bios in thread.
1413 		 */
1414 		loop_flush(lo);
1415 	}
1416 
1417 out:
1418 	mutex_unlock(&lo->lo_ctl_mutex);
1419 }
1420 
1421 static const struct block_device_operations lo_fops = {
1422 	.owner =	THIS_MODULE,
1423 	.open =		lo_open,
1424 	.release =	lo_release,
1425 	.ioctl =	lo_ioctl,
1426 #ifdef CONFIG_COMPAT
1427 	.compat_ioctl =	lo_compat_ioctl,
1428 #endif
1429 };
1430 
1431 /*
1432  * And now the modules code and kernel interface.
1433  */
1434 static int max_loop;
1435 module_param(max_loop, int, S_IRUGO);
1436 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1437 module_param(max_part, int, S_IRUGO);
1438 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1439 MODULE_LICENSE("GPL");
1440 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1441 
1442 int loop_register_transfer(struct loop_func_table *funcs)
1443 {
1444 	unsigned int n = funcs->number;
1445 
1446 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1447 		return -EINVAL;
1448 	xfer_funcs[n] = funcs;
1449 	return 0;
1450 }
1451 
1452 static int unregister_transfer_cb(int id, void *ptr, void *data)
1453 {
1454 	struct loop_device *lo = ptr;
1455 	struct loop_func_table *xfer = data;
1456 
1457 	mutex_lock(&lo->lo_ctl_mutex);
1458 	if (lo->lo_encryption == xfer)
1459 		loop_release_xfer(lo);
1460 	mutex_unlock(&lo->lo_ctl_mutex);
1461 	return 0;
1462 }
1463 
1464 int loop_unregister_transfer(int number)
1465 {
1466 	unsigned int n = number;
1467 	struct loop_func_table *xfer;
1468 
1469 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1470 		return -EINVAL;
1471 
1472 	xfer_funcs[n] = NULL;
1473 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1474 	return 0;
1475 }
1476 
1477 EXPORT_SYMBOL(loop_register_transfer);
1478 EXPORT_SYMBOL(loop_unregister_transfer);
1479 
1480 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1481 		const struct blk_mq_queue_data *bd)
1482 {
1483 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1484 
1485 	blk_mq_start_request(bd->rq);
1486 
1487 	if (cmd->rq->cmd_flags & REQ_WRITE) {
1488 		struct loop_device *lo = cmd->rq->q->queuedata;
1489 		bool need_sched = true;
1490 
1491 		spin_lock_irq(&lo->lo_lock);
1492 		if (lo->write_started)
1493 			need_sched = false;
1494 		else
1495 			lo->write_started = true;
1496 		list_add_tail(&cmd->list, &lo->write_cmd_head);
1497 		spin_unlock_irq(&lo->lo_lock);
1498 
1499 		if (need_sched)
1500 			queue_work(loop_wq, &lo->write_work);
1501 	} else {
1502 		queue_work(loop_wq, &cmd->read_work);
1503 	}
1504 
1505 	return BLK_MQ_RQ_QUEUE_OK;
1506 }
1507 
1508 static void loop_handle_cmd(struct loop_cmd *cmd)
1509 {
1510 	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1511 	struct loop_device *lo = cmd->rq->q->queuedata;
1512 	int ret = -EIO;
1513 	struct bio *bio;
1514 
1515 	if (lo->lo_state != Lo_bound)
1516 		goto failed;
1517 
1518 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1519 		goto failed;
1520 
1521 	ret = 0;
1522 	__rq_for_each_bio(bio, cmd->rq)
1523 		ret |= loop_handle_bio(lo, bio);
1524 
1525  failed:
1526 	if (ret)
1527 		cmd->rq->errors = -EIO;
1528 	blk_mq_complete_request(cmd->rq);
1529 }
1530 
1531 static void loop_queue_write_work(struct work_struct *work)
1532 {
1533 	struct loop_device *lo =
1534 		container_of(work, struct loop_device, write_work);
1535 	LIST_HEAD(cmd_list);
1536 
1537 	spin_lock_irq(&lo->lo_lock);
1538  repeat:
1539 	list_splice_init(&lo->write_cmd_head, &cmd_list);
1540 	spin_unlock_irq(&lo->lo_lock);
1541 
1542 	while (!list_empty(&cmd_list)) {
1543 		struct loop_cmd *cmd = list_first_entry(&cmd_list,
1544 				struct loop_cmd, list);
1545 		list_del_init(&cmd->list);
1546 		loop_handle_cmd(cmd);
1547 	}
1548 
1549 	spin_lock_irq(&lo->lo_lock);
1550 	if (!list_empty(&lo->write_cmd_head))
1551 		goto repeat;
1552 	lo->write_started = false;
1553 	spin_unlock_irq(&lo->lo_lock);
1554 }
1555 
1556 static void loop_queue_read_work(struct work_struct *work)
1557 {
1558 	struct loop_cmd *cmd =
1559 		container_of(work, struct loop_cmd, read_work);
1560 
1561 	loop_handle_cmd(cmd);
1562 }
1563 
1564 static int loop_init_request(void *data, struct request *rq,
1565 		unsigned int hctx_idx, unsigned int request_idx,
1566 		unsigned int numa_node)
1567 {
1568 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1569 
1570 	cmd->rq = rq;
1571 	INIT_WORK(&cmd->read_work, loop_queue_read_work);
1572 
1573 	return 0;
1574 }
1575 
1576 static struct blk_mq_ops loop_mq_ops = {
1577 	.queue_rq       = loop_queue_rq,
1578 	.map_queue      = blk_mq_map_queue,
1579 	.init_request	= loop_init_request,
1580 };
1581 
1582 static int loop_add(struct loop_device **l, int i)
1583 {
1584 	struct loop_device *lo;
1585 	struct gendisk *disk;
1586 	int err;
1587 
1588 	err = -ENOMEM;
1589 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1590 	if (!lo)
1591 		goto out;
1592 
1593 	lo->lo_state = Lo_unbound;
1594 
1595 	/* allocate id, if @id >= 0, we're requesting that specific id */
1596 	if (i >= 0) {
1597 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1598 		if (err == -ENOSPC)
1599 			err = -EEXIST;
1600 	} else {
1601 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1602 	}
1603 	if (err < 0)
1604 		goto out_free_dev;
1605 	i = err;
1606 
1607 	err = -ENOMEM;
1608 	lo->tag_set.ops = &loop_mq_ops;
1609 	lo->tag_set.nr_hw_queues = 1;
1610 	lo->tag_set.queue_depth = 128;
1611 	lo->tag_set.numa_node = NUMA_NO_NODE;
1612 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1613 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1614 	lo->tag_set.driver_data = lo;
1615 
1616 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1617 	if (err)
1618 		goto out_free_idr;
1619 
1620 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1621 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1622 		err = PTR_ERR(lo->lo_queue);
1623 		goto out_cleanup_tags;
1624 	}
1625 	lo->lo_queue->queuedata = lo;
1626 
1627 	INIT_LIST_HEAD(&lo->write_cmd_head);
1628 	INIT_WORK(&lo->write_work, loop_queue_write_work);
1629 
1630 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1631 	if (!disk)
1632 		goto out_free_queue;
1633 
1634 	/*
1635 	 * Disable partition scanning by default. The in-kernel partition
1636 	 * scanning can be requested individually per-device during its
1637 	 * setup. Userspace can always add and remove partitions from all
1638 	 * devices. The needed partition minors are allocated from the
1639 	 * extended minor space, the main loop device numbers will continue
1640 	 * to match the loop minors, regardless of the number of partitions
1641 	 * used.
1642 	 *
1643 	 * If max_part is given, partition scanning is globally enabled for
1644 	 * all loop devices. The minors for the main loop devices will be
1645 	 * multiples of max_part.
1646 	 *
1647 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1648 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1649 	 * complicated, are too static, inflexible and may surprise
1650 	 * userspace tools. Parameters like this in general should be avoided.
1651 	 */
1652 	if (!part_shift)
1653 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1654 	disk->flags |= GENHD_FL_EXT_DEVT;
1655 	mutex_init(&lo->lo_ctl_mutex);
1656 	lo->lo_number		= i;
1657 	spin_lock_init(&lo->lo_lock);
1658 	disk->major		= LOOP_MAJOR;
1659 	disk->first_minor	= i << part_shift;
1660 	disk->fops		= &lo_fops;
1661 	disk->private_data	= lo;
1662 	disk->queue		= lo->lo_queue;
1663 	sprintf(disk->disk_name, "loop%d", i);
1664 	add_disk(disk);
1665 	*l = lo;
1666 	return lo->lo_number;
1667 
1668 out_free_queue:
1669 	blk_cleanup_queue(lo->lo_queue);
1670 out_cleanup_tags:
1671 	blk_mq_free_tag_set(&lo->tag_set);
1672 out_free_idr:
1673 	idr_remove(&loop_index_idr, i);
1674 out_free_dev:
1675 	kfree(lo);
1676 out:
1677 	return err;
1678 }
1679 
1680 static void loop_remove(struct loop_device *lo)
1681 {
1682 	del_gendisk(lo->lo_disk);
1683 	blk_cleanup_queue(lo->lo_queue);
1684 	blk_mq_free_tag_set(&lo->tag_set);
1685 	put_disk(lo->lo_disk);
1686 	kfree(lo);
1687 }
1688 
1689 static int find_free_cb(int id, void *ptr, void *data)
1690 {
1691 	struct loop_device *lo = ptr;
1692 	struct loop_device **l = data;
1693 
1694 	if (lo->lo_state == Lo_unbound) {
1695 		*l = lo;
1696 		return 1;
1697 	}
1698 	return 0;
1699 }
1700 
1701 static int loop_lookup(struct loop_device **l, int i)
1702 {
1703 	struct loop_device *lo;
1704 	int ret = -ENODEV;
1705 
1706 	if (i < 0) {
1707 		int err;
1708 
1709 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1710 		if (err == 1) {
1711 			*l = lo;
1712 			ret = lo->lo_number;
1713 		}
1714 		goto out;
1715 	}
1716 
1717 	/* lookup and return a specific i */
1718 	lo = idr_find(&loop_index_idr, i);
1719 	if (lo) {
1720 		*l = lo;
1721 		ret = lo->lo_number;
1722 	}
1723 out:
1724 	return ret;
1725 }
1726 
1727 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1728 {
1729 	struct loop_device *lo;
1730 	struct kobject *kobj;
1731 	int err;
1732 
1733 	mutex_lock(&loop_index_mutex);
1734 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1735 	if (err < 0)
1736 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1737 	if (err < 0)
1738 		kobj = NULL;
1739 	else
1740 		kobj = get_disk(lo->lo_disk);
1741 	mutex_unlock(&loop_index_mutex);
1742 
1743 	*part = 0;
1744 	return kobj;
1745 }
1746 
1747 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1748 			       unsigned long parm)
1749 {
1750 	struct loop_device *lo;
1751 	int ret = -ENOSYS;
1752 
1753 	mutex_lock(&loop_index_mutex);
1754 	switch (cmd) {
1755 	case LOOP_CTL_ADD:
1756 		ret = loop_lookup(&lo, parm);
1757 		if (ret >= 0) {
1758 			ret = -EEXIST;
1759 			break;
1760 		}
1761 		ret = loop_add(&lo, parm);
1762 		break;
1763 	case LOOP_CTL_REMOVE:
1764 		ret = loop_lookup(&lo, parm);
1765 		if (ret < 0)
1766 			break;
1767 		mutex_lock(&lo->lo_ctl_mutex);
1768 		if (lo->lo_state != Lo_unbound) {
1769 			ret = -EBUSY;
1770 			mutex_unlock(&lo->lo_ctl_mutex);
1771 			break;
1772 		}
1773 		if (lo->lo_refcnt > 0) {
1774 			ret = -EBUSY;
1775 			mutex_unlock(&lo->lo_ctl_mutex);
1776 			break;
1777 		}
1778 		lo->lo_disk->private_data = NULL;
1779 		mutex_unlock(&lo->lo_ctl_mutex);
1780 		idr_remove(&loop_index_idr, lo->lo_number);
1781 		loop_remove(lo);
1782 		break;
1783 	case LOOP_CTL_GET_FREE:
1784 		ret = loop_lookup(&lo, -1);
1785 		if (ret >= 0)
1786 			break;
1787 		ret = loop_add(&lo, -1);
1788 	}
1789 	mutex_unlock(&loop_index_mutex);
1790 
1791 	return ret;
1792 }
1793 
1794 static const struct file_operations loop_ctl_fops = {
1795 	.open		= nonseekable_open,
1796 	.unlocked_ioctl	= loop_control_ioctl,
1797 	.compat_ioctl	= loop_control_ioctl,
1798 	.owner		= THIS_MODULE,
1799 	.llseek		= noop_llseek,
1800 };
1801 
1802 static struct miscdevice loop_misc = {
1803 	.minor		= LOOP_CTRL_MINOR,
1804 	.name		= "loop-control",
1805 	.fops		= &loop_ctl_fops,
1806 };
1807 
1808 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1809 MODULE_ALIAS("devname:loop-control");
1810 
1811 static int __init loop_init(void)
1812 {
1813 	int i, nr;
1814 	unsigned long range;
1815 	struct loop_device *lo;
1816 	int err;
1817 
1818 	err = misc_register(&loop_misc);
1819 	if (err < 0)
1820 		return err;
1821 
1822 	part_shift = 0;
1823 	if (max_part > 0) {
1824 		part_shift = fls(max_part);
1825 
1826 		/*
1827 		 * Adjust max_part according to part_shift as it is exported
1828 		 * to user space so that user can decide correct minor number
1829 		 * if [s]he want to create more devices.
1830 		 *
1831 		 * Note that -1 is required because partition 0 is reserved
1832 		 * for the whole disk.
1833 		 */
1834 		max_part = (1UL << part_shift) - 1;
1835 	}
1836 
1837 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1838 		err = -EINVAL;
1839 		goto misc_out;
1840 	}
1841 
1842 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1843 		err = -EINVAL;
1844 		goto misc_out;
1845 	}
1846 
1847 	/*
1848 	 * If max_loop is specified, create that many devices upfront.
1849 	 * This also becomes a hard limit. If max_loop is not specified,
1850 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1851 	 * init time. Loop devices can be requested on-demand with the
1852 	 * /dev/loop-control interface, or be instantiated by accessing
1853 	 * a 'dead' device node.
1854 	 */
1855 	if (max_loop) {
1856 		nr = max_loop;
1857 		range = max_loop << part_shift;
1858 	} else {
1859 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1860 		range = 1UL << MINORBITS;
1861 	}
1862 
1863 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1864 		err = -EIO;
1865 		goto misc_out;
1866 	}
1867 
1868 	loop_wq = alloc_workqueue("kloopd",
1869 			WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 0);
1870 	if (!loop_wq) {
1871 		err = -ENOMEM;
1872 		goto misc_out;
1873 	}
1874 
1875 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1876 				  THIS_MODULE, loop_probe, NULL, NULL);
1877 
1878 	/* pre-create number of devices given by config or max_loop */
1879 	mutex_lock(&loop_index_mutex);
1880 	for (i = 0; i < nr; i++)
1881 		loop_add(&lo, i);
1882 	mutex_unlock(&loop_index_mutex);
1883 
1884 	printk(KERN_INFO "loop: module loaded\n");
1885 	return 0;
1886 
1887 misc_out:
1888 	misc_deregister(&loop_misc);
1889 	return err;
1890 }
1891 
1892 static int loop_exit_cb(int id, void *ptr, void *data)
1893 {
1894 	struct loop_device *lo = ptr;
1895 
1896 	loop_remove(lo);
1897 	return 0;
1898 }
1899 
1900 static void __exit loop_exit(void)
1901 {
1902 	unsigned long range;
1903 
1904 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1905 
1906 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1907 	idr_destroy(&loop_index_idr);
1908 
1909 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1910 	unregister_blkdev(LOOP_MAJOR, "loop");
1911 
1912 	destroy_workqueue(loop_wq);
1913 
1914 	misc_deregister(&loop_misc);
1915 }
1916 
1917 module_init(loop_init);
1918 module_exit(loop_exit);
1919 
1920 #ifndef MODULE
1921 static int __init max_loop_setup(char *str)
1922 {
1923 	max_loop = simple_strtol(str, NULL, 0);
1924 	return 1;
1925 }
1926 
1927 __setup("max_loop=", max_loop_setup);
1928 #endif
1929