1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include "loop.h" 79 80 #include <asm/uaccess.h> 81 82 static DEFINE_IDR(loop_index_idr); 83 static DEFINE_MUTEX(loop_index_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf); 105 kunmap_atomic(raw_buf); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf); 134 kunmap_atomic(raw_buf); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 164 { 165 loff_t loopsize; 166 167 /* Compute loopsize in bytes */ 168 loopsize = i_size_read(file->f_mapping->host); 169 if (offset > 0) 170 loopsize -= offset; 171 /* offset is beyond i_size, weird but possible */ 172 if (loopsize < 0) 173 return 0; 174 175 if (sizelimit > 0 && sizelimit < loopsize) 176 loopsize = sizelimit; 177 /* 178 * Unfortunately, if we want to do I/O on the device, 179 * the number of 512-byte sectors has to fit into a sector_t. 180 */ 181 return loopsize >> 9; 182 } 183 184 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 185 { 186 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 187 } 188 189 static int 190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 191 { 192 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 193 sector_t x = (sector_t)size; 194 struct block_device *bdev = lo->lo_device; 195 196 if (unlikely((loff_t)x != size)) 197 return -EFBIG; 198 if (lo->lo_offset != offset) 199 lo->lo_offset = offset; 200 if (lo->lo_sizelimit != sizelimit) 201 lo->lo_sizelimit = sizelimit; 202 set_capacity(lo->lo_disk, x); 203 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 204 /* let user-space know about the new size */ 205 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 206 return 0; 207 } 208 209 static inline int 210 lo_do_transfer(struct loop_device *lo, int cmd, 211 struct page *rpage, unsigned roffs, 212 struct page *lpage, unsigned loffs, 213 int size, sector_t rblock) 214 { 215 if (unlikely(!lo->transfer)) 216 return 0; 217 218 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 219 } 220 221 /** 222 * __do_lo_send_write - helper for writing data to a loop device 223 * 224 * This helper just factors out common code between do_lo_send_direct_write() 225 * and do_lo_send_write(). 226 */ 227 static int __do_lo_send_write(struct file *file, 228 u8 *buf, const int len, loff_t pos) 229 { 230 ssize_t bw; 231 mm_segment_t old_fs = get_fs(); 232 233 file_start_write(file); 234 set_fs(get_ds()); 235 bw = file->f_op->write(file, buf, len, &pos); 236 set_fs(old_fs); 237 file_end_write(file); 238 if (likely(bw == len)) 239 return 0; 240 printk_ratelimited(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 241 (unsigned long long)pos, len); 242 if (bw >= 0) 243 bw = -EIO; 244 return bw; 245 } 246 247 /** 248 * do_lo_send_direct_write - helper for writing data to a loop device 249 * 250 * This is the fast, non-transforming version that does not need double 251 * buffering. 252 */ 253 static int do_lo_send_direct_write(struct loop_device *lo, 254 struct bio_vec *bvec, loff_t pos, struct page *page) 255 { 256 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 257 kmap(bvec->bv_page) + bvec->bv_offset, 258 bvec->bv_len, pos); 259 kunmap(bvec->bv_page); 260 cond_resched(); 261 return bw; 262 } 263 264 /** 265 * do_lo_send_write - helper for writing data to a loop device 266 * 267 * This is the slow, transforming version that needs to double buffer the 268 * data as it cannot do the transformations in place without having direct 269 * access to the destination pages of the backing file. 270 */ 271 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 272 loff_t pos, struct page *page) 273 { 274 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 275 bvec->bv_offset, bvec->bv_len, pos >> 9); 276 if (likely(!ret)) 277 return __do_lo_send_write(lo->lo_backing_file, 278 page_address(page), bvec->bv_len, 279 pos); 280 printk_ratelimited(KERN_ERR "loop: Transfer error at byte offset %llu, " 281 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 282 if (ret > 0) 283 ret = -EIO; 284 return ret; 285 } 286 287 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 288 { 289 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 290 struct page *page); 291 struct bio_vec bvec; 292 struct bvec_iter iter; 293 struct page *page = NULL; 294 int ret = 0; 295 296 if (lo->transfer != transfer_none) { 297 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 298 if (unlikely(!page)) 299 goto fail; 300 kmap(page); 301 do_lo_send = do_lo_send_write; 302 } else { 303 do_lo_send = do_lo_send_direct_write; 304 } 305 306 bio_for_each_segment(bvec, bio, iter) { 307 ret = do_lo_send(lo, &bvec, pos, page); 308 if (ret < 0) 309 break; 310 pos += bvec.bv_len; 311 } 312 if (page) { 313 kunmap(page); 314 __free_page(page); 315 } 316 out: 317 return ret; 318 fail: 319 printk_ratelimited(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 320 ret = -ENOMEM; 321 goto out; 322 } 323 324 struct lo_read_data { 325 struct loop_device *lo; 326 struct page *page; 327 unsigned offset; 328 int bsize; 329 }; 330 331 static int 332 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 333 struct splice_desc *sd) 334 { 335 struct lo_read_data *p = sd->u.data; 336 struct loop_device *lo = p->lo; 337 struct page *page = buf->page; 338 sector_t IV; 339 int size; 340 341 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 342 (buf->offset >> 9); 343 size = sd->len; 344 if (size > p->bsize) 345 size = p->bsize; 346 347 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 348 printk_ratelimited(KERN_ERR "loop: transfer error block %ld\n", 349 page->index); 350 size = -EINVAL; 351 } 352 353 flush_dcache_page(p->page); 354 355 if (size > 0) 356 p->offset += size; 357 358 return size; 359 } 360 361 static int 362 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 363 { 364 return __splice_from_pipe(pipe, sd, lo_splice_actor); 365 } 366 367 static ssize_t 368 do_lo_receive(struct loop_device *lo, 369 struct bio_vec *bvec, int bsize, loff_t pos) 370 { 371 struct lo_read_data cookie; 372 struct splice_desc sd; 373 struct file *file; 374 ssize_t retval; 375 376 cookie.lo = lo; 377 cookie.page = bvec->bv_page; 378 cookie.offset = bvec->bv_offset; 379 cookie.bsize = bsize; 380 381 sd.len = 0; 382 sd.total_len = bvec->bv_len; 383 sd.flags = 0; 384 sd.pos = pos; 385 sd.u.data = &cookie; 386 387 file = lo->lo_backing_file; 388 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 389 390 return retval; 391 } 392 393 static int 394 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 395 { 396 struct bio_vec bvec; 397 struct bvec_iter iter; 398 ssize_t s; 399 400 bio_for_each_segment(bvec, bio, iter) { 401 s = do_lo_receive(lo, &bvec, bsize, pos); 402 if (s < 0) 403 return s; 404 405 if (s != bvec.bv_len) { 406 zero_fill_bio(bio); 407 break; 408 } 409 pos += bvec.bv_len; 410 } 411 return 0; 412 } 413 414 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 415 { 416 loff_t pos; 417 int ret; 418 419 pos = ((loff_t) bio->bi_iter.bi_sector << 9) + lo->lo_offset; 420 421 if (bio_rw(bio) == WRITE) { 422 struct file *file = lo->lo_backing_file; 423 424 if (bio->bi_rw & REQ_FLUSH) { 425 ret = vfs_fsync(file, 0); 426 if (unlikely(ret && ret != -EINVAL)) { 427 ret = -EIO; 428 goto out; 429 } 430 } 431 432 /* 433 * We use punch hole to reclaim the free space used by the 434 * image a.k.a. discard. However we do not support discard if 435 * encryption is enabled, because it may give an attacker 436 * useful information. 437 */ 438 if (bio->bi_rw & REQ_DISCARD) { 439 struct file *file = lo->lo_backing_file; 440 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 441 442 if ((!file->f_op->fallocate) || 443 lo->lo_encrypt_key_size) { 444 ret = -EOPNOTSUPP; 445 goto out; 446 } 447 ret = file->f_op->fallocate(file, mode, pos, 448 bio->bi_iter.bi_size); 449 if (unlikely(ret && ret != -EINVAL && 450 ret != -EOPNOTSUPP)) 451 ret = -EIO; 452 goto out; 453 } 454 455 ret = lo_send(lo, bio, pos); 456 457 if ((bio->bi_rw & REQ_FUA) && !ret) { 458 ret = vfs_fsync(file, 0); 459 if (unlikely(ret && ret != -EINVAL)) 460 ret = -EIO; 461 } 462 } else 463 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 464 465 out: 466 return ret; 467 } 468 469 /* 470 * Add bio to back of pending list 471 */ 472 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 473 { 474 lo->lo_bio_count++; 475 bio_list_add(&lo->lo_bio_list, bio); 476 } 477 478 /* 479 * Grab first pending buffer 480 */ 481 static struct bio *loop_get_bio(struct loop_device *lo) 482 { 483 lo->lo_bio_count--; 484 return bio_list_pop(&lo->lo_bio_list); 485 } 486 487 static void loop_make_request(struct request_queue *q, struct bio *old_bio) 488 { 489 struct loop_device *lo = q->queuedata; 490 int rw = bio_rw(old_bio); 491 492 if (rw == READA) 493 rw = READ; 494 495 BUG_ON(!lo || (rw != READ && rw != WRITE)); 496 497 spin_lock_irq(&lo->lo_lock); 498 if (lo->lo_state != Lo_bound) 499 goto out; 500 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 501 goto out; 502 if (lo->lo_bio_count >= q->nr_congestion_on) 503 wait_event_lock_irq(lo->lo_req_wait, 504 lo->lo_bio_count < q->nr_congestion_off, 505 lo->lo_lock); 506 loop_add_bio(lo, old_bio); 507 wake_up(&lo->lo_event); 508 spin_unlock_irq(&lo->lo_lock); 509 return; 510 511 out: 512 spin_unlock_irq(&lo->lo_lock); 513 bio_io_error(old_bio); 514 } 515 516 struct switch_request { 517 struct file *file; 518 struct completion wait; 519 }; 520 521 static void do_loop_switch(struct loop_device *, struct switch_request *); 522 523 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 524 { 525 if (unlikely(!bio->bi_bdev)) { 526 do_loop_switch(lo, bio->bi_private); 527 bio_put(bio); 528 } else { 529 int ret = do_bio_filebacked(lo, bio); 530 bio_endio(bio, ret); 531 } 532 } 533 534 /* 535 * worker thread that handles reads/writes to file backed loop devices, 536 * to avoid blocking in our make_request_fn. it also does loop decrypting 537 * on reads for block backed loop, as that is too heavy to do from 538 * b_end_io context where irqs may be disabled. 539 * 540 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 541 * calling kthread_stop(). Therefore once kthread_should_stop() is 542 * true, make_request will not place any more requests. Therefore 543 * once kthread_should_stop() is true and lo_bio is NULL, we are 544 * done with the loop. 545 */ 546 static int loop_thread(void *data) 547 { 548 struct loop_device *lo = data; 549 struct bio *bio; 550 551 set_user_nice(current, -20); 552 553 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 554 555 wait_event_interruptible(lo->lo_event, 556 !bio_list_empty(&lo->lo_bio_list) || 557 kthread_should_stop()); 558 559 if (bio_list_empty(&lo->lo_bio_list)) 560 continue; 561 spin_lock_irq(&lo->lo_lock); 562 bio = loop_get_bio(lo); 563 if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off) 564 wake_up(&lo->lo_req_wait); 565 spin_unlock_irq(&lo->lo_lock); 566 567 BUG_ON(!bio); 568 loop_handle_bio(lo, bio); 569 } 570 571 return 0; 572 } 573 574 /* 575 * loop_switch performs the hard work of switching a backing store. 576 * First it needs to flush existing IO, it does this by sending a magic 577 * BIO down the pipe. The completion of this BIO does the actual switch. 578 */ 579 static int loop_switch(struct loop_device *lo, struct file *file) 580 { 581 struct switch_request w; 582 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 583 if (!bio) 584 return -ENOMEM; 585 init_completion(&w.wait); 586 w.file = file; 587 bio->bi_private = &w; 588 bio->bi_bdev = NULL; 589 loop_make_request(lo->lo_queue, bio); 590 wait_for_completion(&w.wait); 591 return 0; 592 } 593 594 /* 595 * Helper to flush the IOs in loop, but keeping loop thread running 596 */ 597 static int loop_flush(struct loop_device *lo) 598 { 599 /* loop not yet configured, no running thread, nothing to flush */ 600 if (!lo->lo_thread) 601 return 0; 602 603 return loop_switch(lo, NULL); 604 } 605 606 /* 607 * Do the actual switch; called from the BIO completion routine 608 */ 609 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 610 { 611 struct file *file = p->file; 612 struct file *old_file = lo->lo_backing_file; 613 struct address_space *mapping; 614 615 /* if no new file, only flush of queued bios requested */ 616 if (!file) 617 goto out; 618 619 mapping = file->f_mapping; 620 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 621 lo->lo_backing_file = file; 622 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 623 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 624 lo->old_gfp_mask = mapping_gfp_mask(mapping); 625 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 626 out: 627 complete(&p->wait); 628 } 629 630 631 /* 632 * loop_change_fd switched the backing store of a loopback device to 633 * a new file. This is useful for operating system installers to free up 634 * the original file and in High Availability environments to switch to 635 * an alternative location for the content in case of server meltdown. 636 * This can only work if the loop device is used read-only, and if the 637 * new backing store is the same size and type as the old backing store. 638 */ 639 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 640 unsigned int arg) 641 { 642 struct file *file, *old_file; 643 struct inode *inode; 644 int error; 645 646 error = -ENXIO; 647 if (lo->lo_state != Lo_bound) 648 goto out; 649 650 /* the loop device has to be read-only */ 651 error = -EINVAL; 652 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 653 goto out; 654 655 error = -EBADF; 656 file = fget(arg); 657 if (!file) 658 goto out; 659 660 inode = file->f_mapping->host; 661 old_file = lo->lo_backing_file; 662 663 error = -EINVAL; 664 665 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 666 goto out_putf; 667 668 /* size of the new backing store needs to be the same */ 669 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 670 goto out_putf; 671 672 /* and ... switch */ 673 error = loop_switch(lo, file); 674 if (error) 675 goto out_putf; 676 677 fput(old_file); 678 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 679 ioctl_by_bdev(bdev, BLKRRPART, 0); 680 return 0; 681 682 out_putf: 683 fput(file); 684 out: 685 return error; 686 } 687 688 static inline int is_loop_device(struct file *file) 689 { 690 struct inode *i = file->f_mapping->host; 691 692 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 693 } 694 695 /* loop sysfs attributes */ 696 697 static ssize_t loop_attr_show(struct device *dev, char *page, 698 ssize_t (*callback)(struct loop_device *, char *)) 699 { 700 struct gendisk *disk = dev_to_disk(dev); 701 struct loop_device *lo = disk->private_data; 702 703 return callback(lo, page); 704 } 705 706 #define LOOP_ATTR_RO(_name) \ 707 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 708 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 709 struct device_attribute *attr, char *b) \ 710 { \ 711 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 712 } \ 713 static struct device_attribute loop_attr_##_name = \ 714 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 715 716 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 717 { 718 ssize_t ret; 719 char *p = NULL; 720 721 spin_lock_irq(&lo->lo_lock); 722 if (lo->lo_backing_file) 723 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 724 spin_unlock_irq(&lo->lo_lock); 725 726 if (IS_ERR_OR_NULL(p)) 727 ret = PTR_ERR(p); 728 else { 729 ret = strlen(p); 730 memmove(buf, p, ret); 731 buf[ret++] = '\n'; 732 buf[ret] = 0; 733 } 734 735 return ret; 736 } 737 738 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 739 { 740 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 741 } 742 743 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 744 { 745 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 746 } 747 748 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 749 { 750 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 751 752 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 753 } 754 755 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 756 { 757 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 758 759 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 760 } 761 762 LOOP_ATTR_RO(backing_file); 763 LOOP_ATTR_RO(offset); 764 LOOP_ATTR_RO(sizelimit); 765 LOOP_ATTR_RO(autoclear); 766 LOOP_ATTR_RO(partscan); 767 768 static struct attribute *loop_attrs[] = { 769 &loop_attr_backing_file.attr, 770 &loop_attr_offset.attr, 771 &loop_attr_sizelimit.attr, 772 &loop_attr_autoclear.attr, 773 &loop_attr_partscan.attr, 774 NULL, 775 }; 776 777 static struct attribute_group loop_attribute_group = { 778 .name = "loop", 779 .attrs= loop_attrs, 780 }; 781 782 static int loop_sysfs_init(struct loop_device *lo) 783 { 784 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 785 &loop_attribute_group); 786 } 787 788 static void loop_sysfs_exit(struct loop_device *lo) 789 { 790 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 791 &loop_attribute_group); 792 } 793 794 static void loop_config_discard(struct loop_device *lo) 795 { 796 struct file *file = lo->lo_backing_file; 797 struct inode *inode = file->f_mapping->host; 798 struct request_queue *q = lo->lo_queue; 799 800 /* 801 * We use punch hole to reclaim the free space used by the 802 * image a.k.a. discard. However we do not support discard if 803 * encryption is enabled, because it may give an attacker 804 * useful information. 805 */ 806 if ((!file->f_op->fallocate) || 807 lo->lo_encrypt_key_size) { 808 q->limits.discard_granularity = 0; 809 q->limits.discard_alignment = 0; 810 q->limits.max_discard_sectors = 0; 811 q->limits.discard_zeroes_data = 0; 812 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 813 return; 814 } 815 816 q->limits.discard_granularity = inode->i_sb->s_blocksize; 817 q->limits.discard_alignment = 0; 818 q->limits.max_discard_sectors = UINT_MAX >> 9; 819 q->limits.discard_zeroes_data = 1; 820 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 821 } 822 823 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 824 struct block_device *bdev, unsigned int arg) 825 { 826 struct file *file, *f; 827 struct inode *inode; 828 struct address_space *mapping; 829 unsigned lo_blocksize; 830 int lo_flags = 0; 831 int error; 832 loff_t size; 833 834 /* This is safe, since we have a reference from open(). */ 835 __module_get(THIS_MODULE); 836 837 error = -EBADF; 838 file = fget(arg); 839 if (!file) 840 goto out; 841 842 error = -EBUSY; 843 if (lo->lo_state != Lo_unbound) 844 goto out_putf; 845 846 /* Avoid recursion */ 847 f = file; 848 while (is_loop_device(f)) { 849 struct loop_device *l; 850 851 if (f->f_mapping->host->i_bdev == bdev) 852 goto out_putf; 853 854 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 855 if (l->lo_state == Lo_unbound) { 856 error = -EINVAL; 857 goto out_putf; 858 } 859 f = l->lo_backing_file; 860 } 861 862 mapping = file->f_mapping; 863 inode = mapping->host; 864 865 error = -EINVAL; 866 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 867 goto out_putf; 868 869 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 870 !file->f_op->write) 871 lo_flags |= LO_FLAGS_READ_ONLY; 872 873 lo_blocksize = S_ISBLK(inode->i_mode) ? 874 inode->i_bdev->bd_block_size : PAGE_SIZE; 875 876 error = -EFBIG; 877 size = get_loop_size(lo, file); 878 if ((loff_t)(sector_t)size != size) 879 goto out_putf; 880 881 error = 0; 882 883 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 884 885 lo->lo_blocksize = lo_blocksize; 886 lo->lo_device = bdev; 887 lo->lo_flags = lo_flags; 888 lo->lo_backing_file = file; 889 lo->transfer = transfer_none; 890 lo->ioctl = NULL; 891 lo->lo_sizelimit = 0; 892 lo->lo_bio_count = 0; 893 lo->old_gfp_mask = mapping_gfp_mask(mapping); 894 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 895 896 bio_list_init(&lo->lo_bio_list); 897 898 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 899 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 900 901 set_capacity(lo->lo_disk, size); 902 bd_set_size(bdev, size << 9); 903 loop_sysfs_init(lo); 904 /* let user-space know about the new size */ 905 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 906 907 set_blocksize(bdev, lo_blocksize); 908 909 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 910 lo->lo_number); 911 if (IS_ERR(lo->lo_thread)) { 912 error = PTR_ERR(lo->lo_thread); 913 goto out_clr; 914 } 915 lo->lo_state = Lo_bound; 916 wake_up_process(lo->lo_thread); 917 if (part_shift) 918 lo->lo_flags |= LO_FLAGS_PARTSCAN; 919 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 920 ioctl_by_bdev(bdev, BLKRRPART, 0); 921 922 /* Grab the block_device to prevent its destruction after we 923 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 924 */ 925 bdgrab(bdev); 926 return 0; 927 928 out_clr: 929 loop_sysfs_exit(lo); 930 lo->lo_thread = NULL; 931 lo->lo_device = NULL; 932 lo->lo_backing_file = NULL; 933 lo->lo_flags = 0; 934 set_capacity(lo->lo_disk, 0); 935 invalidate_bdev(bdev); 936 bd_set_size(bdev, 0); 937 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 938 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 939 lo->lo_state = Lo_unbound; 940 out_putf: 941 fput(file); 942 out: 943 /* This is safe: open() is still holding a reference. */ 944 module_put(THIS_MODULE); 945 return error; 946 } 947 948 static int 949 loop_release_xfer(struct loop_device *lo) 950 { 951 int err = 0; 952 struct loop_func_table *xfer = lo->lo_encryption; 953 954 if (xfer) { 955 if (xfer->release) 956 err = xfer->release(lo); 957 lo->transfer = NULL; 958 lo->lo_encryption = NULL; 959 module_put(xfer->owner); 960 } 961 return err; 962 } 963 964 static int 965 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 966 const struct loop_info64 *i) 967 { 968 int err = 0; 969 970 if (xfer) { 971 struct module *owner = xfer->owner; 972 973 if (!try_module_get(owner)) 974 return -EINVAL; 975 if (xfer->init) 976 err = xfer->init(lo, i); 977 if (err) 978 module_put(owner); 979 else 980 lo->lo_encryption = xfer; 981 } 982 return err; 983 } 984 985 static int loop_clr_fd(struct loop_device *lo) 986 { 987 struct file *filp = lo->lo_backing_file; 988 gfp_t gfp = lo->old_gfp_mask; 989 struct block_device *bdev = lo->lo_device; 990 991 if (lo->lo_state != Lo_bound) 992 return -ENXIO; 993 994 /* 995 * If we've explicitly asked to tear down the loop device, 996 * and it has an elevated reference count, set it for auto-teardown when 997 * the last reference goes away. This stops $!~#$@ udev from 998 * preventing teardown because it decided that it needs to run blkid on 999 * the loopback device whenever they appear. xfstests is notorious for 1000 * failing tests because blkid via udev races with a losetup 1001 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1002 * command to fail with EBUSY. 1003 */ 1004 if (lo->lo_refcnt > 1) { 1005 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1006 mutex_unlock(&lo->lo_ctl_mutex); 1007 return 0; 1008 } 1009 1010 if (filp == NULL) 1011 return -EINVAL; 1012 1013 spin_lock_irq(&lo->lo_lock); 1014 lo->lo_state = Lo_rundown; 1015 spin_unlock_irq(&lo->lo_lock); 1016 1017 kthread_stop(lo->lo_thread); 1018 1019 spin_lock_irq(&lo->lo_lock); 1020 lo->lo_backing_file = NULL; 1021 spin_unlock_irq(&lo->lo_lock); 1022 1023 loop_release_xfer(lo); 1024 lo->transfer = NULL; 1025 lo->ioctl = NULL; 1026 lo->lo_device = NULL; 1027 lo->lo_encryption = NULL; 1028 lo->lo_offset = 0; 1029 lo->lo_sizelimit = 0; 1030 lo->lo_encrypt_key_size = 0; 1031 lo->lo_thread = NULL; 1032 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1033 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1034 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1035 if (bdev) { 1036 bdput(bdev); 1037 invalidate_bdev(bdev); 1038 } 1039 set_capacity(lo->lo_disk, 0); 1040 loop_sysfs_exit(lo); 1041 if (bdev) { 1042 bd_set_size(bdev, 0); 1043 /* let user-space know about this change */ 1044 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1045 } 1046 mapping_set_gfp_mask(filp->f_mapping, gfp); 1047 lo->lo_state = Lo_unbound; 1048 /* This is safe: open() is still holding a reference. */ 1049 module_put(THIS_MODULE); 1050 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1051 ioctl_by_bdev(bdev, BLKRRPART, 0); 1052 lo->lo_flags = 0; 1053 if (!part_shift) 1054 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1055 mutex_unlock(&lo->lo_ctl_mutex); 1056 /* 1057 * Need not hold lo_ctl_mutex to fput backing file. 1058 * Calling fput holding lo_ctl_mutex triggers a circular 1059 * lock dependency possibility warning as fput can take 1060 * bd_mutex which is usually taken before lo_ctl_mutex. 1061 */ 1062 fput(filp); 1063 return 0; 1064 } 1065 1066 static int 1067 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1068 { 1069 int err; 1070 struct loop_func_table *xfer; 1071 kuid_t uid = current_uid(); 1072 1073 if (lo->lo_encrypt_key_size && 1074 !uid_eq(lo->lo_key_owner, uid) && 1075 !capable(CAP_SYS_ADMIN)) 1076 return -EPERM; 1077 if (lo->lo_state != Lo_bound) 1078 return -ENXIO; 1079 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1080 return -EINVAL; 1081 1082 err = loop_release_xfer(lo); 1083 if (err) 1084 return err; 1085 1086 if (info->lo_encrypt_type) { 1087 unsigned int type = info->lo_encrypt_type; 1088 1089 if (type >= MAX_LO_CRYPT) 1090 return -EINVAL; 1091 xfer = xfer_funcs[type]; 1092 if (xfer == NULL) 1093 return -EINVAL; 1094 } else 1095 xfer = NULL; 1096 1097 err = loop_init_xfer(lo, xfer, info); 1098 if (err) 1099 return err; 1100 1101 if (lo->lo_offset != info->lo_offset || 1102 lo->lo_sizelimit != info->lo_sizelimit) 1103 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1104 return -EFBIG; 1105 1106 loop_config_discard(lo); 1107 1108 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1109 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1110 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1111 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1112 1113 if (!xfer) 1114 xfer = &none_funcs; 1115 lo->transfer = xfer->transfer; 1116 lo->ioctl = xfer->ioctl; 1117 1118 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1119 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1120 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1121 1122 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1123 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1124 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1125 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1126 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0); 1127 } 1128 1129 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1130 lo->lo_init[0] = info->lo_init[0]; 1131 lo->lo_init[1] = info->lo_init[1]; 1132 if (info->lo_encrypt_key_size) { 1133 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1134 info->lo_encrypt_key_size); 1135 lo->lo_key_owner = uid; 1136 } 1137 1138 return 0; 1139 } 1140 1141 static int 1142 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1143 { 1144 struct file *file = lo->lo_backing_file; 1145 struct kstat stat; 1146 int error; 1147 1148 if (lo->lo_state != Lo_bound) 1149 return -ENXIO; 1150 error = vfs_getattr(&file->f_path, &stat); 1151 if (error) 1152 return error; 1153 memset(info, 0, sizeof(*info)); 1154 info->lo_number = lo->lo_number; 1155 info->lo_device = huge_encode_dev(stat.dev); 1156 info->lo_inode = stat.ino; 1157 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1158 info->lo_offset = lo->lo_offset; 1159 info->lo_sizelimit = lo->lo_sizelimit; 1160 info->lo_flags = lo->lo_flags; 1161 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1162 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1163 info->lo_encrypt_type = 1164 lo->lo_encryption ? lo->lo_encryption->number : 0; 1165 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1166 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1167 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1168 lo->lo_encrypt_key_size); 1169 } 1170 return 0; 1171 } 1172 1173 static void 1174 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1175 { 1176 memset(info64, 0, sizeof(*info64)); 1177 info64->lo_number = info->lo_number; 1178 info64->lo_device = info->lo_device; 1179 info64->lo_inode = info->lo_inode; 1180 info64->lo_rdevice = info->lo_rdevice; 1181 info64->lo_offset = info->lo_offset; 1182 info64->lo_sizelimit = 0; 1183 info64->lo_encrypt_type = info->lo_encrypt_type; 1184 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1185 info64->lo_flags = info->lo_flags; 1186 info64->lo_init[0] = info->lo_init[0]; 1187 info64->lo_init[1] = info->lo_init[1]; 1188 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1189 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1190 else 1191 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1192 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1193 } 1194 1195 static int 1196 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1197 { 1198 memset(info, 0, sizeof(*info)); 1199 info->lo_number = info64->lo_number; 1200 info->lo_device = info64->lo_device; 1201 info->lo_inode = info64->lo_inode; 1202 info->lo_rdevice = info64->lo_rdevice; 1203 info->lo_offset = info64->lo_offset; 1204 info->lo_encrypt_type = info64->lo_encrypt_type; 1205 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1206 info->lo_flags = info64->lo_flags; 1207 info->lo_init[0] = info64->lo_init[0]; 1208 info->lo_init[1] = info64->lo_init[1]; 1209 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1210 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1211 else 1212 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1213 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1214 1215 /* error in case values were truncated */ 1216 if (info->lo_device != info64->lo_device || 1217 info->lo_rdevice != info64->lo_rdevice || 1218 info->lo_inode != info64->lo_inode || 1219 info->lo_offset != info64->lo_offset) 1220 return -EOVERFLOW; 1221 1222 return 0; 1223 } 1224 1225 static int 1226 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1227 { 1228 struct loop_info info; 1229 struct loop_info64 info64; 1230 1231 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1232 return -EFAULT; 1233 loop_info64_from_old(&info, &info64); 1234 return loop_set_status(lo, &info64); 1235 } 1236 1237 static int 1238 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1239 { 1240 struct loop_info64 info64; 1241 1242 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1243 return -EFAULT; 1244 return loop_set_status(lo, &info64); 1245 } 1246 1247 static int 1248 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1249 struct loop_info info; 1250 struct loop_info64 info64; 1251 int err = 0; 1252 1253 if (!arg) 1254 err = -EINVAL; 1255 if (!err) 1256 err = loop_get_status(lo, &info64); 1257 if (!err) 1258 err = loop_info64_to_old(&info64, &info); 1259 if (!err && copy_to_user(arg, &info, sizeof(info))) 1260 err = -EFAULT; 1261 1262 return err; 1263 } 1264 1265 static int 1266 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1267 struct loop_info64 info64; 1268 int err = 0; 1269 1270 if (!arg) 1271 err = -EINVAL; 1272 if (!err) 1273 err = loop_get_status(lo, &info64); 1274 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1275 err = -EFAULT; 1276 1277 return err; 1278 } 1279 1280 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1281 { 1282 if (unlikely(lo->lo_state != Lo_bound)) 1283 return -ENXIO; 1284 1285 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1286 } 1287 1288 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1289 unsigned int cmd, unsigned long arg) 1290 { 1291 struct loop_device *lo = bdev->bd_disk->private_data; 1292 int err; 1293 1294 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1295 switch (cmd) { 1296 case LOOP_SET_FD: 1297 err = loop_set_fd(lo, mode, bdev, arg); 1298 break; 1299 case LOOP_CHANGE_FD: 1300 err = loop_change_fd(lo, bdev, arg); 1301 break; 1302 case LOOP_CLR_FD: 1303 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1304 err = loop_clr_fd(lo); 1305 if (!err) 1306 goto out_unlocked; 1307 break; 1308 case LOOP_SET_STATUS: 1309 err = -EPERM; 1310 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1311 err = loop_set_status_old(lo, 1312 (struct loop_info __user *)arg); 1313 break; 1314 case LOOP_GET_STATUS: 1315 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1316 break; 1317 case LOOP_SET_STATUS64: 1318 err = -EPERM; 1319 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1320 err = loop_set_status64(lo, 1321 (struct loop_info64 __user *) arg); 1322 break; 1323 case LOOP_GET_STATUS64: 1324 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1325 break; 1326 case LOOP_SET_CAPACITY: 1327 err = -EPERM; 1328 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1329 err = loop_set_capacity(lo, bdev); 1330 break; 1331 default: 1332 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1333 } 1334 mutex_unlock(&lo->lo_ctl_mutex); 1335 1336 out_unlocked: 1337 return err; 1338 } 1339 1340 #ifdef CONFIG_COMPAT 1341 struct compat_loop_info { 1342 compat_int_t lo_number; /* ioctl r/o */ 1343 compat_dev_t lo_device; /* ioctl r/o */ 1344 compat_ulong_t lo_inode; /* ioctl r/o */ 1345 compat_dev_t lo_rdevice; /* ioctl r/o */ 1346 compat_int_t lo_offset; 1347 compat_int_t lo_encrypt_type; 1348 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1349 compat_int_t lo_flags; /* ioctl r/o */ 1350 char lo_name[LO_NAME_SIZE]; 1351 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1352 compat_ulong_t lo_init[2]; 1353 char reserved[4]; 1354 }; 1355 1356 /* 1357 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1358 * - noinlined to reduce stack space usage in main part of driver 1359 */ 1360 static noinline int 1361 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1362 struct loop_info64 *info64) 1363 { 1364 struct compat_loop_info info; 1365 1366 if (copy_from_user(&info, arg, sizeof(info))) 1367 return -EFAULT; 1368 1369 memset(info64, 0, sizeof(*info64)); 1370 info64->lo_number = info.lo_number; 1371 info64->lo_device = info.lo_device; 1372 info64->lo_inode = info.lo_inode; 1373 info64->lo_rdevice = info.lo_rdevice; 1374 info64->lo_offset = info.lo_offset; 1375 info64->lo_sizelimit = 0; 1376 info64->lo_encrypt_type = info.lo_encrypt_type; 1377 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1378 info64->lo_flags = info.lo_flags; 1379 info64->lo_init[0] = info.lo_init[0]; 1380 info64->lo_init[1] = info.lo_init[1]; 1381 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1382 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1383 else 1384 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1385 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1386 return 0; 1387 } 1388 1389 /* 1390 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1391 * - noinlined to reduce stack space usage in main part of driver 1392 */ 1393 static noinline int 1394 loop_info64_to_compat(const struct loop_info64 *info64, 1395 struct compat_loop_info __user *arg) 1396 { 1397 struct compat_loop_info info; 1398 1399 memset(&info, 0, sizeof(info)); 1400 info.lo_number = info64->lo_number; 1401 info.lo_device = info64->lo_device; 1402 info.lo_inode = info64->lo_inode; 1403 info.lo_rdevice = info64->lo_rdevice; 1404 info.lo_offset = info64->lo_offset; 1405 info.lo_encrypt_type = info64->lo_encrypt_type; 1406 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1407 info.lo_flags = info64->lo_flags; 1408 info.lo_init[0] = info64->lo_init[0]; 1409 info.lo_init[1] = info64->lo_init[1]; 1410 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1411 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1412 else 1413 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1414 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1415 1416 /* error in case values were truncated */ 1417 if (info.lo_device != info64->lo_device || 1418 info.lo_rdevice != info64->lo_rdevice || 1419 info.lo_inode != info64->lo_inode || 1420 info.lo_offset != info64->lo_offset || 1421 info.lo_init[0] != info64->lo_init[0] || 1422 info.lo_init[1] != info64->lo_init[1]) 1423 return -EOVERFLOW; 1424 1425 if (copy_to_user(arg, &info, sizeof(info))) 1426 return -EFAULT; 1427 return 0; 1428 } 1429 1430 static int 1431 loop_set_status_compat(struct loop_device *lo, 1432 const struct compat_loop_info __user *arg) 1433 { 1434 struct loop_info64 info64; 1435 int ret; 1436 1437 ret = loop_info64_from_compat(arg, &info64); 1438 if (ret < 0) 1439 return ret; 1440 return loop_set_status(lo, &info64); 1441 } 1442 1443 static int 1444 loop_get_status_compat(struct loop_device *lo, 1445 struct compat_loop_info __user *arg) 1446 { 1447 struct loop_info64 info64; 1448 int err = 0; 1449 1450 if (!arg) 1451 err = -EINVAL; 1452 if (!err) 1453 err = loop_get_status(lo, &info64); 1454 if (!err) 1455 err = loop_info64_to_compat(&info64, arg); 1456 return err; 1457 } 1458 1459 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1460 unsigned int cmd, unsigned long arg) 1461 { 1462 struct loop_device *lo = bdev->bd_disk->private_data; 1463 int err; 1464 1465 switch(cmd) { 1466 case LOOP_SET_STATUS: 1467 mutex_lock(&lo->lo_ctl_mutex); 1468 err = loop_set_status_compat( 1469 lo, (const struct compat_loop_info __user *) arg); 1470 mutex_unlock(&lo->lo_ctl_mutex); 1471 break; 1472 case LOOP_GET_STATUS: 1473 mutex_lock(&lo->lo_ctl_mutex); 1474 err = loop_get_status_compat( 1475 lo, (struct compat_loop_info __user *) arg); 1476 mutex_unlock(&lo->lo_ctl_mutex); 1477 break; 1478 case LOOP_SET_CAPACITY: 1479 case LOOP_CLR_FD: 1480 case LOOP_GET_STATUS64: 1481 case LOOP_SET_STATUS64: 1482 arg = (unsigned long) compat_ptr(arg); 1483 case LOOP_SET_FD: 1484 case LOOP_CHANGE_FD: 1485 err = lo_ioctl(bdev, mode, cmd, arg); 1486 break; 1487 default: 1488 err = -ENOIOCTLCMD; 1489 break; 1490 } 1491 return err; 1492 } 1493 #endif 1494 1495 static int lo_open(struct block_device *bdev, fmode_t mode) 1496 { 1497 struct loop_device *lo; 1498 int err = 0; 1499 1500 mutex_lock(&loop_index_mutex); 1501 lo = bdev->bd_disk->private_data; 1502 if (!lo) { 1503 err = -ENXIO; 1504 goto out; 1505 } 1506 1507 mutex_lock(&lo->lo_ctl_mutex); 1508 lo->lo_refcnt++; 1509 mutex_unlock(&lo->lo_ctl_mutex); 1510 out: 1511 mutex_unlock(&loop_index_mutex); 1512 return err; 1513 } 1514 1515 static void lo_release(struct gendisk *disk, fmode_t mode) 1516 { 1517 struct loop_device *lo = disk->private_data; 1518 int err; 1519 1520 mutex_lock(&lo->lo_ctl_mutex); 1521 1522 if (--lo->lo_refcnt) 1523 goto out; 1524 1525 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1526 /* 1527 * In autoclear mode, stop the loop thread 1528 * and remove configuration after last close. 1529 */ 1530 err = loop_clr_fd(lo); 1531 if (!err) 1532 return; 1533 } else { 1534 /* 1535 * Otherwise keep thread (if running) and config, 1536 * but flush possible ongoing bios in thread. 1537 */ 1538 loop_flush(lo); 1539 } 1540 1541 out: 1542 mutex_unlock(&lo->lo_ctl_mutex); 1543 } 1544 1545 static const struct block_device_operations lo_fops = { 1546 .owner = THIS_MODULE, 1547 .open = lo_open, 1548 .release = lo_release, 1549 .ioctl = lo_ioctl, 1550 #ifdef CONFIG_COMPAT 1551 .compat_ioctl = lo_compat_ioctl, 1552 #endif 1553 }; 1554 1555 /* 1556 * And now the modules code and kernel interface. 1557 */ 1558 static int max_loop; 1559 module_param(max_loop, int, S_IRUGO); 1560 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1561 module_param(max_part, int, S_IRUGO); 1562 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1563 MODULE_LICENSE("GPL"); 1564 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1565 1566 int loop_register_transfer(struct loop_func_table *funcs) 1567 { 1568 unsigned int n = funcs->number; 1569 1570 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1571 return -EINVAL; 1572 xfer_funcs[n] = funcs; 1573 return 0; 1574 } 1575 1576 static int unregister_transfer_cb(int id, void *ptr, void *data) 1577 { 1578 struct loop_device *lo = ptr; 1579 struct loop_func_table *xfer = data; 1580 1581 mutex_lock(&lo->lo_ctl_mutex); 1582 if (lo->lo_encryption == xfer) 1583 loop_release_xfer(lo); 1584 mutex_unlock(&lo->lo_ctl_mutex); 1585 return 0; 1586 } 1587 1588 int loop_unregister_transfer(int number) 1589 { 1590 unsigned int n = number; 1591 struct loop_func_table *xfer; 1592 1593 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1594 return -EINVAL; 1595 1596 xfer_funcs[n] = NULL; 1597 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1598 return 0; 1599 } 1600 1601 EXPORT_SYMBOL(loop_register_transfer); 1602 EXPORT_SYMBOL(loop_unregister_transfer); 1603 1604 static int loop_add(struct loop_device **l, int i) 1605 { 1606 struct loop_device *lo; 1607 struct gendisk *disk; 1608 int err; 1609 1610 err = -ENOMEM; 1611 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1612 if (!lo) 1613 goto out; 1614 1615 lo->lo_state = Lo_unbound; 1616 1617 /* allocate id, if @id >= 0, we're requesting that specific id */ 1618 if (i >= 0) { 1619 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1620 if (err == -ENOSPC) 1621 err = -EEXIST; 1622 } else { 1623 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1624 } 1625 if (err < 0) 1626 goto out_free_dev; 1627 i = err; 1628 1629 err = -ENOMEM; 1630 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1631 if (!lo->lo_queue) 1632 goto out_free_idr; 1633 1634 /* 1635 * set queue make_request_fn 1636 */ 1637 blk_queue_make_request(lo->lo_queue, loop_make_request); 1638 lo->lo_queue->queuedata = lo; 1639 1640 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1641 if (!disk) 1642 goto out_free_queue; 1643 1644 /* 1645 * Disable partition scanning by default. The in-kernel partition 1646 * scanning can be requested individually per-device during its 1647 * setup. Userspace can always add and remove partitions from all 1648 * devices. The needed partition minors are allocated from the 1649 * extended minor space, the main loop device numbers will continue 1650 * to match the loop minors, regardless of the number of partitions 1651 * used. 1652 * 1653 * If max_part is given, partition scanning is globally enabled for 1654 * all loop devices. The minors for the main loop devices will be 1655 * multiples of max_part. 1656 * 1657 * Note: Global-for-all-devices, set-only-at-init, read-only module 1658 * parameteters like 'max_loop' and 'max_part' make things needlessly 1659 * complicated, are too static, inflexible and may surprise 1660 * userspace tools. Parameters like this in general should be avoided. 1661 */ 1662 if (!part_shift) 1663 disk->flags |= GENHD_FL_NO_PART_SCAN; 1664 disk->flags |= GENHD_FL_EXT_DEVT; 1665 mutex_init(&lo->lo_ctl_mutex); 1666 lo->lo_number = i; 1667 lo->lo_thread = NULL; 1668 init_waitqueue_head(&lo->lo_event); 1669 init_waitqueue_head(&lo->lo_req_wait); 1670 spin_lock_init(&lo->lo_lock); 1671 disk->major = LOOP_MAJOR; 1672 disk->first_minor = i << part_shift; 1673 disk->fops = &lo_fops; 1674 disk->private_data = lo; 1675 disk->queue = lo->lo_queue; 1676 sprintf(disk->disk_name, "loop%d", i); 1677 add_disk(disk); 1678 *l = lo; 1679 return lo->lo_number; 1680 1681 out_free_queue: 1682 blk_cleanup_queue(lo->lo_queue); 1683 out_free_idr: 1684 idr_remove(&loop_index_idr, i); 1685 out_free_dev: 1686 kfree(lo); 1687 out: 1688 return err; 1689 } 1690 1691 static void loop_remove(struct loop_device *lo) 1692 { 1693 del_gendisk(lo->lo_disk); 1694 blk_cleanup_queue(lo->lo_queue); 1695 put_disk(lo->lo_disk); 1696 kfree(lo); 1697 } 1698 1699 static int find_free_cb(int id, void *ptr, void *data) 1700 { 1701 struct loop_device *lo = ptr; 1702 struct loop_device **l = data; 1703 1704 if (lo->lo_state == Lo_unbound) { 1705 *l = lo; 1706 return 1; 1707 } 1708 return 0; 1709 } 1710 1711 static int loop_lookup(struct loop_device **l, int i) 1712 { 1713 struct loop_device *lo; 1714 int ret = -ENODEV; 1715 1716 if (i < 0) { 1717 int err; 1718 1719 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1720 if (err == 1) { 1721 *l = lo; 1722 ret = lo->lo_number; 1723 } 1724 goto out; 1725 } 1726 1727 /* lookup and return a specific i */ 1728 lo = idr_find(&loop_index_idr, i); 1729 if (lo) { 1730 *l = lo; 1731 ret = lo->lo_number; 1732 } 1733 out: 1734 return ret; 1735 } 1736 1737 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1738 { 1739 struct loop_device *lo; 1740 struct kobject *kobj; 1741 int err; 1742 1743 mutex_lock(&loop_index_mutex); 1744 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1745 if (err < 0) 1746 err = loop_add(&lo, MINOR(dev) >> part_shift); 1747 if (err < 0) 1748 kobj = NULL; 1749 else 1750 kobj = get_disk(lo->lo_disk); 1751 mutex_unlock(&loop_index_mutex); 1752 1753 *part = 0; 1754 return kobj; 1755 } 1756 1757 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1758 unsigned long parm) 1759 { 1760 struct loop_device *lo; 1761 int ret = -ENOSYS; 1762 1763 mutex_lock(&loop_index_mutex); 1764 switch (cmd) { 1765 case LOOP_CTL_ADD: 1766 ret = loop_lookup(&lo, parm); 1767 if (ret >= 0) { 1768 ret = -EEXIST; 1769 break; 1770 } 1771 ret = loop_add(&lo, parm); 1772 break; 1773 case LOOP_CTL_REMOVE: 1774 ret = loop_lookup(&lo, parm); 1775 if (ret < 0) 1776 break; 1777 mutex_lock(&lo->lo_ctl_mutex); 1778 if (lo->lo_state != Lo_unbound) { 1779 ret = -EBUSY; 1780 mutex_unlock(&lo->lo_ctl_mutex); 1781 break; 1782 } 1783 if (lo->lo_refcnt > 0) { 1784 ret = -EBUSY; 1785 mutex_unlock(&lo->lo_ctl_mutex); 1786 break; 1787 } 1788 lo->lo_disk->private_data = NULL; 1789 mutex_unlock(&lo->lo_ctl_mutex); 1790 idr_remove(&loop_index_idr, lo->lo_number); 1791 loop_remove(lo); 1792 break; 1793 case LOOP_CTL_GET_FREE: 1794 ret = loop_lookup(&lo, -1); 1795 if (ret >= 0) 1796 break; 1797 ret = loop_add(&lo, -1); 1798 } 1799 mutex_unlock(&loop_index_mutex); 1800 1801 return ret; 1802 } 1803 1804 static const struct file_operations loop_ctl_fops = { 1805 .open = nonseekable_open, 1806 .unlocked_ioctl = loop_control_ioctl, 1807 .compat_ioctl = loop_control_ioctl, 1808 .owner = THIS_MODULE, 1809 .llseek = noop_llseek, 1810 }; 1811 1812 static struct miscdevice loop_misc = { 1813 .minor = LOOP_CTRL_MINOR, 1814 .name = "loop-control", 1815 .fops = &loop_ctl_fops, 1816 }; 1817 1818 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1819 MODULE_ALIAS("devname:loop-control"); 1820 1821 static int __init loop_init(void) 1822 { 1823 int i, nr; 1824 unsigned long range; 1825 struct loop_device *lo; 1826 int err; 1827 1828 err = misc_register(&loop_misc); 1829 if (err < 0) 1830 return err; 1831 1832 part_shift = 0; 1833 if (max_part > 0) { 1834 part_shift = fls(max_part); 1835 1836 /* 1837 * Adjust max_part according to part_shift as it is exported 1838 * to user space so that user can decide correct minor number 1839 * if [s]he want to create more devices. 1840 * 1841 * Note that -1 is required because partition 0 is reserved 1842 * for the whole disk. 1843 */ 1844 max_part = (1UL << part_shift) - 1; 1845 } 1846 1847 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1848 err = -EINVAL; 1849 goto misc_out; 1850 } 1851 1852 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1853 err = -EINVAL; 1854 goto misc_out; 1855 } 1856 1857 /* 1858 * If max_loop is specified, create that many devices upfront. 1859 * This also becomes a hard limit. If max_loop is not specified, 1860 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1861 * init time. Loop devices can be requested on-demand with the 1862 * /dev/loop-control interface, or be instantiated by accessing 1863 * a 'dead' device node. 1864 */ 1865 if (max_loop) { 1866 nr = max_loop; 1867 range = max_loop << part_shift; 1868 } else { 1869 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1870 range = 1UL << MINORBITS; 1871 } 1872 1873 if (register_blkdev(LOOP_MAJOR, "loop")) { 1874 err = -EIO; 1875 goto misc_out; 1876 } 1877 1878 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1879 THIS_MODULE, loop_probe, NULL, NULL); 1880 1881 /* pre-create number of devices given by config or max_loop */ 1882 mutex_lock(&loop_index_mutex); 1883 for (i = 0; i < nr; i++) 1884 loop_add(&lo, i); 1885 mutex_unlock(&loop_index_mutex); 1886 1887 printk(KERN_INFO "loop: module loaded\n"); 1888 return 0; 1889 1890 misc_out: 1891 misc_deregister(&loop_misc); 1892 return err; 1893 } 1894 1895 static int loop_exit_cb(int id, void *ptr, void *data) 1896 { 1897 struct loop_device *lo = ptr; 1898 1899 loop_remove(lo); 1900 return 0; 1901 } 1902 1903 static void __exit loop_exit(void) 1904 { 1905 unsigned long range; 1906 1907 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 1908 1909 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 1910 idr_destroy(&loop_index_idr); 1911 1912 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1913 unregister_blkdev(LOOP_MAJOR, "loop"); 1914 1915 misc_deregister(&loop_misc); 1916 } 1917 1918 module_init(loop_init); 1919 module_exit(loop_exit); 1920 1921 #ifndef MODULE 1922 static int __init max_loop_setup(char *str) 1923 { 1924 max_loop = simple_strtol(str, NULL, 0); 1925 return 1; 1926 } 1927 1928 __setup("max_loop=", max_loop_setup); 1929 #endif 1930