xref: /openbmc/linux/drivers/block/loop.c (revision b1a66504)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79 
80 #include <asm/uaccess.h>
81 
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(loop_buf);
105 	kunmap_atomic(raw_buf);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(loop_buf);
134 	kunmap_atomic(raw_buf);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165 	loff_t size, loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	size = i_size_read(file->f_mapping->host);
169 	loopsize = size - offset;
170 	/* offset is beyond i_size, wierd but possible */
171 	if (loopsize < 0)
172 		return 0;
173 
174 	if (sizelimit > 0 && sizelimit < loopsize)
175 		loopsize = sizelimit;
176 	/*
177 	 * Unfortunately, if we want to do I/O on the device,
178 	 * the number of 512-byte sectors has to fit into a sector_t.
179 	 */
180 	return loopsize >> 9;
181 }
182 
183 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
184 {
185 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
186 }
187 
188 static int
189 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
190 {
191 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
192 	sector_t x = (sector_t)size;
193 	struct block_device *bdev = lo->lo_device;
194 
195 	if (unlikely((loff_t)x != size))
196 		return -EFBIG;
197 	if (lo->lo_offset != offset)
198 		lo->lo_offset = offset;
199 	if (lo->lo_sizelimit != sizelimit)
200 		lo->lo_sizelimit = sizelimit;
201 	set_capacity(lo->lo_disk, x);
202 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
203 	/* let user-space know about the new size */
204 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
205 	return 0;
206 }
207 
208 static inline int
209 lo_do_transfer(struct loop_device *lo, int cmd,
210 	       struct page *rpage, unsigned roffs,
211 	       struct page *lpage, unsigned loffs,
212 	       int size, sector_t rblock)
213 {
214 	if (unlikely(!lo->transfer))
215 		return 0;
216 
217 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
218 }
219 
220 /**
221  * __do_lo_send_write - helper for writing data to a loop device
222  *
223  * This helper just factors out common code between do_lo_send_direct_write()
224  * and do_lo_send_write().
225  */
226 static int __do_lo_send_write(struct file *file,
227 		u8 *buf, const int len, loff_t pos)
228 {
229 	ssize_t bw;
230 	mm_segment_t old_fs = get_fs();
231 
232 	set_fs(get_ds());
233 	bw = file->f_op->write(file, buf, len, &pos);
234 	set_fs(old_fs);
235 	if (likely(bw == len))
236 		return 0;
237 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
238 			(unsigned long long)pos, len);
239 	if (bw >= 0)
240 		bw = -EIO;
241 	return bw;
242 }
243 
244 /**
245  * do_lo_send_direct_write - helper for writing data to a loop device
246  *
247  * This is the fast, non-transforming version that does not need double
248  * buffering.
249  */
250 static int do_lo_send_direct_write(struct loop_device *lo,
251 		struct bio_vec *bvec, loff_t pos, struct page *page)
252 {
253 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
254 			kmap(bvec->bv_page) + bvec->bv_offset,
255 			bvec->bv_len, pos);
256 	kunmap(bvec->bv_page);
257 	cond_resched();
258 	return bw;
259 }
260 
261 /**
262  * do_lo_send_write - helper for writing data to a loop device
263  *
264  * This is the slow, transforming version that needs to double buffer the
265  * data as it cannot do the transformations in place without having direct
266  * access to the destination pages of the backing file.
267  */
268 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
269 		loff_t pos, struct page *page)
270 {
271 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
272 			bvec->bv_offset, bvec->bv_len, pos >> 9);
273 	if (likely(!ret))
274 		return __do_lo_send_write(lo->lo_backing_file,
275 				page_address(page), bvec->bv_len,
276 				pos);
277 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
278 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
279 	if (ret > 0)
280 		ret = -EIO;
281 	return ret;
282 }
283 
284 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
285 {
286 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
287 			struct page *page);
288 	struct bio_vec *bvec;
289 	struct page *page = NULL;
290 	int i, ret = 0;
291 
292 	if (lo->transfer != transfer_none) {
293 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
294 		if (unlikely(!page))
295 			goto fail;
296 		kmap(page);
297 		do_lo_send = do_lo_send_write;
298 	} else {
299 		do_lo_send = do_lo_send_direct_write;
300 	}
301 
302 	bio_for_each_segment(bvec, bio, i) {
303 		ret = do_lo_send(lo, bvec, pos, page);
304 		if (ret < 0)
305 			break;
306 		pos += bvec->bv_len;
307 	}
308 	if (page) {
309 		kunmap(page);
310 		__free_page(page);
311 	}
312 out:
313 	return ret;
314 fail:
315 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
316 	ret = -ENOMEM;
317 	goto out;
318 }
319 
320 struct lo_read_data {
321 	struct loop_device *lo;
322 	struct page *page;
323 	unsigned offset;
324 	int bsize;
325 };
326 
327 static int
328 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
329 		struct splice_desc *sd)
330 {
331 	struct lo_read_data *p = sd->u.data;
332 	struct loop_device *lo = p->lo;
333 	struct page *page = buf->page;
334 	sector_t IV;
335 	int size;
336 
337 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
338 							(buf->offset >> 9);
339 	size = sd->len;
340 	if (size > p->bsize)
341 		size = p->bsize;
342 
343 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
344 		printk(KERN_ERR "loop: transfer error block %ld\n",
345 		       page->index);
346 		size = -EINVAL;
347 	}
348 
349 	flush_dcache_page(p->page);
350 
351 	if (size > 0)
352 		p->offset += size;
353 
354 	return size;
355 }
356 
357 static int
358 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
359 {
360 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
361 }
362 
363 static ssize_t
364 do_lo_receive(struct loop_device *lo,
365 	      struct bio_vec *bvec, int bsize, loff_t pos)
366 {
367 	struct lo_read_data cookie;
368 	struct splice_desc sd;
369 	struct file *file;
370 	ssize_t retval;
371 
372 	cookie.lo = lo;
373 	cookie.page = bvec->bv_page;
374 	cookie.offset = bvec->bv_offset;
375 	cookie.bsize = bsize;
376 
377 	sd.len = 0;
378 	sd.total_len = bvec->bv_len;
379 	sd.flags = 0;
380 	sd.pos = pos;
381 	sd.u.data = &cookie;
382 
383 	file = lo->lo_backing_file;
384 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
385 
386 	return retval;
387 }
388 
389 static int
390 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
391 {
392 	struct bio_vec *bvec;
393 	ssize_t s;
394 	int i;
395 
396 	bio_for_each_segment(bvec, bio, i) {
397 		s = do_lo_receive(lo, bvec, bsize, pos);
398 		if (s < 0)
399 			return s;
400 
401 		if (s != bvec->bv_len) {
402 			zero_fill_bio(bio);
403 			break;
404 		}
405 		pos += bvec->bv_len;
406 	}
407 	return 0;
408 }
409 
410 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
411 {
412 	loff_t pos;
413 	int ret;
414 
415 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
416 
417 	if (bio_rw(bio) == WRITE) {
418 		struct file *file = lo->lo_backing_file;
419 
420 		if (bio->bi_rw & REQ_FLUSH) {
421 			ret = vfs_fsync(file, 0);
422 			if (unlikely(ret && ret != -EINVAL)) {
423 				ret = -EIO;
424 				goto out;
425 			}
426 		}
427 
428 		/*
429 		 * We use punch hole to reclaim the free space used by the
430 		 * image a.k.a. discard. However we do not support discard if
431 		 * encryption is enabled, because it may give an attacker
432 		 * useful information.
433 		 */
434 		if (bio->bi_rw & REQ_DISCARD) {
435 			struct file *file = lo->lo_backing_file;
436 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
437 
438 			if ((!file->f_op->fallocate) ||
439 			    lo->lo_encrypt_key_size) {
440 				ret = -EOPNOTSUPP;
441 				goto out;
442 			}
443 			ret = file->f_op->fallocate(file, mode, pos,
444 						    bio->bi_size);
445 			if (unlikely(ret && ret != -EINVAL &&
446 				     ret != -EOPNOTSUPP))
447 				ret = -EIO;
448 			goto out;
449 		}
450 
451 		ret = lo_send(lo, bio, pos);
452 
453 		if ((bio->bi_rw & REQ_FUA) && !ret) {
454 			ret = vfs_fsync(file, 0);
455 			if (unlikely(ret && ret != -EINVAL))
456 				ret = -EIO;
457 		}
458 	} else
459 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
460 
461 out:
462 	return ret;
463 }
464 
465 /*
466  * Add bio to back of pending list
467  */
468 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
469 {
470 	lo->lo_bio_count++;
471 	bio_list_add(&lo->lo_bio_list, bio);
472 }
473 
474 /*
475  * Grab first pending buffer
476  */
477 static struct bio *loop_get_bio(struct loop_device *lo)
478 {
479 	lo->lo_bio_count--;
480 	return bio_list_pop(&lo->lo_bio_list);
481 }
482 
483 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
484 {
485 	struct loop_device *lo = q->queuedata;
486 	int rw = bio_rw(old_bio);
487 
488 	if (rw == READA)
489 		rw = READ;
490 
491 	BUG_ON(!lo || (rw != READ && rw != WRITE));
492 
493 	spin_lock_irq(&lo->lo_lock);
494 	if (lo->lo_state != Lo_bound)
495 		goto out;
496 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
497 		goto out;
498 	if (lo->lo_bio_count >= q->nr_congestion_on)
499 		wait_event_lock_irq(lo->lo_req_wait,
500 				    lo->lo_bio_count < q->nr_congestion_off,
501 				    lo->lo_lock);
502 	loop_add_bio(lo, old_bio);
503 	wake_up(&lo->lo_event);
504 	spin_unlock_irq(&lo->lo_lock);
505 	return;
506 
507 out:
508 	spin_unlock_irq(&lo->lo_lock);
509 	bio_io_error(old_bio);
510 }
511 
512 struct switch_request {
513 	struct file *file;
514 	struct completion wait;
515 };
516 
517 static void do_loop_switch(struct loop_device *, struct switch_request *);
518 
519 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
520 {
521 	if (unlikely(!bio->bi_bdev)) {
522 		do_loop_switch(lo, bio->bi_private);
523 		bio_put(bio);
524 	} else {
525 		int ret = do_bio_filebacked(lo, bio);
526 		bio_endio(bio, ret);
527 	}
528 }
529 
530 /*
531  * worker thread that handles reads/writes to file backed loop devices,
532  * to avoid blocking in our make_request_fn. it also does loop decrypting
533  * on reads for block backed loop, as that is too heavy to do from
534  * b_end_io context where irqs may be disabled.
535  *
536  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
537  * calling kthread_stop().  Therefore once kthread_should_stop() is
538  * true, make_request will not place any more requests.  Therefore
539  * once kthread_should_stop() is true and lo_bio is NULL, we are
540  * done with the loop.
541  */
542 static int loop_thread(void *data)
543 {
544 	struct loop_device *lo = data;
545 	struct bio *bio;
546 
547 	set_user_nice(current, -20);
548 
549 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
550 
551 		wait_event_interruptible(lo->lo_event,
552 				!bio_list_empty(&lo->lo_bio_list) ||
553 				kthread_should_stop());
554 
555 		if (bio_list_empty(&lo->lo_bio_list))
556 			continue;
557 		spin_lock_irq(&lo->lo_lock);
558 		bio = loop_get_bio(lo);
559 		if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
560 			wake_up(&lo->lo_req_wait);
561 		spin_unlock_irq(&lo->lo_lock);
562 
563 		BUG_ON(!bio);
564 		loop_handle_bio(lo, bio);
565 	}
566 
567 	return 0;
568 }
569 
570 /*
571  * loop_switch performs the hard work of switching a backing store.
572  * First it needs to flush existing IO, it does this by sending a magic
573  * BIO down the pipe. The completion of this BIO does the actual switch.
574  */
575 static int loop_switch(struct loop_device *lo, struct file *file)
576 {
577 	struct switch_request w;
578 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
579 	if (!bio)
580 		return -ENOMEM;
581 	init_completion(&w.wait);
582 	w.file = file;
583 	bio->bi_private = &w;
584 	bio->bi_bdev = NULL;
585 	loop_make_request(lo->lo_queue, bio);
586 	wait_for_completion(&w.wait);
587 	return 0;
588 }
589 
590 /*
591  * Helper to flush the IOs in loop, but keeping loop thread running
592  */
593 static int loop_flush(struct loop_device *lo)
594 {
595 	/* loop not yet configured, no running thread, nothing to flush */
596 	if (!lo->lo_thread)
597 		return 0;
598 
599 	return loop_switch(lo, NULL);
600 }
601 
602 /*
603  * Do the actual switch; called from the BIO completion routine
604  */
605 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
606 {
607 	struct file *file = p->file;
608 	struct file *old_file = lo->lo_backing_file;
609 	struct address_space *mapping;
610 
611 	/* if no new file, only flush of queued bios requested */
612 	if (!file)
613 		goto out;
614 
615 	mapping = file->f_mapping;
616 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
617 	lo->lo_backing_file = file;
618 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
619 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
620 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
621 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
622 out:
623 	complete(&p->wait);
624 }
625 
626 
627 /*
628  * loop_change_fd switched the backing store of a loopback device to
629  * a new file. This is useful for operating system installers to free up
630  * the original file and in High Availability environments to switch to
631  * an alternative location for the content in case of server meltdown.
632  * This can only work if the loop device is used read-only, and if the
633  * new backing store is the same size and type as the old backing store.
634  */
635 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
636 			  unsigned int arg)
637 {
638 	struct file	*file, *old_file;
639 	struct inode	*inode;
640 	int		error;
641 
642 	error = -ENXIO;
643 	if (lo->lo_state != Lo_bound)
644 		goto out;
645 
646 	/* the loop device has to be read-only */
647 	error = -EINVAL;
648 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
649 		goto out;
650 
651 	error = -EBADF;
652 	file = fget(arg);
653 	if (!file)
654 		goto out;
655 
656 	inode = file->f_mapping->host;
657 	old_file = lo->lo_backing_file;
658 
659 	error = -EINVAL;
660 
661 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
662 		goto out_putf;
663 
664 	/* size of the new backing store needs to be the same */
665 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
666 		goto out_putf;
667 
668 	/* and ... switch */
669 	error = loop_switch(lo, file);
670 	if (error)
671 		goto out_putf;
672 
673 	fput(old_file);
674 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
675 		ioctl_by_bdev(bdev, BLKRRPART, 0);
676 	return 0;
677 
678  out_putf:
679 	fput(file);
680  out:
681 	return error;
682 }
683 
684 static inline int is_loop_device(struct file *file)
685 {
686 	struct inode *i = file->f_mapping->host;
687 
688 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
689 }
690 
691 /* loop sysfs attributes */
692 
693 static ssize_t loop_attr_show(struct device *dev, char *page,
694 			      ssize_t (*callback)(struct loop_device *, char *))
695 {
696 	struct gendisk *disk = dev_to_disk(dev);
697 	struct loop_device *lo = disk->private_data;
698 
699 	return callback(lo, page);
700 }
701 
702 #define LOOP_ATTR_RO(_name)						\
703 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
704 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
705 				struct device_attribute *attr, char *b)	\
706 {									\
707 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
708 }									\
709 static struct device_attribute loop_attr_##_name =			\
710 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
711 
712 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
713 {
714 	ssize_t ret;
715 	char *p = NULL;
716 
717 	spin_lock_irq(&lo->lo_lock);
718 	if (lo->lo_backing_file)
719 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
720 	spin_unlock_irq(&lo->lo_lock);
721 
722 	if (IS_ERR_OR_NULL(p))
723 		ret = PTR_ERR(p);
724 	else {
725 		ret = strlen(p);
726 		memmove(buf, p, ret);
727 		buf[ret++] = '\n';
728 		buf[ret] = 0;
729 	}
730 
731 	return ret;
732 }
733 
734 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
735 {
736 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
737 }
738 
739 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
740 {
741 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
742 }
743 
744 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
745 {
746 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
747 
748 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
749 }
750 
751 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
752 {
753 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
754 
755 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
756 }
757 
758 LOOP_ATTR_RO(backing_file);
759 LOOP_ATTR_RO(offset);
760 LOOP_ATTR_RO(sizelimit);
761 LOOP_ATTR_RO(autoclear);
762 LOOP_ATTR_RO(partscan);
763 
764 static struct attribute *loop_attrs[] = {
765 	&loop_attr_backing_file.attr,
766 	&loop_attr_offset.attr,
767 	&loop_attr_sizelimit.attr,
768 	&loop_attr_autoclear.attr,
769 	&loop_attr_partscan.attr,
770 	NULL,
771 };
772 
773 static struct attribute_group loop_attribute_group = {
774 	.name = "loop",
775 	.attrs= loop_attrs,
776 };
777 
778 static int loop_sysfs_init(struct loop_device *lo)
779 {
780 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
781 				  &loop_attribute_group);
782 }
783 
784 static void loop_sysfs_exit(struct loop_device *lo)
785 {
786 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
787 			   &loop_attribute_group);
788 }
789 
790 static void loop_config_discard(struct loop_device *lo)
791 {
792 	struct file *file = lo->lo_backing_file;
793 	struct inode *inode = file->f_mapping->host;
794 	struct request_queue *q = lo->lo_queue;
795 
796 	/*
797 	 * We use punch hole to reclaim the free space used by the
798 	 * image a.k.a. discard. However we do support discard if
799 	 * encryption is enabled, because it may give an attacker
800 	 * useful information.
801 	 */
802 	if ((!file->f_op->fallocate) ||
803 	    lo->lo_encrypt_key_size) {
804 		q->limits.discard_granularity = 0;
805 		q->limits.discard_alignment = 0;
806 		q->limits.max_discard_sectors = 0;
807 		q->limits.discard_zeroes_data = 0;
808 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
809 		return;
810 	}
811 
812 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
813 	q->limits.discard_alignment = 0;
814 	q->limits.max_discard_sectors = UINT_MAX >> 9;
815 	q->limits.discard_zeroes_data = 1;
816 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
817 }
818 
819 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
820 		       struct block_device *bdev, unsigned int arg)
821 {
822 	struct file	*file, *f;
823 	struct inode	*inode;
824 	struct address_space *mapping;
825 	unsigned lo_blocksize;
826 	int		lo_flags = 0;
827 	int		error;
828 	loff_t		size;
829 
830 	/* This is safe, since we have a reference from open(). */
831 	__module_get(THIS_MODULE);
832 
833 	error = -EBADF;
834 	file = fget(arg);
835 	if (!file)
836 		goto out;
837 
838 	error = -EBUSY;
839 	if (lo->lo_state != Lo_unbound)
840 		goto out_putf;
841 
842 	/* Avoid recursion */
843 	f = file;
844 	while (is_loop_device(f)) {
845 		struct loop_device *l;
846 
847 		if (f->f_mapping->host->i_bdev == bdev)
848 			goto out_putf;
849 
850 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
851 		if (l->lo_state == Lo_unbound) {
852 			error = -EINVAL;
853 			goto out_putf;
854 		}
855 		f = l->lo_backing_file;
856 	}
857 
858 	mapping = file->f_mapping;
859 	inode = mapping->host;
860 
861 	error = -EINVAL;
862 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
863 		goto out_putf;
864 
865 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
866 	    !file->f_op->write)
867 		lo_flags |= LO_FLAGS_READ_ONLY;
868 
869 	lo_blocksize = S_ISBLK(inode->i_mode) ?
870 		inode->i_bdev->bd_block_size : PAGE_SIZE;
871 
872 	error = -EFBIG;
873 	size = get_loop_size(lo, file);
874 	if ((loff_t)(sector_t)size != size)
875 		goto out_putf;
876 
877 	error = 0;
878 
879 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
880 
881 	lo->lo_blocksize = lo_blocksize;
882 	lo->lo_device = bdev;
883 	lo->lo_flags = lo_flags;
884 	lo->lo_backing_file = file;
885 	lo->transfer = transfer_none;
886 	lo->ioctl = NULL;
887 	lo->lo_sizelimit = 0;
888 	lo->lo_bio_count = 0;
889 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
890 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
891 
892 	bio_list_init(&lo->lo_bio_list);
893 
894 	/*
895 	 * set queue make_request_fn, and add limits based on lower level
896 	 * device
897 	 */
898 	blk_queue_make_request(lo->lo_queue, loop_make_request);
899 	lo->lo_queue->queuedata = lo;
900 
901 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
902 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
903 
904 	set_capacity(lo->lo_disk, size);
905 	bd_set_size(bdev, size << 9);
906 	loop_sysfs_init(lo);
907 	/* let user-space know about the new size */
908 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
909 
910 	set_blocksize(bdev, lo_blocksize);
911 
912 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
913 						lo->lo_number);
914 	if (IS_ERR(lo->lo_thread)) {
915 		error = PTR_ERR(lo->lo_thread);
916 		goto out_clr;
917 	}
918 	lo->lo_state = Lo_bound;
919 	wake_up_process(lo->lo_thread);
920 	if (part_shift)
921 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
922 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
923 		ioctl_by_bdev(bdev, BLKRRPART, 0);
924 	return 0;
925 
926 out_clr:
927 	loop_sysfs_exit(lo);
928 	lo->lo_thread = NULL;
929 	lo->lo_device = NULL;
930 	lo->lo_backing_file = NULL;
931 	lo->lo_flags = 0;
932 	set_capacity(lo->lo_disk, 0);
933 	invalidate_bdev(bdev);
934 	bd_set_size(bdev, 0);
935 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
936 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
937 	lo->lo_state = Lo_unbound;
938  out_putf:
939 	fput(file);
940  out:
941 	/* This is safe: open() is still holding a reference. */
942 	module_put(THIS_MODULE);
943 	return error;
944 }
945 
946 static int
947 loop_release_xfer(struct loop_device *lo)
948 {
949 	int err = 0;
950 	struct loop_func_table *xfer = lo->lo_encryption;
951 
952 	if (xfer) {
953 		if (xfer->release)
954 			err = xfer->release(lo);
955 		lo->transfer = NULL;
956 		lo->lo_encryption = NULL;
957 		module_put(xfer->owner);
958 	}
959 	return err;
960 }
961 
962 static int
963 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
964 	       const struct loop_info64 *i)
965 {
966 	int err = 0;
967 
968 	if (xfer) {
969 		struct module *owner = xfer->owner;
970 
971 		if (!try_module_get(owner))
972 			return -EINVAL;
973 		if (xfer->init)
974 			err = xfer->init(lo, i);
975 		if (err)
976 			module_put(owner);
977 		else
978 			lo->lo_encryption = xfer;
979 	}
980 	return err;
981 }
982 
983 static int loop_clr_fd(struct loop_device *lo)
984 {
985 	struct file *filp = lo->lo_backing_file;
986 	gfp_t gfp = lo->old_gfp_mask;
987 	struct block_device *bdev = lo->lo_device;
988 
989 	if (lo->lo_state != Lo_bound)
990 		return -ENXIO;
991 
992 	/*
993 	 * If we've explicitly asked to tear down the loop device,
994 	 * and it has an elevated reference count, set it for auto-teardown when
995 	 * the last reference goes away. This stops $!~#$@ udev from
996 	 * preventing teardown because it decided that it needs to run blkid on
997 	 * the loopback device whenever they appear. xfstests is notorious for
998 	 * failing tests because blkid via udev races with a losetup
999 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1000 	 * command to fail with EBUSY.
1001 	 */
1002 	if (lo->lo_refcnt > 1) {
1003 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1004 		mutex_unlock(&lo->lo_ctl_mutex);
1005 		return 0;
1006 	}
1007 
1008 	if (filp == NULL)
1009 		return -EINVAL;
1010 
1011 	spin_lock_irq(&lo->lo_lock);
1012 	lo->lo_state = Lo_rundown;
1013 	spin_unlock_irq(&lo->lo_lock);
1014 
1015 	kthread_stop(lo->lo_thread);
1016 
1017 	spin_lock_irq(&lo->lo_lock);
1018 	lo->lo_backing_file = NULL;
1019 	spin_unlock_irq(&lo->lo_lock);
1020 
1021 	loop_release_xfer(lo);
1022 	lo->transfer = NULL;
1023 	lo->ioctl = NULL;
1024 	lo->lo_device = NULL;
1025 	lo->lo_encryption = NULL;
1026 	lo->lo_offset = 0;
1027 	lo->lo_sizelimit = 0;
1028 	lo->lo_encrypt_key_size = 0;
1029 	lo->lo_thread = NULL;
1030 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1031 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1032 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1033 	if (bdev)
1034 		invalidate_bdev(bdev);
1035 	set_capacity(lo->lo_disk, 0);
1036 	loop_sysfs_exit(lo);
1037 	if (bdev) {
1038 		bd_set_size(bdev, 0);
1039 		/* let user-space know about this change */
1040 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1041 	}
1042 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1043 	lo->lo_state = Lo_unbound;
1044 	/* This is safe: open() is still holding a reference. */
1045 	module_put(THIS_MODULE);
1046 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1047 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1048 	lo->lo_flags = 0;
1049 	if (!part_shift)
1050 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1051 	mutex_unlock(&lo->lo_ctl_mutex);
1052 	/*
1053 	 * Need not hold lo_ctl_mutex to fput backing file.
1054 	 * Calling fput holding lo_ctl_mutex triggers a circular
1055 	 * lock dependency possibility warning as fput can take
1056 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1057 	 */
1058 	fput(filp);
1059 	return 0;
1060 }
1061 
1062 static int
1063 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1064 {
1065 	int err;
1066 	struct loop_func_table *xfer;
1067 	kuid_t uid = current_uid();
1068 
1069 	if (lo->lo_encrypt_key_size &&
1070 	    !uid_eq(lo->lo_key_owner, uid) &&
1071 	    !capable(CAP_SYS_ADMIN))
1072 		return -EPERM;
1073 	if (lo->lo_state != Lo_bound)
1074 		return -ENXIO;
1075 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1076 		return -EINVAL;
1077 
1078 	err = loop_release_xfer(lo);
1079 	if (err)
1080 		return err;
1081 
1082 	if (info->lo_encrypt_type) {
1083 		unsigned int type = info->lo_encrypt_type;
1084 
1085 		if (type >= MAX_LO_CRYPT)
1086 			return -EINVAL;
1087 		xfer = xfer_funcs[type];
1088 		if (xfer == NULL)
1089 			return -EINVAL;
1090 	} else
1091 		xfer = NULL;
1092 
1093 	err = loop_init_xfer(lo, xfer, info);
1094 	if (err)
1095 		return err;
1096 
1097 	if (lo->lo_offset != info->lo_offset ||
1098 	    lo->lo_sizelimit != info->lo_sizelimit)
1099 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1100 			return -EFBIG;
1101 
1102 	loop_config_discard(lo);
1103 
1104 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1105 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1106 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1107 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1108 
1109 	if (!xfer)
1110 		xfer = &none_funcs;
1111 	lo->transfer = xfer->transfer;
1112 	lo->ioctl = xfer->ioctl;
1113 
1114 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1115 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1116 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1117 
1118 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1119 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1120 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1121 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1122 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1123 	}
1124 
1125 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1126 	lo->lo_init[0] = info->lo_init[0];
1127 	lo->lo_init[1] = info->lo_init[1];
1128 	if (info->lo_encrypt_key_size) {
1129 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1130 		       info->lo_encrypt_key_size);
1131 		lo->lo_key_owner = uid;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int
1138 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1139 {
1140 	struct file *file = lo->lo_backing_file;
1141 	struct kstat stat;
1142 	int error;
1143 
1144 	if (lo->lo_state != Lo_bound)
1145 		return -ENXIO;
1146 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1147 	if (error)
1148 		return error;
1149 	memset(info, 0, sizeof(*info));
1150 	info->lo_number = lo->lo_number;
1151 	info->lo_device = huge_encode_dev(stat.dev);
1152 	info->lo_inode = stat.ino;
1153 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1154 	info->lo_offset = lo->lo_offset;
1155 	info->lo_sizelimit = lo->lo_sizelimit;
1156 	info->lo_flags = lo->lo_flags;
1157 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1158 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1159 	info->lo_encrypt_type =
1160 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1161 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1162 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1163 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1164 		       lo->lo_encrypt_key_size);
1165 	}
1166 	return 0;
1167 }
1168 
1169 static void
1170 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1171 {
1172 	memset(info64, 0, sizeof(*info64));
1173 	info64->lo_number = info->lo_number;
1174 	info64->lo_device = info->lo_device;
1175 	info64->lo_inode = info->lo_inode;
1176 	info64->lo_rdevice = info->lo_rdevice;
1177 	info64->lo_offset = info->lo_offset;
1178 	info64->lo_sizelimit = 0;
1179 	info64->lo_encrypt_type = info->lo_encrypt_type;
1180 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1181 	info64->lo_flags = info->lo_flags;
1182 	info64->lo_init[0] = info->lo_init[0];
1183 	info64->lo_init[1] = info->lo_init[1];
1184 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1185 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1186 	else
1187 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1188 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1189 }
1190 
1191 static int
1192 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1193 {
1194 	memset(info, 0, sizeof(*info));
1195 	info->lo_number = info64->lo_number;
1196 	info->lo_device = info64->lo_device;
1197 	info->lo_inode = info64->lo_inode;
1198 	info->lo_rdevice = info64->lo_rdevice;
1199 	info->lo_offset = info64->lo_offset;
1200 	info->lo_encrypt_type = info64->lo_encrypt_type;
1201 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1202 	info->lo_flags = info64->lo_flags;
1203 	info->lo_init[0] = info64->lo_init[0];
1204 	info->lo_init[1] = info64->lo_init[1];
1205 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1206 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1207 	else
1208 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1209 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1210 
1211 	/* error in case values were truncated */
1212 	if (info->lo_device != info64->lo_device ||
1213 	    info->lo_rdevice != info64->lo_rdevice ||
1214 	    info->lo_inode != info64->lo_inode ||
1215 	    info->lo_offset != info64->lo_offset)
1216 		return -EOVERFLOW;
1217 
1218 	return 0;
1219 }
1220 
1221 static int
1222 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1223 {
1224 	struct loop_info info;
1225 	struct loop_info64 info64;
1226 
1227 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1228 		return -EFAULT;
1229 	loop_info64_from_old(&info, &info64);
1230 	return loop_set_status(lo, &info64);
1231 }
1232 
1233 static int
1234 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1235 {
1236 	struct loop_info64 info64;
1237 
1238 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1239 		return -EFAULT;
1240 	return loop_set_status(lo, &info64);
1241 }
1242 
1243 static int
1244 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1245 	struct loop_info info;
1246 	struct loop_info64 info64;
1247 	int err = 0;
1248 
1249 	if (!arg)
1250 		err = -EINVAL;
1251 	if (!err)
1252 		err = loop_get_status(lo, &info64);
1253 	if (!err)
1254 		err = loop_info64_to_old(&info64, &info);
1255 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1256 		err = -EFAULT;
1257 
1258 	return err;
1259 }
1260 
1261 static int
1262 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1263 	struct loop_info64 info64;
1264 	int err = 0;
1265 
1266 	if (!arg)
1267 		err = -EINVAL;
1268 	if (!err)
1269 		err = loop_get_status(lo, &info64);
1270 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1271 		err = -EFAULT;
1272 
1273 	return err;
1274 }
1275 
1276 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1277 {
1278 	if (unlikely(lo->lo_state != Lo_bound))
1279 		return -ENXIO;
1280 
1281 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1282 }
1283 
1284 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1285 	unsigned int cmd, unsigned long arg)
1286 {
1287 	struct loop_device *lo = bdev->bd_disk->private_data;
1288 	int err;
1289 
1290 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1291 	switch (cmd) {
1292 	case LOOP_SET_FD:
1293 		err = loop_set_fd(lo, mode, bdev, arg);
1294 		break;
1295 	case LOOP_CHANGE_FD:
1296 		err = loop_change_fd(lo, bdev, arg);
1297 		break;
1298 	case LOOP_CLR_FD:
1299 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1300 		err = loop_clr_fd(lo);
1301 		if (!err)
1302 			goto out_unlocked;
1303 		break;
1304 	case LOOP_SET_STATUS:
1305 		err = -EPERM;
1306 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1307 			err = loop_set_status_old(lo,
1308 					(struct loop_info __user *)arg);
1309 		break;
1310 	case LOOP_GET_STATUS:
1311 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1312 		break;
1313 	case LOOP_SET_STATUS64:
1314 		err = -EPERM;
1315 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1316 			err = loop_set_status64(lo,
1317 					(struct loop_info64 __user *) arg);
1318 		break;
1319 	case LOOP_GET_STATUS64:
1320 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1321 		break;
1322 	case LOOP_SET_CAPACITY:
1323 		err = -EPERM;
1324 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1325 			err = loop_set_capacity(lo, bdev);
1326 		break;
1327 	default:
1328 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1329 	}
1330 	mutex_unlock(&lo->lo_ctl_mutex);
1331 
1332 out_unlocked:
1333 	return err;
1334 }
1335 
1336 #ifdef CONFIG_COMPAT
1337 struct compat_loop_info {
1338 	compat_int_t	lo_number;      /* ioctl r/o */
1339 	compat_dev_t	lo_device;      /* ioctl r/o */
1340 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1341 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1342 	compat_int_t	lo_offset;
1343 	compat_int_t	lo_encrypt_type;
1344 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1345 	compat_int_t	lo_flags;       /* ioctl r/o */
1346 	char		lo_name[LO_NAME_SIZE];
1347 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1348 	compat_ulong_t	lo_init[2];
1349 	char		reserved[4];
1350 };
1351 
1352 /*
1353  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1354  * - noinlined to reduce stack space usage in main part of driver
1355  */
1356 static noinline int
1357 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1358 			struct loop_info64 *info64)
1359 {
1360 	struct compat_loop_info info;
1361 
1362 	if (copy_from_user(&info, arg, sizeof(info)))
1363 		return -EFAULT;
1364 
1365 	memset(info64, 0, sizeof(*info64));
1366 	info64->lo_number = info.lo_number;
1367 	info64->lo_device = info.lo_device;
1368 	info64->lo_inode = info.lo_inode;
1369 	info64->lo_rdevice = info.lo_rdevice;
1370 	info64->lo_offset = info.lo_offset;
1371 	info64->lo_sizelimit = 0;
1372 	info64->lo_encrypt_type = info.lo_encrypt_type;
1373 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1374 	info64->lo_flags = info.lo_flags;
1375 	info64->lo_init[0] = info.lo_init[0];
1376 	info64->lo_init[1] = info.lo_init[1];
1377 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1378 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1379 	else
1380 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1381 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1382 	return 0;
1383 }
1384 
1385 /*
1386  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1387  * - noinlined to reduce stack space usage in main part of driver
1388  */
1389 static noinline int
1390 loop_info64_to_compat(const struct loop_info64 *info64,
1391 		      struct compat_loop_info __user *arg)
1392 {
1393 	struct compat_loop_info info;
1394 
1395 	memset(&info, 0, sizeof(info));
1396 	info.lo_number = info64->lo_number;
1397 	info.lo_device = info64->lo_device;
1398 	info.lo_inode = info64->lo_inode;
1399 	info.lo_rdevice = info64->lo_rdevice;
1400 	info.lo_offset = info64->lo_offset;
1401 	info.lo_encrypt_type = info64->lo_encrypt_type;
1402 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1403 	info.lo_flags = info64->lo_flags;
1404 	info.lo_init[0] = info64->lo_init[0];
1405 	info.lo_init[1] = info64->lo_init[1];
1406 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1407 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1408 	else
1409 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1410 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1411 
1412 	/* error in case values were truncated */
1413 	if (info.lo_device != info64->lo_device ||
1414 	    info.lo_rdevice != info64->lo_rdevice ||
1415 	    info.lo_inode != info64->lo_inode ||
1416 	    info.lo_offset != info64->lo_offset ||
1417 	    info.lo_init[0] != info64->lo_init[0] ||
1418 	    info.lo_init[1] != info64->lo_init[1])
1419 		return -EOVERFLOW;
1420 
1421 	if (copy_to_user(arg, &info, sizeof(info)))
1422 		return -EFAULT;
1423 	return 0;
1424 }
1425 
1426 static int
1427 loop_set_status_compat(struct loop_device *lo,
1428 		       const struct compat_loop_info __user *arg)
1429 {
1430 	struct loop_info64 info64;
1431 	int ret;
1432 
1433 	ret = loop_info64_from_compat(arg, &info64);
1434 	if (ret < 0)
1435 		return ret;
1436 	return loop_set_status(lo, &info64);
1437 }
1438 
1439 static int
1440 loop_get_status_compat(struct loop_device *lo,
1441 		       struct compat_loop_info __user *arg)
1442 {
1443 	struct loop_info64 info64;
1444 	int err = 0;
1445 
1446 	if (!arg)
1447 		err = -EINVAL;
1448 	if (!err)
1449 		err = loop_get_status(lo, &info64);
1450 	if (!err)
1451 		err = loop_info64_to_compat(&info64, arg);
1452 	return err;
1453 }
1454 
1455 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1456 			   unsigned int cmd, unsigned long arg)
1457 {
1458 	struct loop_device *lo = bdev->bd_disk->private_data;
1459 	int err;
1460 
1461 	switch(cmd) {
1462 	case LOOP_SET_STATUS:
1463 		mutex_lock(&lo->lo_ctl_mutex);
1464 		err = loop_set_status_compat(
1465 			lo, (const struct compat_loop_info __user *) arg);
1466 		mutex_unlock(&lo->lo_ctl_mutex);
1467 		break;
1468 	case LOOP_GET_STATUS:
1469 		mutex_lock(&lo->lo_ctl_mutex);
1470 		err = loop_get_status_compat(
1471 			lo, (struct compat_loop_info __user *) arg);
1472 		mutex_unlock(&lo->lo_ctl_mutex);
1473 		break;
1474 	case LOOP_SET_CAPACITY:
1475 	case LOOP_CLR_FD:
1476 	case LOOP_GET_STATUS64:
1477 	case LOOP_SET_STATUS64:
1478 		arg = (unsigned long) compat_ptr(arg);
1479 	case LOOP_SET_FD:
1480 	case LOOP_CHANGE_FD:
1481 		err = lo_ioctl(bdev, mode, cmd, arg);
1482 		break;
1483 	default:
1484 		err = -ENOIOCTLCMD;
1485 		break;
1486 	}
1487 	return err;
1488 }
1489 #endif
1490 
1491 static int lo_open(struct block_device *bdev, fmode_t mode)
1492 {
1493 	struct loop_device *lo;
1494 	int err = 0;
1495 
1496 	mutex_lock(&loop_index_mutex);
1497 	lo = bdev->bd_disk->private_data;
1498 	if (!lo) {
1499 		err = -ENXIO;
1500 		goto out;
1501 	}
1502 
1503 	mutex_lock(&lo->lo_ctl_mutex);
1504 	lo->lo_refcnt++;
1505 	mutex_unlock(&lo->lo_ctl_mutex);
1506 out:
1507 	mutex_unlock(&loop_index_mutex);
1508 	return err;
1509 }
1510 
1511 static int lo_release(struct gendisk *disk, fmode_t mode)
1512 {
1513 	struct loop_device *lo = disk->private_data;
1514 	int err;
1515 
1516 	mutex_lock(&lo->lo_ctl_mutex);
1517 
1518 	if (--lo->lo_refcnt)
1519 		goto out;
1520 
1521 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1522 		/*
1523 		 * In autoclear mode, stop the loop thread
1524 		 * and remove configuration after last close.
1525 		 */
1526 		err = loop_clr_fd(lo);
1527 		if (!err)
1528 			goto out_unlocked;
1529 	} else {
1530 		/*
1531 		 * Otherwise keep thread (if running) and config,
1532 		 * but flush possible ongoing bios in thread.
1533 		 */
1534 		loop_flush(lo);
1535 	}
1536 
1537 out:
1538 	mutex_unlock(&lo->lo_ctl_mutex);
1539 out_unlocked:
1540 	return 0;
1541 }
1542 
1543 static const struct block_device_operations lo_fops = {
1544 	.owner =	THIS_MODULE,
1545 	.open =		lo_open,
1546 	.release =	lo_release,
1547 	.ioctl =	lo_ioctl,
1548 #ifdef CONFIG_COMPAT
1549 	.compat_ioctl =	lo_compat_ioctl,
1550 #endif
1551 };
1552 
1553 /*
1554  * And now the modules code and kernel interface.
1555  */
1556 static int max_loop;
1557 module_param(max_loop, int, S_IRUGO);
1558 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1559 module_param(max_part, int, S_IRUGO);
1560 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1561 MODULE_LICENSE("GPL");
1562 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1563 
1564 int loop_register_transfer(struct loop_func_table *funcs)
1565 {
1566 	unsigned int n = funcs->number;
1567 
1568 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1569 		return -EINVAL;
1570 	xfer_funcs[n] = funcs;
1571 	return 0;
1572 }
1573 
1574 static int unregister_transfer_cb(int id, void *ptr, void *data)
1575 {
1576 	struct loop_device *lo = ptr;
1577 	struct loop_func_table *xfer = data;
1578 
1579 	mutex_lock(&lo->lo_ctl_mutex);
1580 	if (lo->lo_encryption == xfer)
1581 		loop_release_xfer(lo);
1582 	mutex_unlock(&lo->lo_ctl_mutex);
1583 	return 0;
1584 }
1585 
1586 int loop_unregister_transfer(int number)
1587 {
1588 	unsigned int n = number;
1589 	struct loop_func_table *xfer;
1590 
1591 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1592 		return -EINVAL;
1593 
1594 	xfer_funcs[n] = NULL;
1595 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1596 	return 0;
1597 }
1598 
1599 EXPORT_SYMBOL(loop_register_transfer);
1600 EXPORT_SYMBOL(loop_unregister_transfer);
1601 
1602 static int loop_add(struct loop_device **l, int i)
1603 {
1604 	struct loop_device *lo;
1605 	struct gendisk *disk;
1606 	int err;
1607 
1608 	err = -ENOMEM;
1609 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1610 	if (!lo)
1611 		goto out;
1612 
1613 	if (!idr_pre_get(&loop_index_idr, GFP_KERNEL))
1614 		goto out_free_dev;
1615 
1616 	if (i >= 0) {
1617 		int m;
1618 
1619 		/* create specific i in the index */
1620 		err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1621 		if (err >= 0 && i != m) {
1622 			idr_remove(&loop_index_idr, m);
1623 			err = -EEXIST;
1624 		}
1625 	} else if (i == -1) {
1626 		int m;
1627 
1628 		/* get next free nr */
1629 		err = idr_get_new(&loop_index_idr, lo, &m);
1630 		if (err >= 0)
1631 			i = m;
1632 	} else {
1633 		err = -EINVAL;
1634 	}
1635 	if (err < 0)
1636 		goto out_free_dev;
1637 
1638 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1639 	if (!lo->lo_queue)
1640 		goto out_free_dev;
1641 
1642 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1643 	if (!disk)
1644 		goto out_free_queue;
1645 
1646 	/*
1647 	 * Disable partition scanning by default. The in-kernel partition
1648 	 * scanning can be requested individually per-device during its
1649 	 * setup. Userspace can always add and remove partitions from all
1650 	 * devices. The needed partition minors are allocated from the
1651 	 * extended minor space, the main loop device numbers will continue
1652 	 * to match the loop minors, regardless of the number of partitions
1653 	 * used.
1654 	 *
1655 	 * If max_part is given, partition scanning is globally enabled for
1656 	 * all loop devices. The minors for the main loop devices will be
1657 	 * multiples of max_part.
1658 	 *
1659 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1660 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1661 	 * complicated, are too static, inflexible and may surprise
1662 	 * userspace tools. Parameters like this in general should be avoided.
1663 	 */
1664 	if (!part_shift)
1665 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1666 	disk->flags |= GENHD_FL_EXT_DEVT;
1667 	mutex_init(&lo->lo_ctl_mutex);
1668 	lo->lo_number		= i;
1669 	lo->lo_thread		= NULL;
1670 	init_waitqueue_head(&lo->lo_event);
1671 	init_waitqueue_head(&lo->lo_req_wait);
1672 	spin_lock_init(&lo->lo_lock);
1673 	disk->major		= LOOP_MAJOR;
1674 	disk->first_minor	= i << part_shift;
1675 	disk->fops		= &lo_fops;
1676 	disk->private_data	= lo;
1677 	disk->queue		= lo->lo_queue;
1678 	sprintf(disk->disk_name, "loop%d", i);
1679 	add_disk(disk);
1680 	*l = lo;
1681 	return lo->lo_number;
1682 
1683 out_free_queue:
1684 	blk_cleanup_queue(lo->lo_queue);
1685 out_free_dev:
1686 	kfree(lo);
1687 out:
1688 	return err;
1689 }
1690 
1691 static void loop_remove(struct loop_device *lo)
1692 {
1693 	del_gendisk(lo->lo_disk);
1694 	blk_cleanup_queue(lo->lo_queue);
1695 	put_disk(lo->lo_disk);
1696 	kfree(lo);
1697 }
1698 
1699 static int find_free_cb(int id, void *ptr, void *data)
1700 {
1701 	struct loop_device *lo = ptr;
1702 	struct loop_device **l = data;
1703 
1704 	if (lo->lo_state == Lo_unbound) {
1705 		*l = lo;
1706 		return 1;
1707 	}
1708 	return 0;
1709 }
1710 
1711 static int loop_lookup(struct loop_device **l, int i)
1712 {
1713 	struct loop_device *lo;
1714 	int ret = -ENODEV;
1715 
1716 	if (i < 0) {
1717 		int err;
1718 
1719 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1720 		if (err == 1) {
1721 			*l = lo;
1722 			ret = lo->lo_number;
1723 		}
1724 		goto out;
1725 	}
1726 
1727 	/* lookup and return a specific i */
1728 	lo = idr_find(&loop_index_idr, i);
1729 	if (lo) {
1730 		*l = lo;
1731 		ret = lo->lo_number;
1732 	}
1733 out:
1734 	return ret;
1735 }
1736 
1737 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1738 {
1739 	struct loop_device *lo;
1740 	struct kobject *kobj;
1741 	int err;
1742 
1743 	mutex_lock(&loop_index_mutex);
1744 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1745 	if (err < 0)
1746 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1747 	if (err < 0)
1748 		kobj = ERR_PTR(err);
1749 	else
1750 		kobj = get_disk(lo->lo_disk);
1751 	mutex_unlock(&loop_index_mutex);
1752 
1753 	*part = 0;
1754 	return kobj;
1755 }
1756 
1757 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1758 			       unsigned long parm)
1759 {
1760 	struct loop_device *lo;
1761 	int ret = -ENOSYS;
1762 
1763 	mutex_lock(&loop_index_mutex);
1764 	switch (cmd) {
1765 	case LOOP_CTL_ADD:
1766 		ret = loop_lookup(&lo, parm);
1767 		if (ret >= 0) {
1768 			ret = -EEXIST;
1769 			break;
1770 		}
1771 		ret = loop_add(&lo, parm);
1772 		break;
1773 	case LOOP_CTL_REMOVE:
1774 		ret = loop_lookup(&lo, parm);
1775 		if (ret < 0)
1776 			break;
1777 		mutex_lock(&lo->lo_ctl_mutex);
1778 		if (lo->lo_state != Lo_unbound) {
1779 			ret = -EBUSY;
1780 			mutex_unlock(&lo->lo_ctl_mutex);
1781 			break;
1782 		}
1783 		if (lo->lo_refcnt > 0) {
1784 			ret = -EBUSY;
1785 			mutex_unlock(&lo->lo_ctl_mutex);
1786 			break;
1787 		}
1788 		lo->lo_disk->private_data = NULL;
1789 		mutex_unlock(&lo->lo_ctl_mutex);
1790 		idr_remove(&loop_index_idr, lo->lo_number);
1791 		loop_remove(lo);
1792 		break;
1793 	case LOOP_CTL_GET_FREE:
1794 		ret = loop_lookup(&lo, -1);
1795 		if (ret >= 0)
1796 			break;
1797 		ret = loop_add(&lo, -1);
1798 	}
1799 	mutex_unlock(&loop_index_mutex);
1800 
1801 	return ret;
1802 }
1803 
1804 static const struct file_operations loop_ctl_fops = {
1805 	.open		= nonseekable_open,
1806 	.unlocked_ioctl	= loop_control_ioctl,
1807 	.compat_ioctl	= loop_control_ioctl,
1808 	.owner		= THIS_MODULE,
1809 	.llseek		= noop_llseek,
1810 };
1811 
1812 static struct miscdevice loop_misc = {
1813 	.minor		= LOOP_CTRL_MINOR,
1814 	.name		= "loop-control",
1815 	.fops		= &loop_ctl_fops,
1816 };
1817 
1818 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1819 MODULE_ALIAS("devname:loop-control");
1820 
1821 static int __init loop_init(void)
1822 {
1823 	int i, nr;
1824 	unsigned long range;
1825 	struct loop_device *lo;
1826 	int err;
1827 
1828 	err = misc_register(&loop_misc);
1829 	if (err < 0)
1830 		return err;
1831 
1832 	part_shift = 0;
1833 	if (max_part > 0) {
1834 		part_shift = fls(max_part);
1835 
1836 		/*
1837 		 * Adjust max_part according to part_shift as it is exported
1838 		 * to user space so that user can decide correct minor number
1839 		 * if [s]he want to create more devices.
1840 		 *
1841 		 * Note that -1 is required because partition 0 is reserved
1842 		 * for the whole disk.
1843 		 */
1844 		max_part = (1UL << part_shift) - 1;
1845 	}
1846 
1847 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1848 		err = -EINVAL;
1849 		goto misc_out;
1850 	}
1851 
1852 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1853 		err = -EINVAL;
1854 		goto misc_out;
1855 	}
1856 
1857 	/*
1858 	 * If max_loop is specified, create that many devices upfront.
1859 	 * This also becomes a hard limit. If max_loop is not specified,
1860 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1861 	 * init time. Loop devices can be requested on-demand with the
1862 	 * /dev/loop-control interface, or be instantiated by accessing
1863 	 * a 'dead' device node.
1864 	 */
1865 	if (max_loop) {
1866 		nr = max_loop;
1867 		range = max_loop << part_shift;
1868 	} else {
1869 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1870 		range = 1UL << MINORBITS;
1871 	}
1872 
1873 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1874 		err = -EIO;
1875 		goto misc_out;
1876 	}
1877 
1878 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1879 				  THIS_MODULE, loop_probe, NULL, NULL);
1880 
1881 	/* pre-create number of devices given by config or max_loop */
1882 	mutex_lock(&loop_index_mutex);
1883 	for (i = 0; i < nr; i++)
1884 		loop_add(&lo, i);
1885 	mutex_unlock(&loop_index_mutex);
1886 
1887 	printk(KERN_INFO "loop: module loaded\n");
1888 	return 0;
1889 
1890 misc_out:
1891 	misc_deregister(&loop_misc);
1892 	return err;
1893 }
1894 
1895 static int loop_exit_cb(int id, void *ptr, void *data)
1896 {
1897 	struct loop_device *lo = ptr;
1898 
1899 	loop_remove(lo);
1900 	return 0;
1901 }
1902 
1903 static void __exit loop_exit(void)
1904 {
1905 	unsigned long range;
1906 
1907 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1908 
1909 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1910 	idr_remove_all(&loop_index_idr);
1911 	idr_destroy(&loop_index_idr);
1912 
1913 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1914 	unregister_blkdev(LOOP_MAJOR, "loop");
1915 
1916 	misc_deregister(&loop_misc);
1917 }
1918 
1919 module_init(loop_init);
1920 module_exit(loop_exit);
1921 
1922 #ifndef MODULE
1923 static int __init max_loop_setup(char *str)
1924 {
1925 	max_loop = simple_strtol(str, NULL, 0);
1926 	return 1;
1927 }
1928 
1929 __setup("max_loop=", max_loop_setup);
1930 #endif
1931