1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 if (lo->lo_state == Lo_bound) 218 blk_mq_freeze_queue(lo->lo_queue); 219 lo->use_dio = use_dio; 220 if (use_dio) { 221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 222 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 223 } else { 224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 226 } 227 if (lo->lo_state == Lo_bound) 228 blk_mq_unfreeze_queue(lo->lo_queue); 229 } 230 231 /** 232 * loop_validate_block_size() - validates the passed in block size 233 * @bsize: size to validate 234 */ 235 static int 236 loop_validate_block_size(unsigned short bsize) 237 { 238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /** 245 * loop_set_size() - sets device size and notifies userspace 246 * @lo: struct loop_device to set the size for 247 * @size: new size of the loop device 248 * 249 * Callers must validate that the size passed into this function fits into 250 * a sector_t, eg using loop_validate_size() 251 */ 252 static void loop_set_size(struct loop_device *lo, loff_t size) 253 { 254 struct block_device *bdev = lo->lo_device; 255 256 bd_set_size(bdev, size << SECTOR_SHIFT); 257 258 set_capacity_revalidate_and_notify(lo->lo_disk, size, false); 259 } 260 261 static inline int 262 lo_do_transfer(struct loop_device *lo, int cmd, 263 struct page *rpage, unsigned roffs, 264 struct page *lpage, unsigned loffs, 265 int size, sector_t rblock) 266 { 267 int ret; 268 269 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 270 if (likely(!ret)) 271 return 0; 272 273 printk_ratelimited(KERN_ERR 274 "loop: Transfer error at byte offset %llu, length %i.\n", 275 (unsigned long long)rblock << 9, size); 276 return ret; 277 } 278 279 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 280 { 281 struct iov_iter i; 282 ssize_t bw; 283 284 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 285 286 file_start_write(file); 287 bw = vfs_iter_write(file, &i, ppos, 0); 288 file_end_write(file); 289 290 if (likely(bw == bvec->bv_len)) 291 return 0; 292 293 printk_ratelimited(KERN_ERR 294 "loop: Write error at byte offset %llu, length %i.\n", 295 (unsigned long long)*ppos, bvec->bv_len); 296 if (bw >= 0) 297 bw = -EIO; 298 return bw; 299 } 300 301 static int lo_write_simple(struct loop_device *lo, struct request *rq, 302 loff_t pos) 303 { 304 struct bio_vec bvec; 305 struct req_iterator iter; 306 int ret = 0; 307 308 rq_for_each_segment(bvec, rq, iter) { 309 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 310 if (ret < 0) 311 break; 312 cond_resched(); 313 } 314 315 return ret; 316 } 317 318 /* 319 * This is the slow, transforming version that needs to double buffer the 320 * data as it cannot do the transformations in place without having direct 321 * access to the destination pages of the backing file. 322 */ 323 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 324 loff_t pos) 325 { 326 struct bio_vec bvec, b; 327 struct req_iterator iter; 328 struct page *page; 329 int ret = 0; 330 331 page = alloc_page(GFP_NOIO); 332 if (unlikely(!page)) 333 return -ENOMEM; 334 335 rq_for_each_segment(bvec, rq, iter) { 336 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 337 bvec.bv_offset, bvec.bv_len, pos >> 9); 338 if (unlikely(ret)) 339 break; 340 341 b.bv_page = page; 342 b.bv_offset = 0; 343 b.bv_len = bvec.bv_len; 344 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 345 if (ret < 0) 346 break; 347 } 348 349 __free_page(page); 350 return ret; 351 } 352 353 static int lo_read_simple(struct loop_device *lo, struct request *rq, 354 loff_t pos) 355 { 356 struct bio_vec bvec; 357 struct req_iterator iter; 358 struct iov_iter i; 359 ssize_t len; 360 361 rq_for_each_segment(bvec, rq, iter) { 362 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 363 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 364 if (len < 0) 365 return len; 366 367 flush_dcache_page(bvec.bv_page); 368 369 if (len != bvec.bv_len) { 370 struct bio *bio; 371 372 __rq_for_each_bio(bio, rq) 373 zero_fill_bio(bio); 374 break; 375 } 376 cond_resched(); 377 } 378 379 return 0; 380 } 381 382 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 383 loff_t pos) 384 { 385 struct bio_vec bvec, b; 386 struct req_iterator iter; 387 struct iov_iter i; 388 struct page *page; 389 ssize_t len; 390 int ret = 0; 391 392 page = alloc_page(GFP_NOIO); 393 if (unlikely(!page)) 394 return -ENOMEM; 395 396 rq_for_each_segment(bvec, rq, iter) { 397 loff_t offset = pos; 398 399 b.bv_page = page; 400 b.bv_offset = 0; 401 b.bv_len = bvec.bv_len; 402 403 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 404 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 405 if (len < 0) { 406 ret = len; 407 goto out_free_page; 408 } 409 410 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 411 bvec.bv_offset, len, offset >> 9); 412 if (ret) 413 goto out_free_page; 414 415 flush_dcache_page(bvec.bv_page); 416 417 if (len != bvec.bv_len) { 418 struct bio *bio; 419 420 __rq_for_each_bio(bio, rq) 421 zero_fill_bio(bio); 422 break; 423 } 424 } 425 426 ret = 0; 427 out_free_page: 428 __free_page(page); 429 return ret; 430 } 431 432 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 433 int mode) 434 { 435 /* 436 * We use fallocate to manipulate the space mappings used by the image 437 * a.k.a. discard/zerorange. However we do not support this if 438 * encryption is enabled, because it may give an attacker useful 439 * information. 440 */ 441 struct file *file = lo->lo_backing_file; 442 struct request_queue *q = lo->lo_queue; 443 int ret; 444 445 mode |= FALLOC_FL_KEEP_SIZE; 446 447 if (!blk_queue_discard(q)) { 448 ret = -EOPNOTSUPP; 449 goto out; 450 } 451 452 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 453 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 454 ret = -EIO; 455 out: 456 return ret; 457 } 458 459 static int lo_req_flush(struct loop_device *lo, struct request *rq) 460 { 461 struct file *file = lo->lo_backing_file; 462 int ret = vfs_fsync(file, 0); 463 if (unlikely(ret && ret != -EINVAL)) 464 ret = -EIO; 465 466 return ret; 467 } 468 469 static void lo_complete_rq(struct request *rq) 470 { 471 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 472 blk_status_t ret = BLK_STS_OK; 473 474 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 475 req_op(rq) != REQ_OP_READ) { 476 if (cmd->ret < 0) 477 ret = errno_to_blk_status(cmd->ret); 478 goto end_io; 479 } 480 481 /* 482 * Short READ - if we got some data, advance our request and 483 * retry it. If we got no data, end the rest with EIO. 484 */ 485 if (cmd->ret) { 486 blk_update_request(rq, BLK_STS_OK, cmd->ret); 487 cmd->ret = 0; 488 blk_mq_requeue_request(rq, true); 489 } else { 490 if (cmd->use_aio) { 491 struct bio *bio = rq->bio; 492 493 while (bio) { 494 zero_fill_bio(bio); 495 bio = bio->bi_next; 496 } 497 } 498 ret = BLK_STS_IOERR; 499 end_io: 500 blk_mq_end_request(rq, ret); 501 } 502 } 503 504 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 505 { 506 struct request *rq = blk_mq_rq_from_pdu(cmd); 507 508 if (!atomic_dec_and_test(&cmd->ref)) 509 return; 510 kfree(cmd->bvec); 511 cmd->bvec = NULL; 512 if (likely(!blk_should_fake_timeout(rq->q))) 513 blk_mq_complete_request(rq); 514 } 515 516 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 517 { 518 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 519 520 if (cmd->css) 521 css_put(cmd->css); 522 cmd->ret = ret; 523 lo_rw_aio_do_completion(cmd); 524 } 525 526 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 527 loff_t pos, bool rw) 528 { 529 struct iov_iter iter; 530 struct req_iterator rq_iter; 531 struct bio_vec *bvec; 532 struct request *rq = blk_mq_rq_from_pdu(cmd); 533 struct bio *bio = rq->bio; 534 struct file *file = lo->lo_backing_file; 535 struct bio_vec tmp; 536 unsigned int offset; 537 int nr_bvec = 0; 538 int ret; 539 540 rq_for_each_bvec(tmp, rq, rq_iter) 541 nr_bvec++; 542 543 if (rq->bio != rq->biotail) { 544 545 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 546 GFP_NOIO); 547 if (!bvec) 548 return -EIO; 549 cmd->bvec = bvec; 550 551 /* 552 * The bios of the request may be started from the middle of 553 * the 'bvec' because of bio splitting, so we can't directly 554 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 555 * API will take care of all details for us. 556 */ 557 rq_for_each_bvec(tmp, rq, rq_iter) { 558 *bvec = tmp; 559 bvec++; 560 } 561 bvec = cmd->bvec; 562 offset = 0; 563 } else { 564 /* 565 * Same here, this bio may be started from the middle of the 566 * 'bvec' because of bio splitting, so offset from the bvec 567 * must be passed to iov iterator 568 */ 569 offset = bio->bi_iter.bi_bvec_done; 570 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 571 } 572 atomic_set(&cmd->ref, 2); 573 574 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 575 iter.iov_offset = offset; 576 577 cmd->iocb.ki_pos = pos; 578 cmd->iocb.ki_filp = file; 579 cmd->iocb.ki_complete = lo_rw_aio_complete; 580 cmd->iocb.ki_flags = IOCB_DIRECT; 581 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 582 if (cmd->css) 583 kthread_associate_blkcg(cmd->css); 584 585 if (rw == WRITE) 586 ret = call_write_iter(file, &cmd->iocb, &iter); 587 else 588 ret = call_read_iter(file, &cmd->iocb, &iter); 589 590 lo_rw_aio_do_completion(cmd); 591 kthread_associate_blkcg(NULL); 592 593 if (ret != -EIOCBQUEUED) 594 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 595 return 0; 596 } 597 598 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 599 { 600 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 601 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 602 603 /* 604 * lo_write_simple and lo_read_simple should have been covered 605 * by io submit style function like lo_rw_aio(), one blocker 606 * is that lo_read_simple() need to call flush_dcache_page after 607 * the page is written from kernel, and it isn't easy to handle 608 * this in io submit style function which submits all segments 609 * of the req at one time. And direct read IO doesn't need to 610 * run flush_dcache_page(). 611 */ 612 switch (req_op(rq)) { 613 case REQ_OP_FLUSH: 614 return lo_req_flush(lo, rq); 615 case REQ_OP_WRITE_ZEROES: 616 /* 617 * If the caller doesn't want deallocation, call zeroout to 618 * write zeroes the range. Otherwise, punch them out. 619 */ 620 return lo_fallocate(lo, rq, pos, 621 (rq->cmd_flags & REQ_NOUNMAP) ? 622 FALLOC_FL_ZERO_RANGE : 623 FALLOC_FL_PUNCH_HOLE); 624 case REQ_OP_DISCARD: 625 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 626 case REQ_OP_WRITE: 627 if (lo->transfer) 628 return lo_write_transfer(lo, rq, pos); 629 else if (cmd->use_aio) 630 return lo_rw_aio(lo, cmd, pos, WRITE); 631 else 632 return lo_write_simple(lo, rq, pos); 633 case REQ_OP_READ: 634 if (lo->transfer) 635 return lo_read_transfer(lo, rq, pos); 636 else if (cmd->use_aio) 637 return lo_rw_aio(lo, cmd, pos, READ); 638 else 639 return lo_read_simple(lo, rq, pos); 640 default: 641 WARN_ON_ONCE(1); 642 return -EIO; 643 } 644 } 645 646 static inline void loop_update_dio(struct loop_device *lo) 647 { 648 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 649 lo->use_dio); 650 } 651 652 static void loop_reread_partitions(struct loop_device *lo, 653 struct block_device *bdev) 654 { 655 int rc; 656 657 mutex_lock(&bdev->bd_mutex); 658 rc = bdev_disk_changed(bdev, false); 659 mutex_unlock(&bdev->bd_mutex); 660 if (rc) 661 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 662 __func__, lo->lo_number, lo->lo_file_name, rc); 663 } 664 665 static inline int is_loop_device(struct file *file) 666 { 667 struct inode *i = file->f_mapping->host; 668 669 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 670 } 671 672 static int loop_validate_file(struct file *file, struct block_device *bdev) 673 { 674 struct inode *inode = file->f_mapping->host; 675 struct file *f = file; 676 677 /* Avoid recursion */ 678 while (is_loop_device(f)) { 679 struct loop_device *l; 680 681 if (f->f_mapping->host->i_bdev == bdev) 682 return -EBADF; 683 684 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 685 if (l->lo_state != Lo_bound) { 686 return -EINVAL; 687 } 688 f = l->lo_backing_file; 689 } 690 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 691 return -EINVAL; 692 return 0; 693 } 694 695 /* 696 * loop_change_fd switched the backing store of a loopback device to 697 * a new file. This is useful for operating system installers to free up 698 * the original file and in High Availability environments to switch to 699 * an alternative location for the content in case of server meltdown. 700 * This can only work if the loop device is used read-only, and if the 701 * new backing store is the same size and type as the old backing store. 702 */ 703 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 704 unsigned int arg) 705 { 706 struct file *file = NULL, *old_file; 707 int error; 708 bool partscan; 709 710 error = mutex_lock_killable(&loop_ctl_mutex); 711 if (error) 712 return error; 713 error = -ENXIO; 714 if (lo->lo_state != Lo_bound) 715 goto out_err; 716 717 /* the loop device has to be read-only */ 718 error = -EINVAL; 719 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 720 goto out_err; 721 722 error = -EBADF; 723 file = fget(arg); 724 if (!file) 725 goto out_err; 726 727 error = loop_validate_file(file, bdev); 728 if (error) 729 goto out_err; 730 731 old_file = lo->lo_backing_file; 732 733 error = -EINVAL; 734 735 /* size of the new backing store needs to be the same */ 736 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 737 goto out_err; 738 739 /* and ... switch */ 740 blk_mq_freeze_queue(lo->lo_queue); 741 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 742 lo->lo_backing_file = file; 743 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 744 mapping_set_gfp_mask(file->f_mapping, 745 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 746 loop_update_dio(lo); 747 blk_mq_unfreeze_queue(lo->lo_queue); 748 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 749 mutex_unlock(&loop_ctl_mutex); 750 /* 751 * We must drop file reference outside of loop_ctl_mutex as dropping 752 * the file ref can take bd_mutex which creates circular locking 753 * dependency. 754 */ 755 fput(old_file); 756 if (partscan) 757 loop_reread_partitions(lo, bdev); 758 return 0; 759 760 out_err: 761 mutex_unlock(&loop_ctl_mutex); 762 if (file) 763 fput(file); 764 return error; 765 } 766 767 /* loop sysfs attributes */ 768 769 static ssize_t loop_attr_show(struct device *dev, char *page, 770 ssize_t (*callback)(struct loop_device *, char *)) 771 { 772 struct gendisk *disk = dev_to_disk(dev); 773 struct loop_device *lo = disk->private_data; 774 775 return callback(lo, page); 776 } 777 778 #define LOOP_ATTR_RO(_name) \ 779 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 780 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 781 struct device_attribute *attr, char *b) \ 782 { \ 783 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 784 } \ 785 static struct device_attribute loop_attr_##_name = \ 786 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 787 788 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 789 { 790 ssize_t ret; 791 char *p = NULL; 792 793 spin_lock_irq(&lo->lo_lock); 794 if (lo->lo_backing_file) 795 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 796 spin_unlock_irq(&lo->lo_lock); 797 798 if (IS_ERR_OR_NULL(p)) 799 ret = PTR_ERR(p); 800 else { 801 ret = strlen(p); 802 memmove(buf, p, ret); 803 buf[ret++] = '\n'; 804 buf[ret] = 0; 805 } 806 807 return ret; 808 } 809 810 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 811 { 812 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 813 } 814 815 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 816 { 817 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 818 } 819 820 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 821 { 822 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 823 824 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 825 } 826 827 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 828 { 829 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 830 831 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 832 } 833 834 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 835 { 836 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 837 838 return sprintf(buf, "%s\n", dio ? "1" : "0"); 839 } 840 841 LOOP_ATTR_RO(backing_file); 842 LOOP_ATTR_RO(offset); 843 LOOP_ATTR_RO(sizelimit); 844 LOOP_ATTR_RO(autoclear); 845 LOOP_ATTR_RO(partscan); 846 LOOP_ATTR_RO(dio); 847 848 static struct attribute *loop_attrs[] = { 849 &loop_attr_backing_file.attr, 850 &loop_attr_offset.attr, 851 &loop_attr_sizelimit.attr, 852 &loop_attr_autoclear.attr, 853 &loop_attr_partscan.attr, 854 &loop_attr_dio.attr, 855 NULL, 856 }; 857 858 static struct attribute_group loop_attribute_group = { 859 .name = "loop", 860 .attrs= loop_attrs, 861 }; 862 863 static void loop_sysfs_init(struct loop_device *lo) 864 { 865 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 866 &loop_attribute_group); 867 } 868 869 static void loop_sysfs_exit(struct loop_device *lo) 870 { 871 if (lo->sysfs_inited) 872 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 873 &loop_attribute_group); 874 } 875 876 static void loop_config_discard(struct loop_device *lo) 877 { 878 struct file *file = lo->lo_backing_file; 879 struct inode *inode = file->f_mapping->host; 880 struct request_queue *q = lo->lo_queue; 881 882 /* 883 * If the backing device is a block device, mirror its zeroing 884 * capability. Set the discard sectors to the block device's zeroing 885 * capabilities because loop discards result in blkdev_issue_zeroout(), 886 * not blkdev_issue_discard(). This maintains consistent behavior with 887 * file-backed loop devices: discarded regions read back as zero. 888 */ 889 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 890 struct request_queue *backingq; 891 892 backingq = bdev_get_queue(inode->i_bdev); 893 blk_queue_max_discard_sectors(q, 894 backingq->limits.max_write_zeroes_sectors); 895 896 blk_queue_max_write_zeroes_sectors(q, 897 backingq->limits.max_write_zeroes_sectors); 898 899 /* 900 * We use punch hole to reclaim the free space used by the 901 * image a.k.a. discard. However we do not support discard if 902 * encryption is enabled, because it may give an attacker 903 * useful information. 904 */ 905 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 906 q->limits.discard_granularity = 0; 907 q->limits.discard_alignment = 0; 908 blk_queue_max_discard_sectors(q, 0); 909 blk_queue_max_write_zeroes_sectors(q, 0); 910 911 } else { 912 q->limits.discard_granularity = inode->i_sb->s_blocksize; 913 q->limits.discard_alignment = 0; 914 915 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 916 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 917 } 918 919 if (q->limits.max_write_zeroes_sectors) 920 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 921 else 922 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 923 } 924 925 static void loop_unprepare_queue(struct loop_device *lo) 926 { 927 kthread_flush_worker(&lo->worker); 928 kthread_stop(lo->worker_task); 929 } 930 931 static int loop_kthread_worker_fn(void *worker_ptr) 932 { 933 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 934 return kthread_worker_fn(worker_ptr); 935 } 936 937 static int loop_prepare_queue(struct loop_device *lo) 938 { 939 kthread_init_worker(&lo->worker); 940 lo->worker_task = kthread_run(loop_kthread_worker_fn, 941 &lo->worker, "loop%d", lo->lo_number); 942 if (IS_ERR(lo->worker_task)) 943 return -ENOMEM; 944 set_user_nice(lo->worker_task, MIN_NICE); 945 return 0; 946 } 947 948 static void loop_update_rotational(struct loop_device *lo) 949 { 950 struct file *file = lo->lo_backing_file; 951 struct inode *file_inode = file->f_mapping->host; 952 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 953 struct request_queue *q = lo->lo_queue; 954 bool nonrot = true; 955 956 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 957 if (file_bdev) 958 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 959 960 if (nonrot) 961 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 962 else 963 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 964 } 965 966 static int 967 loop_release_xfer(struct loop_device *lo) 968 { 969 int err = 0; 970 struct loop_func_table *xfer = lo->lo_encryption; 971 972 if (xfer) { 973 if (xfer->release) 974 err = xfer->release(lo); 975 lo->transfer = NULL; 976 lo->lo_encryption = NULL; 977 module_put(xfer->owner); 978 } 979 return err; 980 } 981 982 static int 983 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 984 const struct loop_info64 *i) 985 { 986 int err = 0; 987 988 if (xfer) { 989 struct module *owner = xfer->owner; 990 991 if (!try_module_get(owner)) 992 return -EINVAL; 993 if (xfer->init) 994 err = xfer->init(lo, i); 995 if (err) 996 module_put(owner); 997 else 998 lo->lo_encryption = xfer; 999 } 1000 return err; 1001 } 1002 1003 /** 1004 * loop_set_status_from_info - configure device from loop_info 1005 * @lo: struct loop_device to configure 1006 * @info: struct loop_info64 to configure the device with 1007 * 1008 * Configures the loop device parameters according to the passed 1009 * in loop_info64 configuration. 1010 */ 1011 static int 1012 loop_set_status_from_info(struct loop_device *lo, 1013 const struct loop_info64 *info) 1014 { 1015 int err; 1016 struct loop_func_table *xfer; 1017 kuid_t uid = current_uid(); 1018 1019 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1020 return -EINVAL; 1021 1022 err = loop_release_xfer(lo); 1023 if (err) 1024 return err; 1025 1026 if (info->lo_encrypt_type) { 1027 unsigned int type = info->lo_encrypt_type; 1028 1029 if (type >= MAX_LO_CRYPT) 1030 return -EINVAL; 1031 xfer = xfer_funcs[type]; 1032 if (xfer == NULL) 1033 return -EINVAL; 1034 } else 1035 xfer = NULL; 1036 1037 err = loop_init_xfer(lo, xfer, info); 1038 if (err) 1039 return err; 1040 1041 lo->lo_offset = info->lo_offset; 1042 lo->lo_sizelimit = info->lo_sizelimit; 1043 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1044 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1045 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1046 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1047 1048 if (!xfer) 1049 xfer = &none_funcs; 1050 lo->transfer = xfer->transfer; 1051 lo->ioctl = xfer->ioctl; 1052 1053 lo->lo_flags = info->lo_flags; 1054 1055 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1056 lo->lo_init[0] = info->lo_init[0]; 1057 lo->lo_init[1] = info->lo_init[1]; 1058 if (info->lo_encrypt_key_size) { 1059 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1060 info->lo_encrypt_key_size); 1061 lo->lo_key_owner = uid; 1062 } 1063 1064 return 0; 1065 } 1066 1067 static int loop_configure(struct loop_device *lo, fmode_t mode, 1068 struct block_device *bdev, 1069 const struct loop_config *config) 1070 { 1071 struct file *file; 1072 struct inode *inode; 1073 struct address_space *mapping; 1074 struct block_device *claimed_bdev = NULL; 1075 int error; 1076 loff_t size; 1077 bool partscan; 1078 unsigned short bsize; 1079 1080 /* This is safe, since we have a reference from open(). */ 1081 __module_get(THIS_MODULE); 1082 1083 error = -EBADF; 1084 file = fget(config->fd); 1085 if (!file) 1086 goto out; 1087 1088 /* 1089 * If we don't hold exclusive handle for the device, upgrade to it 1090 * here to avoid changing device under exclusive owner. 1091 */ 1092 if (!(mode & FMODE_EXCL)) { 1093 claimed_bdev = bdev->bd_contains; 1094 error = bd_prepare_to_claim(bdev, claimed_bdev, loop_configure); 1095 if (error) 1096 goto out_putf; 1097 } 1098 1099 error = mutex_lock_killable(&loop_ctl_mutex); 1100 if (error) 1101 goto out_bdev; 1102 1103 error = -EBUSY; 1104 if (lo->lo_state != Lo_unbound) 1105 goto out_unlock; 1106 1107 error = loop_validate_file(file, bdev); 1108 if (error) 1109 goto out_unlock; 1110 1111 mapping = file->f_mapping; 1112 inode = mapping->host; 1113 1114 size = get_loop_size(lo, file); 1115 1116 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1117 error = -EINVAL; 1118 goto out_unlock; 1119 } 1120 1121 if (config->block_size) { 1122 error = loop_validate_block_size(config->block_size); 1123 if (error) 1124 goto out_unlock; 1125 } 1126 1127 error = loop_set_status_from_info(lo, &config->info); 1128 if (error) 1129 goto out_unlock; 1130 1131 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1132 !file->f_op->write_iter) 1133 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1134 1135 error = loop_prepare_queue(lo); 1136 if (error) 1137 goto out_unlock; 1138 1139 set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1140 1141 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1142 lo->lo_device = bdev; 1143 lo->lo_backing_file = file; 1144 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1145 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1146 1147 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1148 blk_queue_write_cache(lo->lo_queue, true, false); 1149 1150 if (config->block_size) 1151 bsize = config->block_size; 1152 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1153 /* In case of direct I/O, match underlying block size */ 1154 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1155 else 1156 bsize = 512; 1157 1158 blk_queue_logical_block_size(lo->lo_queue, bsize); 1159 blk_queue_physical_block_size(lo->lo_queue, bsize); 1160 blk_queue_io_min(lo->lo_queue, bsize); 1161 1162 loop_update_rotational(lo); 1163 loop_update_dio(lo); 1164 loop_sysfs_init(lo); 1165 loop_set_size(lo, size); 1166 1167 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1168 block_size(inode->i_bdev) : PAGE_SIZE); 1169 1170 lo->lo_state = Lo_bound; 1171 if (part_shift) 1172 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1173 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1174 1175 /* Grab the block_device to prevent its destruction after we 1176 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1177 */ 1178 bdgrab(bdev); 1179 mutex_unlock(&loop_ctl_mutex); 1180 if (partscan) 1181 loop_reread_partitions(lo, bdev); 1182 if (claimed_bdev) 1183 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1184 return 0; 1185 1186 out_unlock: 1187 mutex_unlock(&loop_ctl_mutex); 1188 out_bdev: 1189 if (claimed_bdev) 1190 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1191 out_putf: 1192 fput(file); 1193 out: 1194 /* This is safe: open() is still holding a reference. */ 1195 module_put(THIS_MODULE); 1196 return error; 1197 } 1198 1199 static int __loop_clr_fd(struct loop_device *lo, bool release) 1200 { 1201 struct file *filp = NULL; 1202 gfp_t gfp = lo->old_gfp_mask; 1203 struct block_device *bdev = lo->lo_device; 1204 int err = 0; 1205 bool partscan = false; 1206 int lo_number; 1207 1208 mutex_lock(&loop_ctl_mutex); 1209 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1210 err = -ENXIO; 1211 goto out_unlock; 1212 } 1213 1214 filp = lo->lo_backing_file; 1215 if (filp == NULL) { 1216 err = -EINVAL; 1217 goto out_unlock; 1218 } 1219 1220 /* freeze request queue during the transition */ 1221 blk_mq_freeze_queue(lo->lo_queue); 1222 1223 spin_lock_irq(&lo->lo_lock); 1224 lo->lo_backing_file = NULL; 1225 spin_unlock_irq(&lo->lo_lock); 1226 1227 loop_release_xfer(lo); 1228 lo->transfer = NULL; 1229 lo->ioctl = NULL; 1230 lo->lo_device = NULL; 1231 lo->lo_encryption = NULL; 1232 lo->lo_offset = 0; 1233 lo->lo_sizelimit = 0; 1234 lo->lo_encrypt_key_size = 0; 1235 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1236 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1237 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1238 blk_queue_logical_block_size(lo->lo_queue, 512); 1239 blk_queue_physical_block_size(lo->lo_queue, 512); 1240 blk_queue_io_min(lo->lo_queue, 512); 1241 if (bdev) { 1242 bdput(bdev); 1243 invalidate_bdev(bdev); 1244 bdev->bd_inode->i_mapping->wb_err = 0; 1245 } 1246 set_capacity(lo->lo_disk, 0); 1247 loop_sysfs_exit(lo); 1248 if (bdev) { 1249 bd_set_size(bdev, 0); 1250 /* let user-space know about this change */ 1251 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1252 } 1253 mapping_set_gfp_mask(filp->f_mapping, gfp); 1254 /* This is safe: open() is still holding a reference. */ 1255 module_put(THIS_MODULE); 1256 blk_mq_unfreeze_queue(lo->lo_queue); 1257 1258 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1259 lo_number = lo->lo_number; 1260 loop_unprepare_queue(lo); 1261 out_unlock: 1262 mutex_unlock(&loop_ctl_mutex); 1263 if (partscan) { 1264 /* 1265 * bd_mutex has been held already in release path, so don't 1266 * acquire it if this function is called in such case. 1267 * 1268 * If the reread partition isn't from release path, lo_refcnt 1269 * must be at least one and it can only become zero when the 1270 * current holder is released. 1271 */ 1272 if (!release) 1273 mutex_lock(&bdev->bd_mutex); 1274 err = bdev_disk_changed(bdev, false); 1275 if (!release) 1276 mutex_unlock(&bdev->bd_mutex); 1277 if (err) 1278 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1279 __func__, lo_number, err); 1280 /* Device is gone, no point in returning error */ 1281 err = 0; 1282 } 1283 1284 /* 1285 * lo->lo_state is set to Lo_unbound here after above partscan has 1286 * finished. 1287 * 1288 * There cannot be anybody else entering __loop_clr_fd() as 1289 * lo->lo_backing_file is already cleared and Lo_rundown state 1290 * protects us from all the other places trying to change the 'lo' 1291 * device. 1292 */ 1293 mutex_lock(&loop_ctl_mutex); 1294 lo->lo_flags = 0; 1295 if (!part_shift) 1296 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1297 lo->lo_state = Lo_unbound; 1298 mutex_unlock(&loop_ctl_mutex); 1299 1300 /* 1301 * Need not hold loop_ctl_mutex to fput backing file. 1302 * Calling fput holding loop_ctl_mutex triggers a circular 1303 * lock dependency possibility warning as fput can take 1304 * bd_mutex which is usually taken before loop_ctl_mutex. 1305 */ 1306 if (filp) 1307 fput(filp); 1308 return err; 1309 } 1310 1311 static int loop_clr_fd(struct loop_device *lo) 1312 { 1313 int err; 1314 1315 err = mutex_lock_killable(&loop_ctl_mutex); 1316 if (err) 1317 return err; 1318 if (lo->lo_state != Lo_bound) { 1319 mutex_unlock(&loop_ctl_mutex); 1320 return -ENXIO; 1321 } 1322 /* 1323 * If we've explicitly asked to tear down the loop device, 1324 * and it has an elevated reference count, set it for auto-teardown when 1325 * the last reference goes away. This stops $!~#$@ udev from 1326 * preventing teardown because it decided that it needs to run blkid on 1327 * the loopback device whenever they appear. xfstests is notorious for 1328 * failing tests because blkid via udev races with a losetup 1329 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1330 * command to fail with EBUSY. 1331 */ 1332 if (atomic_read(&lo->lo_refcnt) > 1) { 1333 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1334 mutex_unlock(&loop_ctl_mutex); 1335 return 0; 1336 } 1337 lo->lo_state = Lo_rundown; 1338 mutex_unlock(&loop_ctl_mutex); 1339 1340 return __loop_clr_fd(lo, false); 1341 } 1342 1343 static int 1344 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1345 { 1346 int err; 1347 struct block_device *bdev; 1348 kuid_t uid = current_uid(); 1349 int prev_lo_flags; 1350 bool partscan = false; 1351 bool size_changed = false; 1352 1353 err = mutex_lock_killable(&loop_ctl_mutex); 1354 if (err) 1355 return err; 1356 if (lo->lo_encrypt_key_size && 1357 !uid_eq(lo->lo_key_owner, uid) && 1358 !capable(CAP_SYS_ADMIN)) { 1359 err = -EPERM; 1360 goto out_unlock; 1361 } 1362 if (lo->lo_state != Lo_bound) { 1363 err = -ENXIO; 1364 goto out_unlock; 1365 } 1366 1367 if (lo->lo_offset != info->lo_offset || 1368 lo->lo_sizelimit != info->lo_sizelimit) { 1369 size_changed = true; 1370 sync_blockdev(lo->lo_device); 1371 invalidate_bdev(lo->lo_device); 1372 } 1373 1374 /* I/O need to be drained during transfer transition */ 1375 blk_mq_freeze_queue(lo->lo_queue); 1376 1377 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1378 /* If any pages were dirtied after invalidate_bdev(), try again */ 1379 err = -EAGAIN; 1380 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1381 __func__, lo->lo_number, lo->lo_file_name, 1382 lo->lo_device->bd_inode->i_mapping->nrpages); 1383 goto out_unfreeze; 1384 } 1385 1386 prev_lo_flags = lo->lo_flags; 1387 1388 err = loop_set_status_from_info(lo, info); 1389 if (err) 1390 goto out_unfreeze; 1391 1392 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1393 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1394 /* For those flags, use the previous values instead */ 1395 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1396 /* For flags that can't be cleared, use previous values too */ 1397 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1398 1399 if (size_changed) { 1400 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1401 lo->lo_backing_file); 1402 loop_set_size(lo, new_size); 1403 } 1404 1405 loop_config_discard(lo); 1406 1407 /* update dio if lo_offset or transfer is changed */ 1408 __loop_update_dio(lo, lo->use_dio); 1409 1410 out_unfreeze: 1411 blk_mq_unfreeze_queue(lo->lo_queue); 1412 1413 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1414 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1415 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1416 bdev = lo->lo_device; 1417 partscan = true; 1418 } 1419 out_unlock: 1420 mutex_unlock(&loop_ctl_mutex); 1421 if (partscan) 1422 loop_reread_partitions(lo, bdev); 1423 1424 return err; 1425 } 1426 1427 static int 1428 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1429 { 1430 struct path path; 1431 struct kstat stat; 1432 int ret; 1433 1434 ret = mutex_lock_killable(&loop_ctl_mutex); 1435 if (ret) 1436 return ret; 1437 if (lo->lo_state != Lo_bound) { 1438 mutex_unlock(&loop_ctl_mutex); 1439 return -ENXIO; 1440 } 1441 1442 memset(info, 0, sizeof(*info)); 1443 info->lo_number = lo->lo_number; 1444 info->lo_offset = lo->lo_offset; 1445 info->lo_sizelimit = lo->lo_sizelimit; 1446 info->lo_flags = lo->lo_flags; 1447 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1448 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1449 info->lo_encrypt_type = 1450 lo->lo_encryption ? lo->lo_encryption->number : 0; 1451 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1452 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1453 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1454 lo->lo_encrypt_key_size); 1455 } 1456 1457 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1458 path = lo->lo_backing_file->f_path; 1459 path_get(&path); 1460 mutex_unlock(&loop_ctl_mutex); 1461 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1462 if (!ret) { 1463 info->lo_device = huge_encode_dev(stat.dev); 1464 info->lo_inode = stat.ino; 1465 info->lo_rdevice = huge_encode_dev(stat.rdev); 1466 } 1467 path_put(&path); 1468 return ret; 1469 } 1470 1471 static void 1472 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1473 { 1474 memset(info64, 0, sizeof(*info64)); 1475 info64->lo_number = info->lo_number; 1476 info64->lo_device = info->lo_device; 1477 info64->lo_inode = info->lo_inode; 1478 info64->lo_rdevice = info->lo_rdevice; 1479 info64->lo_offset = info->lo_offset; 1480 info64->lo_sizelimit = 0; 1481 info64->lo_encrypt_type = info->lo_encrypt_type; 1482 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1483 info64->lo_flags = info->lo_flags; 1484 info64->lo_init[0] = info->lo_init[0]; 1485 info64->lo_init[1] = info->lo_init[1]; 1486 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1487 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1488 else 1489 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1490 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1491 } 1492 1493 static int 1494 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1495 { 1496 memset(info, 0, sizeof(*info)); 1497 info->lo_number = info64->lo_number; 1498 info->lo_device = info64->lo_device; 1499 info->lo_inode = info64->lo_inode; 1500 info->lo_rdevice = info64->lo_rdevice; 1501 info->lo_offset = info64->lo_offset; 1502 info->lo_encrypt_type = info64->lo_encrypt_type; 1503 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1504 info->lo_flags = info64->lo_flags; 1505 info->lo_init[0] = info64->lo_init[0]; 1506 info->lo_init[1] = info64->lo_init[1]; 1507 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1508 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1509 else 1510 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1511 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1512 1513 /* error in case values were truncated */ 1514 if (info->lo_device != info64->lo_device || 1515 info->lo_rdevice != info64->lo_rdevice || 1516 info->lo_inode != info64->lo_inode || 1517 info->lo_offset != info64->lo_offset) 1518 return -EOVERFLOW; 1519 1520 return 0; 1521 } 1522 1523 static int 1524 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1525 { 1526 struct loop_info info; 1527 struct loop_info64 info64; 1528 1529 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1530 return -EFAULT; 1531 loop_info64_from_old(&info, &info64); 1532 return loop_set_status(lo, &info64); 1533 } 1534 1535 static int 1536 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1537 { 1538 struct loop_info64 info64; 1539 1540 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1541 return -EFAULT; 1542 return loop_set_status(lo, &info64); 1543 } 1544 1545 static int 1546 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1547 struct loop_info info; 1548 struct loop_info64 info64; 1549 int err; 1550 1551 if (!arg) 1552 return -EINVAL; 1553 err = loop_get_status(lo, &info64); 1554 if (!err) 1555 err = loop_info64_to_old(&info64, &info); 1556 if (!err && copy_to_user(arg, &info, sizeof(info))) 1557 err = -EFAULT; 1558 1559 return err; 1560 } 1561 1562 static int 1563 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1564 struct loop_info64 info64; 1565 int err; 1566 1567 if (!arg) 1568 return -EINVAL; 1569 err = loop_get_status(lo, &info64); 1570 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1571 err = -EFAULT; 1572 1573 return err; 1574 } 1575 1576 static int loop_set_capacity(struct loop_device *lo) 1577 { 1578 loff_t size; 1579 1580 if (unlikely(lo->lo_state != Lo_bound)) 1581 return -ENXIO; 1582 1583 size = get_loop_size(lo, lo->lo_backing_file); 1584 loop_set_size(lo, size); 1585 1586 return 0; 1587 } 1588 1589 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1590 { 1591 int error = -ENXIO; 1592 if (lo->lo_state != Lo_bound) 1593 goto out; 1594 1595 __loop_update_dio(lo, !!arg); 1596 if (lo->use_dio == !!arg) 1597 return 0; 1598 error = -EINVAL; 1599 out: 1600 return error; 1601 } 1602 1603 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1604 { 1605 int err = 0; 1606 1607 if (lo->lo_state != Lo_bound) 1608 return -ENXIO; 1609 1610 err = loop_validate_block_size(arg); 1611 if (err) 1612 return err; 1613 1614 if (lo->lo_queue->limits.logical_block_size == arg) 1615 return 0; 1616 1617 sync_blockdev(lo->lo_device); 1618 invalidate_bdev(lo->lo_device); 1619 1620 blk_mq_freeze_queue(lo->lo_queue); 1621 1622 /* invalidate_bdev should have truncated all the pages */ 1623 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1624 err = -EAGAIN; 1625 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1626 __func__, lo->lo_number, lo->lo_file_name, 1627 lo->lo_device->bd_inode->i_mapping->nrpages); 1628 goto out_unfreeze; 1629 } 1630 1631 blk_queue_logical_block_size(lo->lo_queue, arg); 1632 blk_queue_physical_block_size(lo->lo_queue, arg); 1633 blk_queue_io_min(lo->lo_queue, arg); 1634 loop_update_dio(lo); 1635 out_unfreeze: 1636 blk_mq_unfreeze_queue(lo->lo_queue); 1637 1638 return err; 1639 } 1640 1641 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1642 unsigned long arg) 1643 { 1644 int err; 1645 1646 err = mutex_lock_killable(&loop_ctl_mutex); 1647 if (err) 1648 return err; 1649 switch (cmd) { 1650 case LOOP_SET_CAPACITY: 1651 err = loop_set_capacity(lo); 1652 break; 1653 case LOOP_SET_DIRECT_IO: 1654 err = loop_set_dio(lo, arg); 1655 break; 1656 case LOOP_SET_BLOCK_SIZE: 1657 err = loop_set_block_size(lo, arg); 1658 break; 1659 default: 1660 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1661 } 1662 mutex_unlock(&loop_ctl_mutex); 1663 return err; 1664 } 1665 1666 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1667 unsigned int cmd, unsigned long arg) 1668 { 1669 struct loop_device *lo = bdev->bd_disk->private_data; 1670 void __user *argp = (void __user *) arg; 1671 int err; 1672 1673 switch (cmd) { 1674 case LOOP_SET_FD: { 1675 /* 1676 * Legacy case - pass in a zeroed out struct loop_config with 1677 * only the file descriptor set , which corresponds with the 1678 * default parameters we'd have used otherwise. 1679 */ 1680 struct loop_config config; 1681 1682 memset(&config, 0, sizeof(config)); 1683 config.fd = arg; 1684 1685 return loop_configure(lo, mode, bdev, &config); 1686 } 1687 case LOOP_CONFIGURE: { 1688 struct loop_config config; 1689 1690 if (copy_from_user(&config, argp, sizeof(config))) 1691 return -EFAULT; 1692 1693 return loop_configure(lo, mode, bdev, &config); 1694 } 1695 case LOOP_CHANGE_FD: 1696 return loop_change_fd(lo, bdev, arg); 1697 case LOOP_CLR_FD: 1698 return loop_clr_fd(lo); 1699 case LOOP_SET_STATUS: 1700 err = -EPERM; 1701 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1702 err = loop_set_status_old(lo, argp); 1703 } 1704 break; 1705 case LOOP_GET_STATUS: 1706 return loop_get_status_old(lo, argp); 1707 case LOOP_SET_STATUS64: 1708 err = -EPERM; 1709 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1710 err = loop_set_status64(lo, argp); 1711 } 1712 break; 1713 case LOOP_GET_STATUS64: 1714 return loop_get_status64(lo, argp); 1715 case LOOP_SET_CAPACITY: 1716 case LOOP_SET_DIRECT_IO: 1717 case LOOP_SET_BLOCK_SIZE: 1718 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1719 return -EPERM; 1720 /* Fall through */ 1721 default: 1722 err = lo_simple_ioctl(lo, cmd, arg); 1723 break; 1724 } 1725 1726 return err; 1727 } 1728 1729 #ifdef CONFIG_COMPAT 1730 struct compat_loop_info { 1731 compat_int_t lo_number; /* ioctl r/o */ 1732 compat_dev_t lo_device; /* ioctl r/o */ 1733 compat_ulong_t lo_inode; /* ioctl r/o */ 1734 compat_dev_t lo_rdevice; /* ioctl r/o */ 1735 compat_int_t lo_offset; 1736 compat_int_t lo_encrypt_type; 1737 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1738 compat_int_t lo_flags; /* ioctl r/o */ 1739 char lo_name[LO_NAME_SIZE]; 1740 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1741 compat_ulong_t lo_init[2]; 1742 char reserved[4]; 1743 }; 1744 1745 /* 1746 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1747 * - noinlined to reduce stack space usage in main part of driver 1748 */ 1749 static noinline int 1750 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1751 struct loop_info64 *info64) 1752 { 1753 struct compat_loop_info info; 1754 1755 if (copy_from_user(&info, arg, sizeof(info))) 1756 return -EFAULT; 1757 1758 memset(info64, 0, sizeof(*info64)); 1759 info64->lo_number = info.lo_number; 1760 info64->lo_device = info.lo_device; 1761 info64->lo_inode = info.lo_inode; 1762 info64->lo_rdevice = info.lo_rdevice; 1763 info64->lo_offset = info.lo_offset; 1764 info64->lo_sizelimit = 0; 1765 info64->lo_encrypt_type = info.lo_encrypt_type; 1766 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1767 info64->lo_flags = info.lo_flags; 1768 info64->lo_init[0] = info.lo_init[0]; 1769 info64->lo_init[1] = info.lo_init[1]; 1770 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1771 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1772 else 1773 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1774 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1775 return 0; 1776 } 1777 1778 /* 1779 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1780 * - noinlined to reduce stack space usage in main part of driver 1781 */ 1782 static noinline int 1783 loop_info64_to_compat(const struct loop_info64 *info64, 1784 struct compat_loop_info __user *arg) 1785 { 1786 struct compat_loop_info info; 1787 1788 memset(&info, 0, sizeof(info)); 1789 info.lo_number = info64->lo_number; 1790 info.lo_device = info64->lo_device; 1791 info.lo_inode = info64->lo_inode; 1792 info.lo_rdevice = info64->lo_rdevice; 1793 info.lo_offset = info64->lo_offset; 1794 info.lo_encrypt_type = info64->lo_encrypt_type; 1795 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1796 info.lo_flags = info64->lo_flags; 1797 info.lo_init[0] = info64->lo_init[0]; 1798 info.lo_init[1] = info64->lo_init[1]; 1799 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1800 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1801 else 1802 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1803 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1804 1805 /* error in case values were truncated */ 1806 if (info.lo_device != info64->lo_device || 1807 info.lo_rdevice != info64->lo_rdevice || 1808 info.lo_inode != info64->lo_inode || 1809 info.lo_offset != info64->lo_offset || 1810 info.lo_init[0] != info64->lo_init[0] || 1811 info.lo_init[1] != info64->lo_init[1]) 1812 return -EOVERFLOW; 1813 1814 if (copy_to_user(arg, &info, sizeof(info))) 1815 return -EFAULT; 1816 return 0; 1817 } 1818 1819 static int 1820 loop_set_status_compat(struct loop_device *lo, 1821 const struct compat_loop_info __user *arg) 1822 { 1823 struct loop_info64 info64; 1824 int ret; 1825 1826 ret = loop_info64_from_compat(arg, &info64); 1827 if (ret < 0) 1828 return ret; 1829 return loop_set_status(lo, &info64); 1830 } 1831 1832 static int 1833 loop_get_status_compat(struct loop_device *lo, 1834 struct compat_loop_info __user *arg) 1835 { 1836 struct loop_info64 info64; 1837 int err; 1838 1839 if (!arg) 1840 return -EINVAL; 1841 err = loop_get_status(lo, &info64); 1842 if (!err) 1843 err = loop_info64_to_compat(&info64, arg); 1844 return err; 1845 } 1846 1847 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1848 unsigned int cmd, unsigned long arg) 1849 { 1850 struct loop_device *lo = bdev->bd_disk->private_data; 1851 int err; 1852 1853 switch(cmd) { 1854 case LOOP_SET_STATUS: 1855 err = loop_set_status_compat(lo, 1856 (const struct compat_loop_info __user *)arg); 1857 break; 1858 case LOOP_GET_STATUS: 1859 err = loop_get_status_compat(lo, 1860 (struct compat_loop_info __user *)arg); 1861 break; 1862 case LOOP_SET_CAPACITY: 1863 case LOOP_CLR_FD: 1864 case LOOP_GET_STATUS64: 1865 case LOOP_SET_STATUS64: 1866 case LOOP_CONFIGURE: 1867 arg = (unsigned long) compat_ptr(arg); 1868 /* fall through */ 1869 case LOOP_SET_FD: 1870 case LOOP_CHANGE_FD: 1871 case LOOP_SET_BLOCK_SIZE: 1872 case LOOP_SET_DIRECT_IO: 1873 err = lo_ioctl(bdev, mode, cmd, arg); 1874 break; 1875 default: 1876 err = -ENOIOCTLCMD; 1877 break; 1878 } 1879 return err; 1880 } 1881 #endif 1882 1883 static int lo_open(struct block_device *bdev, fmode_t mode) 1884 { 1885 struct loop_device *lo; 1886 int err; 1887 1888 err = mutex_lock_killable(&loop_ctl_mutex); 1889 if (err) 1890 return err; 1891 lo = bdev->bd_disk->private_data; 1892 if (!lo) { 1893 err = -ENXIO; 1894 goto out; 1895 } 1896 1897 atomic_inc(&lo->lo_refcnt); 1898 out: 1899 mutex_unlock(&loop_ctl_mutex); 1900 return err; 1901 } 1902 1903 static void lo_release(struct gendisk *disk, fmode_t mode) 1904 { 1905 struct loop_device *lo; 1906 1907 mutex_lock(&loop_ctl_mutex); 1908 lo = disk->private_data; 1909 if (atomic_dec_return(&lo->lo_refcnt)) 1910 goto out_unlock; 1911 1912 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1913 if (lo->lo_state != Lo_bound) 1914 goto out_unlock; 1915 lo->lo_state = Lo_rundown; 1916 mutex_unlock(&loop_ctl_mutex); 1917 /* 1918 * In autoclear mode, stop the loop thread 1919 * and remove configuration after last close. 1920 */ 1921 __loop_clr_fd(lo, true); 1922 return; 1923 } else if (lo->lo_state == Lo_bound) { 1924 /* 1925 * Otherwise keep thread (if running) and config, 1926 * but flush possible ongoing bios in thread. 1927 */ 1928 blk_mq_freeze_queue(lo->lo_queue); 1929 blk_mq_unfreeze_queue(lo->lo_queue); 1930 } 1931 1932 out_unlock: 1933 mutex_unlock(&loop_ctl_mutex); 1934 } 1935 1936 static const struct block_device_operations lo_fops = { 1937 .owner = THIS_MODULE, 1938 .open = lo_open, 1939 .release = lo_release, 1940 .ioctl = lo_ioctl, 1941 #ifdef CONFIG_COMPAT 1942 .compat_ioctl = lo_compat_ioctl, 1943 #endif 1944 }; 1945 1946 /* 1947 * And now the modules code and kernel interface. 1948 */ 1949 static int max_loop; 1950 module_param(max_loop, int, 0444); 1951 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1952 module_param(max_part, int, 0444); 1953 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1954 MODULE_LICENSE("GPL"); 1955 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1956 1957 int loop_register_transfer(struct loop_func_table *funcs) 1958 { 1959 unsigned int n = funcs->number; 1960 1961 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1962 return -EINVAL; 1963 xfer_funcs[n] = funcs; 1964 return 0; 1965 } 1966 1967 static int unregister_transfer_cb(int id, void *ptr, void *data) 1968 { 1969 struct loop_device *lo = ptr; 1970 struct loop_func_table *xfer = data; 1971 1972 mutex_lock(&loop_ctl_mutex); 1973 if (lo->lo_encryption == xfer) 1974 loop_release_xfer(lo); 1975 mutex_unlock(&loop_ctl_mutex); 1976 return 0; 1977 } 1978 1979 int loop_unregister_transfer(int number) 1980 { 1981 unsigned int n = number; 1982 struct loop_func_table *xfer; 1983 1984 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1985 return -EINVAL; 1986 1987 xfer_funcs[n] = NULL; 1988 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1989 return 0; 1990 } 1991 1992 EXPORT_SYMBOL(loop_register_transfer); 1993 EXPORT_SYMBOL(loop_unregister_transfer); 1994 1995 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1996 const struct blk_mq_queue_data *bd) 1997 { 1998 struct request *rq = bd->rq; 1999 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2000 struct loop_device *lo = rq->q->queuedata; 2001 2002 blk_mq_start_request(rq); 2003 2004 if (lo->lo_state != Lo_bound) 2005 return BLK_STS_IOERR; 2006 2007 switch (req_op(rq)) { 2008 case REQ_OP_FLUSH: 2009 case REQ_OP_DISCARD: 2010 case REQ_OP_WRITE_ZEROES: 2011 cmd->use_aio = false; 2012 break; 2013 default: 2014 cmd->use_aio = lo->use_dio; 2015 break; 2016 } 2017 2018 /* always use the first bio's css */ 2019 #ifdef CONFIG_BLK_CGROUP 2020 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 2021 cmd->css = &bio_blkcg(rq->bio)->css; 2022 css_get(cmd->css); 2023 } else 2024 #endif 2025 cmd->css = NULL; 2026 kthread_queue_work(&lo->worker, &cmd->work); 2027 2028 return BLK_STS_OK; 2029 } 2030 2031 static void loop_handle_cmd(struct loop_cmd *cmd) 2032 { 2033 struct request *rq = blk_mq_rq_from_pdu(cmd); 2034 const bool write = op_is_write(req_op(rq)); 2035 struct loop_device *lo = rq->q->queuedata; 2036 int ret = 0; 2037 2038 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 2039 ret = -EIO; 2040 goto failed; 2041 } 2042 2043 ret = do_req_filebacked(lo, rq); 2044 failed: 2045 /* complete non-aio request */ 2046 if (!cmd->use_aio || ret) { 2047 if (ret == -EOPNOTSUPP) 2048 cmd->ret = ret; 2049 else 2050 cmd->ret = ret ? -EIO : 0; 2051 if (likely(!blk_should_fake_timeout(rq->q))) 2052 blk_mq_complete_request(rq); 2053 } 2054 } 2055 2056 static void loop_queue_work(struct kthread_work *work) 2057 { 2058 struct loop_cmd *cmd = 2059 container_of(work, struct loop_cmd, work); 2060 2061 loop_handle_cmd(cmd); 2062 } 2063 2064 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 2065 unsigned int hctx_idx, unsigned int numa_node) 2066 { 2067 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2068 2069 kthread_init_work(&cmd->work, loop_queue_work); 2070 return 0; 2071 } 2072 2073 static const struct blk_mq_ops loop_mq_ops = { 2074 .queue_rq = loop_queue_rq, 2075 .init_request = loop_init_request, 2076 .complete = lo_complete_rq, 2077 }; 2078 2079 static int loop_add(struct loop_device **l, int i) 2080 { 2081 struct loop_device *lo; 2082 struct gendisk *disk; 2083 int err; 2084 2085 err = -ENOMEM; 2086 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2087 if (!lo) 2088 goto out; 2089 2090 lo->lo_state = Lo_unbound; 2091 2092 /* allocate id, if @id >= 0, we're requesting that specific id */ 2093 if (i >= 0) { 2094 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2095 if (err == -ENOSPC) 2096 err = -EEXIST; 2097 } else { 2098 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2099 } 2100 if (err < 0) 2101 goto out_free_dev; 2102 i = err; 2103 2104 err = -ENOMEM; 2105 lo->tag_set.ops = &loop_mq_ops; 2106 lo->tag_set.nr_hw_queues = 1; 2107 lo->tag_set.queue_depth = 128; 2108 lo->tag_set.numa_node = NUMA_NO_NODE; 2109 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2110 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING; 2111 lo->tag_set.driver_data = lo; 2112 2113 err = blk_mq_alloc_tag_set(&lo->tag_set); 2114 if (err) 2115 goto out_free_idr; 2116 2117 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2118 if (IS_ERR(lo->lo_queue)) { 2119 err = PTR_ERR(lo->lo_queue); 2120 goto out_cleanup_tags; 2121 } 2122 lo->lo_queue->queuedata = lo; 2123 2124 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2125 2126 /* 2127 * By default, we do buffer IO, so it doesn't make sense to enable 2128 * merge because the I/O submitted to backing file is handled page by 2129 * page. For directio mode, merge does help to dispatch bigger request 2130 * to underlayer disk. We will enable merge once directio is enabled. 2131 */ 2132 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2133 2134 err = -ENOMEM; 2135 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2136 if (!disk) 2137 goto out_free_queue; 2138 2139 /* 2140 * Disable partition scanning by default. The in-kernel partition 2141 * scanning can be requested individually per-device during its 2142 * setup. Userspace can always add and remove partitions from all 2143 * devices. The needed partition minors are allocated from the 2144 * extended minor space, the main loop device numbers will continue 2145 * to match the loop minors, regardless of the number of partitions 2146 * used. 2147 * 2148 * If max_part is given, partition scanning is globally enabled for 2149 * all loop devices. The minors for the main loop devices will be 2150 * multiples of max_part. 2151 * 2152 * Note: Global-for-all-devices, set-only-at-init, read-only module 2153 * parameteters like 'max_loop' and 'max_part' make things needlessly 2154 * complicated, are too static, inflexible and may surprise 2155 * userspace tools. Parameters like this in general should be avoided. 2156 */ 2157 if (!part_shift) 2158 disk->flags |= GENHD_FL_NO_PART_SCAN; 2159 disk->flags |= GENHD_FL_EXT_DEVT; 2160 atomic_set(&lo->lo_refcnt, 0); 2161 lo->lo_number = i; 2162 spin_lock_init(&lo->lo_lock); 2163 disk->major = LOOP_MAJOR; 2164 disk->first_minor = i << part_shift; 2165 disk->fops = &lo_fops; 2166 disk->private_data = lo; 2167 disk->queue = lo->lo_queue; 2168 sprintf(disk->disk_name, "loop%d", i); 2169 add_disk(disk); 2170 *l = lo; 2171 return lo->lo_number; 2172 2173 out_free_queue: 2174 blk_cleanup_queue(lo->lo_queue); 2175 out_cleanup_tags: 2176 blk_mq_free_tag_set(&lo->tag_set); 2177 out_free_idr: 2178 idr_remove(&loop_index_idr, i); 2179 out_free_dev: 2180 kfree(lo); 2181 out: 2182 return err; 2183 } 2184 2185 static void loop_remove(struct loop_device *lo) 2186 { 2187 del_gendisk(lo->lo_disk); 2188 blk_cleanup_queue(lo->lo_queue); 2189 blk_mq_free_tag_set(&lo->tag_set); 2190 put_disk(lo->lo_disk); 2191 kfree(lo); 2192 } 2193 2194 static int find_free_cb(int id, void *ptr, void *data) 2195 { 2196 struct loop_device *lo = ptr; 2197 struct loop_device **l = data; 2198 2199 if (lo->lo_state == Lo_unbound) { 2200 *l = lo; 2201 return 1; 2202 } 2203 return 0; 2204 } 2205 2206 static int loop_lookup(struct loop_device **l, int i) 2207 { 2208 struct loop_device *lo; 2209 int ret = -ENODEV; 2210 2211 if (i < 0) { 2212 int err; 2213 2214 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2215 if (err == 1) { 2216 *l = lo; 2217 ret = lo->lo_number; 2218 } 2219 goto out; 2220 } 2221 2222 /* lookup and return a specific i */ 2223 lo = idr_find(&loop_index_idr, i); 2224 if (lo) { 2225 *l = lo; 2226 ret = lo->lo_number; 2227 } 2228 out: 2229 return ret; 2230 } 2231 2232 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2233 { 2234 struct loop_device *lo; 2235 struct kobject *kobj; 2236 int err; 2237 2238 mutex_lock(&loop_ctl_mutex); 2239 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2240 if (err < 0) 2241 err = loop_add(&lo, MINOR(dev) >> part_shift); 2242 if (err < 0) 2243 kobj = NULL; 2244 else 2245 kobj = get_disk_and_module(lo->lo_disk); 2246 mutex_unlock(&loop_ctl_mutex); 2247 2248 *part = 0; 2249 return kobj; 2250 } 2251 2252 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2253 unsigned long parm) 2254 { 2255 struct loop_device *lo; 2256 int ret; 2257 2258 ret = mutex_lock_killable(&loop_ctl_mutex); 2259 if (ret) 2260 return ret; 2261 2262 ret = -ENOSYS; 2263 switch (cmd) { 2264 case LOOP_CTL_ADD: 2265 ret = loop_lookup(&lo, parm); 2266 if (ret >= 0) { 2267 ret = -EEXIST; 2268 break; 2269 } 2270 ret = loop_add(&lo, parm); 2271 break; 2272 case LOOP_CTL_REMOVE: 2273 ret = loop_lookup(&lo, parm); 2274 if (ret < 0) 2275 break; 2276 if (lo->lo_state != Lo_unbound) { 2277 ret = -EBUSY; 2278 break; 2279 } 2280 if (atomic_read(&lo->lo_refcnt) > 0) { 2281 ret = -EBUSY; 2282 break; 2283 } 2284 lo->lo_disk->private_data = NULL; 2285 idr_remove(&loop_index_idr, lo->lo_number); 2286 loop_remove(lo); 2287 break; 2288 case LOOP_CTL_GET_FREE: 2289 ret = loop_lookup(&lo, -1); 2290 if (ret >= 0) 2291 break; 2292 ret = loop_add(&lo, -1); 2293 } 2294 mutex_unlock(&loop_ctl_mutex); 2295 2296 return ret; 2297 } 2298 2299 static const struct file_operations loop_ctl_fops = { 2300 .open = nonseekable_open, 2301 .unlocked_ioctl = loop_control_ioctl, 2302 .compat_ioctl = loop_control_ioctl, 2303 .owner = THIS_MODULE, 2304 .llseek = noop_llseek, 2305 }; 2306 2307 static struct miscdevice loop_misc = { 2308 .minor = LOOP_CTRL_MINOR, 2309 .name = "loop-control", 2310 .fops = &loop_ctl_fops, 2311 }; 2312 2313 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2314 MODULE_ALIAS("devname:loop-control"); 2315 2316 static int __init loop_init(void) 2317 { 2318 int i, nr; 2319 unsigned long range; 2320 struct loop_device *lo; 2321 int err; 2322 2323 part_shift = 0; 2324 if (max_part > 0) { 2325 part_shift = fls(max_part); 2326 2327 /* 2328 * Adjust max_part according to part_shift as it is exported 2329 * to user space so that user can decide correct minor number 2330 * if [s]he want to create more devices. 2331 * 2332 * Note that -1 is required because partition 0 is reserved 2333 * for the whole disk. 2334 */ 2335 max_part = (1UL << part_shift) - 1; 2336 } 2337 2338 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2339 err = -EINVAL; 2340 goto err_out; 2341 } 2342 2343 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2344 err = -EINVAL; 2345 goto err_out; 2346 } 2347 2348 /* 2349 * If max_loop is specified, create that many devices upfront. 2350 * This also becomes a hard limit. If max_loop is not specified, 2351 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2352 * init time. Loop devices can be requested on-demand with the 2353 * /dev/loop-control interface, or be instantiated by accessing 2354 * a 'dead' device node. 2355 */ 2356 if (max_loop) { 2357 nr = max_loop; 2358 range = max_loop << part_shift; 2359 } else { 2360 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2361 range = 1UL << MINORBITS; 2362 } 2363 2364 err = misc_register(&loop_misc); 2365 if (err < 0) 2366 goto err_out; 2367 2368 2369 if (register_blkdev(LOOP_MAJOR, "loop")) { 2370 err = -EIO; 2371 goto misc_out; 2372 } 2373 2374 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2375 THIS_MODULE, loop_probe, NULL, NULL); 2376 2377 /* pre-create number of devices given by config or max_loop */ 2378 mutex_lock(&loop_ctl_mutex); 2379 for (i = 0; i < nr; i++) 2380 loop_add(&lo, i); 2381 mutex_unlock(&loop_ctl_mutex); 2382 2383 printk(KERN_INFO "loop: module loaded\n"); 2384 return 0; 2385 2386 misc_out: 2387 misc_deregister(&loop_misc); 2388 err_out: 2389 return err; 2390 } 2391 2392 static int loop_exit_cb(int id, void *ptr, void *data) 2393 { 2394 struct loop_device *lo = ptr; 2395 2396 loop_remove(lo); 2397 return 0; 2398 } 2399 2400 static void __exit loop_exit(void) 2401 { 2402 unsigned long range; 2403 2404 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2405 2406 mutex_lock(&loop_ctl_mutex); 2407 2408 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2409 idr_destroy(&loop_index_idr); 2410 2411 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2412 unregister_blkdev(LOOP_MAJOR, "loop"); 2413 2414 misc_deregister(&loop_misc); 2415 2416 mutex_unlock(&loop_ctl_mutex); 2417 } 2418 2419 module_init(loop_init); 2420 module_exit(loop_exit); 2421 2422 #ifndef MODULE 2423 static int __init max_loop_setup(char *str) 2424 { 2425 max_loop = simple_strtol(str, NULL, 0); 2426 return 1; 2427 } 2428 2429 __setup("max_loop=", max_loop_setup); 2430 #endif 2431