1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/smp_lock.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/loop.h> 68 #include <linux/compat.h> 69 #include <linux/suspend.h> 70 #include <linux/freezer.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/gfp.h> 76 #include <linux/kthread.h> 77 #include <linux/splice.h> 78 79 #include <asm/uaccess.h> 80 81 static LIST_HEAD(loop_devices); 82 static DEFINE_MUTEX(loop_devices_mutex); 83 84 static int max_part; 85 static int part_shift; 86 87 /* 88 * Transfer functions 89 */ 90 static int transfer_none(struct loop_device *lo, int cmd, 91 struct page *raw_page, unsigned raw_off, 92 struct page *loop_page, unsigned loop_off, 93 int size, sector_t real_block) 94 { 95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 97 98 if (cmd == READ) 99 memcpy(loop_buf, raw_buf, size); 100 else 101 memcpy(raw_buf, loop_buf, size); 102 103 kunmap_atomic(raw_buf, KM_USER0); 104 kunmap_atomic(loop_buf, KM_USER1); 105 cond_resched(); 106 return 0; 107 } 108 109 static int transfer_xor(struct loop_device *lo, int cmd, 110 struct page *raw_page, unsigned raw_off, 111 struct page *loop_page, unsigned loop_off, 112 int size, sector_t real_block) 113 { 114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 116 char *in, *out, *key; 117 int i, keysize; 118 119 if (cmd == READ) { 120 in = raw_buf; 121 out = loop_buf; 122 } else { 123 in = loop_buf; 124 out = raw_buf; 125 } 126 127 key = lo->lo_encrypt_key; 128 keysize = lo->lo_encrypt_key_size; 129 for (i = 0; i < size; i++) 130 *out++ = *in++ ^ key[(i & 511) % keysize]; 131 132 kunmap_atomic(raw_buf, KM_USER0); 133 kunmap_atomic(loop_buf, KM_USER1); 134 cond_resched(); 135 return 0; 136 } 137 138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 139 { 140 if (unlikely(info->lo_encrypt_key_size <= 0)) 141 return -EINVAL; 142 return 0; 143 } 144 145 static struct loop_func_table none_funcs = { 146 .number = LO_CRYPT_NONE, 147 .transfer = transfer_none, 148 }; 149 150 static struct loop_func_table xor_funcs = { 151 .number = LO_CRYPT_XOR, 152 .transfer = transfer_xor, 153 .init = xor_init 154 }; 155 156 /* xfer_funcs[0] is special - its release function is never called */ 157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 158 &none_funcs, 159 &xor_funcs 160 }; 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 loff_t size, offset, loopsize; 165 166 /* Compute loopsize in bytes */ 167 size = i_size_read(file->f_mapping->host); 168 offset = lo->lo_offset; 169 loopsize = size - offset; 170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 171 loopsize = lo->lo_sizelimit; 172 173 /* 174 * Unfortunately, if we want to do I/O on the device, 175 * the number of 512-byte sectors has to fit into a sector_t. 176 */ 177 return loopsize >> 9; 178 } 179 180 static int 181 figure_loop_size(struct loop_device *lo) 182 { 183 loff_t size = get_loop_size(lo, lo->lo_backing_file); 184 sector_t x = (sector_t)size; 185 186 if (unlikely((loff_t)x != size)) 187 return -EFBIG; 188 189 set_capacity(lo->lo_disk, x); 190 return 0; 191 } 192 193 static inline int 194 lo_do_transfer(struct loop_device *lo, int cmd, 195 struct page *rpage, unsigned roffs, 196 struct page *lpage, unsigned loffs, 197 int size, sector_t rblock) 198 { 199 if (unlikely(!lo->transfer)) 200 return 0; 201 202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 203 } 204 205 /** 206 * do_lo_send_aops - helper for writing data to a loop device 207 * 208 * This is the fast version for backing filesystems which implement the address 209 * space operations write_begin and write_end. 210 */ 211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 212 loff_t pos, struct page *unused) 213 { 214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 215 struct address_space *mapping = file->f_mapping; 216 pgoff_t index; 217 unsigned offset, bv_offs; 218 int len, ret; 219 220 mutex_lock(&mapping->host->i_mutex); 221 index = pos >> PAGE_CACHE_SHIFT; 222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 223 bv_offs = bvec->bv_offset; 224 len = bvec->bv_len; 225 while (len > 0) { 226 sector_t IV; 227 unsigned size, copied; 228 int transfer_result; 229 struct page *page; 230 void *fsdata; 231 232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 233 size = PAGE_CACHE_SIZE - offset; 234 if (size > len) 235 size = len; 236 237 ret = pagecache_write_begin(file, mapping, pos, size, 0, 238 &page, &fsdata); 239 if (ret) 240 goto fail; 241 242 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 243 bvec->bv_page, bv_offs, size, IV); 244 copied = size; 245 if (unlikely(transfer_result)) 246 copied = 0; 247 248 ret = pagecache_write_end(file, mapping, pos, size, copied, 249 page, fsdata); 250 if (ret < 0 || ret != copied) 251 goto fail; 252 253 if (unlikely(transfer_result)) 254 goto fail; 255 256 bv_offs += copied; 257 len -= copied; 258 offset = 0; 259 index++; 260 pos += copied; 261 } 262 ret = 0; 263 out: 264 mutex_unlock(&mapping->host->i_mutex); 265 return ret; 266 fail: 267 ret = -1; 268 goto out; 269 } 270 271 /** 272 * __do_lo_send_write - helper for writing data to a loop device 273 * 274 * This helper just factors out common code between do_lo_send_direct_write() 275 * and do_lo_send_write(). 276 */ 277 static int __do_lo_send_write(struct file *file, 278 u8 *buf, const int len, loff_t pos) 279 { 280 ssize_t bw; 281 mm_segment_t old_fs = get_fs(); 282 283 set_fs(get_ds()); 284 bw = file->f_op->write(file, buf, len, &pos); 285 set_fs(old_fs); 286 if (likely(bw == len)) 287 return 0; 288 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 289 (unsigned long long)pos, len); 290 if (bw >= 0) 291 bw = -EIO; 292 return bw; 293 } 294 295 /** 296 * do_lo_send_direct_write - helper for writing data to a loop device 297 * 298 * This is the fast, non-transforming version for backing filesystems which do 299 * not implement the address space operations write_begin and write_end. 300 * It uses the write file operation which should be present on all writeable 301 * filesystems. 302 */ 303 static int do_lo_send_direct_write(struct loop_device *lo, 304 struct bio_vec *bvec, loff_t pos, struct page *page) 305 { 306 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 307 kmap(bvec->bv_page) + bvec->bv_offset, 308 bvec->bv_len, pos); 309 kunmap(bvec->bv_page); 310 cond_resched(); 311 return bw; 312 } 313 314 /** 315 * do_lo_send_write - helper for writing data to a loop device 316 * 317 * This is the slow, transforming version for filesystems which do not 318 * implement the address space operations write_begin and write_end. It 319 * uses the write file operation which should be present on all writeable 320 * filesystems. 321 * 322 * Using fops->write is slower than using aops->{prepare,commit}_write in the 323 * transforming case because we need to double buffer the data as we cannot do 324 * the transformations in place as we do not have direct access to the 325 * destination pages of the backing file. 326 */ 327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 328 loff_t pos, struct page *page) 329 { 330 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 331 bvec->bv_offset, bvec->bv_len, pos >> 9); 332 if (likely(!ret)) 333 return __do_lo_send_write(lo->lo_backing_file, 334 page_address(page), bvec->bv_len, 335 pos); 336 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 337 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 338 if (ret > 0) 339 ret = -EIO; 340 return ret; 341 } 342 343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 344 { 345 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 346 struct page *page); 347 struct bio_vec *bvec; 348 struct page *page = NULL; 349 int i, ret = 0; 350 351 do_lo_send = do_lo_send_aops; 352 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 353 do_lo_send = do_lo_send_direct_write; 354 if (lo->transfer != transfer_none) { 355 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 356 if (unlikely(!page)) 357 goto fail; 358 kmap(page); 359 do_lo_send = do_lo_send_write; 360 } 361 } 362 bio_for_each_segment(bvec, bio, i) { 363 ret = do_lo_send(lo, bvec, pos, page); 364 if (ret < 0) 365 break; 366 pos += bvec->bv_len; 367 } 368 if (page) { 369 kunmap(page); 370 __free_page(page); 371 } 372 out: 373 return ret; 374 fail: 375 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 376 ret = -ENOMEM; 377 goto out; 378 } 379 380 struct lo_read_data { 381 struct loop_device *lo; 382 struct page *page; 383 unsigned offset; 384 int bsize; 385 }; 386 387 static int 388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 389 struct splice_desc *sd) 390 { 391 struct lo_read_data *p = sd->u.data; 392 struct loop_device *lo = p->lo; 393 struct page *page = buf->page; 394 sector_t IV; 395 int size, ret; 396 397 ret = buf->ops->confirm(pipe, buf); 398 if (unlikely(ret)) 399 return ret; 400 401 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 402 (buf->offset >> 9); 403 size = sd->len; 404 if (size > p->bsize) 405 size = p->bsize; 406 407 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 408 printk(KERN_ERR "loop: transfer error block %ld\n", 409 page->index); 410 size = -EINVAL; 411 } 412 413 flush_dcache_page(p->page); 414 415 if (size > 0) 416 p->offset += size; 417 418 return size; 419 } 420 421 static int 422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 423 { 424 return __splice_from_pipe(pipe, sd, lo_splice_actor); 425 } 426 427 static int 428 do_lo_receive(struct loop_device *lo, 429 struct bio_vec *bvec, int bsize, loff_t pos) 430 { 431 struct lo_read_data cookie; 432 struct splice_desc sd; 433 struct file *file; 434 long retval; 435 436 cookie.lo = lo; 437 cookie.page = bvec->bv_page; 438 cookie.offset = bvec->bv_offset; 439 cookie.bsize = bsize; 440 441 sd.len = 0; 442 sd.total_len = bvec->bv_len; 443 sd.flags = 0; 444 sd.pos = pos; 445 sd.u.data = &cookie; 446 447 file = lo->lo_backing_file; 448 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 449 450 if (retval < 0) 451 return retval; 452 453 return 0; 454 } 455 456 static int 457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 458 { 459 struct bio_vec *bvec; 460 int i, ret = 0; 461 462 bio_for_each_segment(bvec, bio, i) { 463 ret = do_lo_receive(lo, bvec, bsize, pos); 464 if (ret < 0) 465 break; 466 pos += bvec->bv_len; 467 } 468 return ret; 469 } 470 471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 472 { 473 loff_t pos; 474 int ret; 475 476 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 477 478 if (bio_rw(bio) == WRITE) { 479 int barrier = bio_barrier(bio); 480 struct file *file = lo->lo_backing_file; 481 482 if (barrier) { 483 if (unlikely(!file->f_op->fsync)) { 484 ret = -EOPNOTSUPP; 485 goto out; 486 } 487 488 ret = vfs_fsync(file, file->f_path.dentry, 0); 489 if (unlikely(ret)) { 490 ret = -EIO; 491 goto out; 492 } 493 } 494 495 ret = lo_send(lo, bio, pos); 496 497 if (barrier && !ret) { 498 ret = vfs_fsync(file, file->f_path.dentry, 0); 499 if (unlikely(ret)) 500 ret = -EIO; 501 } 502 } else 503 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 504 505 out: 506 return ret; 507 } 508 509 /* 510 * Add bio to back of pending list 511 */ 512 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 513 { 514 if (lo->lo_biotail) { 515 lo->lo_biotail->bi_next = bio; 516 lo->lo_biotail = bio; 517 } else 518 lo->lo_bio = lo->lo_biotail = bio; 519 } 520 521 /* 522 * Grab first pending buffer 523 */ 524 static struct bio *loop_get_bio(struct loop_device *lo) 525 { 526 struct bio *bio; 527 528 if ((bio = lo->lo_bio)) { 529 if (bio == lo->lo_biotail) 530 lo->lo_biotail = NULL; 531 lo->lo_bio = bio->bi_next; 532 bio->bi_next = NULL; 533 } 534 535 return bio; 536 } 537 538 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 539 { 540 struct loop_device *lo = q->queuedata; 541 int rw = bio_rw(old_bio); 542 543 if (rw == READA) 544 rw = READ; 545 546 BUG_ON(!lo || (rw != READ && rw != WRITE)); 547 548 spin_lock_irq(&lo->lo_lock); 549 if (lo->lo_state != Lo_bound) 550 goto out; 551 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 552 goto out; 553 loop_add_bio(lo, old_bio); 554 wake_up(&lo->lo_event); 555 spin_unlock_irq(&lo->lo_lock); 556 return 0; 557 558 out: 559 spin_unlock_irq(&lo->lo_lock); 560 bio_io_error(old_bio); 561 return 0; 562 } 563 564 /* 565 * kick off io on the underlying address space 566 */ 567 static void loop_unplug(struct request_queue *q) 568 { 569 struct loop_device *lo = q->queuedata; 570 571 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 572 blk_run_address_space(lo->lo_backing_file->f_mapping); 573 } 574 575 struct switch_request { 576 struct file *file; 577 struct completion wait; 578 }; 579 580 static void do_loop_switch(struct loop_device *, struct switch_request *); 581 582 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 583 { 584 if (unlikely(!bio->bi_bdev)) { 585 do_loop_switch(lo, bio->bi_private); 586 bio_put(bio); 587 } else { 588 int ret = do_bio_filebacked(lo, bio); 589 bio_endio(bio, ret); 590 } 591 } 592 593 /* 594 * worker thread that handles reads/writes to file backed loop devices, 595 * to avoid blocking in our make_request_fn. it also does loop decrypting 596 * on reads for block backed loop, as that is too heavy to do from 597 * b_end_io context where irqs may be disabled. 598 * 599 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 600 * calling kthread_stop(). Therefore once kthread_should_stop() is 601 * true, make_request will not place any more requests. Therefore 602 * once kthread_should_stop() is true and lo_bio is NULL, we are 603 * done with the loop. 604 */ 605 static int loop_thread(void *data) 606 { 607 struct loop_device *lo = data; 608 struct bio *bio; 609 610 set_user_nice(current, -20); 611 612 while (!kthread_should_stop() || lo->lo_bio) { 613 614 wait_event_interruptible(lo->lo_event, 615 lo->lo_bio || kthread_should_stop()); 616 617 if (!lo->lo_bio) 618 continue; 619 spin_lock_irq(&lo->lo_lock); 620 bio = loop_get_bio(lo); 621 spin_unlock_irq(&lo->lo_lock); 622 623 BUG_ON(!bio); 624 loop_handle_bio(lo, bio); 625 } 626 627 return 0; 628 } 629 630 /* 631 * loop_switch performs the hard work of switching a backing store. 632 * First it needs to flush existing IO, it does this by sending a magic 633 * BIO down the pipe. The completion of this BIO does the actual switch. 634 */ 635 static int loop_switch(struct loop_device *lo, struct file *file) 636 { 637 struct switch_request w; 638 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 639 if (!bio) 640 return -ENOMEM; 641 init_completion(&w.wait); 642 w.file = file; 643 bio->bi_private = &w; 644 bio->bi_bdev = NULL; 645 loop_make_request(lo->lo_queue, bio); 646 wait_for_completion(&w.wait); 647 return 0; 648 } 649 650 /* 651 * Helper to flush the IOs in loop, but keeping loop thread running 652 */ 653 static int loop_flush(struct loop_device *lo) 654 { 655 /* loop not yet configured, no running thread, nothing to flush */ 656 if (!lo->lo_thread) 657 return 0; 658 659 return loop_switch(lo, NULL); 660 } 661 662 /* 663 * Do the actual switch; called from the BIO completion routine 664 */ 665 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 666 { 667 struct file *file = p->file; 668 struct file *old_file = lo->lo_backing_file; 669 struct address_space *mapping; 670 671 /* if no new file, only flush of queued bios requested */ 672 if (!file) 673 goto out; 674 675 mapping = file->f_mapping; 676 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 677 lo->lo_backing_file = file; 678 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 679 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 680 lo->old_gfp_mask = mapping_gfp_mask(mapping); 681 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 682 out: 683 complete(&p->wait); 684 } 685 686 687 /* 688 * loop_change_fd switched the backing store of a loopback device to 689 * a new file. This is useful for operating system installers to free up 690 * the original file and in High Availability environments to switch to 691 * an alternative location for the content in case of server meltdown. 692 * This can only work if the loop device is used read-only, and if the 693 * new backing store is the same size and type as the old backing store. 694 */ 695 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 696 unsigned int arg) 697 { 698 struct file *file, *old_file; 699 struct inode *inode; 700 int error; 701 702 error = -ENXIO; 703 if (lo->lo_state != Lo_bound) 704 goto out; 705 706 /* the loop device has to be read-only */ 707 error = -EINVAL; 708 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 709 goto out; 710 711 error = -EBADF; 712 file = fget(arg); 713 if (!file) 714 goto out; 715 716 inode = file->f_mapping->host; 717 old_file = lo->lo_backing_file; 718 719 error = -EINVAL; 720 721 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 722 goto out_putf; 723 724 /* new backing store needs to support loop (eg splice_read) */ 725 if (!inode->i_fop->splice_read) 726 goto out_putf; 727 728 /* size of the new backing store needs to be the same */ 729 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 730 goto out_putf; 731 732 /* and ... switch */ 733 error = loop_switch(lo, file); 734 if (error) 735 goto out_putf; 736 737 fput(old_file); 738 if (max_part > 0) 739 ioctl_by_bdev(bdev, BLKRRPART, 0); 740 return 0; 741 742 out_putf: 743 fput(file); 744 out: 745 return error; 746 } 747 748 static inline int is_loop_device(struct file *file) 749 { 750 struct inode *i = file->f_mapping->host; 751 752 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 753 } 754 755 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 756 struct block_device *bdev, unsigned int arg) 757 { 758 struct file *file, *f; 759 struct inode *inode; 760 struct address_space *mapping; 761 unsigned lo_blocksize; 762 int lo_flags = 0; 763 int error; 764 loff_t size; 765 766 /* This is safe, since we have a reference from open(). */ 767 __module_get(THIS_MODULE); 768 769 error = -EBADF; 770 file = fget(arg); 771 if (!file) 772 goto out; 773 774 error = -EBUSY; 775 if (lo->lo_state != Lo_unbound) 776 goto out_putf; 777 778 /* Avoid recursion */ 779 f = file; 780 while (is_loop_device(f)) { 781 struct loop_device *l; 782 783 if (f->f_mapping->host->i_bdev == bdev) 784 goto out_putf; 785 786 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 787 if (l->lo_state == Lo_unbound) { 788 error = -EINVAL; 789 goto out_putf; 790 } 791 f = l->lo_backing_file; 792 } 793 794 mapping = file->f_mapping; 795 inode = mapping->host; 796 797 if (!(file->f_mode & FMODE_WRITE)) 798 lo_flags |= LO_FLAGS_READ_ONLY; 799 800 error = -EINVAL; 801 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 802 const struct address_space_operations *aops = mapping->a_ops; 803 /* 804 * If we can't read - sorry. If we only can't write - well, 805 * it's going to be read-only. 806 */ 807 if (!file->f_op->splice_read) 808 goto out_putf; 809 if (aops->write_begin) 810 lo_flags |= LO_FLAGS_USE_AOPS; 811 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 812 lo_flags |= LO_FLAGS_READ_ONLY; 813 814 lo_blocksize = S_ISBLK(inode->i_mode) ? 815 inode->i_bdev->bd_block_size : PAGE_SIZE; 816 817 error = 0; 818 } else { 819 goto out_putf; 820 } 821 822 size = get_loop_size(lo, file); 823 824 if ((loff_t)(sector_t)size != size) { 825 error = -EFBIG; 826 goto out_putf; 827 } 828 829 if (!(mode & FMODE_WRITE)) 830 lo_flags |= LO_FLAGS_READ_ONLY; 831 832 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 833 834 lo->lo_blocksize = lo_blocksize; 835 lo->lo_device = bdev; 836 lo->lo_flags = lo_flags; 837 lo->lo_backing_file = file; 838 lo->transfer = transfer_none; 839 lo->ioctl = NULL; 840 lo->lo_sizelimit = 0; 841 lo->old_gfp_mask = mapping_gfp_mask(mapping); 842 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 843 844 lo->lo_bio = lo->lo_biotail = NULL; 845 846 /* 847 * set queue make_request_fn, and add limits based on lower level 848 * device 849 */ 850 blk_queue_make_request(lo->lo_queue, loop_make_request); 851 lo->lo_queue->queuedata = lo; 852 lo->lo_queue->unplug_fn = loop_unplug; 853 854 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 855 blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN, NULL); 856 857 set_capacity(lo->lo_disk, size); 858 bd_set_size(bdev, size << 9); 859 860 set_blocksize(bdev, lo_blocksize); 861 862 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 863 lo->lo_number); 864 if (IS_ERR(lo->lo_thread)) { 865 error = PTR_ERR(lo->lo_thread); 866 goto out_clr; 867 } 868 lo->lo_state = Lo_bound; 869 wake_up_process(lo->lo_thread); 870 if (max_part > 0) 871 ioctl_by_bdev(bdev, BLKRRPART, 0); 872 return 0; 873 874 out_clr: 875 lo->lo_thread = NULL; 876 lo->lo_device = NULL; 877 lo->lo_backing_file = NULL; 878 lo->lo_flags = 0; 879 set_capacity(lo->lo_disk, 0); 880 invalidate_bdev(bdev); 881 bd_set_size(bdev, 0); 882 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 883 lo->lo_state = Lo_unbound; 884 out_putf: 885 fput(file); 886 out: 887 /* This is safe: open() is still holding a reference. */ 888 module_put(THIS_MODULE); 889 return error; 890 } 891 892 static int 893 loop_release_xfer(struct loop_device *lo) 894 { 895 int err = 0; 896 struct loop_func_table *xfer = lo->lo_encryption; 897 898 if (xfer) { 899 if (xfer->release) 900 err = xfer->release(lo); 901 lo->transfer = NULL; 902 lo->lo_encryption = NULL; 903 module_put(xfer->owner); 904 } 905 return err; 906 } 907 908 static int 909 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 910 const struct loop_info64 *i) 911 { 912 int err = 0; 913 914 if (xfer) { 915 struct module *owner = xfer->owner; 916 917 if (!try_module_get(owner)) 918 return -EINVAL; 919 if (xfer->init) 920 err = xfer->init(lo, i); 921 if (err) 922 module_put(owner); 923 else 924 lo->lo_encryption = xfer; 925 } 926 return err; 927 } 928 929 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 930 { 931 struct file *filp = lo->lo_backing_file; 932 gfp_t gfp = lo->old_gfp_mask; 933 934 if (lo->lo_state != Lo_bound) 935 return -ENXIO; 936 937 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 938 return -EBUSY; 939 940 if (filp == NULL) 941 return -EINVAL; 942 943 spin_lock_irq(&lo->lo_lock); 944 lo->lo_state = Lo_rundown; 945 spin_unlock_irq(&lo->lo_lock); 946 947 kthread_stop(lo->lo_thread); 948 949 lo->lo_queue->unplug_fn = NULL; 950 lo->lo_backing_file = NULL; 951 952 loop_release_xfer(lo); 953 lo->transfer = NULL; 954 lo->ioctl = NULL; 955 lo->lo_device = NULL; 956 lo->lo_encryption = NULL; 957 lo->lo_offset = 0; 958 lo->lo_sizelimit = 0; 959 lo->lo_encrypt_key_size = 0; 960 lo->lo_flags = 0; 961 lo->lo_thread = NULL; 962 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 963 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 964 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 965 if (bdev) 966 invalidate_bdev(bdev); 967 set_capacity(lo->lo_disk, 0); 968 if (bdev) 969 bd_set_size(bdev, 0); 970 mapping_set_gfp_mask(filp->f_mapping, gfp); 971 lo->lo_state = Lo_unbound; 972 /* This is safe: open() is still holding a reference. */ 973 module_put(THIS_MODULE); 974 if (max_part > 0) 975 ioctl_by_bdev(bdev, BLKRRPART, 0); 976 mutex_unlock(&lo->lo_ctl_mutex); 977 /* 978 * Need not hold lo_ctl_mutex to fput backing file. 979 * Calling fput holding lo_ctl_mutex triggers a circular 980 * lock dependency possibility warning as fput can take 981 * bd_mutex which is usually taken before lo_ctl_mutex. 982 */ 983 fput(filp); 984 return 0; 985 } 986 987 static int 988 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 989 { 990 int err; 991 struct loop_func_table *xfer; 992 uid_t uid = current_uid(); 993 994 if (lo->lo_encrypt_key_size && 995 lo->lo_key_owner != uid && 996 !capable(CAP_SYS_ADMIN)) 997 return -EPERM; 998 if (lo->lo_state != Lo_bound) 999 return -ENXIO; 1000 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1001 return -EINVAL; 1002 1003 err = loop_release_xfer(lo); 1004 if (err) 1005 return err; 1006 1007 if (info->lo_encrypt_type) { 1008 unsigned int type = info->lo_encrypt_type; 1009 1010 if (type >= MAX_LO_CRYPT) 1011 return -EINVAL; 1012 xfer = xfer_funcs[type]; 1013 if (xfer == NULL) 1014 return -EINVAL; 1015 } else 1016 xfer = NULL; 1017 1018 err = loop_init_xfer(lo, xfer, info); 1019 if (err) 1020 return err; 1021 1022 if (lo->lo_offset != info->lo_offset || 1023 lo->lo_sizelimit != info->lo_sizelimit) { 1024 lo->lo_offset = info->lo_offset; 1025 lo->lo_sizelimit = info->lo_sizelimit; 1026 if (figure_loop_size(lo)) 1027 return -EFBIG; 1028 } 1029 1030 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1031 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1032 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1033 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1034 1035 if (!xfer) 1036 xfer = &none_funcs; 1037 lo->transfer = xfer->transfer; 1038 lo->ioctl = xfer->ioctl; 1039 1040 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1041 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1042 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1043 1044 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1045 lo->lo_init[0] = info->lo_init[0]; 1046 lo->lo_init[1] = info->lo_init[1]; 1047 if (info->lo_encrypt_key_size) { 1048 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1049 info->lo_encrypt_key_size); 1050 lo->lo_key_owner = uid; 1051 } 1052 1053 return 0; 1054 } 1055 1056 static int 1057 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1058 { 1059 struct file *file = lo->lo_backing_file; 1060 struct kstat stat; 1061 int error; 1062 1063 if (lo->lo_state != Lo_bound) 1064 return -ENXIO; 1065 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1066 if (error) 1067 return error; 1068 memset(info, 0, sizeof(*info)); 1069 info->lo_number = lo->lo_number; 1070 info->lo_device = huge_encode_dev(stat.dev); 1071 info->lo_inode = stat.ino; 1072 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1073 info->lo_offset = lo->lo_offset; 1074 info->lo_sizelimit = lo->lo_sizelimit; 1075 info->lo_flags = lo->lo_flags; 1076 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1077 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1078 info->lo_encrypt_type = 1079 lo->lo_encryption ? lo->lo_encryption->number : 0; 1080 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1081 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1082 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1083 lo->lo_encrypt_key_size); 1084 } 1085 return 0; 1086 } 1087 1088 static void 1089 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1090 { 1091 memset(info64, 0, sizeof(*info64)); 1092 info64->lo_number = info->lo_number; 1093 info64->lo_device = info->lo_device; 1094 info64->lo_inode = info->lo_inode; 1095 info64->lo_rdevice = info->lo_rdevice; 1096 info64->lo_offset = info->lo_offset; 1097 info64->lo_sizelimit = 0; 1098 info64->lo_encrypt_type = info->lo_encrypt_type; 1099 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1100 info64->lo_flags = info->lo_flags; 1101 info64->lo_init[0] = info->lo_init[0]; 1102 info64->lo_init[1] = info->lo_init[1]; 1103 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1104 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1105 else 1106 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1107 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1108 } 1109 1110 static int 1111 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1112 { 1113 memset(info, 0, sizeof(*info)); 1114 info->lo_number = info64->lo_number; 1115 info->lo_device = info64->lo_device; 1116 info->lo_inode = info64->lo_inode; 1117 info->lo_rdevice = info64->lo_rdevice; 1118 info->lo_offset = info64->lo_offset; 1119 info->lo_encrypt_type = info64->lo_encrypt_type; 1120 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1121 info->lo_flags = info64->lo_flags; 1122 info->lo_init[0] = info64->lo_init[0]; 1123 info->lo_init[1] = info64->lo_init[1]; 1124 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1125 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1126 else 1127 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1128 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1129 1130 /* error in case values were truncated */ 1131 if (info->lo_device != info64->lo_device || 1132 info->lo_rdevice != info64->lo_rdevice || 1133 info->lo_inode != info64->lo_inode || 1134 info->lo_offset != info64->lo_offset) 1135 return -EOVERFLOW; 1136 1137 return 0; 1138 } 1139 1140 static int 1141 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1142 { 1143 struct loop_info info; 1144 struct loop_info64 info64; 1145 1146 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1147 return -EFAULT; 1148 loop_info64_from_old(&info, &info64); 1149 return loop_set_status(lo, &info64); 1150 } 1151 1152 static int 1153 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1154 { 1155 struct loop_info64 info64; 1156 1157 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1158 return -EFAULT; 1159 return loop_set_status(lo, &info64); 1160 } 1161 1162 static int 1163 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1164 struct loop_info info; 1165 struct loop_info64 info64; 1166 int err = 0; 1167 1168 if (!arg) 1169 err = -EINVAL; 1170 if (!err) 1171 err = loop_get_status(lo, &info64); 1172 if (!err) 1173 err = loop_info64_to_old(&info64, &info); 1174 if (!err && copy_to_user(arg, &info, sizeof(info))) 1175 err = -EFAULT; 1176 1177 return err; 1178 } 1179 1180 static int 1181 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1182 struct loop_info64 info64; 1183 int err = 0; 1184 1185 if (!arg) 1186 err = -EINVAL; 1187 if (!err) 1188 err = loop_get_status(lo, &info64); 1189 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1190 err = -EFAULT; 1191 1192 return err; 1193 } 1194 1195 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1196 { 1197 int err; 1198 sector_t sec; 1199 loff_t sz; 1200 1201 err = -ENXIO; 1202 if (unlikely(lo->lo_state != Lo_bound)) 1203 goto out; 1204 err = figure_loop_size(lo); 1205 if (unlikely(err)) 1206 goto out; 1207 sec = get_capacity(lo->lo_disk); 1208 /* the width of sector_t may be narrow for bit-shift */ 1209 sz = sec; 1210 sz <<= 9; 1211 mutex_lock(&bdev->bd_mutex); 1212 bd_set_size(bdev, sz); 1213 mutex_unlock(&bdev->bd_mutex); 1214 1215 out: 1216 return err; 1217 } 1218 1219 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1220 unsigned int cmd, unsigned long arg) 1221 { 1222 struct loop_device *lo = bdev->bd_disk->private_data; 1223 int err; 1224 1225 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1226 switch (cmd) { 1227 case LOOP_SET_FD: 1228 err = loop_set_fd(lo, mode, bdev, arg); 1229 break; 1230 case LOOP_CHANGE_FD: 1231 err = loop_change_fd(lo, bdev, arg); 1232 break; 1233 case LOOP_CLR_FD: 1234 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1235 err = loop_clr_fd(lo, bdev); 1236 if (!err) 1237 goto out_unlocked; 1238 break; 1239 case LOOP_SET_STATUS: 1240 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1241 break; 1242 case LOOP_GET_STATUS: 1243 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1244 break; 1245 case LOOP_SET_STATUS64: 1246 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1247 break; 1248 case LOOP_GET_STATUS64: 1249 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1250 break; 1251 case LOOP_SET_CAPACITY: 1252 err = -EPERM; 1253 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1254 err = loop_set_capacity(lo, bdev); 1255 break; 1256 default: 1257 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1258 } 1259 mutex_unlock(&lo->lo_ctl_mutex); 1260 1261 out_unlocked: 1262 return err; 1263 } 1264 1265 #ifdef CONFIG_COMPAT 1266 struct compat_loop_info { 1267 compat_int_t lo_number; /* ioctl r/o */ 1268 compat_dev_t lo_device; /* ioctl r/o */ 1269 compat_ulong_t lo_inode; /* ioctl r/o */ 1270 compat_dev_t lo_rdevice; /* ioctl r/o */ 1271 compat_int_t lo_offset; 1272 compat_int_t lo_encrypt_type; 1273 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1274 compat_int_t lo_flags; /* ioctl r/o */ 1275 char lo_name[LO_NAME_SIZE]; 1276 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1277 compat_ulong_t lo_init[2]; 1278 char reserved[4]; 1279 }; 1280 1281 /* 1282 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1283 * - noinlined to reduce stack space usage in main part of driver 1284 */ 1285 static noinline int 1286 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1287 struct loop_info64 *info64) 1288 { 1289 struct compat_loop_info info; 1290 1291 if (copy_from_user(&info, arg, sizeof(info))) 1292 return -EFAULT; 1293 1294 memset(info64, 0, sizeof(*info64)); 1295 info64->lo_number = info.lo_number; 1296 info64->lo_device = info.lo_device; 1297 info64->lo_inode = info.lo_inode; 1298 info64->lo_rdevice = info.lo_rdevice; 1299 info64->lo_offset = info.lo_offset; 1300 info64->lo_sizelimit = 0; 1301 info64->lo_encrypt_type = info.lo_encrypt_type; 1302 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1303 info64->lo_flags = info.lo_flags; 1304 info64->lo_init[0] = info.lo_init[0]; 1305 info64->lo_init[1] = info.lo_init[1]; 1306 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1307 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1308 else 1309 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1310 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1311 return 0; 1312 } 1313 1314 /* 1315 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1316 * - noinlined to reduce stack space usage in main part of driver 1317 */ 1318 static noinline int 1319 loop_info64_to_compat(const struct loop_info64 *info64, 1320 struct compat_loop_info __user *arg) 1321 { 1322 struct compat_loop_info info; 1323 1324 memset(&info, 0, sizeof(info)); 1325 info.lo_number = info64->lo_number; 1326 info.lo_device = info64->lo_device; 1327 info.lo_inode = info64->lo_inode; 1328 info.lo_rdevice = info64->lo_rdevice; 1329 info.lo_offset = info64->lo_offset; 1330 info.lo_encrypt_type = info64->lo_encrypt_type; 1331 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1332 info.lo_flags = info64->lo_flags; 1333 info.lo_init[0] = info64->lo_init[0]; 1334 info.lo_init[1] = info64->lo_init[1]; 1335 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1336 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1337 else 1338 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1339 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1340 1341 /* error in case values were truncated */ 1342 if (info.lo_device != info64->lo_device || 1343 info.lo_rdevice != info64->lo_rdevice || 1344 info.lo_inode != info64->lo_inode || 1345 info.lo_offset != info64->lo_offset || 1346 info.lo_init[0] != info64->lo_init[0] || 1347 info.lo_init[1] != info64->lo_init[1]) 1348 return -EOVERFLOW; 1349 1350 if (copy_to_user(arg, &info, sizeof(info))) 1351 return -EFAULT; 1352 return 0; 1353 } 1354 1355 static int 1356 loop_set_status_compat(struct loop_device *lo, 1357 const struct compat_loop_info __user *arg) 1358 { 1359 struct loop_info64 info64; 1360 int ret; 1361 1362 ret = loop_info64_from_compat(arg, &info64); 1363 if (ret < 0) 1364 return ret; 1365 return loop_set_status(lo, &info64); 1366 } 1367 1368 static int 1369 loop_get_status_compat(struct loop_device *lo, 1370 struct compat_loop_info __user *arg) 1371 { 1372 struct loop_info64 info64; 1373 int err = 0; 1374 1375 if (!arg) 1376 err = -EINVAL; 1377 if (!err) 1378 err = loop_get_status(lo, &info64); 1379 if (!err) 1380 err = loop_info64_to_compat(&info64, arg); 1381 return err; 1382 } 1383 1384 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1385 unsigned int cmd, unsigned long arg) 1386 { 1387 struct loop_device *lo = bdev->bd_disk->private_data; 1388 int err; 1389 1390 switch(cmd) { 1391 case LOOP_SET_STATUS: 1392 mutex_lock(&lo->lo_ctl_mutex); 1393 err = loop_set_status_compat( 1394 lo, (const struct compat_loop_info __user *) arg); 1395 mutex_unlock(&lo->lo_ctl_mutex); 1396 break; 1397 case LOOP_GET_STATUS: 1398 mutex_lock(&lo->lo_ctl_mutex); 1399 err = loop_get_status_compat( 1400 lo, (struct compat_loop_info __user *) arg); 1401 mutex_unlock(&lo->lo_ctl_mutex); 1402 break; 1403 case LOOP_SET_CAPACITY: 1404 case LOOP_CLR_FD: 1405 case LOOP_GET_STATUS64: 1406 case LOOP_SET_STATUS64: 1407 arg = (unsigned long) compat_ptr(arg); 1408 case LOOP_SET_FD: 1409 case LOOP_CHANGE_FD: 1410 err = lo_ioctl(bdev, mode, cmd, arg); 1411 break; 1412 default: 1413 err = -ENOIOCTLCMD; 1414 break; 1415 } 1416 return err; 1417 } 1418 #endif 1419 1420 static int lo_open(struct block_device *bdev, fmode_t mode) 1421 { 1422 struct loop_device *lo = bdev->bd_disk->private_data; 1423 1424 mutex_lock(&lo->lo_ctl_mutex); 1425 lo->lo_refcnt++; 1426 mutex_unlock(&lo->lo_ctl_mutex); 1427 1428 return 0; 1429 } 1430 1431 static int lo_release(struct gendisk *disk, fmode_t mode) 1432 { 1433 struct loop_device *lo = disk->private_data; 1434 int err; 1435 1436 mutex_lock(&lo->lo_ctl_mutex); 1437 1438 if (--lo->lo_refcnt) 1439 goto out; 1440 1441 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1442 /* 1443 * In autoclear mode, stop the loop thread 1444 * and remove configuration after last close. 1445 */ 1446 err = loop_clr_fd(lo, NULL); 1447 if (!err) 1448 goto out_unlocked; 1449 } else { 1450 /* 1451 * Otherwise keep thread (if running) and config, 1452 * but flush possible ongoing bios in thread. 1453 */ 1454 loop_flush(lo); 1455 } 1456 1457 out: 1458 mutex_unlock(&lo->lo_ctl_mutex); 1459 out_unlocked: 1460 return 0; 1461 } 1462 1463 static struct block_device_operations lo_fops = { 1464 .owner = THIS_MODULE, 1465 .open = lo_open, 1466 .release = lo_release, 1467 .ioctl = lo_ioctl, 1468 #ifdef CONFIG_COMPAT 1469 .compat_ioctl = lo_compat_ioctl, 1470 #endif 1471 }; 1472 1473 /* 1474 * And now the modules code and kernel interface. 1475 */ 1476 static int max_loop; 1477 module_param(max_loop, int, 0); 1478 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1479 module_param(max_part, int, 0); 1480 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1481 MODULE_LICENSE("GPL"); 1482 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1483 1484 int loop_register_transfer(struct loop_func_table *funcs) 1485 { 1486 unsigned int n = funcs->number; 1487 1488 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1489 return -EINVAL; 1490 xfer_funcs[n] = funcs; 1491 return 0; 1492 } 1493 1494 int loop_unregister_transfer(int number) 1495 { 1496 unsigned int n = number; 1497 struct loop_device *lo; 1498 struct loop_func_table *xfer; 1499 1500 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1501 return -EINVAL; 1502 1503 xfer_funcs[n] = NULL; 1504 1505 list_for_each_entry(lo, &loop_devices, lo_list) { 1506 mutex_lock(&lo->lo_ctl_mutex); 1507 1508 if (lo->lo_encryption == xfer) 1509 loop_release_xfer(lo); 1510 1511 mutex_unlock(&lo->lo_ctl_mutex); 1512 } 1513 1514 return 0; 1515 } 1516 1517 EXPORT_SYMBOL(loop_register_transfer); 1518 EXPORT_SYMBOL(loop_unregister_transfer); 1519 1520 static struct loop_device *loop_alloc(int i) 1521 { 1522 struct loop_device *lo; 1523 struct gendisk *disk; 1524 1525 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1526 if (!lo) 1527 goto out; 1528 1529 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1530 if (!lo->lo_queue) 1531 goto out_free_dev; 1532 1533 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1534 if (!disk) 1535 goto out_free_queue; 1536 1537 mutex_init(&lo->lo_ctl_mutex); 1538 lo->lo_number = i; 1539 lo->lo_thread = NULL; 1540 init_waitqueue_head(&lo->lo_event); 1541 spin_lock_init(&lo->lo_lock); 1542 disk->major = LOOP_MAJOR; 1543 disk->first_minor = i << part_shift; 1544 disk->fops = &lo_fops; 1545 disk->private_data = lo; 1546 disk->queue = lo->lo_queue; 1547 sprintf(disk->disk_name, "loop%d", i); 1548 return lo; 1549 1550 out_free_queue: 1551 blk_cleanup_queue(lo->lo_queue); 1552 out_free_dev: 1553 kfree(lo); 1554 out: 1555 return NULL; 1556 } 1557 1558 static void loop_free(struct loop_device *lo) 1559 { 1560 blk_cleanup_queue(lo->lo_queue); 1561 put_disk(lo->lo_disk); 1562 list_del(&lo->lo_list); 1563 kfree(lo); 1564 } 1565 1566 static struct loop_device *loop_init_one(int i) 1567 { 1568 struct loop_device *lo; 1569 1570 list_for_each_entry(lo, &loop_devices, lo_list) { 1571 if (lo->lo_number == i) 1572 return lo; 1573 } 1574 1575 lo = loop_alloc(i); 1576 if (lo) { 1577 add_disk(lo->lo_disk); 1578 list_add_tail(&lo->lo_list, &loop_devices); 1579 } 1580 return lo; 1581 } 1582 1583 static void loop_del_one(struct loop_device *lo) 1584 { 1585 del_gendisk(lo->lo_disk); 1586 loop_free(lo); 1587 } 1588 1589 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1590 { 1591 struct loop_device *lo; 1592 struct kobject *kobj; 1593 1594 mutex_lock(&loop_devices_mutex); 1595 lo = loop_init_one(dev & MINORMASK); 1596 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1597 mutex_unlock(&loop_devices_mutex); 1598 1599 *part = 0; 1600 return kobj; 1601 } 1602 1603 static int __init loop_init(void) 1604 { 1605 int i, nr; 1606 unsigned long range; 1607 struct loop_device *lo, *next; 1608 1609 /* 1610 * loop module now has a feature to instantiate underlying device 1611 * structure on-demand, provided that there is an access dev node. 1612 * However, this will not work well with user space tool that doesn't 1613 * know about such "feature". In order to not break any existing 1614 * tool, we do the following: 1615 * 1616 * (1) if max_loop is specified, create that many upfront, and this 1617 * also becomes a hard limit. 1618 * (2) if max_loop is not specified, create 8 loop device on module 1619 * load, user can further extend loop device by create dev node 1620 * themselves and have kernel automatically instantiate actual 1621 * device on-demand. 1622 */ 1623 1624 part_shift = 0; 1625 if (max_part > 0) 1626 part_shift = fls(max_part); 1627 1628 if (max_loop > 1UL << (MINORBITS - part_shift)) 1629 return -EINVAL; 1630 1631 if (max_loop) { 1632 nr = max_loop; 1633 range = max_loop; 1634 } else { 1635 nr = 8; 1636 range = 1UL << (MINORBITS - part_shift); 1637 } 1638 1639 if (register_blkdev(LOOP_MAJOR, "loop")) 1640 return -EIO; 1641 1642 for (i = 0; i < nr; i++) { 1643 lo = loop_alloc(i); 1644 if (!lo) 1645 goto Enomem; 1646 list_add_tail(&lo->lo_list, &loop_devices); 1647 } 1648 1649 /* point of no return */ 1650 1651 list_for_each_entry(lo, &loop_devices, lo_list) 1652 add_disk(lo->lo_disk); 1653 1654 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1655 THIS_MODULE, loop_probe, NULL, NULL); 1656 1657 printk(KERN_INFO "loop: module loaded\n"); 1658 return 0; 1659 1660 Enomem: 1661 printk(KERN_INFO "loop: out of memory\n"); 1662 1663 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1664 loop_free(lo); 1665 1666 unregister_blkdev(LOOP_MAJOR, "loop"); 1667 return -ENOMEM; 1668 } 1669 1670 static void __exit loop_exit(void) 1671 { 1672 unsigned long range; 1673 struct loop_device *lo, *next; 1674 1675 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1676 1677 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1678 loop_del_one(lo); 1679 1680 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1681 unregister_blkdev(LOOP_MAJOR, "loop"); 1682 } 1683 1684 module_init(loop_init); 1685 module_exit(loop_exit); 1686 1687 #ifndef MODULE 1688 static int __init max_loop_setup(char *str) 1689 { 1690 max_loop = simple_strtol(str, NULL, 0); 1691 return 1; 1692 } 1693 1694 __setup("max_loop=", max_loop_setup); 1695 #endif 1696