xref: /openbmc/linux/drivers/block/loop.c (revision b04b4f78)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/smp_lock.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/loop.h>
68 #include <linux/compat.h>
69 #include <linux/suspend.h>
70 #include <linux/freezer.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 #include <linux/splice.h>
78 
79 #include <asm/uaccess.h>
80 
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
83 
84 static int max_part;
85 static int part_shift;
86 
87 /*
88  * Transfer functions
89  */
90 static int transfer_none(struct loop_device *lo, int cmd,
91 			 struct page *raw_page, unsigned raw_off,
92 			 struct page *loop_page, unsigned loop_off,
93 			 int size, sector_t real_block)
94 {
95 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97 
98 	if (cmd == READ)
99 		memcpy(loop_buf, raw_buf, size);
100 	else
101 		memcpy(raw_buf, loop_buf, size);
102 
103 	kunmap_atomic(raw_buf, KM_USER0);
104 	kunmap_atomic(loop_buf, KM_USER1);
105 	cond_resched();
106 	return 0;
107 }
108 
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 			struct page *raw_page, unsigned raw_off,
111 			struct page *loop_page, unsigned loop_off,
112 			int size, sector_t real_block)
113 {
114 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 	char *in, *out, *key;
117 	int i, keysize;
118 
119 	if (cmd == READ) {
120 		in = raw_buf;
121 		out = loop_buf;
122 	} else {
123 		in = loop_buf;
124 		out = raw_buf;
125 	}
126 
127 	key = lo->lo_encrypt_key;
128 	keysize = lo->lo_encrypt_key_size;
129 	for (i = 0; i < size; i++)
130 		*out++ = *in++ ^ key[(i & 511) % keysize];
131 
132 	kunmap_atomic(raw_buf, KM_USER0);
133 	kunmap_atomic(loop_buf, KM_USER1);
134 	cond_resched();
135 	return 0;
136 }
137 
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 {
140 	if (unlikely(info->lo_encrypt_key_size <= 0))
141 		return -EINVAL;
142 	return 0;
143 }
144 
145 static struct loop_func_table none_funcs = {
146 	.number = LO_CRYPT_NONE,
147 	.transfer = transfer_none,
148 };
149 
150 static struct loop_func_table xor_funcs = {
151 	.number = LO_CRYPT_XOR,
152 	.transfer = transfer_xor,
153 	.init = xor_init
154 };
155 
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 	&none_funcs,
159 	&xor_funcs
160 };
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	loff_t size, offset, loopsize;
165 
166 	/* Compute loopsize in bytes */
167 	size = i_size_read(file->f_mapping->host);
168 	offset = lo->lo_offset;
169 	loopsize = size - offset;
170 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 		loopsize = lo->lo_sizelimit;
172 
173 	/*
174 	 * Unfortunately, if we want to do I/O on the device,
175 	 * the number of 512-byte sectors has to fit into a sector_t.
176 	 */
177 	return loopsize >> 9;
178 }
179 
180 static int
181 figure_loop_size(struct loop_device *lo)
182 {
183 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 	sector_t x = (sector_t)size;
185 
186 	if (unlikely((loff_t)x != size))
187 		return -EFBIG;
188 
189 	set_capacity(lo->lo_disk, x);
190 	return 0;
191 }
192 
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 	       struct page *rpage, unsigned roffs,
196 	       struct page *lpage, unsigned loffs,
197 	       int size, sector_t rblock)
198 {
199 	if (unlikely(!lo->transfer))
200 		return 0;
201 
202 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
203 }
204 
205 /**
206  * do_lo_send_aops - helper for writing data to a loop device
207  *
208  * This is the fast version for backing filesystems which implement the address
209  * space operations write_begin and write_end.
210  */
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 		loff_t pos, struct page *unused)
213 {
214 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 	struct address_space *mapping = file->f_mapping;
216 	pgoff_t index;
217 	unsigned offset, bv_offs;
218 	int len, ret;
219 
220 	mutex_lock(&mapping->host->i_mutex);
221 	index = pos >> PAGE_CACHE_SHIFT;
222 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 	bv_offs = bvec->bv_offset;
224 	len = bvec->bv_len;
225 	while (len > 0) {
226 		sector_t IV;
227 		unsigned size, copied;
228 		int transfer_result;
229 		struct page *page;
230 		void *fsdata;
231 
232 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 		size = PAGE_CACHE_SIZE - offset;
234 		if (size > len)
235 			size = len;
236 
237 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 							&page, &fsdata);
239 		if (ret)
240 			goto fail;
241 
242 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
243 				bvec->bv_page, bv_offs, size, IV);
244 		copied = size;
245 		if (unlikely(transfer_result))
246 			copied = 0;
247 
248 		ret = pagecache_write_end(file, mapping, pos, size, copied,
249 							page, fsdata);
250 		if (ret < 0 || ret != copied)
251 			goto fail;
252 
253 		if (unlikely(transfer_result))
254 			goto fail;
255 
256 		bv_offs += copied;
257 		len -= copied;
258 		offset = 0;
259 		index++;
260 		pos += copied;
261 	}
262 	ret = 0;
263 out:
264 	mutex_unlock(&mapping->host->i_mutex);
265 	return ret;
266 fail:
267 	ret = -1;
268 	goto out;
269 }
270 
271 /**
272  * __do_lo_send_write - helper for writing data to a loop device
273  *
274  * This helper just factors out common code between do_lo_send_direct_write()
275  * and do_lo_send_write().
276  */
277 static int __do_lo_send_write(struct file *file,
278 		u8 *buf, const int len, loff_t pos)
279 {
280 	ssize_t bw;
281 	mm_segment_t old_fs = get_fs();
282 
283 	set_fs(get_ds());
284 	bw = file->f_op->write(file, buf, len, &pos);
285 	set_fs(old_fs);
286 	if (likely(bw == len))
287 		return 0;
288 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
289 			(unsigned long long)pos, len);
290 	if (bw >= 0)
291 		bw = -EIO;
292 	return bw;
293 }
294 
295 /**
296  * do_lo_send_direct_write - helper for writing data to a loop device
297  *
298  * This is the fast, non-transforming version for backing filesystems which do
299  * not implement the address space operations write_begin and write_end.
300  * It uses the write file operation which should be present on all writeable
301  * filesystems.
302  */
303 static int do_lo_send_direct_write(struct loop_device *lo,
304 		struct bio_vec *bvec, loff_t pos, struct page *page)
305 {
306 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
307 			kmap(bvec->bv_page) + bvec->bv_offset,
308 			bvec->bv_len, pos);
309 	kunmap(bvec->bv_page);
310 	cond_resched();
311 	return bw;
312 }
313 
314 /**
315  * do_lo_send_write - helper for writing data to a loop device
316  *
317  * This is the slow, transforming version for filesystems which do not
318  * implement the address space operations write_begin and write_end.  It
319  * uses the write file operation which should be present on all writeable
320  * filesystems.
321  *
322  * Using fops->write is slower than using aops->{prepare,commit}_write in the
323  * transforming case because we need to double buffer the data as we cannot do
324  * the transformations in place as we do not have direct access to the
325  * destination pages of the backing file.
326  */
327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
328 		loff_t pos, struct page *page)
329 {
330 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
331 			bvec->bv_offset, bvec->bv_len, pos >> 9);
332 	if (likely(!ret))
333 		return __do_lo_send_write(lo->lo_backing_file,
334 				page_address(page), bvec->bv_len,
335 				pos);
336 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
337 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
338 	if (ret > 0)
339 		ret = -EIO;
340 	return ret;
341 }
342 
343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
344 {
345 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
346 			struct page *page);
347 	struct bio_vec *bvec;
348 	struct page *page = NULL;
349 	int i, ret = 0;
350 
351 	do_lo_send = do_lo_send_aops;
352 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
353 		do_lo_send = do_lo_send_direct_write;
354 		if (lo->transfer != transfer_none) {
355 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
356 			if (unlikely(!page))
357 				goto fail;
358 			kmap(page);
359 			do_lo_send = do_lo_send_write;
360 		}
361 	}
362 	bio_for_each_segment(bvec, bio, i) {
363 		ret = do_lo_send(lo, bvec, pos, page);
364 		if (ret < 0)
365 			break;
366 		pos += bvec->bv_len;
367 	}
368 	if (page) {
369 		kunmap(page);
370 		__free_page(page);
371 	}
372 out:
373 	return ret;
374 fail:
375 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
376 	ret = -ENOMEM;
377 	goto out;
378 }
379 
380 struct lo_read_data {
381 	struct loop_device *lo;
382 	struct page *page;
383 	unsigned offset;
384 	int bsize;
385 };
386 
387 static int
388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
389 		struct splice_desc *sd)
390 {
391 	struct lo_read_data *p = sd->u.data;
392 	struct loop_device *lo = p->lo;
393 	struct page *page = buf->page;
394 	sector_t IV;
395 	int size, ret;
396 
397 	ret = buf->ops->confirm(pipe, buf);
398 	if (unlikely(ret))
399 		return ret;
400 
401 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
402 							(buf->offset >> 9);
403 	size = sd->len;
404 	if (size > p->bsize)
405 		size = p->bsize;
406 
407 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
408 		printk(KERN_ERR "loop: transfer error block %ld\n",
409 		       page->index);
410 		size = -EINVAL;
411 	}
412 
413 	flush_dcache_page(p->page);
414 
415 	if (size > 0)
416 		p->offset += size;
417 
418 	return size;
419 }
420 
421 static int
422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
423 {
424 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
425 }
426 
427 static int
428 do_lo_receive(struct loop_device *lo,
429 	      struct bio_vec *bvec, int bsize, loff_t pos)
430 {
431 	struct lo_read_data cookie;
432 	struct splice_desc sd;
433 	struct file *file;
434 	long retval;
435 
436 	cookie.lo = lo;
437 	cookie.page = bvec->bv_page;
438 	cookie.offset = bvec->bv_offset;
439 	cookie.bsize = bsize;
440 
441 	sd.len = 0;
442 	sd.total_len = bvec->bv_len;
443 	sd.flags = 0;
444 	sd.pos = pos;
445 	sd.u.data = &cookie;
446 
447 	file = lo->lo_backing_file;
448 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
449 
450 	if (retval < 0)
451 		return retval;
452 
453 	return 0;
454 }
455 
456 static int
457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
458 {
459 	struct bio_vec *bvec;
460 	int i, ret = 0;
461 
462 	bio_for_each_segment(bvec, bio, i) {
463 		ret = do_lo_receive(lo, bvec, bsize, pos);
464 		if (ret < 0)
465 			break;
466 		pos += bvec->bv_len;
467 	}
468 	return ret;
469 }
470 
471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
472 {
473 	loff_t pos;
474 	int ret;
475 
476 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
477 
478 	if (bio_rw(bio) == WRITE) {
479 		int barrier = bio_barrier(bio);
480 		struct file *file = lo->lo_backing_file;
481 
482 		if (barrier) {
483 			if (unlikely(!file->f_op->fsync)) {
484 				ret = -EOPNOTSUPP;
485 				goto out;
486 			}
487 
488 			ret = vfs_fsync(file, file->f_path.dentry, 0);
489 			if (unlikely(ret)) {
490 				ret = -EIO;
491 				goto out;
492 			}
493 		}
494 
495 		ret = lo_send(lo, bio, pos);
496 
497 		if (barrier && !ret) {
498 			ret = vfs_fsync(file, file->f_path.dentry, 0);
499 			if (unlikely(ret))
500 				ret = -EIO;
501 		}
502 	} else
503 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
504 
505 out:
506 	return ret;
507 }
508 
509 /*
510  * Add bio to back of pending list
511  */
512 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
513 {
514 	if (lo->lo_biotail) {
515 		lo->lo_biotail->bi_next = bio;
516 		lo->lo_biotail = bio;
517 	} else
518 		lo->lo_bio = lo->lo_biotail = bio;
519 }
520 
521 /*
522  * Grab first pending buffer
523  */
524 static struct bio *loop_get_bio(struct loop_device *lo)
525 {
526 	struct bio *bio;
527 
528 	if ((bio = lo->lo_bio)) {
529 		if (bio == lo->lo_biotail)
530 			lo->lo_biotail = NULL;
531 		lo->lo_bio = bio->bi_next;
532 		bio->bi_next = NULL;
533 	}
534 
535 	return bio;
536 }
537 
538 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
539 {
540 	struct loop_device *lo = q->queuedata;
541 	int rw = bio_rw(old_bio);
542 
543 	if (rw == READA)
544 		rw = READ;
545 
546 	BUG_ON(!lo || (rw != READ && rw != WRITE));
547 
548 	spin_lock_irq(&lo->lo_lock);
549 	if (lo->lo_state != Lo_bound)
550 		goto out;
551 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
552 		goto out;
553 	loop_add_bio(lo, old_bio);
554 	wake_up(&lo->lo_event);
555 	spin_unlock_irq(&lo->lo_lock);
556 	return 0;
557 
558 out:
559 	spin_unlock_irq(&lo->lo_lock);
560 	bio_io_error(old_bio);
561 	return 0;
562 }
563 
564 /*
565  * kick off io on the underlying address space
566  */
567 static void loop_unplug(struct request_queue *q)
568 {
569 	struct loop_device *lo = q->queuedata;
570 
571 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
572 	blk_run_address_space(lo->lo_backing_file->f_mapping);
573 }
574 
575 struct switch_request {
576 	struct file *file;
577 	struct completion wait;
578 };
579 
580 static void do_loop_switch(struct loop_device *, struct switch_request *);
581 
582 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
583 {
584 	if (unlikely(!bio->bi_bdev)) {
585 		do_loop_switch(lo, bio->bi_private);
586 		bio_put(bio);
587 	} else {
588 		int ret = do_bio_filebacked(lo, bio);
589 		bio_endio(bio, ret);
590 	}
591 }
592 
593 /*
594  * worker thread that handles reads/writes to file backed loop devices,
595  * to avoid blocking in our make_request_fn. it also does loop decrypting
596  * on reads for block backed loop, as that is too heavy to do from
597  * b_end_io context where irqs may be disabled.
598  *
599  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
600  * calling kthread_stop().  Therefore once kthread_should_stop() is
601  * true, make_request will not place any more requests.  Therefore
602  * once kthread_should_stop() is true and lo_bio is NULL, we are
603  * done with the loop.
604  */
605 static int loop_thread(void *data)
606 {
607 	struct loop_device *lo = data;
608 	struct bio *bio;
609 
610 	set_user_nice(current, -20);
611 
612 	while (!kthread_should_stop() || lo->lo_bio) {
613 
614 		wait_event_interruptible(lo->lo_event,
615 				lo->lo_bio || kthread_should_stop());
616 
617 		if (!lo->lo_bio)
618 			continue;
619 		spin_lock_irq(&lo->lo_lock);
620 		bio = loop_get_bio(lo);
621 		spin_unlock_irq(&lo->lo_lock);
622 
623 		BUG_ON(!bio);
624 		loop_handle_bio(lo, bio);
625 	}
626 
627 	return 0;
628 }
629 
630 /*
631  * loop_switch performs the hard work of switching a backing store.
632  * First it needs to flush existing IO, it does this by sending a magic
633  * BIO down the pipe. The completion of this BIO does the actual switch.
634  */
635 static int loop_switch(struct loop_device *lo, struct file *file)
636 {
637 	struct switch_request w;
638 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
639 	if (!bio)
640 		return -ENOMEM;
641 	init_completion(&w.wait);
642 	w.file = file;
643 	bio->bi_private = &w;
644 	bio->bi_bdev = NULL;
645 	loop_make_request(lo->lo_queue, bio);
646 	wait_for_completion(&w.wait);
647 	return 0;
648 }
649 
650 /*
651  * Helper to flush the IOs in loop, but keeping loop thread running
652  */
653 static int loop_flush(struct loop_device *lo)
654 {
655 	/* loop not yet configured, no running thread, nothing to flush */
656 	if (!lo->lo_thread)
657 		return 0;
658 
659 	return loop_switch(lo, NULL);
660 }
661 
662 /*
663  * Do the actual switch; called from the BIO completion routine
664  */
665 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
666 {
667 	struct file *file = p->file;
668 	struct file *old_file = lo->lo_backing_file;
669 	struct address_space *mapping;
670 
671 	/* if no new file, only flush of queued bios requested */
672 	if (!file)
673 		goto out;
674 
675 	mapping = file->f_mapping;
676 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
677 	lo->lo_backing_file = file;
678 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
679 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
680 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
681 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
682 out:
683 	complete(&p->wait);
684 }
685 
686 
687 /*
688  * loop_change_fd switched the backing store of a loopback device to
689  * a new file. This is useful for operating system installers to free up
690  * the original file and in High Availability environments to switch to
691  * an alternative location for the content in case of server meltdown.
692  * This can only work if the loop device is used read-only, and if the
693  * new backing store is the same size and type as the old backing store.
694  */
695 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
696 			  unsigned int arg)
697 {
698 	struct file	*file, *old_file;
699 	struct inode	*inode;
700 	int		error;
701 
702 	error = -ENXIO;
703 	if (lo->lo_state != Lo_bound)
704 		goto out;
705 
706 	/* the loop device has to be read-only */
707 	error = -EINVAL;
708 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
709 		goto out;
710 
711 	error = -EBADF;
712 	file = fget(arg);
713 	if (!file)
714 		goto out;
715 
716 	inode = file->f_mapping->host;
717 	old_file = lo->lo_backing_file;
718 
719 	error = -EINVAL;
720 
721 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
722 		goto out_putf;
723 
724 	/* new backing store needs to support loop (eg splice_read) */
725 	if (!inode->i_fop->splice_read)
726 		goto out_putf;
727 
728 	/* size of the new backing store needs to be the same */
729 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
730 		goto out_putf;
731 
732 	/* and ... switch */
733 	error = loop_switch(lo, file);
734 	if (error)
735 		goto out_putf;
736 
737 	fput(old_file);
738 	if (max_part > 0)
739 		ioctl_by_bdev(bdev, BLKRRPART, 0);
740 	return 0;
741 
742  out_putf:
743 	fput(file);
744  out:
745 	return error;
746 }
747 
748 static inline int is_loop_device(struct file *file)
749 {
750 	struct inode *i = file->f_mapping->host;
751 
752 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
753 }
754 
755 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
756 		       struct block_device *bdev, unsigned int arg)
757 {
758 	struct file	*file, *f;
759 	struct inode	*inode;
760 	struct address_space *mapping;
761 	unsigned lo_blocksize;
762 	int		lo_flags = 0;
763 	int		error;
764 	loff_t		size;
765 
766 	/* This is safe, since we have a reference from open(). */
767 	__module_get(THIS_MODULE);
768 
769 	error = -EBADF;
770 	file = fget(arg);
771 	if (!file)
772 		goto out;
773 
774 	error = -EBUSY;
775 	if (lo->lo_state != Lo_unbound)
776 		goto out_putf;
777 
778 	/* Avoid recursion */
779 	f = file;
780 	while (is_loop_device(f)) {
781 		struct loop_device *l;
782 
783 		if (f->f_mapping->host->i_bdev == bdev)
784 			goto out_putf;
785 
786 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
787 		if (l->lo_state == Lo_unbound) {
788 			error = -EINVAL;
789 			goto out_putf;
790 		}
791 		f = l->lo_backing_file;
792 	}
793 
794 	mapping = file->f_mapping;
795 	inode = mapping->host;
796 
797 	if (!(file->f_mode & FMODE_WRITE))
798 		lo_flags |= LO_FLAGS_READ_ONLY;
799 
800 	error = -EINVAL;
801 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
802 		const struct address_space_operations *aops = mapping->a_ops;
803 		/*
804 		 * If we can't read - sorry. If we only can't write - well,
805 		 * it's going to be read-only.
806 		 */
807 		if (!file->f_op->splice_read)
808 			goto out_putf;
809 		if (aops->write_begin)
810 			lo_flags |= LO_FLAGS_USE_AOPS;
811 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
812 			lo_flags |= LO_FLAGS_READ_ONLY;
813 
814 		lo_blocksize = S_ISBLK(inode->i_mode) ?
815 			inode->i_bdev->bd_block_size : PAGE_SIZE;
816 
817 		error = 0;
818 	} else {
819 		goto out_putf;
820 	}
821 
822 	size = get_loop_size(lo, file);
823 
824 	if ((loff_t)(sector_t)size != size) {
825 		error = -EFBIG;
826 		goto out_putf;
827 	}
828 
829 	if (!(mode & FMODE_WRITE))
830 		lo_flags |= LO_FLAGS_READ_ONLY;
831 
832 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
833 
834 	lo->lo_blocksize = lo_blocksize;
835 	lo->lo_device = bdev;
836 	lo->lo_flags = lo_flags;
837 	lo->lo_backing_file = file;
838 	lo->transfer = transfer_none;
839 	lo->ioctl = NULL;
840 	lo->lo_sizelimit = 0;
841 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
842 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
843 
844 	lo->lo_bio = lo->lo_biotail = NULL;
845 
846 	/*
847 	 * set queue make_request_fn, and add limits based on lower level
848 	 * device
849 	 */
850 	blk_queue_make_request(lo->lo_queue, loop_make_request);
851 	lo->lo_queue->queuedata = lo;
852 	lo->lo_queue->unplug_fn = loop_unplug;
853 
854 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
855 		blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN, NULL);
856 
857 	set_capacity(lo->lo_disk, size);
858 	bd_set_size(bdev, size << 9);
859 
860 	set_blocksize(bdev, lo_blocksize);
861 
862 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
863 						lo->lo_number);
864 	if (IS_ERR(lo->lo_thread)) {
865 		error = PTR_ERR(lo->lo_thread);
866 		goto out_clr;
867 	}
868 	lo->lo_state = Lo_bound;
869 	wake_up_process(lo->lo_thread);
870 	if (max_part > 0)
871 		ioctl_by_bdev(bdev, BLKRRPART, 0);
872 	return 0;
873 
874 out_clr:
875 	lo->lo_thread = NULL;
876 	lo->lo_device = NULL;
877 	lo->lo_backing_file = NULL;
878 	lo->lo_flags = 0;
879 	set_capacity(lo->lo_disk, 0);
880 	invalidate_bdev(bdev);
881 	bd_set_size(bdev, 0);
882 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
883 	lo->lo_state = Lo_unbound;
884  out_putf:
885 	fput(file);
886  out:
887 	/* This is safe: open() is still holding a reference. */
888 	module_put(THIS_MODULE);
889 	return error;
890 }
891 
892 static int
893 loop_release_xfer(struct loop_device *lo)
894 {
895 	int err = 0;
896 	struct loop_func_table *xfer = lo->lo_encryption;
897 
898 	if (xfer) {
899 		if (xfer->release)
900 			err = xfer->release(lo);
901 		lo->transfer = NULL;
902 		lo->lo_encryption = NULL;
903 		module_put(xfer->owner);
904 	}
905 	return err;
906 }
907 
908 static int
909 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
910 	       const struct loop_info64 *i)
911 {
912 	int err = 0;
913 
914 	if (xfer) {
915 		struct module *owner = xfer->owner;
916 
917 		if (!try_module_get(owner))
918 			return -EINVAL;
919 		if (xfer->init)
920 			err = xfer->init(lo, i);
921 		if (err)
922 			module_put(owner);
923 		else
924 			lo->lo_encryption = xfer;
925 	}
926 	return err;
927 }
928 
929 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
930 {
931 	struct file *filp = lo->lo_backing_file;
932 	gfp_t gfp = lo->old_gfp_mask;
933 
934 	if (lo->lo_state != Lo_bound)
935 		return -ENXIO;
936 
937 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
938 		return -EBUSY;
939 
940 	if (filp == NULL)
941 		return -EINVAL;
942 
943 	spin_lock_irq(&lo->lo_lock);
944 	lo->lo_state = Lo_rundown;
945 	spin_unlock_irq(&lo->lo_lock);
946 
947 	kthread_stop(lo->lo_thread);
948 
949 	lo->lo_queue->unplug_fn = NULL;
950 	lo->lo_backing_file = NULL;
951 
952 	loop_release_xfer(lo);
953 	lo->transfer = NULL;
954 	lo->ioctl = NULL;
955 	lo->lo_device = NULL;
956 	lo->lo_encryption = NULL;
957 	lo->lo_offset = 0;
958 	lo->lo_sizelimit = 0;
959 	lo->lo_encrypt_key_size = 0;
960 	lo->lo_flags = 0;
961 	lo->lo_thread = NULL;
962 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
963 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
964 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
965 	if (bdev)
966 		invalidate_bdev(bdev);
967 	set_capacity(lo->lo_disk, 0);
968 	if (bdev)
969 		bd_set_size(bdev, 0);
970 	mapping_set_gfp_mask(filp->f_mapping, gfp);
971 	lo->lo_state = Lo_unbound;
972 	/* This is safe: open() is still holding a reference. */
973 	module_put(THIS_MODULE);
974 	if (max_part > 0)
975 		ioctl_by_bdev(bdev, BLKRRPART, 0);
976 	mutex_unlock(&lo->lo_ctl_mutex);
977 	/*
978 	 * Need not hold lo_ctl_mutex to fput backing file.
979 	 * Calling fput holding lo_ctl_mutex triggers a circular
980 	 * lock dependency possibility warning as fput can take
981 	 * bd_mutex which is usually taken before lo_ctl_mutex.
982 	 */
983 	fput(filp);
984 	return 0;
985 }
986 
987 static int
988 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
989 {
990 	int err;
991 	struct loop_func_table *xfer;
992 	uid_t uid = current_uid();
993 
994 	if (lo->lo_encrypt_key_size &&
995 	    lo->lo_key_owner != uid &&
996 	    !capable(CAP_SYS_ADMIN))
997 		return -EPERM;
998 	if (lo->lo_state != Lo_bound)
999 		return -ENXIO;
1000 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1001 		return -EINVAL;
1002 
1003 	err = loop_release_xfer(lo);
1004 	if (err)
1005 		return err;
1006 
1007 	if (info->lo_encrypt_type) {
1008 		unsigned int type = info->lo_encrypt_type;
1009 
1010 		if (type >= MAX_LO_CRYPT)
1011 			return -EINVAL;
1012 		xfer = xfer_funcs[type];
1013 		if (xfer == NULL)
1014 			return -EINVAL;
1015 	} else
1016 		xfer = NULL;
1017 
1018 	err = loop_init_xfer(lo, xfer, info);
1019 	if (err)
1020 		return err;
1021 
1022 	if (lo->lo_offset != info->lo_offset ||
1023 	    lo->lo_sizelimit != info->lo_sizelimit) {
1024 		lo->lo_offset = info->lo_offset;
1025 		lo->lo_sizelimit = info->lo_sizelimit;
1026 		if (figure_loop_size(lo))
1027 			return -EFBIG;
1028 	}
1029 
1030 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1031 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1032 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1033 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1034 
1035 	if (!xfer)
1036 		xfer = &none_funcs;
1037 	lo->transfer = xfer->transfer;
1038 	lo->ioctl = xfer->ioctl;
1039 
1040 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1041 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1042 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1043 
1044 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1045 	lo->lo_init[0] = info->lo_init[0];
1046 	lo->lo_init[1] = info->lo_init[1];
1047 	if (info->lo_encrypt_key_size) {
1048 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1049 		       info->lo_encrypt_key_size);
1050 		lo->lo_key_owner = uid;
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 static int
1057 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1058 {
1059 	struct file *file = lo->lo_backing_file;
1060 	struct kstat stat;
1061 	int error;
1062 
1063 	if (lo->lo_state != Lo_bound)
1064 		return -ENXIO;
1065 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1066 	if (error)
1067 		return error;
1068 	memset(info, 0, sizeof(*info));
1069 	info->lo_number = lo->lo_number;
1070 	info->lo_device = huge_encode_dev(stat.dev);
1071 	info->lo_inode = stat.ino;
1072 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1073 	info->lo_offset = lo->lo_offset;
1074 	info->lo_sizelimit = lo->lo_sizelimit;
1075 	info->lo_flags = lo->lo_flags;
1076 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1077 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1078 	info->lo_encrypt_type =
1079 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1080 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1081 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1082 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1083 		       lo->lo_encrypt_key_size);
1084 	}
1085 	return 0;
1086 }
1087 
1088 static void
1089 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1090 {
1091 	memset(info64, 0, sizeof(*info64));
1092 	info64->lo_number = info->lo_number;
1093 	info64->lo_device = info->lo_device;
1094 	info64->lo_inode = info->lo_inode;
1095 	info64->lo_rdevice = info->lo_rdevice;
1096 	info64->lo_offset = info->lo_offset;
1097 	info64->lo_sizelimit = 0;
1098 	info64->lo_encrypt_type = info->lo_encrypt_type;
1099 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1100 	info64->lo_flags = info->lo_flags;
1101 	info64->lo_init[0] = info->lo_init[0];
1102 	info64->lo_init[1] = info->lo_init[1];
1103 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1104 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1105 	else
1106 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1107 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1108 }
1109 
1110 static int
1111 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1112 {
1113 	memset(info, 0, sizeof(*info));
1114 	info->lo_number = info64->lo_number;
1115 	info->lo_device = info64->lo_device;
1116 	info->lo_inode = info64->lo_inode;
1117 	info->lo_rdevice = info64->lo_rdevice;
1118 	info->lo_offset = info64->lo_offset;
1119 	info->lo_encrypt_type = info64->lo_encrypt_type;
1120 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1121 	info->lo_flags = info64->lo_flags;
1122 	info->lo_init[0] = info64->lo_init[0];
1123 	info->lo_init[1] = info64->lo_init[1];
1124 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1125 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1126 	else
1127 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1128 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1129 
1130 	/* error in case values were truncated */
1131 	if (info->lo_device != info64->lo_device ||
1132 	    info->lo_rdevice != info64->lo_rdevice ||
1133 	    info->lo_inode != info64->lo_inode ||
1134 	    info->lo_offset != info64->lo_offset)
1135 		return -EOVERFLOW;
1136 
1137 	return 0;
1138 }
1139 
1140 static int
1141 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1142 {
1143 	struct loop_info info;
1144 	struct loop_info64 info64;
1145 
1146 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1147 		return -EFAULT;
1148 	loop_info64_from_old(&info, &info64);
1149 	return loop_set_status(lo, &info64);
1150 }
1151 
1152 static int
1153 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1154 {
1155 	struct loop_info64 info64;
1156 
1157 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1158 		return -EFAULT;
1159 	return loop_set_status(lo, &info64);
1160 }
1161 
1162 static int
1163 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1164 	struct loop_info info;
1165 	struct loop_info64 info64;
1166 	int err = 0;
1167 
1168 	if (!arg)
1169 		err = -EINVAL;
1170 	if (!err)
1171 		err = loop_get_status(lo, &info64);
1172 	if (!err)
1173 		err = loop_info64_to_old(&info64, &info);
1174 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1175 		err = -EFAULT;
1176 
1177 	return err;
1178 }
1179 
1180 static int
1181 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1182 	struct loop_info64 info64;
1183 	int err = 0;
1184 
1185 	if (!arg)
1186 		err = -EINVAL;
1187 	if (!err)
1188 		err = loop_get_status(lo, &info64);
1189 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1190 		err = -EFAULT;
1191 
1192 	return err;
1193 }
1194 
1195 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1196 {
1197 	int err;
1198 	sector_t sec;
1199 	loff_t sz;
1200 
1201 	err = -ENXIO;
1202 	if (unlikely(lo->lo_state != Lo_bound))
1203 		goto out;
1204 	err = figure_loop_size(lo);
1205 	if (unlikely(err))
1206 		goto out;
1207 	sec = get_capacity(lo->lo_disk);
1208 	/* the width of sector_t may be narrow for bit-shift */
1209 	sz = sec;
1210 	sz <<= 9;
1211 	mutex_lock(&bdev->bd_mutex);
1212 	bd_set_size(bdev, sz);
1213 	mutex_unlock(&bdev->bd_mutex);
1214 
1215  out:
1216 	return err;
1217 }
1218 
1219 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1220 	unsigned int cmd, unsigned long arg)
1221 {
1222 	struct loop_device *lo = bdev->bd_disk->private_data;
1223 	int err;
1224 
1225 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1226 	switch (cmd) {
1227 	case LOOP_SET_FD:
1228 		err = loop_set_fd(lo, mode, bdev, arg);
1229 		break;
1230 	case LOOP_CHANGE_FD:
1231 		err = loop_change_fd(lo, bdev, arg);
1232 		break;
1233 	case LOOP_CLR_FD:
1234 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1235 		err = loop_clr_fd(lo, bdev);
1236 		if (!err)
1237 			goto out_unlocked;
1238 		break;
1239 	case LOOP_SET_STATUS:
1240 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1241 		break;
1242 	case LOOP_GET_STATUS:
1243 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1244 		break;
1245 	case LOOP_SET_STATUS64:
1246 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1247 		break;
1248 	case LOOP_GET_STATUS64:
1249 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1250 		break;
1251 	case LOOP_SET_CAPACITY:
1252 		err = -EPERM;
1253 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1254 			err = loop_set_capacity(lo, bdev);
1255 		break;
1256 	default:
1257 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1258 	}
1259 	mutex_unlock(&lo->lo_ctl_mutex);
1260 
1261 out_unlocked:
1262 	return err;
1263 }
1264 
1265 #ifdef CONFIG_COMPAT
1266 struct compat_loop_info {
1267 	compat_int_t	lo_number;      /* ioctl r/o */
1268 	compat_dev_t	lo_device;      /* ioctl r/o */
1269 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1270 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1271 	compat_int_t	lo_offset;
1272 	compat_int_t	lo_encrypt_type;
1273 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1274 	compat_int_t	lo_flags;       /* ioctl r/o */
1275 	char		lo_name[LO_NAME_SIZE];
1276 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1277 	compat_ulong_t	lo_init[2];
1278 	char		reserved[4];
1279 };
1280 
1281 /*
1282  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1283  * - noinlined to reduce stack space usage in main part of driver
1284  */
1285 static noinline int
1286 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1287 			struct loop_info64 *info64)
1288 {
1289 	struct compat_loop_info info;
1290 
1291 	if (copy_from_user(&info, arg, sizeof(info)))
1292 		return -EFAULT;
1293 
1294 	memset(info64, 0, sizeof(*info64));
1295 	info64->lo_number = info.lo_number;
1296 	info64->lo_device = info.lo_device;
1297 	info64->lo_inode = info.lo_inode;
1298 	info64->lo_rdevice = info.lo_rdevice;
1299 	info64->lo_offset = info.lo_offset;
1300 	info64->lo_sizelimit = 0;
1301 	info64->lo_encrypt_type = info.lo_encrypt_type;
1302 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1303 	info64->lo_flags = info.lo_flags;
1304 	info64->lo_init[0] = info.lo_init[0];
1305 	info64->lo_init[1] = info.lo_init[1];
1306 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1307 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1308 	else
1309 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1310 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1311 	return 0;
1312 }
1313 
1314 /*
1315  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1316  * - noinlined to reduce stack space usage in main part of driver
1317  */
1318 static noinline int
1319 loop_info64_to_compat(const struct loop_info64 *info64,
1320 		      struct compat_loop_info __user *arg)
1321 {
1322 	struct compat_loop_info info;
1323 
1324 	memset(&info, 0, sizeof(info));
1325 	info.lo_number = info64->lo_number;
1326 	info.lo_device = info64->lo_device;
1327 	info.lo_inode = info64->lo_inode;
1328 	info.lo_rdevice = info64->lo_rdevice;
1329 	info.lo_offset = info64->lo_offset;
1330 	info.lo_encrypt_type = info64->lo_encrypt_type;
1331 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1332 	info.lo_flags = info64->lo_flags;
1333 	info.lo_init[0] = info64->lo_init[0];
1334 	info.lo_init[1] = info64->lo_init[1];
1335 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1336 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1337 	else
1338 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1339 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1340 
1341 	/* error in case values were truncated */
1342 	if (info.lo_device != info64->lo_device ||
1343 	    info.lo_rdevice != info64->lo_rdevice ||
1344 	    info.lo_inode != info64->lo_inode ||
1345 	    info.lo_offset != info64->lo_offset ||
1346 	    info.lo_init[0] != info64->lo_init[0] ||
1347 	    info.lo_init[1] != info64->lo_init[1])
1348 		return -EOVERFLOW;
1349 
1350 	if (copy_to_user(arg, &info, sizeof(info)))
1351 		return -EFAULT;
1352 	return 0;
1353 }
1354 
1355 static int
1356 loop_set_status_compat(struct loop_device *lo,
1357 		       const struct compat_loop_info __user *arg)
1358 {
1359 	struct loop_info64 info64;
1360 	int ret;
1361 
1362 	ret = loop_info64_from_compat(arg, &info64);
1363 	if (ret < 0)
1364 		return ret;
1365 	return loop_set_status(lo, &info64);
1366 }
1367 
1368 static int
1369 loop_get_status_compat(struct loop_device *lo,
1370 		       struct compat_loop_info __user *arg)
1371 {
1372 	struct loop_info64 info64;
1373 	int err = 0;
1374 
1375 	if (!arg)
1376 		err = -EINVAL;
1377 	if (!err)
1378 		err = loop_get_status(lo, &info64);
1379 	if (!err)
1380 		err = loop_info64_to_compat(&info64, arg);
1381 	return err;
1382 }
1383 
1384 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1385 			   unsigned int cmd, unsigned long arg)
1386 {
1387 	struct loop_device *lo = bdev->bd_disk->private_data;
1388 	int err;
1389 
1390 	switch(cmd) {
1391 	case LOOP_SET_STATUS:
1392 		mutex_lock(&lo->lo_ctl_mutex);
1393 		err = loop_set_status_compat(
1394 			lo, (const struct compat_loop_info __user *) arg);
1395 		mutex_unlock(&lo->lo_ctl_mutex);
1396 		break;
1397 	case LOOP_GET_STATUS:
1398 		mutex_lock(&lo->lo_ctl_mutex);
1399 		err = loop_get_status_compat(
1400 			lo, (struct compat_loop_info __user *) arg);
1401 		mutex_unlock(&lo->lo_ctl_mutex);
1402 		break;
1403 	case LOOP_SET_CAPACITY:
1404 	case LOOP_CLR_FD:
1405 	case LOOP_GET_STATUS64:
1406 	case LOOP_SET_STATUS64:
1407 		arg = (unsigned long) compat_ptr(arg);
1408 	case LOOP_SET_FD:
1409 	case LOOP_CHANGE_FD:
1410 		err = lo_ioctl(bdev, mode, cmd, arg);
1411 		break;
1412 	default:
1413 		err = -ENOIOCTLCMD;
1414 		break;
1415 	}
1416 	return err;
1417 }
1418 #endif
1419 
1420 static int lo_open(struct block_device *bdev, fmode_t mode)
1421 {
1422 	struct loop_device *lo = bdev->bd_disk->private_data;
1423 
1424 	mutex_lock(&lo->lo_ctl_mutex);
1425 	lo->lo_refcnt++;
1426 	mutex_unlock(&lo->lo_ctl_mutex);
1427 
1428 	return 0;
1429 }
1430 
1431 static int lo_release(struct gendisk *disk, fmode_t mode)
1432 {
1433 	struct loop_device *lo = disk->private_data;
1434 	int err;
1435 
1436 	mutex_lock(&lo->lo_ctl_mutex);
1437 
1438 	if (--lo->lo_refcnt)
1439 		goto out;
1440 
1441 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1442 		/*
1443 		 * In autoclear mode, stop the loop thread
1444 		 * and remove configuration after last close.
1445 		 */
1446 		err = loop_clr_fd(lo, NULL);
1447 		if (!err)
1448 			goto out_unlocked;
1449 	} else {
1450 		/*
1451 		 * Otherwise keep thread (if running) and config,
1452 		 * but flush possible ongoing bios in thread.
1453 		 */
1454 		loop_flush(lo);
1455 	}
1456 
1457 out:
1458 	mutex_unlock(&lo->lo_ctl_mutex);
1459 out_unlocked:
1460 	return 0;
1461 }
1462 
1463 static struct block_device_operations lo_fops = {
1464 	.owner =	THIS_MODULE,
1465 	.open =		lo_open,
1466 	.release =	lo_release,
1467 	.ioctl =	lo_ioctl,
1468 #ifdef CONFIG_COMPAT
1469 	.compat_ioctl =	lo_compat_ioctl,
1470 #endif
1471 };
1472 
1473 /*
1474  * And now the modules code and kernel interface.
1475  */
1476 static int max_loop;
1477 module_param(max_loop, int, 0);
1478 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1479 module_param(max_part, int, 0);
1480 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1481 MODULE_LICENSE("GPL");
1482 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1483 
1484 int loop_register_transfer(struct loop_func_table *funcs)
1485 {
1486 	unsigned int n = funcs->number;
1487 
1488 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1489 		return -EINVAL;
1490 	xfer_funcs[n] = funcs;
1491 	return 0;
1492 }
1493 
1494 int loop_unregister_transfer(int number)
1495 {
1496 	unsigned int n = number;
1497 	struct loop_device *lo;
1498 	struct loop_func_table *xfer;
1499 
1500 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1501 		return -EINVAL;
1502 
1503 	xfer_funcs[n] = NULL;
1504 
1505 	list_for_each_entry(lo, &loop_devices, lo_list) {
1506 		mutex_lock(&lo->lo_ctl_mutex);
1507 
1508 		if (lo->lo_encryption == xfer)
1509 			loop_release_xfer(lo);
1510 
1511 		mutex_unlock(&lo->lo_ctl_mutex);
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 EXPORT_SYMBOL(loop_register_transfer);
1518 EXPORT_SYMBOL(loop_unregister_transfer);
1519 
1520 static struct loop_device *loop_alloc(int i)
1521 {
1522 	struct loop_device *lo;
1523 	struct gendisk *disk;
1524 
1525 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1526 	if (!lo)
1527 		goto out;
1528 
1529 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1530 	if (!lo->lo_queue)
1531 		goto out_free_dev;
1532 
1533 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1534 	if (!disk)
1535 		goto out_free_queue;
1536 
1537 	mutex_init(&lo->lo_ctl_mutex);
1538 	lo->lo_number		= i;
1539 	lo->lo_thread		= NULL;
1540 	init_waitqueue_head(&lo->lo_event);
1541 	spin_lock_init(&lo->lo_lock);
1542 	disk->major		= LOOP_MAJOR;
1543 	disk->first_minor	= i << part_shift;
1544 	disk->fops		= &lo_fops;
1545 	disk->private_data	= lo;
1546 	disk->queue		= lo->lo_queue;
1547 	sprintf(disk->disk_name, "loop%d", i);
1548 	return lo;
1549 
1550 out_free_queue:
1551 	blk_cleanup_queue(lo->lo_queue);
1552 out_free_dev:
1553 	kfree(lo);
1554 out:
1555 	return NULL;
1556 }
1557 
1558 static void loop_free(struct loop_device *lo)
1559 {
1560 	blk_cleanup_queue(lo->lo_queue);
1561 	put_disk(lo->lo_disk);
1562 	list_del(&lo->lo_list);
1563 	kfree(lo);
1564 }
1565 
1566 static struct loop_device *loop_init_one(int i)
1567 {
1568 	struct loop_device *lo;
1569 
1570 	list_for_each_entry(lo, &loop_devices, lo_list) {
1571 		if (lo->lo_number == i)
1572 			return lo;
1573 	}
1574 
1575 	lo = loop_alloc(i);
1576 	if (lo) {
1577 		add_disk(lo->lo_disk);
1578 		list_add_tail(&lo->lo_list, &loop_devices);
1579 	}
1580 	return lo;
1581 }
1582 
1583 static void loop_del_one(struct loop_device *lo)
1584 {
1585 	del_gendisk(lo->lo_disk);
1586 	loop_free(lo);
1587 }
1588 
1589 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1590 {
1591 	struct loop_device *lo;
1592 	struct kobject *kobj;
1593 
1594 	mutex_lock(&loop_devices_mutex);
1595 	lo = loop_init_one(dev & MINORMASK);
1596 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1597 	mutex_unlock(&loop_devices_mutex);
1598 
1599 	*part = 0;
1600 	return kobj;
1601 }
1602 
1603 static int __init loop_init(void)
1604 {
1605 	int i, nr;
1606 	unsigned long range;
1607 	struct loop_device *lo, *next;
1608 
1609 	/*
1610 	 * loop module now has a feature to instantiate underlying device
1611 	 * structure on-demand, provided that there is an access dev node.
1612 	 * However, this will not work well with user space tool that doesn't
1613 	 * know about such "feature".  In order to not break any existing
1614 	 * tool, we do the following:
1615 	 *
1616 	 * (1) if max_loop is specified, create that many upfront, and this
1617 	 *     also becomes a hard limit.
1618 	 * (2) if max_loop is not specified, create 8 loop device on module
1619 	 *     load, user can further extend loop device by create dev node
1620 	 *     themselves and have kernel automatically instantiate actual
1621 	 *     device on-demand.
1622 	 */
1623 
1624 	part_shift = 0;
1625 	if (max_part > 0)
1626 		part_shift = fls(max_part);
1627 
1628 	if (max_loop > 1UL << (MINORBITS - part_shift))
1629 		return -EINVAL;
1630 
1631 	if (max_loop) {
1632 		nr = max_loop;
1633 		range = max_loop;
1634 	} else {
1635 		nr = 8;
1636 		range = 1UL << (MINORBITS - part_shift);
1637 	}
1638 
1639 	if (register_blkdev(LOOP_MAJOR, "loop"))
1640 		return -EIO;
1641 
1642 	for (i = 0; i < nr; i++) {
1643 		lo = loop_alloc(i);
1644 		if (!lo)
1645 			goto Enomem;
1646 		list_add_tail(&lo->lo_list, &loop_devices);
1647 	}
1648 
1649 	/* point of no return */
1650 
1651 	list_for_each_entry(lo, &loop_devices, lo_list)
1652 		add_disk(lo->lo_disk);
1653 
1654 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1655 				  THIS_MODULE, loop_probe, NULL, NULL);
1656 
1657 	printk(KERN_INFO "loop: module loaded\n");
1658 	return 0;
1659 
1660 Enomem:
1661 	printk(KERN_INFO "loop: out of memory\n");
1662 
1663 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1664 		loop_free(lo);
1665 
1666 	unregister_blkdev(LOOP_MAJOR, "loop");
1667 	return -ENOMEM;
1668 }
1669 
1670 static void __exit loop_exit(void)
1671 {
1672 	unsigned long range;
1673 	struct loop_device *lo, *next;
1674 
1675 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1676 
1677 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1678 		loop_del_one(lo);
1679 
1680 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1681 	unregister_blkdev(LOOP_MAJOR, "loop");
1682 }
1683 
1684 module_init(loop_init);
1685 module_exit(loop_exit);
1686 
1687 #ifndef MODULE
1688 static int __init max_loop_setup(char *str)
1689 {
1690 	max_loop = simple_strtol(str, NULL, 0);
1691 	return 1;
1692 }
1693 
1694 __setup("max_loop=", max_loop_setup);
1695 #endif
1696