xref: /openbmc/linux/drivers/block/loop.c (revision aeb64ff3)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	blk_mq_freeze_queue(lo->lo_queue);
218 	lo->use_dio = use_dio;
219 	if (use_dio) {
220 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
222 	} else {
223 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
224 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
225 	}
226 	blk_mq_unfreeze_queue(lo->lo_queue);
227 }
228 
229 static int
230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
231 {
232 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
233 	sector_t x = (sector_t)size;
234 	struct block_device *bdev = lo->lo_device;
235 
236 	if (unlikely((loff_t)x != size))
237 		return -EFBIG;
238 	if (lo->lo_offset != offset)
239 		lo->lo_offset = offset;
240 	if (lo->lo_sizelimit != sizelimit)
241 		lo->lo_sizelimit = sizelimit;
242 	set_capacity(lo->lo_disk, x);
243 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
244 	/* let user-space know about the new size */
245 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
246 	return 0;
247 }
248 
249 static inline int
250 lo_do_transfer(struct loop_device *lo, int cmd,
251 	       struct page *rpage, unsigned roffs,
252 	       struct page *lpage, unsigned loffs,
253 	       int size, sector_t rblock)
254 {
255 	int ret;
256 
257 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
258 	if (likely(!ret))
259 		return 0;
260 
261 	printk_ratelimited(KERN_ERR
262 		"loop: Transfer error at byte offset %llu, length %i.\n",
263 		(unsigned long long)rblock << 9, size);
264 	return ret;
265 }
266 
267 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
268 {
269 	struct iov_iter i;
270 	ssize_t bw;
271 
272 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
273 
274 	file_start_write(file);
275 	bw = vfs_iter_write(file, &i, ppos, 0);
276 	file_end_write(file);
277 
278 	if (likely(bw ==  bvec->bv_len))
279 		return 0;
280 
281 	printk_ratelimited(KERN_ERR
282 		"loop: Write error at byte offset %llu, length %i.\n",
283 		(unsigned long long)*ppos, bvec->bv_len);
284 	if (bw >= 0)
285 		bw = -EIO;
286 	return bw;
287 }
288 
289 static int lo_write_simple(struct loop_device *lo, struct request *rq,
290 		loff_t pos)
291 {
292 	struct bio_vec bvec;
293 	struct req_iterator iter;
294 	int ret = 0;
295 
296 	rq_for_each_segment(bvec, rq, iter) {
297 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
298 		if (ret < 0)
299 			break;
300 		cond_resched();
301 	}
302 
303 	return ret;
304 }
305 
306 /*
307  * This is the slow, transforming version that needs to double buffer the
308  * data as it cannot do the transformations in place without having direct
309  * access to the destination pages of the backing file.
310  */
311 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
312 		loff_t pos)
313 {
314 	struct bio_vec bvec, b;
315 	struct req_iterator iter;
316 	struct page *page;
317 	int ret = 0;
318 
319 	page = alloc_page(GFP_NOIO);
320 	if (unlikely(!page))
321 		return -ENOMEM;
322 
323 	rq_for_each_segment(bvec, rq, iter) {
324 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
325 			bvec.bv_offset, bvec.bv_len, pos >> 9);
326 		if (unlikely(ret))
327 			break;
328 
329 		b.bv_page = page;
330 		b.bv_offset = 0;
331 		b.bv_len = bvec.bv_len;
332 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
333 		if (ret < 0)
334 			break;
335 	}
336 
337 	__free_page(page);
338 	return ret;
339 }
340 
341 static int lo_read_simple(struct loop_device *lo, struct request *rq,
342 		loff_t pos)
343 {
344 	struct bio_vec bvec;
345 	struct req_iterator iter;
346 	struct iov_iter i;
347 	ssize_t len;
348 
349 	rq_for_each_segment(bvec, rq, iter) {
350 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
351 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
352 		if (len < 0)
353 			return len;
354 
355 		flush_dcache_page(bvec.bv_page);
356 
357 		if (len != bvec.bv_len) {
358 			struct bio *bio;
359 
360 			__rq_for_each_bio(bio, rq)
361 				zero_fill_bio(bio);
362 			break;
363 		}
364 		cond_resched();
365 	}
366 
367 	return 0;
368 }
369 
370 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
371 		loff_t pos)
372 {
373 	struct bio_vec bvec, b;
374 	struct req_iterator iter;
375 	struct iov_iter i;
376 	struct page *page;
377 	ssize_t len;
378 	int ret = 0;
379 
380 	page = alloc_page(GFP_NOIO);
381 	if (unlikely(!page))
382 		return -ENOMEM;
383 
384 	rq_for_each_segment(bvec, rq, iter) {
385 		loff_t offset = pos;
386 
387 		b.bv_page = page;
388 		b.bv_offset = 0;
389 		b.bv_len = bvec.bv_len;
390 
391 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
392 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
393 		if (len < 0) {
394 			ret = len;
395 			goto out_free_page;
396 		}
397 
398 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
399 			bvec.bv_offset, len, offset >> 9);
400 		if (ret)
401 			goto out_free_page;
402 
403 		flush_dcache_page(bvec.bv_page);
404 
405 		if (len != bvec.bv_len) {
406 			struct bio *bio;
407 
408 			__rq_for_each_bio(bio, rq)
409 				zero_fill_bio(bio);
410 			break;
411 		}
412 	}
413 
414 	ret = 0;
415 out_free_page:
416 	__free_page(page);
417 	return ret;
418 }
419 
420 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
421 			int mode)
422 {
423 	/*
424 	 * We use fallocate to manipulate the space mappings used by the image
425 	 * a.k.a. discard/zerorange. However we do not support this if
426 	 * encryption is enabled, because it may give an attacker useful
427 	 * information.
428 	 */
429 	struct file *file = lo->lo_backing_file;
430 	int ret;
431 
432 	mode |= FALLOC_FL_KEEP_SIZE;
433 
434 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
435 		ret = -EOPNOTSUPP;
436 		goto out;
437 	}
438 
439 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
440 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
441 		ret = -EIO;
442  out:
443 	return ret;
444 }
445 
446 static int lo_req_flush(struct loop_device *lo, struct request *rq)
447 {
448 	struct file *file = lo->lo_backing_file;
449 	int ret = vfs_fsync(file, 0);
450 	if (unlikely(ret && ret != -EINVAL))
451 		ret = -EIO;
452 
453 	return ret;
454 }
455 
456 static void lo_complete_rq(struct request *rq)
457 {
458 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
459 	blk_status_t ret = BLK_STS_OK;
460 
461 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
462 	    req_op(rq) != REQ_OP_READ) {
463 		if (cmd->ret < 0)
464 			ret = BLK_STS_IOERR;
465 		goto end_io;
466 	}
467 
468 	/*
469 	 * Short READ - if we got some data, advance our request and
470 	 * retry it. If we got no data, end the rest with EIO.
471 	 */
472 	if (cmd->ret) {
473 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
474 		cmd->ret = 0;
475 		blk_mq_requeue_request(rq, true);
476 	} else {
477 		if (cmd->use_aio) {
478 			struct bio *bio = rq->bio;
479 
480 			while (bio) {
481 				zero_fill_bio(bio);
482 				bio = bio->bi_next;
483 			}
484 		}
485 		ret = BLK_STS_IOERR;
486 end_io:
487 		blk_mq_end_request(rq, ret);
488 	}
489 }
490 
491 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
492 {
493 	struct request *rq = blk_mq_rq_from_pdu(cmd);
494 
495 	if (!atomic_dec_and_test(&cmd->ref))
496 		return;
497 	kfree(cmd->bvec);
498 	cmd->bvec = NULL;
499 	blk_mq_complete_request(rq);
500 }
501 
502 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
503 {
504 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
505 
506 	if (cmd->css)
507 		css_put(cmd->css);
508 	cmd->ret = ret;
509 	lo_rw_aio_do_completion(cmd);
510 }
511 
512 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
513 		     loff_t pos, bool rw)
514 {
515 	struct iov_iter iter;
516 	struct req_iterator rq_iter;
517 	struct bio_vec *bvec;
518 	struct request *rq = blk_mq_rq_from_pdu(cmd);
519 	struct bio *bio = rq->bio;
520 	struct file *file = lo->lo_backing_file;
521 	struct bio_vec tmp;
522 	unsigned int offset;
523 	int nr_bvec = 0;
524 	int ret;
525 
526 	rq_for_each_bvec(tmp, rq, rq_iter)
527 		nr_bvec++;
528 
529 	if (rq->bio != rq->biotail) {
530 
531 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
532 				     GFP_NOIO);
533 		if (!bvec)
534 			return -EIO;
535 		cmd->bvec = bvec;
536 
537 		/*
538 		 * The bios of the request may be started from the middle of
539 		 * the 'bvec' because of bio splitting, so we can't directly
540 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
541 		 * API will take care of all details for us.
542 		 */
543 		rq_for_each_bvec(tmp, rq, rq_iter) {
544 			*bvec = tmp;
545 			bvec++;
546 		}
547 		bvec = cmd->bvec;
548 		offset = 0;
549 	} else {
550 		/*
551 		 * Same here, this bio may be started from the middle of the
552 		 * 'bvec' because of bio splitting, so offset from the bvec
553 		 * must be passed to iov iterator
554 		 */
555 		offset = bio->bi_iter.bi_bvec_done;
556 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
557 	}
558 	atomic_set(&cmd->ref, 2);
559 
560 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
561 	iter.iov_offset = offset;
562 
563 	cmd->iocb.ki_pos = pos;
564 	cmd->iocb.ki_filp = file;
565 	cmd->iocb.ki_complete = lo_rw_aio_complete;
566 	cmd->iocb.ki_flags = IOCB_DIRECT;
567 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
568 	if (cmd->css)
569 		kthread_associate_blkcg(cmd->css);
570 
571 	if (rw == WRITE)
572 		ret = call_write_iter(file, &cmd->iocb, &iter);
573 	else
574 		ret = call_read_iter(file, &cmd->iocb, &iter);
575 
576 	lo_rw_aio_do_completion(cmd);
577 	kthread_associate_blkcg(NULL);
578 
579 	if (ret != -EIOCBQUEUED)
580 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
581 	return 0;
582 }
583 
584 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
585 {
586 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
587 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
588 
589 	/*
590 	 * lo_write_simple and lo_read_simple should have been covered
591 	 * by io submit style function like lo_rw_aio(), one blocker
592 	 * is that lo_read_simple() need to call flush_dcache_page after
593 	 * the page is written from kernel, and it isn't easy to handle
594 	 * this in io submit style function which submits all segments
595 	 * of the req at one time. And direct read IO doesn't need to
596 	 * run flush_dcache_page().
597 	 */
598 	switch (req_op(rq)) {
599 	case REQ_OP_FLUSH:
600 		return lo_req_flush(lo, rq);
601 	case REQ_OP_WRITE_ZEROES:
602 		/*
603 		 * If the caller doesn't want deallocation, call zeroout to
604 		 * write zeroes the range.  Otherwise, punch them out.
605 		 */
606 		return lo_fallocate(lo, rq, pos,
607 			(rq->cmd_flags & REQ_NOUNMAP) ?
608 				FALLOC_FL_ZERO_RANGE :
609 				FALLOC_FL_PUNCH_HOLE);
610 	case REQ_OP_DISCARD:
611 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
612 	case REQ_OP_WRITE:
613 		if (lo->transfer)
614 			return lo_write_transfer(lo, rq, pos);
615 		else if (cmd->use_aio)
616 			return lo_rw_aio(lo, cmd, pos, WRITE);
617 		else
618 			return lo_write_simple(lo, rq, pos);
619 	case REQ_OP_READ:
620 		if (lo->transfer)
621 			return lo_read_transfer(lo, rq, pos);
622 		else if (cmd->use_aio)
623 			return lo_rw_aio(lo, cmd, pos, READ);
624 		else
625 			return lo_read_simple(lo, rq, pos);
626 	default:
627 		WARN_ON_ONCE(1);
628 		return -EIO;
629 	}
630 }
631 
632 static inline void loop_update_dio(struct loop_device *lo)
633 {
634 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
635 			lo->use_dio);
636 }
637 
638 static void loop_reread_partitions(struct loop_device *lo,
639 				   struct block_device *bdev)
640 {
641 	int rc;
642 
643 	mutex_lock(&bdev->bd_mutex);
644 	rc = bdev_disk_changed(bdev, false);
645 	mutex_unlock(&bdev->bd_mutex);
646 	if (rc)
647 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 			__func__, lo->lo_number, lo->lo_file_name, rc);
649 }
650 
651 static inline int is_loop_device(struct file *file)
652 {
653 	struct inode *i = file->f_mapping->host;
654 
655 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
656 }
657 
658 static int loop_validate_file(struct file *file, struct block_device *bdev)
659 {
660 	struct inode	*inode = file->f_mapping->host;
661 	struct file	*f = file;
662 
663 	/* Avoid recursion */
664 	while (is_loop_device(f)) {
665 		struct loop_device *l;
666 
667 		if (f->f_mapping->host->i_bdev == bdev)
668 			return -EBADF;
669 
670 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
671 		if (l->lo_state != Lo_bound) {
672 			return -EINVAL;
673 		}
674 		f = l->lo_backing_file;
675 	}
676 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
677 		return -EINVAL;
678 	return 0;
679 }
680 
681 /*
682  * loop_change_fd switched the backing store of a loopback device to
683  * a new file. This is useful for operating system installers to free up
684  * the original file and in High Availability environments to switch to
685  * an alternative location for the content in case of server meltdown.
686  * This can only work if the loop device is used read-only, and if the
687  * new backing store is the same size and type as the old backing store.
688  */
689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
690 			  unsigned int arg)
691 {
692 	struct file	*file = NULL, *old_file;
693 	int		error;
694 	bool		partscan;
695 
696 	error = mutex_lock_killable(&loop_ctl_mutex);
697 	if (error)
698 		return error;
699 	error = -ENXIO;
700 	if (lo->lo_state != Lo_bound)
701 		goto out_err;
702 
703 	/* the loop device has to be read-only */
704 	error = -EINVAL;
705 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
706 		goto out_err;
707 
708 	error = -EBADF;
709 	file = fget(arg);
710 	if (!file)
711 		goto out_err;
712 
713 	error = loop_validate_file(file, bdev);
714 	if (error)
715 		goto out_err;
716 
717 	old_file = lo->lo_backing_file;
718 
719 	error = -EINVAL;
720 
721 	/* size of the new backing store needs to be the same */
722 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
723 		goto out_err;
724 
725 	/* and ... switch */
726 	blk_mq_freeze_queue(lo->lo_queue);
727 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
728 	lo->lo_backing_file = file;
729 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
730 	mapping_set_gfp_mask(file->f_mapping,
731 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
732 	loop_update_dio(lo);
733 	blk_mq_unfreeze_queue(lo->lo_queue);
734 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
735 	mutex_unlock(&loop_ctl_mutex);
736 	/*
737 	 * We must drop file reference outside of loop_ctl_mutex as dropping
738 	 * the file ref can take bd_mutex which creates circular locking
739 	 * dependency.
740 	 */
741 	fput(old_file);
742 	if (partscan)
743 		loop_reread_partitions(lo, bdev);
744 	return 0;
745 
746 out_err:
747 	mutex_unlock(&loop_ctl_mutex);
748 	if (file)
749 		fput(file);
750 	return error;
751 }
752 
753 /* loop sysfs attributes */
754 
755 static ssize_t loop_attr_show(struct device *dev, char *page,
756 			      ssize_t (*callback)(struct loop_device *, char *))
757 {
758 	struct gendisk *disk = dev_to_disk(dev);
759 	struct loop_device *lo = disk->private_data;
760 
761 	return callback(lo, page);
762 }
763 
764 #define LOOP_ATTR_RO(_name)						\
765 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
766 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
767 				struct device_attribute *attr, char *b)	\
768 {									\
769 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
770 }									\
771 static struct device_attribute loop_attr_##_name =			\
772 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
773 
774 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
775 {
776 	ssize_t ret;
777 	char *p = NULL;
778 
779 	spin_lock_irq(&lo->lo_lock);
780 	if (lo->lo_backing_file)
781 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
782 	spin_unlock_irq(&lo->lo_lock);
783 
784 	if (IS_ERR_OR_NULL(p))
785 		ret = PTR_ERR(p);
786 	else {
787 		ret = strlen(p);
788 		memmove(buf, p, ret);
789 		buf[ret++] = '\n';
790 		buf[ret] = 0;
791 	}
792 
793 	return ret;
794 }
795 
796 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
797 {
798 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
799 }
800 
801 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
802 {
803 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
804 }
805 
806 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
807 {
808 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
809 
810 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
811 }
812 
813 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
814 {
815 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
816 
817 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
818 }
819 
820 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
821 {
822 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
823 
824 	return sprintf(buf, "%s\n", dio ? "1" : "0");
825 }
826 
827 LOOP_ATTR_RO(backing_file);
828 LOOP_ATTR_RO(offset);
829 LOOP_ATTR_RO(sizelimit);
830 LOOP_ATTR_RO(autoclear);
831 LOOP_ATTR_RO(partscan);
832 LOOP_ATTR_RO(dio);
833 
834 static struct attribute *loop_attrs[] = {
835 	&loop_attr_backing_file.attr,
836 	&loop_attr_offset.attr,
837 	&loop_attr_sizelimit.attr,
838 	&loop_attr_autoclear.attr,
839 	&loop_attr_partscan.attr,
840 	&loop_attr_dio.attr,
841 	NULL,
842 };
843 
844 static struct attribute_group loop_attribute_group = {
845 	.name = "loop",
846 	.attrs= loop_attrs,
847 };
848 
849 static void loop_sysfs_init(struct loop_device *lo)
850 {
851 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
852 						&loop_attribute_group);
853 }
854 
855 static void loop_sysfs_exit(struct loop_device *lo)
856 {
857 	if (lo->sysfs_inited)
858 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
859 				   &loop_attribute_group);
860 }
861 
862 static void loop_config_discard(struct loop_device *lo)
863 {
864 	struct file *file = lo->lo_backing_file;
865 	struct inode *inode = file->f_mapping->host;
866 	struct request_queue *q = lo->lo_queue;
867 
868 	/*
869 	 * We use punch hole to reclaim the free space used by the
870 	 * image a.k.a. discard. However we do not support discard if
871 	 * encryption is enabled, because it may give an attacker
872 	 * useful information.
873 	 */
874 	if ((!file->f_op->fallocate) ||
875 	    lo->lo_encrypt_key_size) {
876 		q->limits.discard_granularity = 0;
877 		q->limits.discard_alignment = 0;
878 		blk_queue_max_discard_sectors(q, 0);
879 		blk_queue_max_write_zeroes_sectors(q, 0);
880 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
881 		return;
882 	}
883 
884 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
885 	q->limits.discard_alignment = 0;
886 
887 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
888 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
889 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
890 }
891 
892 static void loop_unprepare_queue(struct loop_device *lo)
893 {
894 	kthread_flush_worker(&lo->worker);
895 	kthread_stop(lo->worker_task);
896 }
897 
898 static int loop_kthread_worker_fn(void *worker_ptr)
899 {
900 	current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO;
901 	return kthread_worker_fn(worker_ptr);
902 }
903 
904 static int loop_prepare_queue(struct loop_device *lo)
905 {
906 	kthread_init_worker(&lo->worker);
907 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
908 			&lo->worker, "loop%d", lo->lo_number);
909 	if (IS_ERR(lo->worker_task))
910 		return -ENOMEM;
911 	set_user_nice(lo->worker_task, MIN_NICE);
912 	return 0;
913 }
914 
915 static void loop_update_rotational(struct loop_device *lo)
916 {
917 	struct file *file = lo->lo_backing_file;
918 	struct inode *file_inode = file->f_mapping->host;
919 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
920 	struct request_queue *q = lo->lo_queue;
921 	bool nonrot = true;
922 
923 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
924 	if (file_bdev)
925 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
926 
927 	if (nonrot)
928 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
929 	else
930 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
931 }
932 
933 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
934 		       struct block_device *bdev, unsigned int arg)
935 {
936 	struct file	*file;
937 	struct inode	*inode;
938 	struct address_space *mapping;
939 	struct block_device *claimed_bdev = NULL;
940 	int		lo_flags = 0;
941 	int		error;
942 	loff_t		size;
943 	bool		partscan;
944 
945 	/* This is safe, since we have a reference from open(). */
946 	__module_get(THIS_MODULE);
947 
948 	error = -EBADF;
949 	file = fget(arg);
950 	if (!file)
951 		goto out;
952 
953 	/*
954 	 * If we don't hold exclusive handle for the device, upgrade to it
955 	 * here to avoid changing device under exclusive owner.
956 	 */
957 	if (!(mode & FMODE_EXCL)) {
958 		claimed_bdev = bd_start_claiming(bdev, loop_set_fd);
959 		if (IS_ERR(claimed_bdev)) {
960 			error = PTR_ERR(claimed_bdev);
961 			goto out_putf;
962 		}
963 	}
964 
965 	error = mutex_lock_killable(&loop_ctl_mutex);
966 	if (error)
967 		goto out_bdev;
968 
969 	error = -EBUSY;
970 	if (lo->lo_state != Lo_unbound)
971 		goto out_unlock;
972 
973 	error = loop_validate_file(file, bdev);
974 	if (error)
975 		goto out_unlock;
976 
977 	mapping = file->f_mapping;
978 	inode = mapping->host;
979 
980 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
981 	    !file->f_op->write_iter)
982 		lo_flags |= LO_FLAGS_READ_ONLY;
983 
984 	error = -EFBIG;
985 	size = get_loop_size(lo, file);
986 	if ((loff_t)(sector_t)size != size)
987 		goto out_unlock;
988 	error = loop_prepare_queue(lo);
989 	if (error)
990 		goto out_unlock;
991 
992 	error = 0;
993 
994 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
995 
996 	lo->use_dio = false;
997 	lo->lo_device = bdev;
998 	lo->lo_flags = lo_flags;
999 	lo->lo_backing_file = file;
1000 	lo->transfer = NULL;
1001 	lo->ioctl = NULL;
1002 	lo->lo_sizelimit = 0;
1003 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1004 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1005 
1006 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1007 		blk_queue_write_cache(lo->lo_queue, true, false);
1008 
1009 	if (io_is_direct(lo->lo_backing_file) && inode->i_sb->s_bdev) {
1010 		/* In case of direct I/O, match underlying block size */
1011 		unsigned short bsize = bdev_logical_block_size(
1012 			inode->i_sb->s_bdev);
1013 
1014 		blk_queue_logical_block_size(lo->lo_queue, bsize);
1015 		blk_queue_physical_block_size(lo->lo_queue, bsize);
1016 		blk_queue_io_min(lo->lo_queue, bsize);
1017 	}
1018 
1019 	loop_update_rotational(lo);
1020 	loop_update_dio(lo);
1021 	set_capacity(lo->lo_disk, size);
1022 	bd_set_size(bdev, size << 9);
1023 	loop_sysfs_init(lo);
1024 	/* let user-space know about the new size */
1025 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1026 
1027 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1028 		      block_size(inode->i_bdev) : PAGE_SIZE);
1029 
1030 	lo->lo_state = Lo_bound;
1031 	if (part_shift)
1032 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1033 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1034 
1035 	/* Grab the block_device to prevent its destruction after we
1036 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1037 	 */
1038 	bdgrab(bdev);
1039 	mutex_unlock(&loop_ctl_mutex);
1040 	if (partscan)
1041 		loop_reread_partitions(lo, bdev);
1042 	if (claimed_bdev)
1043 		bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1044 	return 0;
1045 
1046 out_unlock:
1047 	mutex_unlock(&loop_ctl_mutex);
1048 out_bdev:
1049 	if (claimed_bdev)
1050 		bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1051 out_putf:
1052 	fput(file);
1053 out:
1054 	/* This is safe: open() is still holding a reference. */
1055 	module_put(THIS_MODULE);
1056 	return error;
1057 }
1058 
1059 static int
1060 loop_release_xfer(struct loop_device *lo)
1061 {
1062 	int err = 0;
1063 	struct loop_func_table *xfer = lo->lo_encryption;
1064 
1065 	if (xfer) {
1066 		if (xfer->release)
1067 			err = xfer->release(lo);
1068 		lo->transfer = NULL;
1069 		lo->lo_encryption = NULL;
1070 		module_put(xfer->owner);
1071 	}
1072 	return err;
1073 }
1074 
1075 static int
1076 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1077 	       const struct loop_info64 *i)
1078 {
1079 	int err = 0;
1080 
1081 	if (xfer) {
1082 		struct module *owner = xfer->owner;
1083 
1084 		if (!try_module_get(owner))
1085 			return -EINVAL;
1086 		if (xfer->init)
1087 			err = xfer->init(lo, i);
1088 		if (err)
1089 			module_put(owner);
1090 		else
1091 			lo->lo_encryption = xfer;
1092 	}
1093 	return err;
1094 }
1095 
1096 static int __loop_clr_fd(struct loop_device *lo, bool release)
1097 {
1098 	struct file *filp = NULL;
1099 	gfp_t gfp = lo->old_gfp_mask;
1100 	struct block_device *bdev = lo->lo_device;
1101 	int err = 0;
1102 	bool partscan = false;
1103 	int lo_number;
1104 
1105 	mutex_lock(&loop_ctl_mutex);
1106 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1107 		err = -ENXIO;
1108 		goto out_unlock;
1109 	}
1110 
1111 	filp = lo->lo_backing_file;
1112 	if (filp == NULL) {
1113 		err = -EINVAL;
1114 		goto out_unlock;
1115 	}
1116 
1117 	/* freeze request queue during the transition */
1118 	blk_mq_freeze_queue(lo->lo_queue);
1119 
1120 	spin_lock_irq(&lo->lo_lock);
1121 	lo->lo_backing_file = NULL;
1122 	spin_unlock_irq(&lo->lo_lock);
1123 
1124 	loop_release_xfer(lo);
1125 	lo->transfer = NULL;
1126 	lo->ioctl = NULL;
1127 	lo->lo_device = NULL;
1128 	lo->lo_encryption = NULL;
1129 	lo->lo_offset = 0;
1130 	lo->lo_sizelimit = 0;
1131 	lo->lo_encrypt_key_size = 0;
1132 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1133 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1134 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1135 	blk_queue_logical_block_size(lo->lo_queue, 512);
1136 	blk_queue_physical_block_size(lo->lo_queue, 512);
1137 	blk_queue_io_min(lo->lo_queue, 512);
1138 	if (bdev) {
1139 		bdput(bdev);
1140 		invalidate_bdev(bdev);
1141 		bdev->bd_inode->i_mapping->wb_err = 0;
1142 	}
1143 	set_capacity(lo->lo_disk, 0);
1144 	loop_sysfs_exit(lo);
1145 	if (bdev) {
1146 		bd_set_size(bdev, 0);
1147 		/* let user-space know about this change */
1148 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1149 	}
1150 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1151 	/* This is safe: open() is still holding a reference. */
1152 	module_put(THIS_MODULE);
1153 	blk_mq_unfreeze_queue(lo->lo_queue);
1154 
1155 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1156 	lo_number = lo->lo_number;
1157 	loop_unprepare_queue(lo);
1158 out_unlock:
1159 	mutex_unlock(&loop_ctl_mutex);
1160 	if (partscan) {
1161 		/*
1162 		 * bd_mutex has been held already in release path, so don't
1163 		 * acquire it if this function is called in such case.
1164 		 *
1165 		 * If the reread partition isn't from release path, lo_refcnt
1166 		 * must be at least one and it can only become zero when the
1167 		 * current holder is released.
1168 		 */
1169 		if (!release)
1170 			mutex_lock(&bdev->bd_mutex);
1171 		err = bdev_disk_changed(bdev, false);
1172 		if (!release)
1173 			mutex_unlock(&bdev->bd_mutex);
1174 		if (err)
1175 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1176 				__func__, lo_number, err);
1177 		/* Device is gone, no point in returning error */
1178 		err = 0;
1179 	}
1180 
1181 	/*
1182 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1183 	 * finished.
1184 	 *
1185 	 * There cannot be anybody else entering __loop_clr_fd() as
1186 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1187 	 * protects us from all the other places trying to change the 'lo'
1188 	 * device.
1189 	 */
1190 	mutex_lock(&loop_ctl_mutex);
1191 	lo->lo_flags = 0;
1192 	if (!part_shift)
1193 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1194 	lo->lo_state = Lo_unbound;
1195 	mutex_unlock(&loop_ctl_mutex);
1196 
1197 	/*
1198 	 * Need not hold loop_ctl_mutex to fput backing file.
1199 	 * Calling fput holding loop_ctl_mutex triggers a circular
1200 	 * lock dependency possibility warning as fput can take
1201 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1202 	 */
1203 	if (filp)
1204 		fput(filp);
1205 	return err;
1206 }
1207 
1208 static int loop_clr_fd(struct loop_device *lo)
1209 {
1210 	int err;
1211 
1212 	err = mutex_lock_killable(&loop_ctl_mutex);
1213 	if (err)
1214 		return err;
1215 	if (lo->lo_state != Lo_bound) {
1216 		mutex_unlock(&loop_ctl_mutex);
1217 		return -ENXIO;
1218 	}
1219 	/*
1220 	 * If we've explicitly asked to tear down the loop device,
1221 	 * and it has an elevated reference count, set it for auto-teardown when
1222 	 * the last reference goes away. This stops $!~#$@ udev from
1223 	 * preventing teardown because it decided that it needs to run blkid on
1224 	 * the loopback device whenever they appear. xfstests is notorious for
1225 	 * failing tests because blkid via udev races with a losetup
1226 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1227 	 * command to fail with EBUSY.
1228 	 */
1229 	if (atomic_read(&lo->lo_refcnt) > 1) {
1230 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1231 		mutex_unlock(&loop_ctl_mutex);
1232 		return 0;
1233 	}
1234 	lo->lo_state = Lo_rundown;
1235 	mutex_unlock(&loop_ctl_mutex);
1236 
1237 	return __loop_clr_fd(lo, false);
1238 }
1239 
1240 static int
1241 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1242 {
1243 	int err;
1244 	struct loop_func_table *xfer;
1245 	kuid_t uid = current_uid();
1246 	struct block_device *bdev;
1247 	bool partscan = false;
1248 
1249 	err = mutex_lock_killable(&loop_ctl_mutex);
1250 	if (err)
1251 		return err;
1252 	if (lo->lo_encrypt_key_size &&
1253 	    !uid_eq(lo->lo_key_owner, uid) &&
1254 	    !capable(CAP_SYS_ADMIN)) {
1255 		err = -EPERM;
1256 		goto out_unlock;
1257 	}
1258 	if (lo->lo_state != Lo_bound) {
1259 		err = -ENXIO;
1260 		goto out_unlock;
1261 	}
1262 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1263 		err = -EINVAL;
1264 		goto out_unlock;
1265 	}
1266 
1267 	if (lo->lo_offset != info->lo_offset ||
1268 	    lo->lo_sizelimit != info->lo_sizelimit) {
1269 		sync_blockdev(lo->lo_device);
1270 		kill_bdev(lo->lo_device);
1271 	}
1272 
1273 	/* I/O need to be drained during transfer transition */
1274 	blk_mq_freeze_queue(lo->lo_queue);
1275 
1276 	err = loop_release_xfer(lo);
1277 	if (err)
1278 		goto out_unfreeze;
1279 
1280 	if (info->lo_encrypt_type) {
1281 		unsigned int type = info->lo_encrypt_type;
1282 
1283 		if (type >= MAX_LO_CRYPT) {
1284 			err = -EINVAL;
1285 			goto out_unfreeze;
1286 		}
1287 		xfer = xfer_funcs[type];
1288 		if (xfer == NULL) {
1289 			err = -EINVAL;
1290 			goto out_unfreeze;
1291 		}
1292 	} else
1293 		xfer = NULL;
1294 
1295 	err = loop_init_xfer(lo, xfer, info);
1296 	if (err)
1297 		goto out_unfreeze;
1298 
1299 	if (lo->lo_offset != info->lo_offset ||
1300 	    lo->lo_sizelimit != info->lo_sizelimit) {
1301 		/* kill_bdev should have truncated all the pages */
1302 		if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1303 			err = -EAGAIN;
1304 			pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1305 				__func__, lo->lo_number, lo->lo_file_name,
1306 				lo->lo_device->bd_inode->i_mapping->nrpages);
1307 			goto out_unfreeze;
1308 		}
1309 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1310 			err = -EFBIG;
1311 			goto out_unfreeze;
1312 		}
1313 	}
1314 
1315 	loop_config_discard(lo);
1316 
1317 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1318 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1319 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1320 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1321 
1322 	if (!xfer)
1323 		xfer = &none_funcs;
1324 	lo->transfer = xfer->transfer;
1325 	lo->ioctl = xfer->ioctl;
1326 
1327 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1328 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1329 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1330 
1331 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1332 	lo->lo_init[0] = info->lo_init[0];
1333 	lo->lo_init[1] = info->lo_init[1];
1334 	if (info->lo_encrypt_key_size) {
1335 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1336 		       info->lo_encrypt_key_size);
1337 		lo->lo_key_owner = uid;
1338 	}
1339 
1340 	/* update dio if lo_offset or transfer is changed */
1341 	__loop_update_dio(lo, lo->use_dio);
1342 
1343 out_unfreeze:
1344 	blk_mq_unfreeze_queue(lo->lo_queue);
1345 
1346 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1347 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1348 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1349 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1350 		bdev = lo->lo_device;
1351 		partscan = true;
1352 	}
1353 out_unlock:
1354 	mutex_unlock(&loop_ctl_mutex);
1355 	if (partscan)
1356 		loop_reread_partitions(lo, bdev);
1357 
1358 	return err;
1359 }
1360 
1361 static int
1362 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1363 {
1364 	struct path path;
1365 	struct kstat stat;
1366 	int ret;
1367 
1368 	ret = mutex_lock_killable(&loop_ctl_mutex);
1369 	if (ret)
1370 		return ret;
1371 	if (lo->lo_state != Lo_bound) {
1372 		mutex_unlock(&loop_ctl_mutex);
1373 		return -ENXIO;
1374 	}
1375 
1376 	memset(info, 0, sizeof(*info));
1377 	info->lo_number = lo->lo_number;
1378 	info->lo_offset = lo->lo_offset;
1379 	info->lo_sizelimit = lo->lo_sizelimit;
1380 	info->lo_flags = lo->lo_flags;
1381 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1382 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1383 	info->lo_encrypt_type =
1384 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1385 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1386 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1387 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1388 		       lo->lo_encrypt_key_size);
1389 	}
1390 
1391 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1392 	path = lo->lo_backing_file->f_path;
1393 	path_get(&path);
1394 	mutex_unlock(&loop_ctl_mutex);
1395 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1396 	if (!ret) {
1397 		info->lo_device = huge_encode_dev(stat.dev);
1398 		info->lo_inode = stat.ino;
1399 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1400 	}
1401 	path_put(&path);
1402 	return ret;
1403 }
1404 
1405 static void
1406 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1407 {
1408 	memset(info64, 0, sizeof(*info64));
1409 	info64->lo_number = info->lo_number;
1410 	info64->lo_device = info->lo_device;
1411 	info64->lo_inode = info->lo_inode;
1412 	info64->lo_rdevice = info->lo_rdevice;
1413 	info64->lo_offset = info->lo_offset;
1414 	info64->lo_sizelimit = 0;
1415 	info64->lo_encrypt_type = info->lo_encrypt_type;
1416 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1417 	info64->lo_flags = info->lo_flags;
1418 	info64->lo_init[0] = info->lo_init[0];
1419 	info64->lo_init[1] = info->lo_init[1];
1420 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1421 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1422 	else
1423 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1424 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1425 }
1426 
1427 static int
1428 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1429 {
1430 	memset(info, 0, sizeof(*info));
1431 	info->lo_number = info64->lo_number;
1432 	info->lo_device = info64->lo_device;
1433 	info->lo_inode = info64->lo_inode;
1434 	info->lo_rdevice = info64->lo_rdevice;
1435 	info->lo_offset = info64->lo_offset;
1436 	info->lo_encrypt_type = info64->lo_encrypt_type;
1437 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1438 	info->lo_flags = info64->lo_flags;
1439 	info->lo_init[0] = info64->lo_init[0];
1440 	info->lo_init[1] = info64->lo_init[1];
1441 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1442 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1443 	else
1444 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1445 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1446 
1447 	/* error in case values were truncated */
1448 	if (info->lo_device != info64->lo_device ||
1449 	    info->lo_rdevice != info64->lo_rdevice ||
1450 	    info->lo_inode != info64->lo_inode ||
1451 	    info->lo_offset != info64->lo_offset)
1452 		return -EOVERFLOW;
1453 
1454 	return 0;
1455 }
1456 
1457 static int
1458 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1459 {
1460 	struct loop_info info;
1461 	struct loop_info64 info64;
1462 
1463 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1464 		return -EFAULT;
1465 	loop_info64_from_old(&info, &info64);
1466 	return loop_set_status(lo, &info64);
1467 }
1468 
1469 static int
1470 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1471 {
1472 	struct loop_info64 info64;
1473 
1474 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1475 		return -EFAULT;
1476 	return loop_set_status(lo, &info64);
1477 }
1478 
1479 static int
1480 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1481 	struct loop_info info;
1482 	struct loop_info64 info64;
1483 	int err;
1484 
1485 	if (!arg)
1486 		return -EINVAL;
1487 	err = loop_get_status(lo, &info64);
1488 	if (!err)
1489 		err = loop_info64_to_old(&info64, &info);
1490 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1491 		err = -EFAULT;
1492 
1493 	return err;
1494 }
1495 
1496 static int
1497 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1498 	struct loop_info64 info64;
1499 	int err;
1500 
1501 	if (!arg)
1502 		return -EINVAL;
1503 	err = loop_get_status(lo, &info64);
1504 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1505 		err = -EFAULT;
1506 
1507 	return err;
1508 }
1509 
1510 static int loop_set_capacity(struct loop_device *lo)
1511 {
1512 	if (unlikely(lo->lo_state != Lo_bound))
1513 		return -ENXIO;
1514 
1515 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1516 }
1517 
1518 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1519 {
1520 	int error = -ENXIO;
1521 	if (lo->lo_state != Lo_bound)
1522 		goto out;
1523 
1524 	__loop_update_dio(lo, !!arg);
1525 	if (lo->use_dio == !!arg)
1526 		return 0;
1527 	error = -EINVAL;
1528  out:
1529 	return error;
1530 }
1531 
1532 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1533 {
1534 	int err = 0;
1535 
1536 	if (lo->lo_state != Lo_bound)
1537 		return -ENXIO;
1538 
1539 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1540 		return -EINVAL;
1541 
1542 	if (lo->lo_queue->limits.logical_block_size != arg) {
1543 		sync_blockdev(lo->lo_device);
1544 		kill_bdev(lo->lo_device);
1545 	}
1546 
1547 	blk_mq_freeze_queue(lo->lo_queue);
1548 
1549 	/* kill_bdev should have truncated all the pages */
1550 	if (lo->lo_queue->limits.logical_block_size != arg &&
1551 			lo->lo_device->bd_inode->i_mapping->nrpages) {
1552 		err = -EAGAIN;
1553 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1554 			__func__, lo->lo_number, lo->lo_file_name,
1555 			lo->lo_device->bd_inode->i_mapping->nrpages);
1556 		goto out_unfreeze;
1557 	}
1558 
1559 	blk_queue_logical_block_size(lo->lo_queue, arg);
1560 	blk_queue_physical_block_size(lo->lo_queue, arg);
1561 	blk_queue_io_min(lo->lo_queue, arg);
1562 	loop_update_dio(lo);
1563 out_unfreeze:
1564 	blk_mq_unfreeze_queue(lo->lo_queue);
1565 
1566 	return err;
1567 }
1568 
1569 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1570 			   unsigned long arg)
1571 {
1572 	int err;
1573 
1574 	err = mutex_lock_killable(&loop_ctl_mutex);
1575 	if (err)
1576 		return err;
1577 	switch (cmd) {
1578 	case LOOP_SET_CAPACITY:
1579 		err = loop_set_capacity(lo);
1580 		break;
1581 	case LOOP_SET_DIRECT_IO:
1582 		err = loop_set_dio(lo, arg);
1583 		break;
1584 	case LOOP_SET_BLOCK_SIZE:
1585 		err = loop_set_block_size(lo, arg);
1586 		break;
1587 	default:
1588 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1589 	}
1590 	mutex_unlock(&loop_ctl_mutex);
1591 	return err;
1592 }
1593 
1594 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1595 	unsigned int cmd, unsigned long arg)
1596 {
1597 	struct loop_device *lo = bdev->bd_disk->private_data;
1598 	int err;
1599 
1600 	switch (cmd) {
1601 	case LOOP_SET_FD:
1602 		return loop_set_fd(lo, mode, bdev, arg);
1603 	case LOOP_CHANGE_FD:
1604 		return loop_change_fd(lo, bdev, arg);
1605 	case LOOP_CLR_FD:
1606 		return loop_clr_fd(lo);
1607 	case LOOP_SET_STATUS:
1608 		err = -EPERM;
1609 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1610 			err = loop_set_status_old(lo,
1611 					(struct loop_info __user *)arg);
1612 		}
1613 		break;
1614 	case LOOP_GET_STATUS:
1615 		return loop_get_status_old(lo, (struct loop_info __user *) arg);
1616 	case LOOP_SET_STATUS64:
1617 		err = -EPERM;
1618 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1619 			err = loop_set_status64(lo,
1620 					(struct loop_info64 __user *) arg);
1621 		}
1622 		break;
1623 	case LOOP_GET_STATUS64:
1624 		return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1625 	case LOOP_SET_CAPACITY:
1626 	case LOOP_SET_DIRECT_IO:
1627 	case LOOP_SET_BLOCK_SIZE:
1628 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1629 			return -EPERM;
1630 		/* Fall through */
1631 	default:
1632 		err = lo_simple_ioctl(lo, cmd, arg);
1633 		break;
1634 	}
1635 
1636 	return err;
1637 }
1638 
1639 #ifdef CONFIG_COMPAT
1640 struct compat_loop_info {
1641 	compat_int_t	lo_number;      /* ioctl r/o */
1642 	compat_dev_t	lo_device;      /* ioctl r/o */
1643 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1644 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1645 	compat_int_t	lo_offset;
1646 	compat_int_t	lo_encrypt_type;
1647 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1648 	compat_int_t	lo_flags;       /* ioctl r/o */
1649 	char		lo_name[LO_NAME_SIZE];
1650 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1651 	compat_ulong_t	lo_init[2];
1652 	char		reserved[4];
1653 };
1654 
1655 /*
1656  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1657  * - noinlined to reduce stack space usage in main part of driver
1658  */
1659 static noinline int
1660 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1661 			struct loop_info64 *info64)
1662 {
1663 	struct compat_loop_info info;
1664 
1665 	if (copy_from_user(&info, arg, sizeof(info)))
1666 		return -EFAULT;
1667 
1668 	memset(info64, 0, sizeof(*info64));
1669 	info64->lo_number = info.lo_number;
1670 	info64->lo_device = info.lo_device;
1671 	info64->lo_inode = info.lo_inode;
1672 	info64->lo_rdevice = info.lo_rdevice;
1673 	info64->lo_offset = info.lo_offset;
1674 	info64->lo_sizelimit = 0;
1675 	info64->lo_encrypt_type = info.lo_encrypt_type;
1676 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1677 	info64->lo_flags = info.lo_flags;
1678 	info64->lo_init[0] = info.lo_init[0];
1679 	info64->lo_init[1] = info.lo_init[1];
1680 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1681 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1682 	else
1683 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1684 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1685 	return 0;
1686 }
1687 
1688 /*
1689  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1690  * - noinlined to reduce stack space usage in main part of driver
1691  */
1692 static noinline int
1693 loop_info64_to_compat(const struct loop_info64 *info64,
1694 		      struct compat_loop_info __user *arg)
1695 {
1696 	struct compat_loop_info info;
1697 
1698 	memset(&info, 0, sizeof(info));
1699 	info.lo_number = info64->lo_number;
1700 	info.lo_device = info64->lo_device;
1701 	info.lo_inode = info64->lo_inode;
1702 	info.lo_rdevice = info64->lo_rdevice;
1703 	info.lo_offset = info64->lo_offset;
1704 	info.lo_encrypt_type = info64->lo_encrypt_type;
1705 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1706 	info.lo_flags = info64->lo_flags;
1707 	info.lo_init[0] = info64->lo_init[0];
1708 	info.lo_init[1] = info64->lo_init[1];
1709 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1710 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1711 	else
1712 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1713 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1714 
1715 	/* error in case values were truncated */
1716 	if (info.lo_device != info64->lo_device ||
1717 	    info.lo_rdevice != info64->lo_rdevice ||
1718 	    info.lo_inode != info64->lo_inode ||
1719 	    info.lo_offset != info64->lo_offset ||
1720 	    info.lo_init[0] != info64->lo_init[0] ||
1721 	    info.lo_init[1] != info64->lo_init[1])
1722 		return -EOVERFLOW;
1723 
1724 	if (copy_to_user(arg, &info, sizeof(info)))
1725 		return -EFAULT;
1726 	return 0;
1727 }
1728 
1729 static int
1730 loop_set_status_compat(struct loop_device *lo,
1731 		       const struct compat_loop_info __user *arg)
1732 {
1733 	struct loop_info64 info64;
1734 	int ret;
1735 
1736 	ret = loop_info64_from_compat(arg, &info64);
1737 	if (ret < 0)
1738 		return ret;
1739 	return loop_set_status(lo, &info64);
1740 }
1741 
1742 static int
1743 loop_get_status_compat(struct loop_device *lo,
1744 		       struct compat_loop_info __user *arg)
1745 {
1746 	struct loop_info64 info64;
1747 	int err;
1748 
1749 	if (!arg)
1750 		return -EINVAL;
1751 	err = loop_get_status(lo, &info64);
1752 	if (!err)
1753 		err = loop_info64_to_compat(&info64, arg);
1754 	return err;
1755 }
1756 
1757 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1758 			   unsigned int cmd, unsigned long arg)
1759 {
1760 	struct loop_device *lo = bdev->bd_disk->private_data;
1761 	int err;
1762 
1763 	switch(cmd) {
1764 	case LOOP_SET_STATUS:
1765 		err = loop_set_status_compat(lo,
1766 			     (const struct compat_loop_info __user *)arg);
1767 		break;
1768 	case LOOP_GET_STATUS:
1769 		err = loop_get_status_compat(lo,
1770 				     (struct compat_loop_info __user *)arg);
1771 		break;
1772 	case LOOP_SET_CAPACITY:
1773 	case LOOP_CLR_FD:
1774 	case LOOP_GET_STATUS64:
1775 	case LOOP_SET_STATUS64:
1776 		arg = (unsigned long) compat_ptr(arg);
1777 		/* fall through */
1778 	case LOOP_SET_FD:
1779 	case LOOP_CHANGE_FD:
1780 	case LOOP_SET_BLOCK_SIZE:
1781 	case LOOP_SET_DIRECT_IO:
1782 		err = lo_ioctl(bdev, mode, cmd, arg);
1783 		break;
1784 	default:
1785 		err = -ENOIOCTLCMD;
1786 		break;
1787 	}
1788 	return err;
1789 }
1790 #endif
1791 
1792 static int lo_open(struct block_device *bdev, fmode_t mode)
1793 {
1794 	struct loop_device *lo;
1795 	int err;
1796 
1797 	err = mutex_lock_killable(&loop_ctl_mutex);
1798 	if (err)
1799 		return err;
1800 	lo = bdev->bd_disk->private_data;
1801 	if (!lo) {
1802 		err = -ENXIO;
1803 		goto out;
1804 	}
1805 
1806 	atomic_inc(&lo->lo_refcnt);
1807 out:
1808 	mutex_unlock(&loop_ctl_mutex);
1809 	return err;
1810 }
1811 
1812 static void lo_release(struct gendisk *disk, fmode_t mode)
1813 {
1814 	struct loop_device *lo;
1815 
1816 	mutex_lock(&loop_ctl_mutex);
1817 	lo = disk->private_data;
1818 	if (atomic_dec_return(&lo->lo_refcnt))
1819 		goto out_unlock;
1820 
1821 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1822 		if (lo->lo_state != Lo_bound)
1823 			goto out_unlock;
1824 		lo->lo_state = Lo_rundown;
1825 		mutex_unlock(&loop_ctl_mutex);
1826 		/*
1827 		 * In autoclear mode, stop the loop thread
1828 		 * and remove configuration after last close.
1829 		 */
1830 		__loop_clr_fd(lo, true);
1831 		return;
1832 	} else if (lo->lo_state == Lo_bound) {
1833 		/*
1834 		 * Otherwise keep thread (if running) and config,
1835 		 * but flush possible ongoing bios in thread.
1836 		 */
1837 		blk_mq_freeze_queue(lo->lo_queue);
1838 		blk_mq_unfreeze_queue(lo->lo_queue);
1839 	}
1840 
1841 out_unlock:
1842 	mutex_unlock(&loop_ctl_mutex);
1843 }
1844 
1845 static const struct block_device_operations lo_fops = {
1846 	.owner =	THIS_MODULE,
1847 	.open =		lo_open,
1848 	.release =	lo_release,
1849 	.ioctl =	lo_ioctl,
1850 #ifdef CONFIG_COMPAT
1851 	.compat_ioctl =	lo_compat_ioctl,
1852 #endif
1853 };
1854 
1855 /*
1856  * And now the modules code and kernel interface.
1857  */
1858 static int max_loop;
1859 module_param(max_loop, int, 0444);
1860 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1861 module_param(max_part, int, 0444);
1862 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1863 MODULE_LICENSE("GPL");
1864 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1865 
1866 int loop_register_transfer(struct loop_func_table *funcs)
1867 {
1868 	unsigned int n = funcs->number;
1869 
1870 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1871 		return -EINVAL;
1872 	xfer_funcs[n] = funcs;
1873 	return 0;
1874 }
1875 
1876 static int unregister_transfer_cb(int id, void *ptr, void *data)
1877 {
1878 	struct loop_device *lo = ptr;
1879 	struct loop_func_table *xfer = data;
1880 
1881 	mutex_lock(&loop_ctl_mutex);
1882 	if (lo->lo_encryption == xfer)
1883 		loop_release_xfer(lo);
1884 	mutex_unlock(&loop_ctl_mutex);
1885 	return 0;
1886 }
1887 
1888 int loop_unregister_transfer(int number)
1889 {
1890 	unsigned int n = number;
1891 	struct loop_func_table *xfer;
1892 
1893 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1894 		return -EINVAL;
1895 
1896 	xfer_funcs[n] = NULL;
1897 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1898 	return 0;
1899 }
1900 
1901 EXPORT_SYMBOL(loop_register_transfer);
1902 EXPORT_SYMBOL(loop_unregister_transfer);
1903 
1904 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1905 		const struct blk_mq_queue_data *bd)
1906 {
1907 	struct request *rq = bd->rq;
1908 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1909 	struct loop_device *lo = rq->q->queuedata;
1910 
1911 	blk_mq_start_request(rq);
1912 
1913 	if (lo->lo_state != Lo_bound)
1914 		return BLK_STS_IOERR;
1915 
1916 	switch (req_op(rq)) {
1917 	case REQ_OP_FLUSH:
1918 	case REQ_OP_DISCARD:
1919 	case REQ_OP_WRITE_ZEROES:
1920 		cmd->use_aio = false;
1921 		break;
1922 	default:
1923 		cmd->use_aio = lo->use_dio;
1924 		break;
1925 	}
1926 
1927 	/* always use the first bio's css */
1928 #ifdef CONFIG_BLK_CGROUP
1929 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1930 		cmd->css = &bio_blkcg(rq->bio)->css;
1931 		css_get(cmd->css);
1932 	} else
1933 #endif
1934 		cmd->css = NULL;
1935 	kthread_queue_work(&lo->worker, &cmd->work);
1936 
1937 	return BLK_STS_OK;
1938 }
1939 
1940 static void loop_handle_cmd(struct loop_cmd *cmd)
1941 {
1942 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1943 	const bool write = op_is_write(req_op(rq));
1944 	struct loop_device *lo = rq->q->queuedata;
1945 	int ret = 0;
1946 
1947 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1948 		ret = -EIO;
1949 		goto failed;
1950 	}
1951 
1952 	ret = do_req_filebacked(lo, rq);
1953  failed:
1954 	/* complete non-aio request */
1955 	if (!cmd->use_aio || ret) {
1956 		cmd->ret = ret ? -EIO : 0;
1957 		blk_mq_complete_request(rq);
1958 	}
1959 }
1960 
1961 static void loop_queue_work(struct kthread_work *work)
1962 {
1963 	struct loop_cmd *cmd =
1964 		container_of(work, struct loop_cmd, work);
1965 
1966 	loop_handle_cmd(cmd);
1967 }
1968 
1969 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1970 		unsigned int hctx_idx, unsigned int numa_node)
1971 {
1972 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1973 
1974 	kthread_init_work(&cmd->work, loop_queue_work);
1975 	return 0;
1976 }
1977 
1978 static const struct blk_mq_ops loop_mq_ops = {
1979 	.queue_rq       = loop_queue_rq,
1980 	.init_request	= loop_init_request,
1981 	.complete	= lo_complete_rq,
1982 };
1983 
1984 static int loop_add(struct loop_device **l, int i)
1985 {
1986 	struct loop_device *lo;
1987 	struct gendisk *disk;
1988 	int err;
1989 
1990 	err = -ENOMEM;
1991 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1992 	if (!lo)
1993 		goto out;
1994 
1995 	lo->lo_state = Lo_unbound;
1996 
1997 	/* allocate id, if @id >= 0, we're requesting that specific id */
1998 	if (i >= 0) {
1999 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2000 		if (err == -ENOSPC)
2001 			err = -EEXIST;
2002 	} else {
2003 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2004 	}
2005 	if (err < 0)
2006 		goto out_free_dev;
2007 	i = err;
2008 
2009 	err = -ENOMEM;
2010 	lo->tag_set.ops = &loop_mq_ops;
2011 	lo->tag_set.nr_hw_queues = 1;
2012 	lo->tag_set.queue_depth = 128;
2013 	lo->tag_set.numa_node = NUMA_NO_NODE;
2014 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2015 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2016 	lo->tag_set.driver_data = lo;
2017 
2018 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2019 	if (err)
2020 		goto out_free_idr;
2021 
2022 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2023 	if (IS_ERR(lo->lo_queue)) {
2024 		err = PTR_ERR(lo->lo_queue);
2025 		goto out_cleanup_tags;
2026 	}
2027 	lo->lo_queue->queuedata = lo;
2028 
2029 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2030 
2031 	/*
2032 	 * By default, we do buffer IO, so it doesn't make sense to enable
2033 	 * merge because the I/O submitted to backing file is handled page by
2034 	 * page. For directio mode, merge does help to dispatch bigger request
2035 	 * to underlayer disk. We will enable merge once directio is enabled.
2036 	 */
2037 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2038 
2039 	err = -ENOMEM;
2040 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2041 	if (!disk)
2042 		goto out_free_queue;
2043 
2044 	/*
2045 	 * Disable partition scanning by default. The in-kernel partition
2046 	 * scanning can be requested individually per-device during its
2047 	 * setup. Userspace can always add and remove partitions from all
2048 	 * devices. The needed partition minors are allocated from the
2049 	 * extended minor space, the main loop device numbers will continue
2050 	 * to match the loop minors, regardless of the number of partitions
2051 	 * used.
2052 	 *
2053 	 * If max_part is given, partition scanning is globally enabled for
2054 	 * all loop devices. The minors for the main loop devices will be
2055 	 * multiples of max_part.
2056 	 *
2057 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2058 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2059 	 * complicated, are too static, inflexible and may surprise
2060 	 * userspace tools. Parameters like this in general should be avoided.
2061 	 */
2062 	if (!part_shift)
2063 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2064 	disk->flags |= GENHD_FL_EXT_DEVT;
2065 	atomic_set(&lo->lo_refcnt, 0);
2066 	lo->lo_number		= i;
2067 	spin_lock_init(&lo->lo_lock);
2068 	disk->major		= LOOP_MAJOR;
2069 	disk->first_minor	= i << part_shift;
2070 	disk->fops		= &lo_fops;
2071 	disk->private_data	= lo;
2072 	disk->queue		= lo->lo_queue;
2073 	sprintf(disk->disk_name, "loop%d", i);
2074 	add_disk(disk);
2075 	*l = lo;
2076 	return lo->lo_number;
2077 
2078 out_free_queue:
2079 	blk_cleanup_queue(lo->lo_queue);
2080 out_cleanup_tags:
2081 	blk_mq_free_tag_set(&lo->tag_set);
2082 out_free_idr:
2083 	idr_remove(&loop_index_idr, i);
2084 out_free_dev:
2085 	kfree(lo);
2086 out:
2087 	return err;
2088 }
2089 
2090 static void loop_remove(struct loop_device *lo)
2091 {
2092 	del_gendisk(lo->lo_disk);
2093 	blk_cleanup_queue(lo->lo_queue);
2094 	blk_mq_free_tag_set(&lo->tag_set);
2095 	put_disk(lo->lo_disk);
2096 	kfree(lo);
2097 }
2098 
2099 static int find_free_cb(int id, void *ptr, void *data)
2100 {
2101 	struct loop_device *lo = ptr;
2102 	struct loop_device **l = data;
2103 
2104 	if (lo->lo_state == Lo_unbound) {
2105 		*l = lo;
2106 		return 1;
2107 	}
2108 	return 0;
2109 }
2110 
2111 static int loop_lookup(struct loop_device **l, int i)
2112 {
2113 	struct loop_device *lo;
2114 	int ret = -ENODEV;
2115 
2116 	if (i < 0) {
2117 		int err;
2118 
2119 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2120 		if (err == 1) {
2121 			*l = lo;
2122 			ret = lo->lo_number;
2123 		}
2124 		goto out;
2125 	}
2126 
2127 	/* lookup and return a specific i */
2128 	lo = idr_find(&loop_index_idr, i);
2129 	if (lo) {
2130 		*l = lo;
2131 		ret = lo->lo_number;
2132 	}
2133 out:
2134 	return ret;
2135 }
2136 
2137 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2138 {
2139 	struct loop_device *lo;
2140 	struct kobject *kobj;
2141 	int err;
2142 
2143 	mutex_lock(&loop_ctl_mutex);
2144 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2145 	if (err < 0)
2146 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2147 	if (err < 0)
2148 		kobj = NULL;
2149 	else
2150 		kobj = get_disk_and_module(lo->lo_disk);
2151 	mutex_unlock(&loop_ctl_mutex);
2152 
2153 	*part = 0;
2154 	return kobj;
2155 }
2156 
2157 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2158 			       unsigned long parm)
2159 {
2160 	struct loop_device *lo;
2161 	int ret;
2162 
2163 	ret = mutex_lock_killable(&loop_ctl_mutex);
2164 	if (ret)
2165 		return ret;
2166 
2167 	ret = -ENOSYS;
2168 	switch (cmd) {
2169 	case LOOP_CTL_ADD:
2170 		ret = loop_lookup(&lo, parm);
2171 		if (ret >= 0) {
2172 			ret = -EEXIST;
2173 			break;
2174 		}
2175 		ret = loop_add(&lo, parm);
2176 		break;
2177 	case LOOP_CTL_REMOVE:
2178 		ret = loop_lookup(&lo, parm);
2179 		if (ret < 0)
2180 			break;
2181 		if (lo->lo_state != Lo_unbound) {
2182 			ret = -EBUSY;
2183 			break;
2184 		}
2185 		if (atomic_read(&lo->lo_refcnt) > 0) {
2186 			ret = -EBUSY;
2187 			break;
2188 		}
2189 		lo->lo_disk->private_data = NULL;
2190 		idr_remove(&loop_index_idr, lo->lo_number);
2191 		loop_remove(lo);
2192 		break;
2193 	case LOOP_CTL_GET_FREE:
2194 		ret = loop_lookup(&lo, -1);
2195 		if (ret >= 0)
2196 			break;
2197 		ret = loop_add(&lo, -1);
2198 	}
2199 	mutex_unlock(&loop_ctl_mutex);
2200 
2201 	return ret;
2202 }
2203 
2204 static const struct file_operations loop_ctl_fops = {
2205 	.open		= nonseekable_open,
2206 	.unlocked_ioctl	= loop_control_ioctl,
2207 	.compat_ioctl	= loop_control_ioctl,
2208 	.owner		= THIS_MODULE,
2209 	.llseek		= noop_llseek,
2210 };
2211 
2212 static struct miscdevice loop_misc = {
2213 	.minor		= LOOP_CTRL_MINOR,
2214 	.name		= "loop-control",
2215 	.fops		= &loop_ctl_fops,
2216 };
2217 
2218 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2219 MODULE_ALIAS("devname:loop-control");
2220 
2221 static int __init loop_init(void)
2222 {
2223 	int i, nr;
2224 	unsigned long range;
2225 	struct loop_device *lo;
2226 	int err;
2227 
2228 	part_shift = 0;
2229 	if (max_part > 0) {
2230 		part_shift = fls(max_part);
2231 
2232 		/*
2233 		 * Adjust max_part according to part_shift as it is exported
2234 		 * to user space so that user can decide correct minor number
2235 		 * if [s]he want to create more devices.
2236 		 *
2237 		 * Note that -1 is required because partition 0 is reserved
2238 		 * for the whole disk.
2239 		 */
2240 		max_part = (1UL << part_shift) - 1;
2241 	}
2242 
2243 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2244 		err = -EINVAL;
2245 		goto err_out;
2246 	}
2247 
2248 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2249 		err = -EINVAL;
2250 		goto err_out;
2251 	}
2252 
2253 	/*
2254 	 * If max_loop is specified, create that many devices upfront.
2255 	 * This also becomes a hard limit. If max_loop is not specified,
2256 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2257 	 * init time. Loop devices can be requested on-demand with the
2258 	 * /dev/loop-control interface, or be instantiated by accessing
2259 	 * a 'dead' device node.
2260 	 */
2261 	if (max_loop) {
2262 		nr = max_loop;
2263 		range = max_loop << part_shift;
2264 	} else {
2265 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2266 		range = 1UL << MINORBITS;
2267 	}
2268 
2269 	err = misc_register(&loop_misc);
2270 	if (err < 0)
2271 		goto err_out;
2272 
2273 
2274 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2275 		err = -EIO;
2276 		goto misc_out;
2277 	}
2278 
2279 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2280 				  THIS_MODULE, loop_probe, NULL, NULL);
2281 
2282 	/* pre-create number of devices given by config or max_loop */
2283 	mutex_lock(&loop_ctl_mutex);
2284 	for (i = 0; i < nr; i++)
2285 		loop_add(&lo, i);
2286 	mutex_unlock(&loop_ctl_mutex);
2287 
2288 	printk(KERN_INFO "loop: module loaded\n");
2289 	return 0;
2290 
2291 misc_out:
2292 	misc_deregister(&loop_misc);
2293 err_out:
2294 	return err;
2295 }
2296 
2297 static int loop_exit_cb(int id, void *ptr, void *data)
2298 {
2299 	struct loop_device *lo = ptr;
2300 
2301 	loop_remove(lo);
2302 	return 0;
2303 }
2304 
2305 static void __exit loop_exit(void)
2306 {
2307 	unsigned long range;
2308 
2309 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2310 
2311 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2312 	idr_destroy(&loop_index_idr);
2313 
2314 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2315 	unregister_blkdev(LOOP_MAJOR, "loop");
2316 
2317 	misc_deregister(&loop_misc);
2318 }
2319 
2320 module_init(loop_init);
2321 module_exit(loop_exit);
2322 
2323 #ifndef MODULE
2324 static int __init max_loop_setup(char *str)
2325 {
2326 	max_loop = simple_strtol(str, NULL, 0);
2327 	return 1;
2328 }
2329 
2330 __setup("max_loop=", max_loop_setup);
2331 #endif
2332