xref: /openbmc/linux/drivers/block/loop.c (revision abe9af53)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	if (lo->lo_state == Lo_bound)
218 		blk_mq_freeze_queue(lo->lo_queue);
219 	lo->use_dio = use_dio;
220 	if (use_dio) {
221 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 	} else {
224 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 	}
227 	if (lo->lo_state == Lo_bound)
228 		blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230 
231 /**
232  * loop_validate_block_size() - validates the passed in block size
233  * @bsize: size to validate
234  */
235 static int
236 loop_validate_block_size(unsigned short bsize)
237 {
238 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
239 		return -EINVAL;
240 
241 	return 0;
242 }
243 
244 /**
245  * loop_set_size() - sets device size and notifies userspace
246  * @lo: struct loop_device to set the size for
247  * @size: new size of the loop device
248  *
249  * Callers must validate that the size passed into this function fits into
250  * a sector_t, eg using loop_validate_size()
251  */
252 static void loop_set_size(struct loop_device *lo, loff_t size)
253 {
254 	struct block_device *bdev = lo->lo_device;
255 
256 	bd_set_nr_sectors(bdev, size);
257 
258 	if (!set_capacity_revalidate_and_notify(lo->lo_disk, size, false))
259 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
260 }
261 
262 static inline int
263 lo_do_transfer(struct loop_device *lo, int cmd,
264 	       struct page *rpage, unsigned roffs,
265 	       struct page *lpage, unsigned loffs,
266 	       int size, sector_t rblock)
267 {
268 	int ret;
269 
270 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
271 	if (likely(!ret))
272 		return 0;
273 
274 	printk_ratelimited(KERN_ERR
275 		"loop: Transfer error at byte offset %llu, length %i.\n",
276 		(unsigned long long)rblock << 9, size);
277 	return ret;
278 }
279 
280 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
281 {
282 	struct iov_iter i;
283 	ssize_t bw;
284 
285 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
286 
287 	file_start_write(file);
288 	bw = vfs_iter_write(file, &i, ppos, 0);
289 	file_end_write(file);
290 
291 	if (likely(bw ==  bvec->bv_len))
292 		return 0;
293 
294 	printk_ratelimited(KERN_ERR
295 		"loop: Write error at byte offset %llu, length %i.\n",
296 		(unsigned long long)*ppos, bvec->bv_len);
297 	if (bw >= 0)
298 		bw = -EIO;
299 	return bw;
300 }
301 
302 static int lo_write_simple(struct loop_device *lo, struct request *rq,
303 		loff_t pos)
304 {
305 	struct bio_vec bvec;
306 	struct req_iterator iter;
307 	int ret = 0;
308 
309 	rq_for_each_segment(bvec, rq, iter) {
310 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
311 		if (ret < 0)
312 			break;
313 		cond_resched();
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * This is the slow, transforming version that needs to double buffer the
321  * data as it cannot do the transformations in place without having direct
322  * access to the destination pages of the backing file.
323  */
324 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
325 		loff_t pos)
326 {
327 	struct bio_vec bvec, b;
328 	struct req_iterator iter;
329 	struct page *page;
330 	int ret = 0;
331 
332 	page = alloc_page(GFP_NOIO);
333 	if (unlikely(!page))
334 		return -ENOMEM;
335 
336 	rq_for_each_segment(bvec, rq, iter) {
337 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
338 			bvec.bv_offset, bvec.bv_len, pos >> 9);
339 		if (unlikely(ret))
340 			break;
341 
342 		b.bv_page = page;
343 		b.bv_offset = 0;
344 		b.bv_len = bvec.bv_len;
345 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
346 		if (ret < 0)
347 			break;
348 	}
349 
350 	__free_page(page);
351 	return ret;
352 }
353 
354 static int lo_read_simple(struct loop_device *lo, struct request *rq,
355 		loff_t pos)
356 {
357 	struct bio_vec bvec;
358 	struct req_iterator iter;
359 	struct iov_iter i;
360 	ssize_t len;
361 
362 	rq_for_each_segment(bvec, rq, iter) {
363 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
364 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
365 		if (len < 0)
366 			return len;
367 
368 		flush_dcache_page(bvec.bv_page);
369 
370 		if (len != bvec.bv_len) {
371 			struct bio *bio;
372 
373 			__rq_for_each_bio(bio, rq)
374 				zero_fill_bio(bio);
375 			break;
376 		}
377 		cond_resched();
378 	}
379 
380 	return 0;
381 }
382 
383 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
384 		loff_t pos)
385 {
386 	struct bio_vec bvec, b;
387 	struct req_iterator iter;
388 	struct iov_iter i;
389 	struct page *page;
390 	ssize_t len;
391 	int ret = 0;
392 
393 	page = alloc_page(GFP_NOIO);
394 	if (unlikely(!page))
395 		return -ENOMEM;
396 
397 	rq_for_each_segment(bvec, rq, iter) {
398 		loff_t offset = pos;
399 
400 		b.bv_page = page;
401 		b.bv_offset = 0;
402 		b.bv_len = bvec.bv_len;
403 
404 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
405 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
406 		if (len < 0) {
407 			ret = len;
408 			goto out_free_page;
409 		}
410 
411 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
412 			bvec.bv_offset, len, offset >> 9);
413 		if (ret)
414 			goto out_free_page;
415 
416 		flush_dcache_page(bvec.bv_page);
417 
418 		if (len != bvec.bv_len) {
419 			struct bio *bio;
420 
421 			__rq_for_each_bio(bio, rq)
422 				zero_fill_bio(bio);
423 			break;
424 		}
425 	}
426 
427 	ret = 0;
428 out_free_page:
429 	__free_page(page);
430 	return ret;
431 }
432 
433 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
434 			int mode)
435 {
436 	/*
437 	 * We use fallocate to manipulate the space mappings used by the image
438 	 * a.k.a. discard/zerorange. However we do not support this if
439 	 * encryption is enabled, because it may give an attacker useful
440 	 * information.
441 	 */
442 	struct file *file = lo->lo_backing_file;
443 	struct request_queue *q = lo->lo_queue;
444 	int ret;
445 
446 	mode |= FALLOC_FL_KEEP_SIZE;
447 
448 	if (!blk_queue_discard(q)) {
449 		ret = -EOPNOTSUPP;
450 		goto out;
451 	}
452 
453 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
454 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
455 		ret = -EIO;
456  out:
457 	return ret;
458 }
459 
460 static int lo_req_flush(struct loop_device *lo, struct request *rq)
461 {
462 	struct file *file = lo->lo_backing_file;
463 	int ret = vfs_fsync(file, 0);
464 	if (unlikely(ret && ret != -EINVAL))
465 		ret = -EIO;
466 
467 	return ret;
468 }
469 
470 static void lo_complete_rq(struct request *rq)
471 {
472 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
473 	blk_status_t ret = BLK_STS_OK;
474 
475 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
476 	    req_op(rq) != REQ_OP_READ) {
477 		if (cmd->ret < 0)
478 			ret = errno_to_blk_status(cmd->ret);
479 		goto end_io;
480 	}
481 
482 	/*
483 	 * Short READ - if we got some data, advance our request and
484 	 * retry it. If we got no data, end the rest with EIO.
485 	 */
486 	if (cmd->ret) {
487 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
488 		cmd->ret = 0;
489 		blk_mq_requeue_request(rq, true);
490 	} else {
491 		if (cmd->use_aio) {
492 			struct bio *bio = rq->bio;
493 
494 			while (bio) {
495 				zero_fill_bio(bio);
496 				bio = bio->bi_next;
497 			}
498 		}
499 		ret = BLK_STS_IOERR;
500 end_io:
501 		blk_mq_end_request(rq, ret);
502 	}
503 }
504 
505 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
506 {
507 	struct request *rq = blk_mq_rq_from_pdu(cmd);
508 
509 	if (!atomic_dec_and_test(&cmd->ref))
510 		return;
511 	kfree(cmd->bvec);
512 	cmd->bvec = NULL;
513 	if (likely(!blk_should_fake_timeout(rq->q)))
514 		blk_mq_complete_request(rq);
515 }
516 
517 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
518 {
519 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
520 
521 	if (cmd->css)
522 		css_put(cmd->css);
523 	cmd->ret = ret;
524 	lo_rw_aio_do_completion(cmd);
525 }
526 
527 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
528 		     loff_t pos, bool rw)
529 {
530 	struct iov_iter iter;
531 	struct req_iterator rq_iter;
532 	struct bio_vec *bvec;
533 	struct request *rq = blk_mq_rq_from_pdu(cmd);
534 	struct bio *bio = rq->bio;
535 	struct file *file = lo->lo_backing_file;
536 	struct bio_vec tmp;
537 	unsigned int offset;
538 	int nr_bvec = 0;
539 	int ret;
540 
541 	rq_for_each_bvec(tmp, rq, rq_iter)
542 		nr_bvec++;
543 
544 	if (rq->bio != rq->biotail) {
545 
546 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
547 				     GFP_NOIO);
548 		if (!bvec)
549 			return -EIO;
550 		cmd->bvec = bvec;
551 
552 		/*
553 		 * The bios of the request may be started from the middle of
554 		 * the 'bvec' because of bio splitting, so we can't directly
555 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
556 		 * API will take care of all details for us.
557 		 */
558 		rq_for_each_bvec(tmp, rq, rq_iter) {
559 			*bvec = tmp;
560 			bvec++;
561 		}
562 		bvec = cmd->bvec;
563 		offset = 0;
564 	} else {
565 		/*
566 		 * Same here, this bio may be started from the middle of the
567 		 * 'bvec' because of bio splitting, so offset from the bvec
568 		 * must be passed to iov iterator
569 		 */
570 		offset = bio->bi_iter.bi_bvec_done;
571 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
572 	}
573 	atomic_set(&cmd->ref, 2);
574 
575 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
576 	iter.iov_offset = offset;
577 
578 	cmd->iocb.ki_pos = pos;
579 	cmd->iocb.ki_filp = file;
580 	cmd->iocb.ki_complete = lo_rw_aio_complete;
581 	cmd->iocb.ki_flags = IOCB_DIRECT;
582 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
583 	if (cmd->css)
584 		kthread_associate_blkcg(cmd->css);
585 
586 	if (rw == WRITE)
587 		ret = call_write_iter(file, &cmd->iocb, &iter);
588 	else
589 		ret = call_read_iter(file, &cmd->iocb, &iter);
590 
591 	lo_rw_aio_do_completion(cmd);
592 	kthread_associate_blkcg(NULL);
593 
594 	if (ret != -EIOCBQUEUED)
595 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
596 	return 0;
597 }
598 
599 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
600 {
601 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
602 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
603 
604 	/*
605 	 * lo_write_simple and lo_read_simple should have been covered
606 	 * by io submit style function like lo_rw_aio(), one blocker
607 	 * is that lo_read_simple() need to call flush_dcache_page after
608 	 * the page is written from kernel, and it isn't easy to handle
609 	 * this in io submit style function which submits all segments
610 	 * of the req at one time. And direct read IO doesn't need to
611 	 * run flush_dcache_page().
612 	 */
613 	switch (req_op(rq)) {
614 	case REQ_OP_FLUSH:
615 		return lo_req_flush(lo, rq);
616 	case REQ_OP_WRITE_ZEROES:
617 		/*
618 		 * If the caller doesn't want deallocation, call zeroout to
619 		 * write zeroes the range.  Otherwise, punch them out.
620 		 */
621 		return lo_fallocate(lo, rq, pos,
622 			(rq->cmd_flags & REQ_NOUNMAP) ?
623 				FALLOC_FL_ZERO_RANGE :
624 				FALLOC_FL_PUNCH_HOLE);
625 	case REQ_OP_DISCARD:
626 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
627 	case REQ_OP_WRITE:
628 		if (lo->transfer)
629 			return lo_write_transfer(lo, rq, pos);
630 		else if (cmd->use_aio)
631 			return lo_rw_aio(lo, cmd, pos, WRITE);
632 		else
633 			return lo_write_simple(lo, rq, pos);
634 	case REQ_OP_READ:
635 		if (lo->transfer)
636 			return lo_read_transfer(lo, rq, pos);
637 		else if (cmd->use_aio)
638 			return lo_rw_aio(lo, cmd, pos, READ);
639 		else
640 			return lo_read_simple(lo, rq, pos);
641 	default:
642 		WARN_ON_ONCE(1);
643 		return -EIO;
644 	}
645 }
646 
647 static inline void loop_update_dio(struct loop_device *lo)
648 {
649 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
650 				lo->use_dio);
651 }
652 
653 static void loop_reread_partitions(struct loop_device *lo,
654 				   struct block_device *bdev)
655 {
656 	int rc;
657 
658 	mutex_lock(&bdev->bd_mutex);
659 	rc = bdev_disk_changed(bdev, false);
660 	mutex_unlock(&bdev->bd_mutex);
661 	if (rc)
662 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
663 			__func__, lo->lo_number, lo->lo_file_name, rc);
664 }
665 
666 static inline int is_loop_device(struct file *file)
667 {
668 	struct inode *i = file->f_mapping->host;
669 
670 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
671 }
672 
673 static int loop_validate_file(struct file *file, struct block_device *bdev)
674 {
675 	struct inode	*inode = file->f_mapping->host;
676 	struct file	*f = file;
677 
678 	/* Avoid recursion */
679 	while (is_loop_device(f)) {
680 		struct loop_device *l;
681 
682 		if (f->f_mapping->host->i_bdev == bdev)
683 			return -EBADF;
684 
685 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
686 		if (l->lo_state != Lo_bound) {
687 			return -EINVAL;
688 		}
689 		f = l->lo_backing_file;
690 	}
691 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
692 		return -EINVAL;
693 	return 0;
694 }
695 
696 /*
697  * loop_change_fd switched the backing store of a loopback device to
698  * a new file. This is useful for operating system installers to free up
699  * the original file and in High Availability environments to switch to
700  * an alternative location for the content in case of server meltdown.
701  * This can only work if the loop device is used read-only, and if the
702  * new backing store is the same size and type as the old backing store.
703  */
704 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
705 			  unsigned int arg)
706 {
707 	struct file	*file = NULL, *old_file;
708 	int		error;
709 	bool		partscan;
710 
711 	error = mutex_lock_killable(&loop_ctl_mutex);
712 	if (error)
713 		return error;
714 	error = -ENXIO;
715 	if (lo->lo_state != Lo_bound)
716 		goto out_err;
717 
718 	/* the loop device has to be read-only */
719 	error = -EINVAL;
720 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
721 		goto out_err;
722 
723 	error = -EBADF;
724 	file = fget(arg);
725 	if (!file)
726 		goto out_err;
727 
728 	error = loop_validate_file(file, bdev);
729 	if (error)
730 		goto out_err;
731 
732 	old_file = lo->lo_backing_file;
733 
734 	error = -EINVAL;
735 
736 	/* size of the new backing store needs to be the same */
737 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
738 		goto out_err;
739 
740 	/* and ... switch */
741 	blk_mq_freeze_queue(lo->lo_queue);
742 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
743 	lo->lo_backing_file = file;
744 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
745 	mapping_set_gfp_mask(file->f_mapping,
746 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
747 	loop_update_dio(lo);
748 	blk_mq_unfreeze_queue(lo->lo_queue);
749 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
750 	mutex_unlock(&loop_ctl_mutex);
751 	/*
752 	 * We must drop file reference outside of loop_ctl_mutex as dropping
753 	 * the file ref can take bd_mutex which creates circular locking
754 	 * dependency.
755 	 */
756 	fput(old_file);
757 	if (partscan)
758 		loop_reread_partitions(lo, bdev);
759 	return 0;
760 
761 out_err:
762 	mutex_unlock(&loop_ctl_mutex);
763 	if (file)
764 		fput(file);
765 	return error;
766 }
767 
768 /* loop sysfs attributes */
769 
770 static ssize_t loop_attr_show(struct device *dev, char *page,
771 			      ssize_t (*callback)(struct loop_device *, char *))
772 {
773 	struct gendisk *disk = dev_to_disk(dev);
774 	struct loop_device *lo = disk->private_data;
775 
776 	return callback(lo, page);
777 }
778 
779 #define LOOP_ATTR_RO(_name)						\
780 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
781 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
782 				struct device_attribute *attr, char *b)	\
783 {									\
784 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
785 }									\
786 static struct device_attribute loop_attr_##_name =			\
787 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
788 
789 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
790 {
791 	ssize_t ret;
792 	char *p = NULL;
793 
794 	spin_lock_irq(&lo->lo_lock);
795 	if (lo->lo_backing_file)
796 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
797 	spin_unlock_irq(&lo->lo_lock);
798 
799 	if (IS_ERR_OR_NULL(p))
800 		ret = PTR_ERR(p);
801 	else {
802 		ret = strlen(p);
803 		memmove(buf, p, ret);
804 		buf[ret++] = '\n';
805 		buf[ret] = 0;
806 	}
807 
808 	return ret;
809 }
810 
811 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
812 {
813 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
814 }
815 
816 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
817 {
818 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
819 }
820 
821 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
822 {
823 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
824 
825 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
826 }
827 
828 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
829 {
830 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
831 
832 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
833 }
834 
835 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
836 {
837 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
838 
839 	return sprintf(buf, "%s\n", dio ? "1" : "0");
840 }
841 
842 LOOP_ATTR_RO(backing_file);
843 LOOP_ATTR_RO(offset);
844 LOOP_ATTR_RO(sizelimit);
845 LOOP_ATTR_RO(autoclear);
846 LOOP_ATTR_RO(partscan);
847 LOOP_ATTR_RO(dio);
848 
849 static struct attribute *loop_attrs[] = {
850 	&loop_attr_backing_file.attr,
851 	&loop_attr_offset.attr,
852 	&loop_attr_sizelimit.attr,
853 	&loop_attr_autoclear.attr,
854 	&loop_attr_partscan.attr,
855 	&loop_attr_dio.attr,
856 	NULL,
857 };
858 
859 static struct attribute_group loop_attribute_group = {
860 	.name = "loop",
861 	.attrs= loop_attrs,
862 };
863 
864 static void loop_sysfs_init(struct loop_device *lo)
865 {
866 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
867 						&loop_attribute_group);
868 }
869 
870 static void loop_sysfs_exit(struct loop_device *lo)
871 {
872 	if (lo->sysfs_inited)
873 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
874 				   &loop_attribute_group);
875 }
876 
877 static void loop_config_discard(struct loop_device *lo)
878 {
879 	struct file *file = lo->lo_backing_file;
880 	struct inode *inode = file->f_mapping->host;
881 	struct request_queue *q = lo->lo_queue;
882 	u32 granularity, max_discard_sectors;
883 
884 	/*
885 	 * If the backing device is a block device, mirror its zeroing
886 	 * capability. Set the discard sectors to the block device's zeroing
887 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
888 	 * not blkdev_issue_discard(). This maintains consistent behavior with
889 	 * file-backed loop devices: discarded regions read back as zero.
890 	 */
891 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
892 		struct request_queue *backingq;
893 
894 		backingq = bdev_get_queue(inode->i_bdev);
895 
896 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
897 		granularity = backingq->limits.discard_granularity ?:
898 			queue_physical_block_size(backingq);
899 
900 	/*
901 	 * We use punch hole to reclaim the free space used by the
902 	 * image a.k.a. discard. However we do not support discard if
903 	 * encryption is enabled, because it may give an attacker
904 	 * useful information.
905 	 */
906 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
907 		max_discard_sectors = 0;
908 		granularity = 0;
909 
910 	} else {
911 		max_discard_sectors = UINT_MAX >> 9;
912 		granularity = inode->i_sb->s_blocksize;
913 	}
914 
915 	if (max_discard_sectors) {
916 		q->limits.discard_granularity = granularity;
917 		blk_queue_max_discard_sectors(q, max_discard_sectors);
918 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
919 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
920 	} else {
921 		q->limits.discard_granularity = 0;
922 		blk_queue_max_discard_sectors(q, 0);
923 		blk_queue_max_write_zeroes_sectors(q, 0);
924 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
925 	}
926 	q->limits.discard_alignment = 0;
927 }
928 
929 static void loop_unprepare_queue(struct loop_device *lo)
930 {
931 	kthread_flush_worker(&lo->worker);
932 	kthread_stop(lo->worker_task);
933 }
934 
935 static int loop_kthread_worker_fn(void *worker_ptr)
936 {
937 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
938 	return kthread_worker_fn(worker_ptr);
939 }
940 
941 static int loop_prepare_queue(struct loop_device *lo)
942 {
943 	kthread_init_worker(&lo->worker);
944 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
945 			&lo->worker, "loop%d", lo->lo_number);
946 	if (IS_ERR(lo->worker_task))
947 		return -ENOMEM;
948 	set_user_nice(lo->worker_task, MIN_NICE);
949 	return 0;
950 }
951 
952 static void loop_update_rotational(struct loop_device *lo)
953 {
954 	struct file *file = lo->lo_backing_file;
955 	struct inode *file_inode = file->f_mapping->host;
956 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
957 	struct request_queue *q = lo->lo_queue;
958 	bool nonrot = true;
959 
960 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
961 	if (file_bdev)
962 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
963 
964 	if (nonrot)
965 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
966 	else
967 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
968 }
969 
970 static int
971 loop_release_xfer(struct loop_device *lo)
972 {
973 	int err = 0;
974 	struct loop_func_table *xfer = lo->lo_encryption;
975 
976 	if (xfer) {
977 		if (xfer->release)
978 			err = xfer->release(lo);
979 		lo->transfer = NULL;
980 		lo->lo_encryption = NULL;
981 		module_put(xfer->owner);
982 	}
983 	return err;
984 }
985 
986 static int
987 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
988 	       const struct loop_info64 *i)
989 {
990 	int err = 0;
991 
992 	if (xfer) {
993 		struct module *owner = xfer->owner;
994 
995 		if (!try_module_get(owner))
996 			return -EINVAL;
997 		if (xfer->init)
998 			err = xfer->init(lo, i);
999 		if (err)
1000 			module_put(owner);
1001 		else
1002 			lo->lo_encryption = xfer;
1003 	}
1004 	return err;
1005 }
1006 
1007 /**
1008  * loop_set_status_from_info - configure device from loop_info
1009  * @lo: struct loop_device to configure
1010  * @info: struct loop_info64 to configure the device with
1011  *
1012  * Configures the loop device parameters according to the passed
1013  * in loop_info64 configuration.
1014  */
1015 static int
1016 loop_set_status_from_info(struct loop_device *lo,
1017 			  const struct loop_info64 *info)
1018 {
1019 	int err;
1020 	struct loop_func_table *xfer;
1021 	kuid_t uid = current_uid();
1022 
1023 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1024 		return -EINVAL;
1025 
1026 	err = loop_release_xfer(lo);
1027 	if (err)
1028 		return err;
1029 
1030 	if (info->lo_encrypt_type) {
1031 		unsigned int type = info->lo_encrypt_type;
1032 
1033 		if (type >= MAX_LO_CRYPT)
1034 			return -EINVAL;
1035 		xfer = xfer_funcs[type];
1036 		if (xfer == NULL)
1037 			return -EINVAL;
1038 	} else
1039 		xfer = NULL;
1040 
1041 	err = loop_init_xfer(lo, xfer, info);
1042 	if (err)
1043 		return err;
1044 
1045 	lo->lo_offset = info->lo_offset;
1046 	lo->lo_sizelimit = info->lo_sizelimit;
1047 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1048 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1049 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1050 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1051 
1052 	if (!xfer)
1053 		xfer = &none_funcs;
1054 	lo->transfer = xfer->transfer;
1055 	lo->ioctl = xfer->ioctl;
1056 
1057 	lo->lo_flags = info->lo_flags;
1058 
1059 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1060 	lo->lo_init[0] = info->lo_init[0];
1061 	lo->lo_init[1] = info->lo_init[1];
1062 	if (info->lo_encrypt_key_size) {
1063 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1064 		       info->lo_encrypt_key_size);
1065 		lo->lo_key_owner = uid;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static int loop_configure(struct loop_device *lo, fmode_t mode,
1072 			  struct block_device *bdev,
1073 			  const struct loop_config *config)
1074 {
1075 	struct file	*file;
1076 	struct inode	*inode;
1077 	struct address_space *mapping;
1078 	struct block_device *claimed_bdev = NULL;
1079 	int		error;
1080 	loff_t		size;
1081 	bool		partscan;
1082 	unsigned short  bsize;
1083 
1084 	/* This is safe, since we have a reference from open(). */
1085 	__module_get(THIS_MODULE);
1086 
1087 	error = -EBADF;
1088 	file = fget(config->fd);
1089 	if (!file)
1090 		goto out;
1091 
1092 	/*
1093 	 * If we don't hold exclusive handle for the device, upgrade to it
1094 	 * here to avoid changing device under exclusive owner.
1095 	 */
1096 	if (!(mode & FMODE_EXCL)) {
1097 		claimed_bdev = bdev->bd_contains;
1098 		error = bd_prepare_to_claim(bdev, claimed_bdev, loop_configure);
1099 		if (error)
1100 			goto out_putf;
1101 	}
1102 
1103 	error = mutex_lock_killable(&loop_ctl_mutex);
1104 	if (error)
1105 		goto out_bdev;
1106 
1107 	error = -EBUSY;
1108 	if (lo->lo_state != Lo_unbound)
1109 		goto out_unlock;
1110 
1111 	error = loop_validate_file(file, bdev);
1112 	if (error)
1113 		goto out_unlock;
1114 
1115 	mapping = file->f_mapping;
1116 	inode = mapping->host;
1117 
1118 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1119 		error = -EINVAL;
1120 		goto out_unlock;
1121 	}
1122 
1123 	if (config->block_size) {
1124 		error = loop_validate_block_size(config->block_size);
1125 		if (error)
1126 			goto out_unlock;
1127 	}
1128 
1129 	error = loop_set_status_from_info(lo, &config->info);
1130 	if (error)
1131 		goto out_unlock;
1132 
1133 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1134 	    !file->f_op->write_iter)
1135 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1136 
1137 	error = loop_prepare_queue(lo);
1138 	if (error)
1139 		goto out_unlock;
1140 
1141 	set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1142 
1143 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1144 	lo->lo_device = bdev;
1145 	lo->lo_backing_file = file;
1146 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1147 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1148 
1149 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1150 		blk_queue_write_cache(lo->lo_queue, true, false);
1151 
1152 	if (config->block_size)
1153 		bsize = config->block_size;
1154 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1155 		/* In case of direct I/O, match underlying block size */
1156 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1157 	else
1158 		bsize = 512;
1159 
1160 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1161 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1162 	blk_queue_io_min(lo->lo_queue, bsize);
1163 
1164 	loop_update_rotational(lo);
1165 	loop_update_dio(lo);
1166 	loop_sysfs_init(lo);
1167 
1168 	size = get_loop_size(lo, file);
1169 	loop_set_size(lo, size);
1170 
1171 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1172 		      block_size(inode->i_bdev) : PAGE_SIZE);
1173 
1174 	lo->lo_state = Lo_bound;
1175 	if (part_shift)
1176 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1177 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1178 	if (partscan)
1179 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1180 
1181 	/* Grab the block_device to prevent its destruction after we
1182 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1183 	 */
1184 	bdgrab(bdev);
1185 	mutex_unlock(&loop_ctl_mutex);
1186 	if (partscan)
1187 		loop_reread_partitions(lo, bdev);
1188 	if (claimed_bdev)
1189 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1190 	return 0;
1191 
1192 out_unlock:
1193 	mutex_unlock(&loop_ctl_mutex);
1194 out_bdev:
1195 	if (claimed_bdev)
1196 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1197 out_putf:
1198 	fput(file);
1199 out:
1200 	/* This is safe: open() is still holding a reference. */
1201 	module_put(THIS_MODULE);
1202 	return error;
1203 }
1204 
1205 static int __loop_clr_fd(struct loop_device *lo, bool release)
1206 {
1207 	struct file *filp = NULL;
1208 	gfp_t gfp = lo->old_gfp_mask;
1209 	struct block_device *bdev = lo->lo_device;
1210 	int err = 0;
1211 	bool partscan = false;
1212 	int lo_number;
1213 
1214 	mutex_lock(&loop_ctl_mutex);
1215 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1216 		err = -ENXIO;
1217 		goto out_unlock;
1218 	}
1219 
1220 	filp = lo->lo_backing_file;
1221 	if (filp == NULL) {
1222 		err = -EINVAL;
1223 		goto out_unlock;
1224 	}
1225 
1226 	/* freeze request queue during the transition */
1227 	blk_mq_freeze_queue(lo->lo_queue);
1228 
1229 	spin_lock_irq(&lo->lo_lock);
1230 	lo->lo_backing_file = NULL;
1231 	spin_unlock_irq(&lo->lo_lock);
1232 
1233 	loop_release_xfer(lo);
1234 	lo->transfer = NULL;
1235 	lo->ioctl = NULL;
1236 	lo->lo_device = NULL;
1237 	lo->lo_encryption = NULL;
1238 	lo->lo_offset = 0;
1239 	lo->lo_sizelimit = 0;
1240 	lo->lo_encrypt_key_size = 0;
1241 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1242 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1243 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1244 	blk_queue_logical_block_size(lo->lo_queue, 512);
1245 	blk_queue_physical_block_size(lo->lo_queue, 512);
1246 	blk_queue_io_min(lo->lo_queue, 512);
1247 	if (bdev) {
1248 		bdput(bdev);
1249 		invalidate_bdev(bdev);
1250 		bdev->bd_inode->i_mapping->wb_err = 0;
1251 	}
1252 	set_capacity(lo->lo_disk, 0);
1253 	loop_sysfs_exit(lo);
1254 	if (bdev) {
1255 		bd_set_nr_sectors(bdev, 0);
1256 		/* let user-space know about this change */
1257 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1258 	}
1259 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1260 	/* This is safe: open() is still holding a reference. */
1261 	module_put(THIS_MODULE);
1262 	blk_mq_unfreeze_queue(lo->lo_queue);
1263 
1264 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1265 	lo_number = lo->lo_number;
1266 	loop_unprepare_queue(lo);
1267 out_unlock:
1268 	mutex_unlock(&loop_ctl_mutex);
1269 	if (partscan) {
1270 		/*
1271 		 * bd_mutex has been held already in release path, so don't
1272 		 * acquire it if this function is called in such case.
1273 		 *
1274 		 * If the reread partition isn't from release path, lo_refcnt
1275 		 * must be at least one and it can only become zero when the
1276 		 * current holder is released.
1277 		 */
1278 		if (!release)
1279 			mutex_lock(&bdev->bd_mutex);
1280 		err = bdev_disk_changed(bdev, false);
1281 		if (!release)
1282 			mutex_unlock(&bdev->bd_mutex);
1283 		if (err)
1284 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1285 				__func__, lo_number, err);
1286 		/* Device is gone, no point in returning error */
1287 		err = 0;
1288 	}
1289 
1290 	/*
1291 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1292 	 * finished.
1293 	 *
1294 	 * There cannot be anybody else entering __loop_clr_fd() as
1295 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1296 	 * protects us from all the other places trying to change the 'lo'
1297 	 * device.
1298 	 */
1299 	mutex_lock(&loop_ctl_mutex);
1300 	lo->lo_flags = 0;
1301 	if (!part_shift)
1302 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1303 	lo->lo_state = Lo_unbound;
1304 	mutex_unlock(&loop_ctl_mutex);
1305 
1306 	/*
1307 	 * Need not hold loop_ctl_mutex to fput backing file.
1308 	 * Calling fput holding loop_ctl_mutex triggers a circular
1309 	 * lock dependency possibility warning as fput can take
1310 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1311 	 */
1312 	if (filp)
1313 		fput(filp);
1314 	return err;
1315 }
1316 
1317 static int loop_clr_fd(struct loop_device *lo)
1318 {
1319 	int err;
1320 
1321 	err = mutex_lock_killable(&loop_ctl_mutex);
1322 	if (err)
1323 		return err;
1324 	if (lo->lo_state != Lo_bound) {
1325 		mutex_unlock(&loop_ctl_mutex);
1326 		return -ENXIO;
1327 	}
1328 	/*
1329 	 * If we've explicitly asked to tear down the loop device,
1330 	 * and it has an elevated reference count, set it for auto-teardown when
1331 	 * the last reference goes away. This stops $!~#$@ udev from
1332 	 * preventing teardown because it decided that it needs to run blkid on
1333 	 * the loopback device whenever they appear. xfstests is notorious for
1334 	 * failing tests because blkid via udev races with a losetup
1335 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1336 	 * command to fail with EBUSY.
1337 	 */
1338 	if (atomic_read(&lo->lo_refcnt) > 1) {
1339 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1340 		mutex_unlock(&loop_ctl_mutex);
1341 		return 0;
1342 	}
1343 	lo->lo_state = Lo_rundown;
1344 	mutex_unlock(&loop_ctl_mutex);
1345 
1346 	return __loop_clr_fd(lo, false);
1347 }
1348 
1349 static int
1350 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1351 {
1352 	int err;
1353 	struct block_device *bdev;
1354 	kuid_t uid = current_uid();
1355 	int prev_lo_flags;
1356 	bool partscan = false;
1357 	bool size_changed = false;
1358 
1359 	err = mutex_lock_killable(&loop_ctl_mutex);
1360 	if (err)
1361 		return err;
1362 	if (lo->lo_encrypt_key_size &&
1363 	    !uid_eq(lo->lo_key_owner, uid) &&
1364 	    !capable(CAP_SYS_ADMIN)) {
1365 		err = -EPERM;
1366 		goto out_unlock;
1367 	}
1368 	if (lo->lo_state != Lo_bound) {
1369 		err = -ENXIO;
1370 		goto out_unlock;
1371 	}
1372 
1373 	if (lo->lo_offset != info->lo_offset ||
1374 	    lo->lo_sizelimit != info->lo_sizelimit) {
1375 		size_changed = true;
1376 		sync_blockdev(lo->lo_device);
1377 		invalidate_bdev(lo->lo_device);
1378 	}
1379 
1380 	/* I/O need to be drained during transfer transition */
1381 	blk_mq_freeze_queue(lo->lo_queue);
1382 
1383 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1384 		/* If any pages were dirtied after invalidate_bdev(), try again */
1385 		err = -EAGAIN;
1386 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1387 			__func__, lo->lo_number, lo->lo_file_name,
1388 			lo->lo_device->bd_inode->i_mapping->nrpages);
1389 		goto out_unfreeze;
1390 	}
1391 
1392 	prev_lo_flags = lo->lo_flags;
1393 
1394 	err = loop_set_status_from_info(lo, info);
1395 	if (err)
1396 		goto out_unfreeze;
1397 
1398 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1399 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1400 	/* For those flags, use the previous values instead */
1401 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1402 	/* For flags that can't be cleared, use previous values too */
1403 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1404 
1405 	if (size_changed) {
1406 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1407 					   lo->lo_backing_file);
1408 		loop_set_size(lo, new_size);
1409 	}
1410 
1411 	loop_config_discard(lo);
1412 
1413 	/* update dio if lo_offset or transfer is changed */
1414 	__loop_update_dio(lo, lo->use_dio);
1415 
1416 out_unfreeze:
1417 	blk_mq_unfreeze_queue(lo->lo_queue);
1418 
1419 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1420 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1421 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1422 		bdev = lo->lo_device;
1423 		partscan = true;
1424 	}
1425 out_unlock:
1426 	mutex_unlock(&loop_ctl_mutex);
1427 	if (partscan)
1428 		loop_reread_partitions(lo, bdev);
1429 
1430 	return err;
1431 }
1432 
1433 static int
1434 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1435 {
1436 	struct path path;
1437 	struct kstat stat;
1438 	int ret;
1439 
1440 	ret = mutex_lock_killable(&loop_ctl_mutex);
1441 	if (ret)
1442 		return ret;
1443 	if (lo->lo_state != Lo_bound) {
1444 		mutex_unlock(&loop_ctl_mutex);
1445 		return -ENXIO;
1446 	}
1447 
1448 	memset(info, 0, sizeof(*info));
1449 	info->lo_number = lo->lo_number;
1450 	info->lo_offset = lo->lo_offset;
1451 	info->lo_sizelimit = lo->lo_sizelimit;
1452 	info->lo_flags = lo->lo_flags;
1453 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1454 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1455 	info->lo_encrypt_type =
1456 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1457 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1458 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1459 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1460 		       lo->lo_encrypt_key_size);
1461 	}
1462 
1463 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1464 	path = lo->lo_backing_file->f_path;
1465 	path_get(&path);
1466 	mutex_unlock(&loop_ctl_mutex);
1467 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1468 	if (!ret) {
1469 		info->lo_device = huge_encode_dev(stat.dev);
1470 		info->lo_inode = stat.ino;
1471 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1472 	}
1473 	path_put(&path);
1474 	return ret;
1475 }
1476 
1477 static void
1478 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1479 {
1480 	memset(info64, 0, sizeof(*info64));
1481 	info64->lo_number = info->lo_number;
1482 	info64->lo_device = info->lo_device;
1483 	info64->lo_inode = info->lo_inode;
1484 	info64->lo_rdevice = info->lo_rdevice;
1485 	info64->lo_offset = info->lo_offset;
1486 	info64->lo_sizelimit = 0;
1487 	info64->lo_encrypt_type = info->lo_encrypt_type;
1488 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1489 	info64->lo_flags = info->lo_flags;
1490 	info64->lo_init[0] = info->lo_init[0];
1491 	info64->lo_init[1] = info->lo_init[1];
1492 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1493 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1494 	else
1495 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1496 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1497 }
1498 
1499 static int
1500 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1501 {
1502 	memset(info, 0, sizeof(*info));
1503 	info->lo_number = info64->lo_number;
1504 	info->lo_device = info64->lo_device;
1505 	info->lo_inode = info64->lo_inode;
1506 	info->lo_rdevice = info64->lo_rdevice;
1507 	info->lo_offset = info64->lo_offset;
1508 	info->lo_encrypt_type = info64->lo_encrypt_type;
1509 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1510 	info->lo_flags = info64->lo_flags;
1511 	info->lo_init[0] = info64->lo_init[0];
1512 	info->lo_init[1] = info64->lo_init[1];
1513 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1514 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1515 	else
1516 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1517 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1518 
1519 	/* error in case values were truncated */
1520 	if (info->lo_device != info64->lo_device ||
1521 	    info->lo_rdevice != info64->lo_rdevice ||
1522 	    info->lo_inode != info64->lo_inode ||
1523 	    info->lo_offset != info64->lo_offset)
1524 		return -EOVERFLOW;
1525 
1526 	return 0;
1527 }
1528 
1529 static int
1530 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1531 {
1532 	struct loop_info info;
1533 	struct loop_info64 info64;
1534 
1535 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1536 		return -EFAULT;
1537 	loop_info64_from_old(&info, &info64);
1538 	return loop_set_status(lo, &info64);
1539 }
1540 
1541 static int
1542 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1543 {
1544 	struct loop_info64 info64;
1545 
1546 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1547 		return -EFAULT;
1548 	return loop_set_status(lo, &info64);
1549 }
1550 
1551 static int
1552 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1553 	struct loop_info info;
1554 	struct loop_info64 info64;
1555 	int err;
1556 
1557 	if (!arg)
1558 		return -EINVAL;
1559 	err = loop_get_status(lo, &info64);
1560 	if (!err)
1561 		err = loop_info64_to_old(&info64, &info);
1562 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1563 		err = -EFAULT;
1564 
1565 	return err;
1566 }
1567 
1568 static int
1569 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1570 	struct loop_info64 info64;
1571 	int err;
1572 
1573 	if (!arg)
1574 		return -EINVAL;
1575 	err = loop_get_status(lo, &info64);
1576 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1577 		err = -EFAULT;
1578 
1579 	return err;
1580 }
1581 
1582 static int loop_set_capacity(struct loop_device *lo)
1583 {
1584 	loff_t size;
1585 
1586 	if (unlikely(lo->lo_state != Lo_bound))
1587 		return -ENXIO;
1588 
1589 	size = get_loop_size(lo, lo->lo_backing_file);
1590 	loop_set_size(lo, size);
1591 
1592 	return 0;
1593 }
1594 
1595 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1596 {
1597 	int error = -ENXIO;
1598 	if (lo->lo_state != Lo_bound)
1599 		goto out;
1600 
1601 	__loop_update_dio(lo, !!arg);
1602 	if (lo->use_dio == !!arg)
1603 		return 0;
1604 	error = -EINVAL;
1605  out:
1606 	return error;
1607 }
1608 
1609 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1610 {
1611 	int err = 0;
1612 
1613 	if (lo->lo_state != Lo_bound)
1614 		return -ENXIO;
1615 
1616 	err = loop_validate_block_size(arg);
1617 	if (err)
1618 		return err;
1619 
1620 	if (lo->lo_queue->limits.logical_block_size == arg)
1621 		return 0;
1622 
1623 	sync_blockdev(lo->lo_device);
1624 	invalidate_bdev(lo->lo_device);
1625 
1626 	blk_mq_freeze_queue(lo->lo_queue);
1627 
1628 	/* invalidate_bdev should have truncated all the pages */
1629 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1630 		err = -EAGAIN;
1631 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1632 			__func__, lo->lo_number, lo->lo_file_name,
1633 			lo->lo_device->bd_inode->i_mapping->nrpages);
1634 		goto out_unfreeze;
1635 	}
1636 
1637 	blk_queue_logical_block_size(lo->lo_queue, arg);
1638 	blk_queue_physical_block_size(lo->lo_queue, arg);
1639 	blk_queue_io_min(lo->lo_queue, arg);
1640 	loop_update_dio(lo);
1641 out_unfreeze:
1642 	blk_mq_unfreeze_queue(lo->lo_queue);
1643 
1644 	return err;
1645 }
1646 
1647 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1648 			   unsigned long arg)
1649 {
1650 	int err;
1651 
1652 	err = mutex_lock_killable(&loop_ctl_mutex);
1653 	if (err)
1654 		return err;
1655 	switch (cmd) {
1656 	case LOOP_SET_CAPACITY:
1657 		err = loop_set_capacity(lo);
1658 		break;
1659 	case LOOP_SET_DIRECT_IO:
1660 		err = loop_set_dio(lo, arg);
1661 		break;
1662 	case LOOP_SET_BLOCK_SIZE:
1663 		err = loop_set_block_size(lo, arg);
1664 		break;
1665 	default:
1666 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1667 	}
1668 	mutex_unlock(&loop_ctl_mutex);
1669 	return err;
1670 }
1671 
1672 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1673 	unsigned int cmd, unsigned long arg)
1674 {
1675 	struct loop_device *lo = bdev->bd_disk->private_data;
1676 	void __user *argp = (void __user *) arg;
1677 	int err;
1678 
1679 	switch (cmd) {
1680 	case LOOP_SET_FD: {
1681 		/*
1682 		 * Legacy case - pass in a zeroed out struct loop_config with
1683 		 * only the file descriptor set , which corresponds with the
1684 		 * default parameters we'd have used otherwise.
1685 		 */
1686 		struct loop_config config;
1687 
1688 		memset(&config, 0, sizeof(config));
1689 		config.fd = arg;
1690 
1691 		return loop_configure(lo, mode, bdev, &config);
1692 	}
1693 	case LOOP_CONFIGURE: {
1694 		struct loop_config config;
1695 
1696 		if (copy_from_user(&config, argp, sizeof(config)))
1697 			return -EFAULT;
1698 
1699 		return loop_configure(lo, mode, bdev, &config);
1700 	}
1701 	case LOOP_CHANGE_FD:
1702 		return loop_change_fd(lo, bdev, arg);
1703 	case LOOP_CLR_FD:
1704 		return loop_clr_fd(lo);
1705 	case LOOP_SET_STATUS:
1706 		err = -EPERM;
1707 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1708 			err = loop_set_status_old(lo, argp);
1709 		}
1710 		break;
1711 	case LOOP_GET_STATUS:
1712 		return loop_get_status_old(lo, argp);
1713 	case LOOP_SET_STATUS64:
1714 		err = -EPERM;
1715 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1716 			err = loop_set_status64(lo, argp);
1717 		}
1718 		break;
1719 	case LOOP_GET_STATUS64:
1720 		return loop_get_status64(lo, argp);
1721 	case LOOP_SET_CAPACITY:
1722 	case LOOP_SET_DIRECT_IO:
1723 	case LOOP_SET_BLOCK_SIZE:
1724 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1725 			return -EPERM;
1726 		fallthrough;
1727 	default:
1728 		err = lo_simple_ioctl(lo, cmd, arg);
1729 		break;
1730 	}
1731 
1732 	return err;
1733 }
1734 
1735 #ifdef CONFIG_COMPAT
1736 struct compat_loop_info {
1737 	compat_int_t	lo_number;      /* ioctl r/o */
1738 	compat_dev_t	lo_device;      /* ioctl r/o */
1739 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1740 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1741 	compat_int_t	lo_offset;
1742 	compat_int_t	lo_encrypt_type;
1743 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1744 	compat_int_t	lo_flags;       /* ioctl r/o */
1745 	char		lo_name[LO_NAME_SIZE];
1746 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1747 	compat_ulong_t	lo_init[2];
1748 	char		reserved[4];
1749 };
1750 
1751 /*
1752  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1753  * - noinlined to reduce stack space usage in main part of driver
1754  */
1755 static noinline int
1756 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1757 			struct loop_info64 *info64)
1758 {
1759 	struct compat_loop_info info;
1760 
1761 	if (copy_from_user(&info, arg, sizeof(info)))
1762 		return -EFAULT;
1763 
1764 	memset(info64, 0, sizeof(*info64));
1765 	info64->lo_number = info.lo_number;
1766 	info64->lo_device = info.lo_device;
1767 	info64->lo_inode = info.lo_inode;
1768 	info64->lo_rdevice = info.lo_rdevice;
1769 	info64->lo_offset = info.lo_offset;
1770 	info64->lo_sizelimit = 0;
1771 	info64->lo_encrypt_type = info.lo_encrypt_type;
1772 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1773 	info64->lo_flags = info.lo_flags;
1774 	info64->lo_init[0] = info.lo_init[0];
1775 	info64->lo_init[1] = info.lo_init[1];
1776 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1777 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1778 	else
1779 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1780 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1781 	return 0;
1782 }
1783 
1784 /*
1785  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1786  * - noinlined to reduce stack space usage in main part of driver
1787  */
1788 static noinline int
1789 loop_info64_to_compat(const struct loop_info64 *info64,
1790 		      struct compat_loop_info __user *arg)
1791 {
1792 	struct compat_loop_info info;
1793 
1794 	memset(&info, 0, sizeof(info));
1795 	info.lo_number = info64->lo_number;
1796 	info.lo_device = info64->lo_device;
1797 	info.lo_inode = info64->lo_inode;
1798 	info.lo_rdevice = info64->lo_rdevice;
1799 	info.lo_offset = info64->lo_offset;
1800 	info.lo_encrypt_type = info64->lo_encrypt_type;
1801 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1802 	info.lo_flags = info64->lo_flags;
1803 	info.lo_init[0] = info64->lo_init[0];
1804 	info.lo_init[1] = info64->lo_init[1];
1805 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1806 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1807 	else
1808 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1809 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1810 
1811 	/* error in case values were truncated */
1812 	if (info.lo_device != info64->lo_device ||
1813 	    info.lo_rdevice != info64->lo_rdevice ||
1814 	    info.lo_inode != info64->lo_inode ||
1815 	    info.lo_offset != info64->lo_offset ||
1816 	    info.lo_init[0] != info64->lo_init[0] ||
1817 	    info.lo_init[1] != info64->lo_init[1])
1818 		return -EOVERFLOW;
1819 
1820 	if (copy_to_user(arg, &info, sizeof(info)))
1821 		return -EFAULT;
1822 	return 0;
1823 }
1824 
1825 static int
1826 loop_set_status_compat(struct loop_device *lo,
1827 		       const struct compat_loop_info __user *arg)
1828 {
1829 	struct loop_info64 info64;
1830 	int ret;
1831 
1832 	ret = loop_info64_from_compat(arg, &info64);
1833 	if (ret < 0)
1834 		return ret;
1835 	return loop_set_status(lo, &info64);
1836 }
1837 
1838 static int
1839 loop_get_status_compat(struct loop_device *lo,
1840 		       struct compat_loop_info __user *arg)
1841 {
1842 	struct loop_info64 info64;
1843 	int err;
1844 
1845 	if (!arg)
1846 		return -EINVAL;
1847 	err = loop_get_status(lo, &info64);
1848 	if (!err)
1849 		err = loop_info64_to_compat(&info64, arg);
1850 	return err;
1851 }
1852 
1853 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1854 			   unsigned int cmd, unsigned long arg)
1855 {
1856 	struct loop_device *lo = bdev->bd_disk->private_data;
1857 	int err;
1858 
1859 	switch(cmd) {
1860 	case LOOP_SET_STATUS:
1861 		err = loop_set_status_compat(lo,
1862 			     (const struct compat_loop_info __user *)arg);
1863 		break;
1864 	case LOOP_GET_STATUS:
1865 		err = loop_get_status_compat(lo,
1866 				     (struct compat_loop_info __user *)arg);
1867 		break;
1868 	case LOOP_SET_CAPACITY:
1869 	case LOOP_CLR_FD:
1870 	case LOOP_GET_STATUS64:
1871 	case LOOP_SET_STATUS64:
1872 	case LOOP_CONFIGURE:
1873 		arg = (unsigned long) compat_ptr(arg);
1874 		fallthrough;
1875 	case LOOP_SET_FD:
1876 	case LOOP_CHANGE_FD:
1877 	case LOOP_SET_BLOCK_SIZE:
1878 	case LOOP_SET_DIRECT_IO:
1879 		err = lo_ioctl(bdev, mode, cmd, arg);
1880 		break;
1881 	default:
1882 		err = -ENOIOCTLCMD;
1883 		break;
1884 	}
1885 	return err;
1886 }
1887 #endif
1888 
1889 static int lo_open(struct block_device *bdev, fmode_t mode)
1890 {
1891 	struct loop_device *lo;
1892 	int err;
1893 
1894 	err = mutex_lock_killable(&loop_ctl_mutex);
1895 	if (err)
1896 		return err;
1897 	lo = bdev->bd_disk->private_data;
1898 	if (!lo) {
1899 		err = -ENXIO;
1900 		goto out;
1901 	}
1902 
1903 	atomic_inc(&lo->lo_refcnt);
1904 out:
1905 	mutex_unlock(&loop_ctl_mutex);
1906 	return err;
1907 }
1908 
1909 static void lo_release(struct gendisk *disk, fmode_t mode)
1910 {
1911 	struct loop_device *lo;
1912 
1913 	mutex_lock(&loop_ctl_mutex);
1914 	lo = disk->private_data;
1915 	if (atomic_dec_return(&lo->lo_refcnt))
1916 		goto out_unlock;
1917 
1918 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1919 		if (lo->lo_state != Lo_bound)
1920 			goto out_unlock;
1921 		lo->lo_state = Lo_rundown;
1922 		mutex_unlock(&loop_ctl_mutex);
1923 		/*
1924 		 * In autoclear mode, stop the loop thread
1925 		 * and remove configuration after last close.
1926 		 */
1927 		__loop_clr_fd(lo, true);
1928 		return;
1929 	} else if (lo->lo_state == Lo_bound) {
1930 		/*
1931 		 * Otherwise keep thread (if running) and config,
1932 		 * but flush possible ongoing bios in thread.
1933 		 */
1934 		blk_mq_freeze_queue(lo->lo_queue);
1935 		blk_mq_unfreeze_queue(lo->lo_queue);
1936 	}
1937 
1938 out_unlock:
1939 	mutex_unlock(&loop_ctl_mutex);
1940 }
1941 
1942 static const struct block_device_operations lo_fops = {
1943 	.owner =	THIS_MODULE,
1944 	.open =		lo_open,
1945 	.release =	lo_release,
1946 	.ioctl =	lo_ioctl,
1947 #ifdef CONFIG_COMPAT
1948 	.compat_ioctl =	lo_compat_ioctl,
1949 #endif
1950 };
1951 
1952 /*
1953  * And now the modules code and kernel interface.
1954  */
1955 static int max_loop;
1956 module_param(max_loop, int, 0444);
1957 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1958 module_param(max_part, int, 0444);
1959 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1960 MODULE_LICENSE("GPL");
1961 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1962 
1963 int loop_register_transfer(struct loop_func_table *funcs)
1964 {
1965 	unsigned int n = funcs->number;
1966 
1967 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1968 		return -EINVAL;
1969 	xfer_funcs[n] = funcs;
1970 	return 0;
1971 }
1972 
1973 static int unregister_transfer_cb(int id, void *ptr, void *data)
1974 {
1975 	struct loop_device *lo = ptr;
1976 	struct loop_func_table *xfer = data;
1977 
1978 	mutex_lock(&loop_ctl_mutex);
1979 	if (lo->lo_encryption == xfer)
1980 		loop_release_xfer(lo);
1981 	mutex_unlock(&loop_ctl_mutex);
1982 	return 0;
1983 }
1984 
1985 int loop_unregister_transfer(int number)
1986 {
1987 	unsigned int n = number;
1988 	struct loop_func_table *xfer;
1989 
1990 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1991 		return -EINVAL;
1992 
1993 	xfer_funcs[n] = NULL;
1994 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1995 	return 0;
1996 }
1997 
1998 EXPORT_SYMBOL(loop_register_transfer);
1999 EXPORT_SYMBOL(loop_unregister_transfer);
2000 
2001 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
2002 		const struct blk_mq_queue_data *bd)
2003 {
2004 	struct request *rq = bd->rq;
2005 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2006 	struct loop_device *lo = rq->q->queuedata;
2007 
2008 	blk_mq_start_request(rq);
2009 
2010 	if (lo->lo_state != Lo_bound)
2011 		return BLK_STS_IOERR;
2012 
2013 	switch (req_op(rq)) {
2014 	case REQ_OP_FLUSH:
2015 	case REQ_OP_DISCARD:
2016 	case REQ_OP_WRITE_ZEROES:
2017 		cmd->use_aio = false;
2018 		break;
2019 	default:
2020 		cmd->use_aio = lo->use_dio;
2021 		break;
2022 	}
2023 
2024 	/* always use the first bio's css */
2025 #ifdef CONFIG_BLK_CGROUP
2026 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2027 		cmd->css = &bio_blkcg(rq->bio)->css;
2028 		css_get(cmd->css);
2029 	} else
2030 #endif
2031 		cmd->css = NULL;
2032 	kthread_queue_work(&lo->worker, &cmd->work);
2033 
2034 	return BLK_STS_OK;
2035 }
2036 
2037 static void loop_handle_cmd(struct loop_cmd *cmd)
2038 {
2039 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2040 	const bool write = op_is_write(req_op(rq));
2041 	struct loop_device *lo = rq->q->queuedata;
2042 	int ret = 0;
2043 
2044 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2045 		ret = -EIO;
2046 		goto failed;
2047 	}
2048 
2049 	ret = do_req_filebacked(lo, rq);
2050  failed:
2051 	/* complete non-aio request */
2052 	if (!cmd->use_aio || ret) {
2053 		if (ret == -EOPNOTSUPP)
2054 			cmd->ret = ret;
2055 		else
2056 			cmd->ret = ret ? -EIO : 0;
2057 		if (likely(!blk_should_fake_timeout(rq->q)))
2058 			blk_mq_complete_request(rq);
2059 	}
2060 }
2061 
2062 static void loop_queue_work(struct kthread_work *work)
2063 {
2064 	struct loop_cmd *cmd =
2065 		container_of(work, struct loop_cmd, work);
2066 
2067 	loop_handle_cmd(cmd);
2068 }
2069 
2070 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2071 		unsigned int hctx_idx, unsigned int numa_node)
2072 {
2073 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2074 
2075 	kthread_init_work(&cmd->work, loop_queue_work);
2076 	return 0;
2077 }
2078 
2079 static const struct blk_mq_ops loop_mq_ops = {
2080 	.queue_rq       = loop_queue_rq,
2081 	.init_request	= loop_init_request,
2082 	.complete	= lo_complete_rq,
2083 };
2084 
2085 static int loop_add(struct loop_device **l, int i)
2086 {
2087 	struct loop_device *lo;
2088 	struct gendisk *disk;
2089 	int err;
2090 
2091 	err = -ENOMEM;
2092 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2093 	if (!lo)
2094 		goto out;
2095 
2096 	lo->lo_state = Lo_unbound;
2097 
2098 	/* allocate id, if @id >= 0, we're requesting that specific id */
2099 	if (i >= 0) {
2100 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2101 		if (err == -ENOSPC)
2102 			err = -EEXIST;
2103 	} else {
2104 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2105 	}
2106 	if (err < 0)
2107 		goto out_free_dev;
2108 	i = err;
2109 
2110 	err = -ENOMEM;
2111 	lo->tag_set.ops = &loop_mq_ops;
2112 	lo->tag_set.nr_hw_queues = 1;
2113 	lo->tag_set.queue_depth = 128;
2114 	lo->tag_set.numa_node = NUMA_NO_NODE;
2115 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2116 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2117 	lo->tag_set.driver_data = lo;
2118 
2119 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2120 	if (err)
2121 		goto out_free_idr;
2122 
2123 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2124 	if (IS_ERR(lo->lo_queue)) {
2125 		err = PTR_ERR(lo->lo_queue);
2126 		goto out_cleanup_tags;
2127 	}
2128 	lo->lo_queue->queuedata = lo;
2129 
2130 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2131 
2132 	/*
2133 	 * By default, we do buffer IO, so it doesn't make sense to enable
2134 	 * merge because the I/O submitted to backing file is handled page by
2135 	 * page. For directio mode, merge does help to dispatch bigger request
2136 	 * to underlayer disk. We will enable merge once directio is enabled.
2137 	 */
2138 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2139 
2140 	err = -ENOMEM;
2141 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2142 	if (!disk)
2143 		goto out_free_queue;
2144 
2145 	/*
2146 	 * Disable partition scanning by default. The in-kernel partition
2147 	 * scanning can be requested individually per-device during its
2148 	 * setup. Userspace can always add and remove partitions from all
2149 	 * devices. The needed partition minors are allocated from the
2150 	 * extended minor space, the main loop device numbers will continue
2151 	 * to match the loop minors, regardless of the number of partitions
2152 	 * used.
2153 	 *
2154 	 * If max_part is given, partition scanning is globally enabled for
2155 	 * all loop devices. The minors for the main loop devices will be
2156 	 * multiples of max_part.
2157 	 *
2158 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2159 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2160 	 * complicated, are too static, inflexible and may surprise
2161 	 * userspace tools. Parameters like this in general should be avoided.
2162 	 */
2163 	if (!part_shift)
2164 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2165 	disk->flags |= GENHD_FL_EXT_DEVT;
2166 	atomic_set(&lo->lo_refcnt, 0);
2167 	lo->lo_number		= i;
2168 	spin_lock_init(&lo->lo_lock);
2169 	disk->major		= LOOP_MAJOR;
2170 	disk->first_minor	= i << part_shift;
2171 	disk->fops		= &lo_fops;
2172 	disk->private_data	= lo;
2173 	disk->queue		= lo->lo_queue;
2174 	sprintf(disk->disk_name, "loop%d", i);
2175 	add_disk(disk);
2176 	*l = lo;
2177 	return lo->lo_number;
2178 
2179 out_free_queue:
2180 	blk_cleanup_queue(lo->lo_queue);
2181 out_cleanup_tags:
2182 	blk_mq_free_tag_set(&lo->tag_set);
2183 out_free_idr:
2184 	idr_remove(&loop_index_idr, i);
2185 out_free_dev:
2186 	kfree(lo);
2187 out:
2188 	return err;
2189 }
2190 
2191 static void loop_remove(struct loop_device *lo)
2192 {
2193 	del_gendisk(lo->lo_disk);
2194 	blk_cleanup_queue(lo->lo_queue);
2195 	blk_mq_free_tag_set(&lo->tag_set);
2196 	put_disk(lo->lo_disk);
2197 	kfree(lo);
2198 }
2199 
2200 static int find_free_cb(int id, void *ptr, void *data)
2201 {
2202 	struct loop_device *lo = ptr;
2203 	struct loop_device **l = data;
2204 
2205 	if (lo->lo_state == Lo_unbound) {
2206 		*l = lo;
2207 		return 1;
2208 	}
2209 	return 0;
2210 }
2211 
2212 static int loop_lookup(struct loop_device **l, int i)
2213 {
2214 	struct loop_device *lo;
2215 	int ret = -ENODEV;
2216 
2217 	if (i < 0) {
2218 		int err;
2219 
2220 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2221 		if (err == 1) {
2222 			*l = lo;
2223 			ret = lo->lo_number;
2224 		}
2225 		goto out;
2226 	}
2227 
2228 	/* lookup and return a specific i */
2229 	lo = idr_find(&loop_index_idr, i);
2230 	if (lo) {
2231 		*l = lo;
2232 		ret = lo->lo_number;
2233 	}
2234 out:
2235 	return ret;
2236 }
2237 
2238 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2239 {
2240 	struct loop_device *lo;
2241 	struct kobject *kobj;
2242 	int err;
2243 
2244 	mutex_lock(&loop_ctl_mutex);
2245 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2246 	if (err < 0)
2247 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2248 	if (err < 0)
2249 		kobj = NULL;
2250 	else
2251 		kobj = get_disk_and_module(lo->lo_disk);
2252 	mutex_unlock(&loop_ctl_mutex);
2253 
2254 	*part = 0;
2255 	return kobj;
2256 }
2257 
2258 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2259 			       unsigned long parm)
2260 {
2261 	struct loop_device *lo;
2262 	int ret;
2263 
2264 	ret = mutex_lock_killable(&loop_ctl_mutex);
2265 	if (ret)
2266 		return ret;
2267 
2268 	ret = -ENOSYS;
2269 	switch (cmd) {
2270 	case LOOP_CTL_ADD:
2271 		ret = loop_lookup(&lo, parm);
2272 		if (ret >= 0) {
2273 			ret = -EEXIST;
2274 			break;
2275 		}
2276 		ret = loop_add(&lo, parm);
2277 		break;
2278 	case LOOP_CTL_REMOVE:
2279 		ret = loop_lookup(&lo, parm);
2280 		if (ret < 0)
2281 			break;
2282 		if (lo->lo_state != Lo_unbound) {
2283 			ret = -EBUSY;
2284 			break;
2285 		}
2286 		if (atomic_read(&lo->lo_refcnt) > 0) {
2287 			ret = -EBUSY;
2288 			break;
2289 		}
2290 		lo->lo_disk->private_data = NULL;
2291 		idr_remove(&loop_index_idr, lo->lo_number);
2292 		loop_remove(lo);
2293 		break;
2294 	case LOOP_CTL_GET_FREE:
2295 		ret = loop_lookup(&lo, -1);
2296 		if (ret >= 0)
2297 			break;
2298 		ret = loop_add(&lo, -1);
2299 	}
2300 	mutex_unlock(&loop_ctl_mutex);
2301 
2302 	return ret;
2303 }
2304 
2305 static const struct file_operations loop_ctl_fops = {
2306 	.open		= nonseekable_open,
2307 	.unlocked_ioctl	= loop_control_ioctl,
2308 	.compat_ioctl	= loop_control_ioctl,
2309 	.owner		= THIS_MODULE,
2310 	.llseek		= noop_llseek,
2311 };
2312 
2313 static struct miscdevice loop_misc = {
2314 	.minor		= LOOP_CTRL_MINOR,
2315 	.name		= "loop-control",
2316 	.fops		= &loop_ctl_fops,
2317 };
2318 
2319 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2320 MODULE_ALIAS("devname:loop-control");
2321 
2322 static int __init loop_init(void)
2323 {
2324 	int i, nr;
2325 	unsigned long range;
2326 	struct loop_device *lo;
2327 	int err;
2328 
2329 	part_shift = 0;
2330 	if (max_part > 0) {
2331 		part_shift = fls(max_part);
2332 
2333 		/*
2334 		 * Adjust max_part according to part_shift as it is exported
2335 		 * to user space so that user can decide correct minor number
2336 		 * if [s]he want to create more devices.
2337 		 *
2338 		 * Note that -1 is required because partition 0 is reserved
2339 		 * for the whole disk.
2340 		 */
2341 		max_part = (1UL << part_shift) - 1;
2342 	}
2343 
2344 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2345 		err = -EINVAL;
2346 		goto err_out;
2347 	}
2348 
2349 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2350 		err = -EINVAL;
2351 		goto err_out;
2352 	}
2353 
2354 	/*
2355 	 * If max_loop is specified, create that many devices upfront.
2356 	 * This also becomes a hard limit. If max_loop is not specified,
2357 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2358 	 * init time. Loop devices can be requested on-demand with the
2359 	 * /dev/loop-control interface, or be instantiated by accessing
2360 	 * a 'dead' device node.
2361 	 */
2362 	if (max_loop) {
2363 		nr = max_loop;
2364 		range = max_loop << part_shift;
2365 	} else {
2366 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2367 		range = 1UL << MINORBITS;
2368 	}
2369 
2370 	err = misc_register(&loop_misc);
2371 	if (err < 0)
2372 		goto err_out;
2373 
2374 
2375 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2376 		err = -EIO;
2377 		goto misc_out;
2378 	}
2379 
2380 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2381 				  THIS_MODULE, loop_probe, NULL, NULL);
2382 
2383 	/* pre-create number of devices given by config or max_loop */
2384 	mutex_lock(&loop_ctl_mutex);
2385 	for (i = 0; i < nr; i++)
2386 		loop_add(&lo, i);
2387 	mutex_unlock(&loop_ctl_mutex);
2388 
2389 	printk(KERN_INFO "loop: module loaded\n");
2390 	return 0;
2391 
2392 misc_out:
2393 	misc_deregister(&loop_misc);
2394 err_out:
2395 	return err;
2396 }
2397 
2398 static int loop_exit_cb(int id, void *ptr, void *data)
2399 {
2400 	struct loop_device *lo = ptr;
2401 
2402 	loop_remove(lo);
2403 	return 0;
2404 }
2405 
2406 static void __exit loop_exit(void)
2407 {
2408 	unsigned long range;
2409 
2410 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2411 
2412 	mutex_lock(&loop_ctl_mutex);
2413 
2414 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2415 	idr_destroy(&loop_index_idr);
2416 
2417 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2418 	unregister_blkdev(LOOP_MAJOR, "loop");
2419 
2420 	misc_deregister(&loop_misc);
2421 
2422 	mutex_unlock(&loop_ctl_mutex);
2423 }
2424 
2425 module_init(loop_init);
2426 module_exit(loop_exit);
2427 
2428 #ifndef MODULE
2429 static int __init max_loop_setup(char *str)
2430 {
2431 	max_loop = simple_strtol(str, NULL, 0);
2432 	return 1;
2433 }
2434 
2435 __setup("max_loop=", max_loop_setup);
2436 #endif
2437