1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 if (lo->lo_state == Lo_bound) 218 blk_mq_freeze_queue(lo->lo_queue); 219 lo->use_dio = use_dio; 220 if (use_dio) { 221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 222 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 223 } else { 224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 226 } 227 if (lo->lo_state == Lo_bound) 228 blk_mq_unfreeze_queue(lo->lo_queue); 229 } 230 231 /** 232 * loop_validate_block_size() - validates the passed in block size 233 * @bsize: size to validate 234 */ 235 static int 236 loop_validate_block_size(unsigned short bsize) 237 { 238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /** 245 * loop_set_size() - sets device size and notifies userspace 246 * @lo: struct loop_device to set the size for 247 * @size: new size of the loop device 248 * 249 * Callers must validate that the size passed into this function fits into 250 * a sector_t, eg using loop_validate_size() 251 */ 252 static void loop_set_size(struct loop_device *lo, loff_t size) 253 { 254 struct block_device *bdev = lo->lo_device; 255 256 bd_set_nr_sectors(bdev, size); 257 258 if (!set_capacity_revalidate_and_notify(lo->lo_disk, size, false)) 259 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 260 } 261 262 static inline int 263 lo_do_transfer(struct loop_device *lo, int cmd, 264 struct page *rpage, unsigned roffs, 265 struct page *lpage, unsigned loffs, 266 int size, sector_t rblock) 267 { 268 int ret; 269 270 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 271 if (likely(!ret)) 272 return 0; 273 274 printk_ratelimited(KERN_ERR 275 "loop: Transfer error at byte offset %llu, length %i.\n", 276 (unsigned long long)rblock << 9, size); 277 return ret; 278 } 279 280 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 281 { 282 struct iov_iter i; 283 ssize_t bw; 284 285 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 286 287 file_start_write(file); 288 bw = vfs_iter_write(file, &i, ppos, 0); 289 file_end_write(file); 290 291 if (likely(bw == bvec->bv_len)) 292 return 0; 293 294 printk_ratelimited(KERN_ERR 295 "loop: Write error at byte offset %llu, length %i.\n", 296 (unsigned long long)*ppos, bvec->bv_len); 297 if (bw >= 0) 298 bw = -EIO; 299 return bw; 300 } 301 302 static int lo_write_simple(struct loop_device *lo, struct request *rq, 303 loff_t pos) 304 { 305 struct bio_vec bvec; 306 struct req_iterator iter; 307 int ret = 0; 308 309 rq_for_each_segment(bvec, rq, iter) { 310 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 311 if (ret < 0) 312 break; 313 cond_resched(); 314 } 315 316 return ret; 317 } 318 319 /* 320 * This is the slow, transforming version that needs to double buffer the 321 * data as it cannot do the transformations in place without having direct 322 * access to the destination pages of the backing file. 323 */ 324 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 325 loff_t pos) 326 { 327 struct bio_vec bvec, b; 328 struct req_iterator iter; 329 struct page *page; 330 int ret = 0; 331 332 page = alloc_page(GFP_NOIO); 333 if (unlikely(!page)) 334 return -ENOMEM; 335 336 rq_for_each_segment(bvec, rq, iter) { 337 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 338 bvec.bv_offset, bvec.bv_len, pos >> 9); 339 if (unlikely(ret)) 340 break; 341 342 b.bv_page = page; 343 b.bv_offset = 0; 344 b.bv_len = bvec.bv_len; 345 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 346 if (ret < 0) 347 break; 348 } 349 350 __free_page(page); 351 return ret; 352 } 353 354 static int lo_read_simple(struct loop_device *lo, struct request *rq, 355 loff_t pos) 356 { 357 struct bio_vec bvec; 358 struct req_iterator iter; 359 struct iov_iter i; 360 ssize_t len; 361 362 rq_for_each_segment(bvec, rq, iter) { 363 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 364 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 365 if (len < 0) 366 return len; 367 368 flush_dcache_page(bvec.bv_page); 369 370 if (len != bvec.bv_len) { 371 struct bio *bio; 372 373 __rq_for_each_bio(bio, rq) 374 zero_fill_bio(bio); 375 break; 376 } 377 cond_resched(); 378 } 379 380 return 0; 381 } 382 383 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 384 loff_t pos) 385 { 386 struct bio_vec bvec, b; 387 struct req_iterator iter; 388 struct iov_iter i; 389 struct page *page; 390 ssize_t len; 391 int ret = 0; 392 393 page = alloc_page(GFP_NOIO); 394 if (unlikely(!page)) 395 return -ENOMEM; 396 397 rq_for_each_segment(bvec, rq, iter) { 398 loff_t offset = pos; 399 400 b.bv_page = page; 401 b.bv_offset = 0; 402 b.bv_len = bvec.bv_len; 403 404 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 405 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 406 if (len < 0) { 407 ret = len; 408 goto out_free_page; 409 } 410 411 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 412 bvec.bv_offset, len, offset >> 9); 413 if (ret) 414 goto out_free_page; 415 416 flush_dcache_page(bvec.bv_page); 417 418 if (len != bvec.bv_len) { 419 struct bio *bio; 420 421 __rq_for_each_bio(bio, rq) 422 zero_fill_bio(bio); 423 break; 424 } 425 } 426 427 ret = 0; 428 out_free_page: 429 __free_page(page); 430 return ret; 431 } 432 433 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 434 int mode) 435 { 436 /* 437 * We use fallocate to manipulate the space mappings used by the image 438 * a.k.a. discard/zerorange. However we do not support this if 439 * encryption is enabled, because it may give an attacker useful 440 * information. 441 */ 442 struct file *file = lo->lo_backing_file; 443 struct request_queue *q = lo->lo_queue; 444 int ret; 445 446 mode |= FALLOC_FL_KEEP_SIZE; 447 448 if (!blk_queue_discard(q)) { 449 ret = -EOPNOTSUPP; 450 goto out; 451 } 452 453 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 454 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 455 ret = -EIO; 456 out: 457 return ret; 458 } 459 460 static int lo_req_flush(struct loop_device *lo, struct request *rq) 461 { 462 struct file *file = lo->lo_backing_file; 463 int ret = vfs_fsync(file, 0); 464 if (unlikely(ret && ret != -EINVAL)) 465 ret = -EIO; 466 467 return ret; 468 } 469 470 static void lo_complete_rq(struct request *rq) 471 { 472 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 473 blk_status_t ret = BLK_STS_OK; 474 475 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 476 req_op(rq) != REQ_OP_READ) { 477 if (cmd->ret < 0) 478 ret = errno_to_blk_status(cmd->ret); 479 goto end_io; 480 } 481 482 /* 483 * Short READ - if we got some data, advance our request and 484 * retry it. If we got no data, end the rest with EIO. 485 */ 486 if (cmd->ret) { 487 blk_update_request(rq, BLK_STS_OK, cmd->ret); 488 cmd->ret = 0; 489 blk_mq_requeue_request(rq, true); 490 } else { 491 if (cmd->use_aio) { 492 struct bio *bio = rq->bio; 493 494 while (bio) { 495 zero_fill_bio(bio); 496 bio = bio->bi_next; 497 } 498 } 499 ret = BLK_STS_IOERR; 500 end_io: 501 blk_mq_end_request(rq, ret); 502 } 503 } 504 505 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 506 { 507 struct request *rq = blk_mq_rq_from_pdu(cmd); 508 509 if (!atomic_dec_and_test(&cmd->ref)) 510 return; 511 kfree(cmd->bvec); 512 cmd->bvec = NULL; 513 if (likely(!blk_should_fake_timeout(rq->q))) 514 blk_mq_complete_request(rq); 515 } 516 517 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 518 { 519 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 520 521 if (cmd->css) 522 css_put(cmd->css); 523 cmd->ret = ret; 524 lo_rw_aio_do_completion(cmd); 525 } 526 527 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 528 loff_t pos, bool rw) 529 { 530 struct iov_iter iter; 531 struct req_iterator rq_iter; 532 struct bio_vec *bvec; 533 struct request *rq = blk_mq_rq_from_pdu(cmd); 534 struct bio *bio = rq->bio; 535 struct file *file = lo->lo_backing_file; 536 struct bio_vec tmp; 537 unsigned int offset; 538 int nr_bvec = 0; 539 int ret; 540 541 rq_for_each_bvec(tmp, rq, rq_iter) 542 nr_bvec++; 543 544 if (rq->bio != rq->biotail) { 545 546 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 547 GFP_NOIO); 548 if (!bvec) 549 return -EIO; 550 cmd->bvec = bvec; 551 552 /* 553 * The bios of the request may be started from the middle of 554 * the 'bvec' because of bio splitting, so we can't directly 555 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 556 * API will take care of all details for us. 557 */ 558 rq_for_each_bvec(tmp, rq, rq_iter) { 559 *bvec = tmp; 560 bvec++; 561 } 562 bvec = cmd->bvec; 563 offset = 0; 564 } else { 565 /* 566 * Same here, this bio may be started from the middle of the 567 * 'bvec' because of bio splitting, so offset from the bvec 568 * must be passed to iov iterator 569 */ 570 offset = bio->bi_iter.bi_bvec_done; 571 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 572 } 573 atomic_set(&cmd->ref, 2); 574 575 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 576 iter.iov_offset = offset; 577 578 cmd->iocb.ki_pos = pos; 579 cmd->iocb.ki_filp = file; 580 cmd->iocb.ki_complete = lo_rw_aio_complete; 581 cmd->iocb.ki_flags = IOCB_DIRECT; 582 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 583 if (cmd->css) 584 kthread_associate_blkcg(cmd->css); 585 586 if (rw == WRITE) 587 ret = call_write_iter(file, &cmd->iocb, &iter); 588 else 589 ret = call_read_iter(file, &cmd->iocb, &iter); 590 591 lo_rw_aio_do_completion(cmd); 592 kthread_associate_blkcg(NULL); 593 594 if (ret != -EIOCBQUEUED) 595 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 596 return 0; 597 } 598 599 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 600 { 601 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 602 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 603 604 /* 605 * lo_write_simple and lo_read_simple should have been covered 606 * by io submit style function like lo_rw_aio(), one blocker 607 * is that lo_read_simple() need to call flush_dcache_page after 608 * the page is written from kernel, and it isn't easy to handle 609 * this in io submit style function which submits all segments 610 * of the req at one time. And direct read IO doesn't need to 611 * run flush_dcache_page(). 612 */ 613 switch (req_op(rq)) { 614 case REQ_OP_FLUSH: 615 return lo_req_flush(lo, rq); 616 case REQ_OP_WRITE_ZEROES: 617 /* 618 * If the caller doesn't want deallocation, call zeroout to 619 * write zeroes the range. Otherwise, punch them out. 620 */ 621 return lo_fallocate(lo, rq, pos, 622 (rq->cmd_flags & REQ_NOUNMAP) ? 623 FALLOC_FL_ZERO_RANGE : 624 FALLOC_FL_PUNCH_HOLE); 625 case REQ_OP_DISCARD: 626 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 627 case REQ_OP_WRITE: 628 if (lo->transfer) 629 return lo_write_transfer(lo, rq, pos); 630 else if (cmd->use_aio) 631 return lo_rw_aio(lo, cmd, pos, WRITE); 632 else 633 return lo_write_simple(lo, rq, pos); 634 case REQ_OP_READ: 635 if (lo->transfer) 636 return lo_read_transfer(lo, rq, pos); 637 else if (cmd->use_aio) 638 return lo_rw_aio(lo, cmd, pos, READ); 639 else 640 return lo_read_simple(lo, rq, pos); 641 default: 642 WARN_ON_ONCE(1); 643 return -EIO; 644 } 645 } 646 647 static inline void loop_update_dio(struct loop_device *lo) 648 { 649 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 650 lo->use_dio); 651 } 652 653 static void loop_reread_partitions(struct loop_device *lo, 654 struct block_device *bdev) 655 { 656 int rc; 657 658 mutex_lock(&bdev->bd_mutex); 659 rc = bdev_disk_changed(bdev, false); 660 mutex_unlock(&bdev->bd_mutex); 661 if (rc) 662 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 663 __func__, lo->lo_number, lo->lo_file_name, rc); 664 } 665 666 static inline int is_loop_device(struct file *file) 667 { 668 struct inode *i = file->f_mapping->host; 669 670 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 671 } 672 673 static int loop_validate_file(struct file *file, struct block_device *bdev) 674 { 675 struct inode *inode = file->f_mapping->host; 676 struct file *f = file; 677 678 /* Avoid recursion */ 679 while (is_loop_device(f)) { 680 struct loop_device *l; 681 682 if (f->f_mapping->host->i_bdev == bdev) 683 return -EBADF; 684 685 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 686 if (l->lo_state != Lo_bound) { 687 return -EINVAL; 688 } 689 f = l->lo_backing_file; 690 } 691 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 692 return -EINVAL; 693 return 0; 694 } 695 696 /* 697 * loop_change_fd switched the backing store of a loopback device to 698 * a new file. This is useful for operating system installers to free up 699 * the original file and in High Availability environments to switch to 700 * an alternative location for the content in case of server meltdown. 701 * This can only work if the loop device is used read-only, and if the 702 * new backing store is the same size and type as the old backing store. 703 */ 704 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 705 unsigned int arg) 706 { 707 struct file *file = NULL, *old_file; 708 int error; 709 bool partscan; 710 711 error = mutex_lock_killable(&loop_ctl_mutex); 712 if (error) 713 return error; 714 error = -ENXIO; 715 if (lo->lo_state != Lo_bound) 716 goto out_err; 717 718 /* the loop device has to be read-only */ 719 error = -EINVAL; 720 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 721 goto out_err; 722 723 error = -EBADF; 724 file = fget(arg); 725 if (!file) 726 goto out_err; 727 728 error = loop_validate_file(file, bdev); 729 if (error) 730 goto out_err; 731 732 old_file = lo->lo_backing_file; 733 734 error = -EINVAL; 735 736 /* size of the new backing store needs to be the same */ 737 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 738 goto out_err; 739 740 /* and ... switch */ 741 blk_mq_freeze_queue(lo->lo_queue); 742 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 743 lo->lo_backing_file = file; 744 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 745 mapping_set_gfp_mask(file->f_mapping, 746 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 747 loop_update_dio(lo); 748 blk_mq_unfreeze_queue(lo->lo_queue); 749 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 750 mutex_unlock(&loop_ctl_mutex); 751 /* 752 * We must drop file reference outside of loop_ctl_mutex as dropping 753 * the file ref can take bd_mutex which creates circular locking 754 * dependency. 755 */ 756 fput(old_file); 757 if (partscan) 758 loop_reread_partitions(lo, bdev); 759 return 0; 760 761 out_err: 762 mutex_unlock(&loop_ctl_mutex); 763 if (file) 764 fput(file); 765 return error; 766 } 767 768 /* loop sysfs attributes */ 769 770 static ssize_t loop_attr_show(struct device *dev, char *page, 771 ssize_t (*callback)(struct loop_device *, char *)) 772 { 773 struct gendisk *disk = dev_to_disk(dev); 774 struct loop_device *lo = disk->private_data; 775 776 return callback(lo, page); 777 } 778 779 #define LOOP_ATTR_RO(_name) \ 780 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 781 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 782 struct device_attribute *attr, char *b) \ 783 { \ 784 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 785 } \ 786 static struct device_attribute loop_attr_##_name = \ 787 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 788 789 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 790 { 791 ssize_t ret; 792 char *p = NULL; 793 794 spin_lock_irq(&lo->lo_lock); 795 if (lo->lo_backing_file) 796 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 797 spin_unlock_irq(&lo->lo_lock); 798 799 if (IS_ERR_OR_NULL(p)) 800 ret = PTR_ERR(p); 801 else { 802 ret = strlen(p); 803 memmove(buf, p, ret); 804 buf[ret++] = '\n'; 805 buf[ret] = 0; 806 } 807 808 return ret; 809 } 810 811 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 812 { 813 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 814 } 815 816 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 817 { 818 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 819 } 820 821 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 822 { 823 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 824 825 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 826 } 827 828 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 829 { 830 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 831 832 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 833 } 834 835 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 836 { 837 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 838 839 return sprintf(buf, "%s\n", dio ? "1" : "0"); 840 } 841 842 LOOP_ATTR_RO(backing_file); 843 LOOP_ATTR_RO(offset); 844 LOOP_ATTR_RO(sizelimit); 845 LOOP_ATTR_RO(autoclear); 846 LOOP_ATTR_RO(partscan); 847 LOOP_ATTR_RO(dio); 848 849 static struct attribute *loop_attrs[] = { 850 &loop_attr_backing_file.attr, 851 &loop_attr_offset.attr, 852 &loop_attr_sizelimit.attr, 853 &loop_attr_autoclear.attr, 854 &loop_attr_partscan.attr, 855 &loop_attr_dio.attr, 856 NULL, 857 }; 858 859 static struct attribute_group loop_attribute_group = { 860 .name = "loop", 861 .attrs= loop_attrs, 862 }; 863 864 static void loop_sysfs_init(struct loop_device *lo) 865 { 866 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 867 &loop_attribute_group); 868 } 869 870 static void loop_sysfs_exit(struct loop_device *lo) 871 { 872 if (lo->sysfs_inited) 873 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 874 &loop_attribute_group); 875 } 876 877 static void loop_config_discard(struct loop_device *lo) 878 { 879 struct file *file = lo->lo_backing_file; 880 struct inode *inode = file->f_mapping->host; 881 struct request_queue *q = lo->lo_queue; 882 u32 granularity, max_discard_sectors; 883 884 /* 885 * If the backing device is a block device, mirror its zeroing 886 * capability. Set the discard sectors to the block device's zeroing 887 * capabilities because loop discards result in blkdev_issue_zeroout(), 888 * not blkdev_issue_discard(). This maintains consistent behavior with 889 * file-backed loop devices: discarded regions read back as zero. 890 */ 891 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 892 struct request_queue *backingq; 893 894 backingq = bdev_get_queue(inode->i_bdev); 895 896 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 897 granularity = backingq->limits.discard_granularity ?: 898 queue_physical_block_size(backingq); 899 900 /* 901 * We use punch hole to reclaim the free space used by the 902 * image a.k.a. discard. However we do not support discard if 903 * encryption is enabled, because it may give an attacker 904 * useful information. 905 */ 906 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 907 max_discard_sectors = 0; 908 granularity = 0; 909 910 } else { 911 max_discard_sectors = UINT_MAX >> 9; 912 granularity = inode->i_sb->s_blocksize; 913 } 914 915 if (max_discard_sectors) { 916 q->limits.discard_granularity = granularity; 917 blk_queue_max_discard_sectors(q, max_discard_sectors); 918 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 919 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 920 } else { 921 q->limits.discard_granularity = 0; 922 blk_queue_max_discard_sectors(q, 0); 923 blk_queue_max_write_zeroes_sectors(q, 0); 924 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 925 } 926 q->limits.discard_alignment = 0; 927 } 928 929 static void loop_unprepare_queue(struct loop_device *lo) 930 { 931 kthread_flush_worker(&lo->worker); 932 kthread_stop(lo->worker_task); 933 } 934 935 static int loop_kthread_worker_fn(void *worker_ptr) 936 { 937 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 938 return kthread_worker_fn(worker_ptr); 939 } 940 941 static int loop_prepare_queue(struct loop_device *lo) 942 { 943 kthread_init_worker(&lo->worker); 944 lo->worker_task = kthread_run(loop_kthread_worker_fn, 945 &lo->worker, "loop%d", lo->lo_number); 946 if (IS_ERR(lo->worker_task)) 947 return -ENOMEM; 948 set_user_nice(lo->worker_task, MIN_NICE); 949 return 0; 950 } 951 952 static void loop_update_rotational(struct loop_device *lo) 953 { 954 struct file *file = lo->lo_backing_file; 955 struct inode *file_inode = file->f_mapping->host; 956 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 957 struct request_queue *q = lo->lo_queue; 958 bool nonrot = true; 959 960 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 961 if (file_bdev) 962 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 963 964 if (nonrot) 965 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 966 else 967 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 968 } 969 970 static int 971 loop_release_xfer(struct loop_device *lo) 972 { 973 int err = 0; 974 struct loop_func_table *xfer = lo->lo_encryption; 975 976 if (xfer) { 977 if (xfer->release) 978 err = xfer->release(lo); 979 lo->transfer = NULL; 980 lo->lo_encryption = NULL; 981 module_put(xfer->owner); 982 } 983 return err; 984 } 985 986 static int 987 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 988 const struct loop_info64 *i) 989 { 990 int err = 0; 991 992 if (xfer) { 993 struct module *owner = xfer->owner; 994 995 if (!try_module_get(owner)) 996 return -EINVAL; 997 if (xfer->init) 998 err = xfer->init(lo, i); 999 if (err) 1000 module_put(owner); 1001 else 1002 lo->lo_encryption = xfer; 1003 } 1004 return err; 1005 } 1006 1007 /** 1008 * loop_set_status_from_info - configure device from loop_info 1009 * @lo: struct loop_device to configure 1010 * @info: struct loop_info64 to configure the device with 1011 * 1012 * Configures the loop device parameters according to the passed 1013 * in loop_info64 configuration. 1014 */ 1015 static int 1016 loop_set_status_from_info(struct loop_device *lo, 1017 const struct loop_info64 *info) 1018 { 1019 int err; 1020 struct loop_func_table *xfer; 1021 kuid_t uid = current_uid(); 1022 1023 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1024 return -EINVAL; 1025 1026 err = loop_release_xfer(lo); 1027 if (err) 1028 return err; 1029 1030 if (info->lo_encrypt_type) { 1031 unsigned int type = info->lo_encrypt_type; 1032 1033 if (type >= MAX_LO_CRYPT) 1034 return -EINVAL; 1035 xfer = xfer_funcs[type]; 1036 if (xfer == NULL) 1037 return -EINVAL; 1038 } else 1039 xfer = NULL; 1040 1041 err = loop_init_xfer(lo, xfer, info); 1042 if (err) 1043 return err; 1044 1045 lo->lo_offset = info->lo_offset; 1046 lo->lo_sizelimit = info->lo_sizelimit; 1047 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1048 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1049 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1050 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1051 1052 if (!xfer) 1053 xfer = &none_funcs; 1054 lo->transfer = xfer->transfer; 1055 lo->ioctl = xfer->ioctl; 1056 1057 lo->lo_flags = info->lo_flags; 1058 1059 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1060 lo->lo_init[0] = info->lo_init[0]; 1061 lo->lo_init[1] = info->lo_init[1]; 1062 if (info->lo_encrypt_key_size) { 1063 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1064 info->lo_encrypt_key_size); 1065 lo->lo_key_owner = uid; 1066 } 1067 1068 return 0; 1069 } 1070 1071 static int loop_configure(struct loop_device *lo, fmode_t mode, 1072 struct block_device *bdev, 1073 const struct loop_config *config) 1074 { 1075 struct file *file; 1076 struct inode *inode; 1077 struct address_space *mapping; 1078 struct block_device *claimed_bdev = NULL; 1079 int error; 1080 loff_t size; 1081 bool partscan; 1082 unsigned short bsize; 1083 1084 /* This is safe, since we have a reference from open(). */ 1085 __module_get(THIS_MODULE); 1086 1087 error = -EBADF; 1088 file = fget(config->fd); 1089 if (!file) 1090 goto out; 1091 1092 /* 1093 * If we don't hold exclusive handle for the device, upgrade to it 1094 * here to avoid changing device under exclusive owner. 1095 */ 1096 if (!(mode & FMODE_EXCL)) { 1097 claimed_bdev = bdev->bd_contains; 1098 error = bd_prepare_to_claim(bdev, claimed_bdev, loop_configure); 1099 if (error) 1100 goto out_putf; 1101 } 1102 1103 error = mutex_lock_killable(&loop_ctl_mutex); 1104 if (error) 1105 goto out_bdev; 1106 1107 error = -EBUSY; 1108 if (lo->lo_state != Lo_unbound) 1109 goto out_unlock; 1110 1111 error = loop_validate_file(file, bdev); 1112 if (error) 1113 goto out_unlock; 1114 1115 mapping = file->f_mapping; 1116 inode = mapping->host; 1117 1118 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1119 error = -EINVAL; 1120 goto out_unlock; 1121 } 1122 1123 if (config->block_size) { 1124 error = loop_validate_block_size(config->block_size); 1125 if (error) 1126 goto out_unlock; 1127 } 1128 1129 error = loop_set_status_from_info(lo, &config->info); 1130 if (error) 1131 goto out_unlock; 1132 1133 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1134 !file->f_op->write_iter) 1135 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1136 1137 error = loop_prepare_queue(lo); 1138 if (error) 1139 goto out_unlock; 1140 1141 set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1142 1143 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1144 lo->lo_device = bdev; 1145 lo->lo_backing_file = file; 1146 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1147 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1148 1149 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1150 blk_queue_write_cache(lo->lo_queue, true, false); 1151 1152 if (config->block_size) 1153 bsize = config->block_size; 1154 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1155 /* In case of direct I/O, match underlying block size */ 1156 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1157 else 1158 bsize = 512; 1159 1160 blk_queue_logical_block_size(lo->lo_queue, bsize); 1161 blk_queue_physical_block_size(lo->lo_queue, bsize); 1162 blk_queue_io_min(lo->lo_queue, bsize); 1163 1164 loop_update_rotational(lo); 1165 loop_update_dio(lo); 1166 loop_sysfs_init(lo); 1167 1168 size = get_loop_size(lo, file); 1169 loop_set_size(lo, size); 1170 1171 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1172 block_size(inode->i_bdev) : PAGE_SIZE); 1173 1174 lo->lo_state = Lo_bound; 1175 if (part_shift) 1176 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1177 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1178 if (partscan) 1179 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1180 1181 /* Grab the block_device to prevent its destruction after we 1182 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1183 */ 1184 bdgrab(bdev); 1185 mutex_unlock(&loop_ctl_mutex); 1186 if (partscan) 1187 loop_reread_partitions(lo, bdev); 1188 if (claimed_bdev) 1189 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1190 return 0; 1191 1192 out_unlock: 1193 mutex_unlock(&loop_ctl_mutex); 1194 out_bdev: 1195 if (claimed_bdev) 1196 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1197 out_putf: 1198 fput(file); 1199 out: 1200 /* This is safe: open() is still holding a reference. */ 1201 module_put(THIS_MODULE); 1202 return error; 1203 } 1204 1205 static int __loop_clr_fd(struct loop_device *lo, bool release) 1206 { 1207 struct file *filp = NULL; 1208 gfp_t gfp = lo->old_gfp_mask; 1209 struct block_device *bdev = lo->lo_device; 1210 int err = 0; 1211 bool partscan = false; 1212 int lo_number; 1213 1214 mutex_lock(&loop_ctl_mutex); 1215 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1216 err = -ENXIO; 1217 goto out_unlock; 1218 } 1219 1220 filp = lo->lo_backing_file; 1221 if (filp == NULL) { 1222 err = -EINVAL; 1223 goto out_unlock; 1224 } 1225 1226 /* freeze request queue during the transition */ 1227 blk_mq_freeze_queue(lo->lo_queue); 1228 1229 spin_lock_irq(&lo->lo_lock); 1230 lo->lo_backing_file = NULL; 1231 spin_unlock_irq(&lo->lo_lock); 1232 1233 loop_release_xfer(lo); 1234 lo->transfer = NULL; 1235 lo->ioctl = NULL; 1236 lo->lo_device = NULL; 1237 lo->lo_encryption = NULL; 1238 lo->lo_offset = 0; 1239 lo->lo_sizelimit = 0; 1240 lo->lo_encrypt_key_size = 0; 1241 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1242 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1243 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1244 blk_queue_logical_block_size(lo->lo_queue, 512); 1245 blk_queue_physical_block_size(lo->lo_queue, 512); 1246 blk_queue_io_min(lo->lo_queue, 512); 1247 if (bdev) { 1248 bdput(bdev); 1249 invalidate_bdev(bdev); 1250 bdev->bd_inode->i_mapping->wb_err = 0; 1251 } 1252 set_capacity(lo->lo_disk, 0); 1253 loop_sysfs_exit(lo); 1254 if (bdev) { 1255 bd_set_nr_sectors(bdev, 0); 1256 /* let user-space know about this change */ 1257 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1258 } 1259 mapping_set_gfp_mask(filp->f_mapping, gfp); 1260 /* This is safe: open() is still holding a reference. */ 1261 module_put(THIS_MODULE); 1262 blk_mq_unfreeze_queue(lo->lo_queue); 1263 1264 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1265 lo_number = lo->lo_number; 1266 loop_unprepare_queue(lo); 1267 out_unlock: 1268 mutex_unlock(&loop_ctl_mutex); 1269 if (partscan) { 1270 /* 1271 * bd_mutex has been held already in release path, so don't 1272 * acquire it if this function is called in such case. 1273 * 1274 * If the reread partition isn't from release path, lo_refcnt 1275 * must be at least one and it can only become zero when the 1276 * current holder is released. 1277 */ 1278 if (!release) 1279 mutex_lock(&bdev->bd_mutex); 1280 err = bdev_disk_changed(bdev, false); 1281 if (!release) 1282 mutex_unlock(&bdev->bd_mutex); 1283 if (err) 1284 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1285 __func__, lo_number, err); 1286 /* Device is gone, no point in returning error */ 1287 err = 0; 1288 } 1289 1290 /* 1291 * lo->lo_state is set to Lo_unbound here after above partscan has 1292 * finished. 1293 * 1294 * There cannot be anybody else entering __loop_clr_fd() as 1295 * lo->lo_backing_file is already cleared and Lo_rundown state 1296 * protects us from all the other places trying to change the 'lo' 1297 * device. 1298 */ 1299 mutex_lock(&loop_ctl_mutex); 1300 lo->lo_flags = 0; 1301 if (!part_shift) 1302 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1303 lo->lo_state = Lo_unbound; 1304 mutex_unlock(&loop_ctl_mutex); 1305 1306 /* 1307 * Need not hold loop_ctl_mutex to fput backing file. 1308 * Calling fput holding loop_ctl_mutex triggers a circular 1309 * lock dependency possibility warning as fput can take 1310 * bd_mutex which is usually taken before loop_ctl_mutex. 1311 */ 1312 if (filp) 1313 fput(filp); 1314 return err; 1315 } 1316 1317 static int loop_clr_fd(struct loop_device *lo) 1318 { 1319 int err; 1320 1321 err = mutex_lock_killable(&loop_ctl_mutex); 1322 if (err) 1323 return err; 1324 if (lo->lo_state != Lo_bound) { 1325 mutex_unlock(&loop_ctl_mutex); 1326 return -ENXIO; 1327 } 1328 /* 1329 * If we've explicitly asked to tear down the loop device, 1330 * and it has an elevated reference count, set it for auto-teardown when 1331 * the last reference goes away. This stops $!~#$@ udev from 1332 * preventing teardown because it decided that it needs to run blkid on 1333 * the loopback device whenever they appear. xfstests is notorious for 1334 * failing tests because blkid via udev races with a losetup 1335 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1336 * command to fail with EBUSY. 1337 */ 1338 if (atomic_read(&lo->lo_refcnt) > 1) { 1339 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1340 mutex_unlock(&loop_ctl_mutex); 1341 return 0; 1342 } 1343 lo->lo_state = Lo_rundown; 1344 mutex_unlock(&loop_ctl_mutex); 1345 1346 return __loop_clr_fd(lo, false); 1347 } 1348 1349 static int 1350 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1351 { 1352 int err; 1353 struct block_device *bdev; 1354 kuid_t uid = current_uid(); 1355 int prev_lo_flags; 1356 bool partscan = false; 1357 bool size_changed = false; 1358 1359 err = mutex_lock_killable(&loop_ctl_mutex); 1360 if (err) 1361 return err; 1362 if (lo->lo_encrypt_key_size && 1363 !uid_eq(lo->lo_key_owner, uid) && 1364 !capable(CAP_SYS_ADMIN)) { 1365 err = -EPERM; 1366 goto out_unlock; 1367 } 1368 if (lo->lo_state != Lo_bound) { 1369 err = -ENXIO; 1370 goto out_unlock; 1371 } 1372 1373 if (lo->lo_offset != info->lo_offset || 1374 lo->lo_sizelimit != info->lo_sizelimit) { 1375 size_changed = true; 1376 sync_blockdev(lo->lo_device); 1377 invalidate_bdev(lo->lo_device); 1378 } 1379 1380 /* I/O need to be drained during transfer transition */ 1381 blk_mq_freeze_queue(lo->lo_queue); 1382 1383 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1384 /* If any pages were dirtied after invalidate_bdev(), try again */ 1385 err = -EAGAIN; 1386 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1387 __func__, lo->lo_number, lo->lo_file_name, 1388 lo->lo_device->bd_inode->i_mapping->nrpages); 1389 goto out_unfreeze; 1390 } 1391 1392 prev_lo_flags = lo->lo_flags; 1393 1394 err = loop_set_status_from_info(lo, info); 1395 if (err) 1396 goto out_unfreeze; 1397 1398 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1399 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1400 /* For those flags, use the previous values instead */ 1401 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1402 /* For flags that can't be cleared, use previous values too */ 1403 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1404 1405 if (size_changed) { 1406 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1407 lo->lo_backing_file); 1408 loop_set_size(lo, new_size); 1409 } 1410 1411 loop_config_discard(lo); 1412 1413 /* update dio if lo_offset or transfer is changed */ 1414 __loop_update_dio(lo, lo->use_dio); 1415 1416 out_unfreeze: 1417 blk_mq_unfreeze_queue(lo->lo_queue); 1418 1419 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1420 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1421 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1422 bdev = lo->lo_device; 1423 partscan = true; 1424 } 1425 out_unlock: 1426 mutex_unlock(&loop_ctl_mutex); 1427 if (partscan) 1428 loop_reread_partitions(lo, bdev); 1429 1430 return err; 1431 } 1432 1433 static int 1434 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1435 { 1436 struct path path; 1437 struct kstat stat; 1438 int ret; 1439 1440 ret = mutex_lock_killable(&loop_ctl_mutex); 1441 if (ret) 1442 return ret; 1443 if (lo->lo_state != Lo_bound) { 1444 mutex_unlock(&loop_ctl_mutex); 1445 return -ENXIO; 1446 } 1447 1448 memset(info, 0, sizeof(*info)); 1449 info->lo_number = lo->lo_number; 1450 info->lo_offset = lo->lo_offset; 1451 info->lo_sizelimit = lo->lo_sizelimit; 1452 info->lo_flags = lo->lo_flags; 1453 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1454 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1455 info->lo_encrypt_type = 1456 lo->lo_encryption ? lo->lo_encryption->number : 0; 1457 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1458 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1459 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1460 lo->lo_encrypt_key_size); 1461 } 1462 1463 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1464 path = lo->lo_backing_file->f_path; 1465 path_get(&path); 1466 mutex_unlock(&loop_ctl_mutex); 1467 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1468 if (!ret) { 1469 info->lo_device = huge_encode_dev(stat.dev); 1470 info->lo_inode = stat.ino; 1471 info->lo_rdevice = huge_encode_dev(stat.rdev); 1472 } 1473 path_put(&path); 1474 return ret; 1475 } 1476 1477 static void 1478 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1479 { 1480 memset(info64, 0, sizeof(*info64)); 1481 info64->lo_number = info->lo_number; 1482 info64->lo_device = info->lo_device; 1483 info64->lo_inode = info->lo_inode; 1484 info64->lo_rdevice = info->lo_rdevice; 1485 info64->lo_offset = info->lo_offset; 1486 info64->lo_sizelimit = 0; 1487 info64->lo_encrypt_type = info->lo_encrypt_type; 1488 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1489 info64->lo_flags = info->lo_flags; 1490 info64->lo_init[0] = info->lo_init[0]; 1491 info64->lo_init[1] = info->lo_init[1]; 1492 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1493 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1494 else 1495 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1496 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1497 } 1498 1499 static int 1500 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1501 { 1502 memset(info, 0, sizeof(*info)); 1503 info->lo_number = info64->lo_number; 1504 info->lo_device = info64->lo_device; 1505 info->lo_inode = info64->lo_inode; 1506 info->lo_rdevice = info64->lo_rdevice; 1507 info->lo_offset = info64->lo_offset; 1508 info->lo_encrypt_type = info64->lo_encrypt_type; 1509 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1510 info->lo_flags = info64->lo_flags; 1511 info->lo_init[0] = info64->lo_init[0]; 1512 info->lo_init[1] = info64->lo_init[1]; 1513 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1514 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1515 else 1516 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1517 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1518 1519 /* error in case values were truncated */ 1520 if (info->lo_device != info64->lo_device || 1521 info->lo_rdevice != info64->lo_rdevice || 1522 info->lo_inode != info64->lo_inode || 1523 info->lo_offset != info64->lo_offset) 1524 return -EOVERFLOW; 1525 1526 return 0; 1527 } 1528 1529 static int 1530 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1531 { 1532 struct loop_info info; 1533 struct loop_info64 info64; 1534 1535 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1536 return -EFAULT; 1537 loop_info64_from_old(&info, &info64); 1538 return loop_set_status(lo, &info64); 1539 } 1540 1541 static int 1542 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1543 { 1544 struct loop_info64 info64; 1545 1546 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1547 return -EFAULT; 1548 return loop_set_status(lo, &info64); 1549 } 1550 1551 static int 1552 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1553 struct loop_info info; 1554 struct loop_info64 info64; 1555 int err; 1556 1557 if (!arg) 1558 return -EINVAL; 1559 err = loop_get_status(lo, &info64); 1560 if (!err) 1561 err = loop_info64_to_old(&info64, &info); 1562 if (!err && copy_to_user(arg, &info, sizeof(info))) 1563 err = -EFAULT; 1564 1565 return err; 1566 } 1567 1568 static int 1569 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1570 struct loop_info64 info64; 1571 int err; 1572 1573 if (!arg) 1574 return -EINVAL; 1575 err = loop_get_status(lo, &info64); 1576 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1577 err = -EFAULT; 1578 1579 return err; 1580 } 1581 1582 static int loop_set_capacity(struct loop_device *lo) 1583 { 1584 loff_t size; 1585 1586 if (unlikely(lo->lo_state != Lo_bound)) 1587 return -ENXIO; 1588 1589 size = get_loop_size(lo, lo->lo_backing_file); 1590 loop_set_size(lo, size); 1591 1592 return 0; 1593 } 1594 1595 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1596 { 1597 int error = -ENXIO; 1598 if (lo->lo_state != Lo_bound) 1599 goto out; 1600 1601 __loop_update_dio(lo, !!arg); 1602 if (lo->use_dio == !!arg) 1603 return 0; 1604 error = -EINVAL; 1605 out: 1606 return error; 1607 } 1608 1609 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1610 { 1611 int err = 0; 1612 1613 if (lo->lo_state != Lo_bound) 1614 return -ENXIO; 1615 1616 err = loop_validate_block_size(arg); 1617 if (err) 1618 return err; 1619 1620 if (lo->lo_queue->limits.logical_block_size == arg) 1621 return 0; 1622 1623 sync_blockdev(lo->lo_device); 1624 invalidate_bdev(lo->lo_device); 1625 1626 blk_mq_freeze_queue(lo->lo_queue); 1627 1628 /* invalidate_bdev should have truncated all the pages */ 1629 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1630 err = -EAGAIN; 1631 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1632 __func__, lo->lo_number, lo->lo_file_name, 1633 lo->lo_device->bd_inode->i_mapping->nrpages); 1634 goto out_unfreeze; 1635 } 1636 1637 blk_queue_logical_block_size(lo->lo_queue, arg); 1638 blk_queue_physical_block_size(lo->lo_queue, arg); 1639 blk_queue_io_min(lo->lo_queue, arg); 1640 loop_update_dio(lo); 1641 out_unfreeze: 1642 blk_mq_unfreeze_queue(lo->lo_queue); 1643 1644 return err; 1645 } 1646 1647 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1648 unsigned long arg) 1649 { 1650 int err; 1651 1652 err = mutex_lock_killable(&loop_ctl_mutex); 1653 if (err) 1654 return err; 1655 switch (cmd) { 1656 case LOOP_SET_CAPACITY: 1657 err = loop_set_capacity(lo); 1658 break; 1659 case LOOP_SET_DIRECT_IO: 1660 err = loop_set_dio(lo, arg); 1661 break; 1662 case LOOP_SET_BLOCK_SIZE: 1663 err = loop_set_block_size(lo, arg); 1664 break; 1665 default: 1666 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1667 } 1668 mutex_unlock(&loop_ctl_mutex); 1669 return err; 1670 } 1671 1672 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1673 unsigned int cmd, unsigned long arg) 1674 { 1675 struct loop_device *lo = bdev->bd_disk->private_data; 1676 void __user *argp = (void __user *) arg; 1677 int err; 1678 1679 switch (cmd) { 1680 case LOOP_SET_FD: { 1681 /* 1682 * Legacy case - pass in a zeroed out struct loop_config with 1683 * only the file descriptor set , which corresponds with the 1684 * default parameters we'd have used otherwise. 1685 */ 1686 struct loop_config config; 1687 1688 memset(&config, 0, sizeof(config)); 1689 config.fd = arg; 1690 1691 return loop_configure(lo, mode, bdev, &config); 1692 } 1693 case LOOP_CONFIGURE: { 1694 struct loop_config config; 1695 1696 if (copy_from_user(&config, argp, sizeof(config))) 1697 return -EFAULT; 1698 1699 return loop_configure(lo, mode, bdev, &config); 1700 } 1701 case LOOP_CHANGE_FD: 1702 return loop_change_fd(lo, bdev, arg); 1703 case LOOP_CLR_FD: 1704 return loop_clr_fd(lo); 1705 case LOOP_SET_STATUS: 1706 err = -EPERM; 1707 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1708 err = loop_set_status_old(lo, argp); 1709 } 1710 break; 1711 case LOOP_GET_STATUS: 1712 return loop_get_status_old(lo, argp); 1713 case LOOP_SET_STATUS64: 1714 err = -EPERM; 1715 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1716 err = loop_set_status64(lo, argp); 1717 } 1718 break; 1719 case LOOP_GET_STATUS64: 1720 return loop_get_status64(lo, argp); 1721 case LOOP_SET_CAPACITY: 1722 case LOOP_SET_DIRECT_IO: 1723 case LOOP_SET_BLOCK_SIZE: 1724 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1725 return -EPERM; 1726 fallthrough; 1727 default: 1728 err = lo_simple_ioctl(lo, cmd, arg); 1729 break; 1730 } 1731 1732 return err; 1733 } 1734 1735 #ifdef CONFIG_COMPAT 1736 struct compat_loop_info { 1737 compat_int_t lo_number; /* ioctl r/o */ 1738 compat_dev_t lo_device; /* ioctl r/o */ 1739 compat_ulong_t lo_inode; /* ioctl r/o */ 1740 compat_dev_t lo_rdevice; /* ioctl r/o */ 1741 compat_int_t lo_offset; 1742 compat_int_t lo_encrypt_type; 1743 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1744 compat_int_t lo_flags; /* ioctl r/o */ 1745 char lo_name[LO_NAME_SIZE]; 1746 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1747 compat_ulong_t lo_init[2]; 1748 char reserved[4]; 1749 }; 1750 1751 /* 1752 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1753 * - noinlined to reduce stack space usage in main part of driver 1754 */ 1755 static noinline int 1756 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1757 struct loop_info64 *info64) 1758 { 1759 struct compat_loop_info info; 1760 1761 if (copy_from_user(&info, arg, sizeof(info))) 1762 return -EFAULT; 1763 1764 memset(info64, 0, sizeof(*info64)); 1765 info64->lo_number = info.lo_number; 1766 info64->lo_device = info.lo_device; 1767 info64->lo_inode = info.lo_inode; 1768 info64->lo_rdevice = info.lo_rdevice; 1769 info64->lo_offset = info.lo_offset; 1770 info64->lo_sizelimit = 0; 1771 info64->lo_encrypt_type = info.lo_encrypt_type; 1772 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1773 info64->lo_flags = info.lo_flags; 1774 info64->lo_init[0] = info.lo_init[0]; 1775 info64->lo_init[1] = info.lo_init[1]; 1776 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1777 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1778 else 1779 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1780 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1781 return 0; 1782 } 1783 1784 /* 1785 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1786 * - noinlined to reduce stack space usage in main part of driver 1787 */ 1788 static noinline int 1789 loop_info64_to_compat(const struct loop_info64 *info64, 1790 struct compat_loop_info __user *arg) 1791 { 1792 struct compat_loop_info info; 1793 1794 memset(&info, 0, sizeof(info)); 1795 info.lo_number = info64->lo_number; 1796 info.lo_device = info64->lo_device; 1797 info.lo_inode = info64->lo_inode; 1798 info.lo_rdevice = info64->lo_rdevice; 1799 info.lo_offset = info64->lo_offset; 1800 info.lo_encrypt_type = info64->lo_encrypt_type; 1801 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1802 info.lo_flags = info64->lo_flags; 1803 info.lo_init[0] = info64->lo_init[0]; 1804 info.lo_init[1] = info64->lo_init[1]; 1805 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1806 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1807 else 1808 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1809 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1810 1811 /* error in case values were truncated */ 1812 if (info.lo_device != info64->lo_device || 1813 info.lo_rdevice != info64->lo_rdevice || 1814 info.lo_inode != info64->lo_inode || 1815 info.lo_offset != info64->lo_offset || 1816 info.lo_init[0] != info64->lo_init[0] || 1817 info.lo_init[1] != info64->lo_init[1]) 1818 return -EOVERFLOW; 1819 1820 if (copy_to_user(arg, &info, sizeof(info))) 1821 return -EFAULT; 1822 return 0; 1823 } 1824 1825 static int 1826 loop_set_status_compat(struct loop_device *lo, 1827 const struct compat_loop_info __user *arg) 1828 { 1829 struct loop_info64 info64; 1830 int ret; 1831 1832 ret = loop_info64_from_compat(arg, &info64); 1833 if (ret < 0) 1834 return ret; 1835 return loop_set_status(lo, &info64); 1836 } 1837 1838 static int 1839 loop_get_status_compat(struct loop_device *lo, 1840 struct compat_loop_info __user *arg) 1841 { 1842 struct loop_info64 info64; 1843 int err; 1844 1845 if (!arg) 1846 return -EINVAL; 1847 err = loop_get_status(lo, &info64); 1848 if (!err) 1849 err = loop_info64_to_compat(&info64, arg); 1850 return err; 1851 } 1852 1853 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1854 unsigned int cmd, unsigned long arg) 1855 { 1856 struct loop_device *lo = bdev->bd_disk->private_data; 1857 int err; 1858 1859 switch(cmd) { 1860 case LOOP_SET_STATUS: 1861 err = loop_set_status_compat(lo, 1862 (const struct compat_loop_info __user *)arg); 1863 break; 1864 case LOOP_GET_STATUS: 1865 err = loop_get_status_compat(lo, 1866 (struct compat_loop_info __user *)arg); 1867 break; 1868 case LOOP_SET_CAPACITY: 1869 case LOOP_CLR_FD: 1870 case LOOP_GET_STATUS64: 1871 case LOOP_SET_STATUS64: 1872 case LOOP_CONFIGURE: 1873 arg = (unsigned long) compat_ptr(arg); 1874 fallthrough; 1875 case LOOP_SET_FD: 1876 case LOOP_CHANGE_FD: 1877 case LOOP_SET_BLOCK_SIZE: 1878 case LOOP_SET_DIRECT_IO: 1879 err = lo_ioctl(bdev, mode, cmd, arg); 1880 break; 1881 default: 1882 err = -ENOIOCTLCMD; 1883 break; 1884 } 1885 return err; 1886 } 1887 #endif 1888 1889 static int lo_open(struct block_device *bdev, fmode_t mode) 1890 { 1891 struct loop_device *lo; 1892 int err; 1893 1894 err = mutex_lock_killable(&loop_ctl_mutex); 1895 if (err) 1896 return err; 1897 lo = bdev->bd_disk->private_data; 1898 if (!lo) { 1899 err = -ENXIO; 1900 goto out; 1901 } 1902 1903 atomic_inc(&lo->lo_refcnt); 1904 out: 1905 mutex_unlock(&loop_ctl_mutex); 1906 return err; 1907 } 1908 1909 static void lo_release(struct gendisk *disk, fmode_t mode) 1910 { 1911 struct loop_device *lo; 1912 1913 mutex_lock(&loop_ctl_mutex); 1914 lo = disk->private_data; 1915 if (atomic_dec_return(&lo->lo_refcnt)) 1916 goto out_unlock; 1917 1918 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1919 if (lo->lo_state != Lo_bound) 1920 goto out_unlock; 1921 lo->lo_state = Lo_rundown; 1922 mutex_unlock(&loop_ctl_mutex); 1923 /* 1924 * In autoclear mode, stop the loop thread 1925 * and remove configuration after last close. 1926 */ 1927 __loop_clr_fd(lo, true); 1928 return; 1929 } else if (lo->lo_state == Lo_bound) { 1930 /* 1931 * Otherwise keep thread (if running) and config, 1932 * but flush possible ongoing bios in thread. 1933 */ 1934 blk_mq_freeze_queue(lo->lo_queue); 1935 blk_mq_unfreeze_queue(lo->lo_queue); 1936 } 1937 1938 out_unlock: 1939 mutex_unlock(&loop_ctl_mutex); 1940 } 1941 1942 static const struct block_device_operations lo_fops = { 1943 .owner = THIS_MODULE, 1944 .open = lo_open, 1945 .release = lo_release, 1946 .ioctl = lo_ioctl, 1947 #ifdef CONFIG_COMPAT 1948 .compat_ioctl = lo_compat_ioctl, 1949 #endif 1950 }; 1951 1952 /* 1953 * And now the modules code and kernel interface. 1954 */ 1955 static int max_loop; 1956 module_param(max_loop, int, 0444); 1957 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1958 module_param(max_part, int, 0444); 1959 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1960 MODULE_LICENSE("GPL"); 1961 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1962 1963 int loop_register_transfer(struct loop_func_table *funcs) 1964 { 1965 unsigned int n = funcs->number; 1966 1967 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1968 return -EINVAL; 1969 xfer_funcs[n] = funcs; 1970 return 0; 1971 } 1972 1973 static int unregister_transfer_cb(int id, void *ptr, void *data) 1974 { 1975 struct loop_device *lo = ptr; 1976 struct loop_func_table *xfer = data; 1977 1978 mutex_lock(&loop_ctl_mutex); 1979 if (lo->lo_encryption == xfer) 1980 loop_release_xfer(lo); 1981 mutex_unlock(&loop_ctl_mutex); 1982 return 0; 1983 } 1984 1985 int loop_unregister_transfer(int number) 1986 { 1987 unsigned int n = number; 1988 struct loop_func_table *xfer; 1989 1990 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1991 return -EINVAL; 1992 1993 xfer_funcs[n] = NULL; 1994 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1995 return 0; 1996 } 1997 1998 EXPORT_SYMBOL(loop_register_transfer); 1999 EXPORT_SYMBOL(loop_unregister_transfer); 2000 2001 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 2002 const struct blk_mq_queue_data *bd) 2003 { 2004 struct request *rq = bd->rq; 2005 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2006 struct loop_device *lo = rq->q->queuedata; 2007 2008 blk_mq_start_request(rq); 2009 2010 if (lo->lo_state != Lo_bound) 2011 return BLK_STS_IOERR; 2012 2013 switch (req_op(rq)) { 2014 case REQ_OP_FLUSH: 2015 case REQ_OP_DISCARD: 2016 case REQ_OP_WRITE_ZEROES: 2017 cmd->use_aio = false; 2018 break; 2019 default: 2020 cmd->use_aio = lo->use_dio; 2021 break; 2022 } 2023 2024 /* always use the first bio's css */ 2025 #ifdef CONFIG_BLK_CGROUP 2026 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 2027 cmd->css = &bio_blkcg(rq->bio)->css; 2028 css_get(cmd->css); 2029 } else 2030 #endif 2031 cmd->css = NULL; 2032 kthread_queue_work(&lo->worker, &cmd->work); 2033 2034 return BLK_STS_OK; 2035 } 2036 2037 static void loop_handle_cmd(struct loop_cmd *cmd) 2038 { 2039 struct request *rq = blk_mq_rq_from_pdu(cmd); 2040 const bool write = op_is_write(req_op(rq)); 2041 struct loop_device *lo = rq->q->queuedata; 2042 int ret = 0; 2043 2044 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 2045 ret = -EIO; 2046 goto failed; 2047 } 2048 2049 ret = do_req_filebacked(lo, rq); 2050 failed: 2051 /* complete non-aio request */ 2052 if (!cmd->use_aio || ret) { 2053 if (ret == -EOPNOTSUPP) 2054 cmd->ret = ret; 2055 else 2056 cmd->ret = ret ? -EIO : 0; 2057 if (likely(!blk_should_fake_timeout(rq->q))) 2058 blk_mq_complete_request(rq); 2059 } 2060 } 2061 2062 static void loop_queue_work(struct kthread_work *work) 2063 { 2064 struct loop_cmd *cmd = 2065 container_of(work, struct loop_cmd, work); 2066 2067 loop_handle_cmd(cmd); 2068 } 2069 2070 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 2071 unsigned int hctx_idx, unsigned int numa_node) 2072 { 2073 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2074 2075 kthread_init_work(&cmd->work, loop_queue_work); 2076 return 0; 2077 } 2078 2079 static const struct blk_mq_ops loop_mq_ops = { 2080 .queue_rq = loop_queue_rq, 2081 .init_request = loop_init_request, 2082 .complete = lo_complete_rq, 2083 }; 2084 2085 static int loop_add(struct loop_device **l, int i) 2086 { 2087 struct loop_device *lo; 2088 struct gendisk *disk; 2089 int err; 2090 2091 err = -ENOMEM; 2092 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2093 if (!lo) 2094 goto out; 2095 2096 lo->lo_state = Lo_unbound; 2097 2098 /* allocate id, if @id >= 0, we're requesting that specific id */ 2099 if (i >= 0) { 2100 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2101 if (err == -ENOSPC) 2102 err = -EEXIST; 2103 } else { 2104 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2105 } 2106 if (err < 0) 2107 goto out_free_dev; 2108 i = err; 2109 2110 err = -ENOMEM; 2111 lo->tag_set.ops = &loop_mq_ops; 2112 lo->tag_set.nr_hw_queues = 1; 2113 lo->tag_set.queue_depth = 128; 2114 lo->tag_set.numa_node = NUMA_NO_NODE; 2115 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2116 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING; 2117 lo->tag_set.driver_data = lo; 2118 2119 err = blk_mq_alloc_tag_set(&lo->tag_set); 2120 if (err) 2121 goto out_free_idr; 2122 2123 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2124 if (IS_ERR(lo->lo_queue)) { 2125 err = PTR_ERR(lo->lo_queue); 2126 goto out_cleanup_tags; 2127 } 2128 lo->lo_queue->queuedata = lo; 2129 2130 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2131 2132 /* 2133 * By default, we do buffer IO, so it doesn't make sense to enable 2134 * merge because the I/O submitted to backing file is handled page by 2135 * page. For directio mode, merge does help to dispatch bigger request 2136 * to underlayer disk. We will enable merge once directio is enabled. 2137 */ 2138 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2139 2140 err = -ENOMEM; 2141 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2142 if (!disk) 2143 goto out_free_queue; 2144 2145 /* 2146 * Disable partition scanning by default. The in-kernel partition 2147 * scanning can be requested individually per-device during its 2148 * setup. Userspace can always add and remove partitions from all 2149 * devices. The needed partition minors are allocated from the 2150 * extended minor space, the main loop device numbers will continue 2151 * to match the loop minors, regardless of the number of partitions 2152 * used. 2153 * 2154 * If max_part is given, partition scanning is globally enabled for 2155 * all loop devices. The minors for the main loop devices will be 2156 * multiples of max_part. 2157 * 2158 * Note: Global-for-all-devices, set-only-at-init, read-only module 2159 * parameteters like 'max_loop' and 'max_part' make things needlessly 2160 * complicated, are too static, inflexible and may surprise 2161 * userspace tools. Parameters like this in general should be avoided. 2162 */ 2163 if (!part_shift) 2164 disk->flags |= GENHD_FL_NO_PART_SCAN; 2165 disk->flags |= GENHD_FL_EXT_DEVT; 2166 atomic_set(&lo->lo_refcnt, 0); 2167 lo->lo_number = i; 2168 spin_lock_init(&lo->lo_lock); 2169 disk->major = LOOP_MAJOR; 2170 disk->first_minor = i << part_shift; 2171 disk->fops = &lo_fops; 2172 disk->private_data = lo; 2173 disk->queue = lo->lo_queue; 2174 sprintf(disk->disk_name, "loop%d", i); 2175 add_disk(disk); 2176 *l = lo; 2177 return lo->lo_number; 2178 2179 out_free_queue: 2180 blk_cleanup_queue(lo->lo_queue); 2181 out_cleanup_tags: 2182 blk_mq_free_tag_set(&lo->tag_set); 2183 out_free_idr: 2184 idr_remove(&loop_index_idr, i); 2185 out_free_dev: 2186 kfree(lo); 2187 out: 2188 return err; 2189 } 2190 2191 static void loop_remove(struct loop_device *lo) 2192 { 2193 del_gendisk(lo->lo_disk); 2194 blk_cleanup_queue(lo->lo_queue); 2195 blk_mq_free_tag_set(&lo->tag_set); 2196 put_disk(lo->lo_disk); 2197 kfree(lo); 2198 } 2199 2200 static int find_free_cb(int id, void *ptr, void *data) 2201 { 2202 struct loop_device *lo = ptr; 2203 struct loop_device **l = data; 2204 2205 if (lo->lo_state == Lo_unbound) { 2206 *l = lo; 2207 return 1; 2208 } 2209 return 0; 2210 } 2211 2212 static int loop_lookup(struct loop_device **l, int i) 2213 { 2214 struct loop_device *lo; 2215 int ret = -ENODEV; 2216 2217 if (i < 0) { 2218 int err; 2219 2220 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2221 if (err == 1) { 2222 *l = lo; 2223 ret = lo->lo_number; 2224 } 2225 goto out; 2226 } 2227 2228 /* lookup and return a specific i */ 2229 lo = idr_find(&loop_index_idr, i); 2230 if (lo) { 2231 *l = lo; 2232 ret = lo->lo_number; 2233 } 2234 out: 2235 return ret; 2236 } 2237 2238 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2239 { 2240 struct loop_device *lo; 2241 struct kobject *kobj; 2242 int err; 2243 2244 mutex_lock(&loop_ctl_mutex); 2245 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2246 if (err < 0) 2247 err = loop_add(&lo, MINOR(dev) >> part_shift); 2248 if (err < 0) 2249 kobj = NULL; 2250 else 2251 kobj = get_disk_and_module(lo->lo_disk); 2252 mutex_unlock(&loop_ctl_mutex); 2253 2254 *part = 0; 2255 return kobj; 2256 } 2257 2258 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2259 unsigned long parm) 2260 { 2261 struct loop_device *lo; 2262 int ret; 2263 2264 ret = mutex_lock_killable(&loop_ctl_mutex); 2265 if (ret) 2266 return ret; 2267 2268 ret = -ENOSYS; 2269 switch (cmd) { 2270 case LOOP_CTL_ADD: 2271 ret = loop_lookup(&lo, parm); 2272 if (ret >= 0) { 2273 ret = -EEXIST; 2274 break; 2275 } 2276 ret = loop_add(&lo, parm); 2277 break; 2278 case LOOP_CTL_REMOVE: 2279 ret = loop_lookup(&lo, parm); 2280 if (ret < 0) 2281 break; 2282 if (lo->lo_state != Lo_unbound) { 2283 ret = -EBUSY; 2284 break; 2285 } 2286 if (atomic_read(&lo->lo_refcnt) > 0) { 2287 ret = -EBUSY; 2288 break; 2289 } 2290 lo->lo_disk->private_data = NULL; 2291 idr_remove(&loop_index_idr, lo->lo_number); 2292 loop_remove(lo); 2293 break; 2294 case LOOP_CTL_GET_FREE: 2295 ret = loop_lookup(&lo, -1); 2296 if (ret >= 0) 2297 break; 2298 ret = loop_add(&lo, -1); 2299 } 2300 mutex_unlock(&loop_ctl_mutex); 2301 2302 return ret; 2303 } 2304 2305 static const struct file_operations loop_ctl_fops = { 2306 .open = nonseekable_open, 2307 .unlocked_ioctl = loop_control_ioctl, 2308 .compat_ioctl = loop_control_ioctl, 2309 .owner = THIS_MODULE, 2310 .llseek = noop_llseek, 2311 }; 2312 2313 static struct miscdevice loop_misc = { 2314 .minor = LOOP_CTRL_MINOR, 2315 .name = "loop-control", 2316 .fops = &loop_ctl_fops, 2317 }; 2318 2319 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2320 MODULE_ALIAS("devname:loop-control"); 2321 2322 static int __init loop_init(void) 2323 { 2324 int i, nr; 2325 unsigned long range; 2326 struct loop_device *lo; 2327 int err; 2328 2329 part_shift = 0; 2330 if (max_part > 0) { 2331 part_shift = fls(max_part); 2332 2333 /* 2334 * Adjust max_part according to part_shift as it is exported 2335 * to user space so that user can decide correct minor number 2336 * if [s]he want to create more devices. 2337 * 2338 * Note that -1 is required because partition 0 is reserved 2339 * for the whole disk. 2340 */ 2341 max_part = (1UL << part_shift) - 1; 2342 } 2343 2344 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2345 err = -EINVAL; 2346 goto err_out; 2347 } 2348 2349 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2350 err = -EINVAL; 2351 goto err_out; 2352 } 2353 2354 /* 2355 * If max_loop is specified, create that many devices upfront. 2356 * This also becomes a hard limit. If max_loop is not specified, 2357 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2358 * init time. Loop devices can be requested on-demand with the 2359 * /dev/loop-control interface, or be instantiated by accessing 2360 * a 'dead' device node. 2361 */ 2362 if (max_loop) { 2363 nr = max_loop; 2364 range = max_loop << part_shift; 2365 } else { 2366 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2367 range = 1UL << MINORBITS; 2368 } 2369 2370 err = misc_register(&loop_misc); 2371 if (err < 0) 2372 goto err_out; 2373 2374 2375 if (register_blkdev(LOOP_MAJOR, "loop")) { 2376 err = -EIO; 2377 goto misc_out; 2378 } 2379 2380 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2381 THIS_MODULE, loop_probe, NULL, NULL); 2382 2383 /* pre-create number of devices given by config or max_loop */ 2384 mutex_lock(&loop_ctl_mutex); 2385 for (i = 0; i < nr; i++) 2386 loop_add(&lo, i); 2387 mutex_unlock(&loop_ctl_mutex); 2388 2389 printk(KERN_INFO "loop: module loaded\n"); 2390 return 0; 2391 2392 misc_out: 2393 misc_deregister(&loop_misc); 2394 err_out: 2395 return err; 2396 } 2397 2398 static int loop_exit_cb(int id, void *ptr, void *data) 2399 { 2400 struct loop_device *lo = ptr; 2401 2402 loop_remove(lo); 2403 return 0; 2404 } 2405 2406 static void __exit loop_exit(void) 2407 { 2408 unsigned long range; 2409 2410 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2411 2412 mutex_lock(&loop_ctl_mutex); 2413 2414 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2415 idr_destroy(&loop_index_idr); 2416 2417 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2418 unregister_blkdev(LOOP_MAJOR, "loop"); 2419 2420 misc_deregister(&loop_misc); 2421 2422 mutex_unlock(&loop_ctl_mutex); 2423 } 2424 2425 module_init(loop_init); 2426 module_exit(loop_exit); 2427 2428 #ifndef MODULE 2429 static int __init max_loop_setup(char *str) 2430 { 2431 max_loop = simple_strtol(str, NULL, 0); 2432 return 1; 2433 } 2434 2435 __setup("max_loop=", max_loop_setup); 2436 #endif 2437