xref: /openbmc/linux/drivers/block/loop.c (revision a3cbcadf)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/pagemap.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 #include <linux/sched/mm.h>
82 
83 #include "loop.h"
84 
85 #include <linux/uaccess.h>
86 
87 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
88 
89 static DEFINE_IDR(loop_index_idr);
90 static DEFINE_MUTEX(loop_ctl_mutex);
91 
92 static int max_part;
93 static int part_shift;
94 
95 static int transfer_xor(struct loop_device *lo, int cmd,
96 			struct page *raw_page, unsigned raw_off,
97 			struct page *loop_page, unsigned loop_off,
98 			int size, sector_t real_block)
99 {
100 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
101 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
102 	char *in, *out, *key;
103 	int i, keysize;
104 
105 	if (cmd == READ) {
106 		in = raw_buf;
107 		out = loop_buf;
108 	} else {
109 		in = loop_buf;
110 		out = raw_buf;
111 	}
112 
113 	key = lo->lo_encrypt_key;
114 	keysize = lo->lo_encrypt_key_size;
115 	for (i = 0; i < size; i++)
116 		*out++ = *in++ ^ key[(i & 511) % keysize];
117 
118 	kunmap_atomic(loop_buf);
119 	kunmap_atomic(raw_buf);
120 	cond_resched();
121 	return 0;
122 }
123 
124 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
125 {
126 	if (unlikely(info->lo_encrypt_key_size <= 0))
127 		return -EINVAL;
128 	return 0;
129 }
130 
131 static struct loop_func_table none_funcs = {
132 	.number = LO_CRYPT_NONE,
133 };
134 
135 static struct loop_func_table xor_funcs = {
136 	.number = LO_CRYPT_XOR,
137 	.transfer = transfer_xor,
138 	.init = xor_init
139 };
140 
141 /* xfer_funcs[0] is special - its release function is never called */
142 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
143 	&none_funcs,
144 	&xor_funcs
145 };
146 
147 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
148 {
149 	loff_t loopsize;
150 
151 	/* Compute loopsize in bytes */
152 	loopsize = i_size_read(file->f_mapping->host);
153 	if (offset > 0)
154 		loopsize -= offset;
155 	/* offset is beyond i_size, weird but possible */
156 	if (loopsize < 0)
157 		return 0;
158 
159 	if (sizelimit > 0 && sizelimit < loopsize)
160 		loopsize = sizelimit;
161 	/*
162 	 * Unfortunately, if we want to do I/O on the device,
163 	 * the number of 512-byte sectors has to fit into a sector_t.
164 	 */
165 	return loopsize >> 9;
166 }
167 
168 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
169 {
170 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
171 }
172 
173 static void __loop_update_dio(struct loop_device *lo, bool dio)
174 {
175 	struct file *file = lo->lo_backing_file;
176 	struct address_space *mapping = file->f_mapping;
177 	struct inode *inode = mapping->host;
178 	unsigned short sb_bsize = 0;
179 	unsigned dio_align = 0;
180 	bool use_dio;
181 
182 	if (inode->i_sb->s_bdev) {
183 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
184 		dio_align = sb_bsize - 1;
185 	}
186 
187 	/*
188 	 * We support direct I/O only if lo_offset is aligned with the
189 	 * logical I/O size of backing device, and the logical block
190 	 * size of loop is bigger than the backing device's and the loop
191 	 * needn't transform transfer.
192 	 *
193 	 * TODO: the above condition may be loosed in the future, and
194 	 * direct I/O may be switched runtime at that time because most
195 	 * of requests in sane applications should be PAGE_SIZE aligned
196 	 */
197 	if (dio) {
198 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
199 				!(lo->lo_offset & dio_align) &&
200 				mapping->a_ops->direct_IO &&
201 				!lo->transfer)
202 			use_dio = true;
203 		else
204 			use_dio = false;
205 	} else {
206 		use_dio = false;
207 	}
208 
209 	if (lo->use_dio == use_dio)
210 		return;
211 
212 	/* flush dirty pages before changing direct IO */
213 	vfs_fsync(file, 0);
214 
215 	/*
216 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
217 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
218 	 * will get updated by ioctl(LOOP_GET_STATUS)
219 	 */
220 	if (lo->lo_state == Lo_bound)
221 		blk_mq_freeze_queue(lo->lo_queue);
222 	lo->use_dio = use_dio;
223 	if (use_dio) {
224 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
226 	} else {
227 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
228 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
229 	}
230 	if (lo->lo_state == Lo_bound)
231 		blk_mq_unfreeze_queue(lo->lo_queue);
232 }
233 
234 /**
235  * loop_validate_block_size() - validates the passed in block size
236  * @bsize: size to validate
237  */
238 static int
239 loop_validate_block_size(unsigned short bsize)
240 {
241 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
242 		return -EINVAL;
243 
244 	return 0;
245 }
246 
247 /**
248  * loop_set_size() - sets device size and notifies userspace
249  * @lo: struct loop_device to set the size for
250  * @size: new size of the loop device
251  *
252  * Callers must validate that the size passed into this function fits into
253  * a sector_t, eg using loop_validate_size()
254  */
255 static void loop_set_size(struct loop_device *lo, loff_t size)
256 {
257 	if (!set_capacity_and_notify(lo->lo_disk, size))
258 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
259 }
260 
261 static inline int
262 lo_do_transfer(struct loop_device *lo, int cmd,
263 	       struct page *rpage, unsigned roffs,
264 	       struct page *lpage, unsigned loffs,
265 	       int size, sector_t rblock)
266 {
267 	int ret;
268 
269 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
270 	if (likely(!ret))
271 		return 0;
272 
273 	printk_ratelimited(KERN_ERR
274 		"loop: Transfer error at byte offset %llu, length %i.\n",
275 		(unsigned long long)rblock << 9, size);
276 	return ret;
277 }
278 
279 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
280 {
281 	struct iov_iter i;
282 	ssize_t bw;
283 
284 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
285 
286 	file_start_write(file);
287 	bw = vfs_iter_write(file, &i, ppos, 0);
288 	file_end_write(file);
289 
290 	if (likely(bw ==  bvec->bv_len))
291 		return 0;
292 
293 	printk_ratelimited(KERN_ERR
294 		"loop: Write error at byte offset %llu, length %i.\n",
295 		(unsigned long long)*ppos, bvec->bv_len);
296 	if (bw >= 0)
297 		bw = -EIO;
298 	return bw;
299 }
300 
301 static int lo_write_simple(struct loop_device *lo, struct request *rq,
302 		loff_t pos)
303 {
304 	struct bio_vec bvec;
305 	struct req_iterator iter;
306 	int ret = 0;
307 
308 	rq_for_each_segment(bvec, rq, iter) {
309 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
310 		if (ret < 0)
311 			break;
312 		cond_resched();
313 	}
314 
315 	return ret;
316 }
317 
318 /*
319  * This is the slow, transforming version that needs to double buffer the
320  * data as it cannot do the transformations in place without having direct
321  * access to the destination pages of the backing file.
322  */
323 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
324 		loff_t pos)
325 {
326 	struct bio_vec bvec, b;
327 	struct req_iterator iter;
328 	struct page *page;
329 	int ret = 0;
330 
331 	page = alloc_page(GFP_NOIO);
332 	if (unlikely(!page))
333 		return -ENOMEM;
334 
335 	rq_for_each_segment(bvec, rq, iter) {
336 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
337 			bvec.bv_offset, bvec.bv_len, pos >> 9);
338 		if (unlikely(ret))
339 			break;
340 
341 		b.bv_page = page;
342 		b.bv_offset = 0;
343 		b.bv_len = bvec.bv_len;
344 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
345 		if (ret < 0)
346 			break;
347 	}
348 
349 	__free_page(page);
350 	return ret;
351 }
352 
353 static int lo_read_simple(struct loop_device *lo, struct request *rq,
354 		loff_t pos)
355 {
356 	struct bio_vec bvec;
357 	struct req_iterator iter;
358 	struct iov_iter i;
359 	ssize_t len;
360 
361 	rq_for_each_segment(bvec, rq, iter) {
362 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
363 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
364 		if (len < 0)
365 			return len;
366 
367 		flush_dcache_page(bvec.bv_page);
368 
369 		if (len != bvec.bv_len) {
370 			struct bio *bio;
371 
372 			__rq_for_each_bio(bio, rq)
373 				zero_fill_bio(bio);
374 			break;
375 		}
376 		cond_resched();
377 	}
378 
379 	return 0;
380 }
381 
382 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
383 		loff_t pos)
384 {
385 	struct bio_vec bvec, b;
386 	struct req_iterator iter;
387 	struct iov_iter i;
388 	struct page *page;
389 	ssize_t len;
390 	int ret = 0;
391 
392 	page = alloc_page(GFP_NOIO);
393 	if (unlikely(!page))
394 		return -ENOMEM;
395 
396 	rq_for_each_segment(bvec, rq, iter) {
397 		loff_t offset = pos;
398 
399 		b.bv_page = page;
400 		b.bv_offset = 0;
401 		b.bv_len = bvec.bv_len;
402 
403 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
404 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
405 		if (len < 0) {
406 			ret = len;
407 			goto out_free_page;
408 		}
409 
410 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
411 			bvec.bv_offset, len, offset >> 9);
412 		if (ret)
413 			goto out_free_page;
414 
415 		flush_dcache_page(bvec.bv_page);
416 
417 		if (len != bvec.bv_len) {
418 			struct bio *bio;
419 
420 			__rq_for_each_bio(bio, rq)
421 				zero_fill_bio(bio);
422 			break;
423 		}
424 	}
425 
426 	ret = 0;
427 out_free_page:
428 	__free_page(page);
429 	return ret;
430 }
431 
432 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
433 			int mode)
434 {
435 	/*
436 	 * We use fallocate to manipulate the space mappings used by the image
437 	 * a.k.a. discard/zerorange. However we do not support this if
438 	 * encryption is enabled, because it may give an attacker useful
439 	 * information.
440 	 */
441 	struct file *file = lo->lo_backing_file;
442 	struct request_queue *q = lo->lo_queue;
443 	int ret;
444 
445 	mode |= FALLOC_FL_KEEP_SIZE;
446 
447 	if (!blk_queue_discard(q)) {
448 		ret = -EOPNOTSUPP;
449 		goto out;
450 	}
451 
452 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
453 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
454 		ret = -EIO;
455  out:
456 	return ret;
457 }
458 
459 static int lo_req_flush(struct loop_device *lo, struct request *rq)
460 {
461 	struct file *file = lo->lo_backing_file;
462 	int ret = vfs_fsync(file, 0);
463 	if (unlikely(ret && ret != -EINVAL))
464 		ret = -EIO;
465 
466 	return ret;
467 }
468 
469 static void lo_complete_rq(struct request *rq)
470 {
471 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
472 	blk_status_t ret = BLK_STS_OK;
473 
474 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
475 	    req_op(rq) != REQ_OP_READ) {
476 		if (cmd->ret < 0)
477 			ret = errno_to_blk_status(cmd->ret);
478 		goto end_io;
479 	}
480 
481 	/*
482 	 * Short READ - if we got some data, advance our request and
483 	 * retry it. If we got no data, end the rest with EIO.
484 	 */
485 	if (cmd->ret) {
486 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
487 		cmd->ret = 0;
488 		blk_mq_requeue_request(rq, true);
489 	} else {
490 		if (cmd->use_aio) {
491 			struct bio *bio = rq->bio;
492 
493 			while (bio) {
494 				zero_fill_bio(bio);
495 				bio = bio->bi_next;
496 			}
497 		}
498 		ret = BLK_STS_IOERR;
499 end_io:
500 		blk_mq_end_request(rq, ret);
501 	}
502 }
503 
504 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
505 {
506 	struct request *rq = blk_mq_rq_from_pdu(cmd);
507 
508 	if (!atomic_dec_and_test(&cmd->ref))
509 		return;
510 	kfree(cmd->bvec);
511 	cmd->bvec = NULL;
512 	if (likely(!blk_should_fake_timeout(rq->q)))
513 		blk_mq_complete_request(rq);
514 }
515 
516 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
517 {
518 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
519 
520 	cmd->ret = ret;
521 	lo_rw_aio_do_completion(cmd);
522 }
523 
524 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
525 		     loff_t pos, bool rw)
526 {
527 	struct iov_iter iter;
528 	struct req_iterator rq_iter;
529 	struct bio_vec *bvec;
530 	struct request *rq = blk_mq_rq_from_pdu(cmd);
531 	struct bio *bio = rq->bio;
532 	struct file *file = lo->lo_backing_file;
533 	struct bio_vec tmp;
534 	unsigned int offset;
535 	int nr_bvec = 0;
536 	int ret;
537 
538 	rq_for_each_bvec(tmp, rq, rq_iter)
539 		nr_bvec++;
540 
541 	if (rq->bio != rq->biotail) {
542 
543 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
544 				     GFP_NOIO);
545 		if (!bvec)
546 			return -EIO;
547 		cmd->bvec = bvec;
548 
549 		/*
550 		 * The bios of the request may be started from the middle of
551 		 * the 'bvec' because of bio splitting, so we can't directly
552 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
553 		 * API will take care of all details for us.
554 		 */
555 		rq_for_each_bvec(tmp, rq, rq_iter) {
556 			*bvec = tmp;
557 			bvec++;
558 		}
559 		bvec = cmd->bvec;
560 		offset = 0;
561 	} else {
562 		/*
563 		 * Same here, this bio may be started from the middle of the
564 		 * 'bvec' because of bio splitting, so offset from the bvec
565 		 * must be passed to iov iterator
566 		 */
567 		offset = bio->bi_iter.bi_bvec_done;
568 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
569 	}
570 	atomic_set(&cmd->ref, 2);
571 
572 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
573 	iter.iov_offset = offset;
574 
575 	cmd->iocb.ki_pos = pos;
576 	cmd->iocb.ki_filp = file;
577 	cmd->iocb.ki_complete = lo_rw_aio_complete;
578 	cmd->iocb.ki_flags = IOCB_DIRECT;
579 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
580 
581 	if (rw == WRITE)
582 		ret = call_write_iter(file, &cmd->iocb, &iter);
583 	else
584 		ret = call_read_iter(file, &cmd->iocb, &iter);
585 
586 	lo_rw_aio_do_completion(cmd);
587 
588 	if (ret != -EIOCBQUEUED)
589 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
590 	return 0;
591 }
592 
593 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
594 {
595 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
596 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
597 
598 	/*
599 	 * lo_write_simple and lo_read_simple should have been covered
600 	 * by io submit style function like lo_rw_aio(), one blocker
601 	 * is that lo_read_simple() need to call flush_dcache_page after
602 	 * the page is written from kernel, and it isn't easy to handle
603 	 * this in io submit style function which submits all segments
604 	 * of the req at one time. And direct read IO doesn't need to
605 	 * run flush_dcache_page().
606 	 */
607 	switch (req_op(rq)) {
608 	case REQ_OP_FLUSH:
609 		return lo_req_flush(lo, rq);
610 	case REQ_OP_WRITE_ZEROES:
611 		/*
612 		 * If the caller doesn't want deallocation, call zeroout to
613 		 * write zeroes the range.  Otherwise, punch them out.
614 		 */
615 		return lo_fallocate(lo, rq, pos,
616 			(rq->cmd_flags & REQ_NOUNMAP) ?
617 				FALLOC_FL_ZERO_RANGE :
618 				FALLOC_FL_PUNCH_HOLE);
619 	case REQ_OP_DISCARD:
620 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
621 	case REQ_OP_WRITE:
622 		if (lo->transfer)
623 			return lo_write_transfer(lo, rq, pos);
624 		else if (cmd->use_aio)
625 			return lo_rw_aio(lo, cmd, pos, WRITE);
626 		else
627 			return lo_write_simple(lo, rq, pos);
628 	case REQ_OP_READ:
629 		if (lo->transfer)
630 			return lo_read_transfer(lo, rq, pos);
631 		else if (cmd->use_aio)
632 			return lo_rw_aio(lo, cmd, pos, READ);
633 		else
634 			return lo_read_simple(lo, rq, pos);
635 	default:
636 		WARN_ON_ONCE(1);
637 		return -EIO;
638 	}
639 }
640 
641 static inline void loop_update_dio(struct loop_device *lo)
642 {
643 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
644 				lo->use_dio);
645 }
646 
647 static void loop_reread_partitions(struct loop_device *lo)
648 {
649 	int rc;
650 
651 	mutex_lock(&lo->lo_disk->open_mutex);
652 	rc = bdev_disk_changed(lo->lo_disk, false);
653 	mutex_unlock(&lo->lo_disk->open_mutex);
654 	if (rc)
655 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
656 			__func__, lo->lo_number, lo->lo_file_name, rc);
657 }
658 
659 static inline int is_loop_device(struct file *file)
660 {
661 	struct inode *i = file->f_mapping->host;
662 
663 	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
664 }
665 
666 static int loop_validate_file(struct file *file, struct block_device *bdev)
667 {
668 	struct inode	*inode = file->f_mapping->host;
669 	struct file	*f = file;
670 
671 	/* Avoid recursion */
672 	while (is_loop_device(f)) {
673 		struct loop_device *l;
674 
675 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
676 			return -EBADF;
677 
678 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
679 		if (l->lo_state != Lo_bound) {
680 			return -EINVAL;
681 		}
682 		f = l->lo_backing_file;
683 	}
684 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
685 		return -EINVAL;
686 	return 0;
687 }
688 
689 /*
690  * loop_change_fd switched the backing store of a loopback device to
691  * a new file. This is useful for operating system installers to free up
692  * the original file and in High Availability environments to switch to
693  * an alternative location for the content in case of server meltdown.
694  * This can only work if the loop device is used read-only, and if the
695  * new backing store is the same size and type as the old backing store.
696  */
697 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
698 			  unsigned int arg)
699 {
700 	struct file	*file = NULL, *old_file;
701 	int		error;
702 	bool		partscan;
703 
704 	error = mutex_lock_killable(&lo->lo_mutex);
705 	if (error)
706 		return error;
707 	error = -ENXIO;
708 	if (lo->lo_state != Lo_bound)
709 		goto out_err;
710 
711 	/* the loop device has to be read-only */
712 	error = -EINVAL;
713 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
714 		goto out_err;
715 
716 	error = -EBADF;
717 	file = fget(arg);
718 	if (!file)
719 		goto out_err;
720 
721 	error = loop_validate_file(file, bdev);
722 	if (error)
723 		goto out_err;
724 
725 	old_file = lo->lo_backing_file;
726 
727 	error = -EINVAL;
728 
729 	/* size of the new backing store needs to be the same */
730 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
731 		goto out_err;
732 
733 	/* and ... switch */
734 	blk_mq_freeze_queue(lo->lo_queue);
735 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
736 	lo->lo_backing_file = file;
737 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
738 	mapping_set_gfp_mask(file->f_mapping,
739 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
740 	loop_update_dio(lo);
741 	blk_mq_unfreeze_queue(lo->lo_queue);
742 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
743 	mutex_unlock(&lo->lo_mutex);
744 	/*
745 	 * We must drop file reference outside of lo_mutex as dropping
746 	 * the file ref can take open_mutex which creates circular locking
747 	 * dependency.
748 	 */
749 	fput(old_file);
750 	if (partscan)
751 		loop_reread_partitions(lo);
752 	return 0;
753 
754 out_err:
755 	mutex_unlock(&lo->lo_mutex);
756 	if (file)
757 		fput(file);
758 	return error;
759 }
760 
761 /* loop sysfs attributes */
762 
763 static ssize_t loop_attr_show(struct device *dev, char *page,
764 			      ssize_t (*callback)(struct loop_device *, char *))
765 {
766 	struct gendisk *disk = dev_to_disk(dev);
767 	struct loop_device *lo = disk->private_data;
768 
769 	return callback(lo, page);
770 }
771 
772 #define LOOP_ATTR_RO(_name)						\
773 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
774 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
775 				struct device_attribute *attr, char *b)	\
776 {									\
777 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
778 }									\
779 static struct device_attribute loop_attr_##_name =			\
780 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
781 
782 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
783 {
784 	ssize_t ret;
785 	char *p = NULL;
786 
787 	spin_lock_irq(&lo->lo_lock);
788 	if (lo->lo_backing_file)
789 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
790 	spin_unlock_irq(&lo->lo_lock);
791 
792 	if (IS_ERR_OR_NULL(p))
793 		ret = PTR_ERR(p);
794 	else {
795 		ret = strlen(p);
796 		memmove(buf, p, ret);
797 		buf[ret++] = '\n';
798 		buf[ret] = 0;
799 	}
800 
801 	return ret;
802 }
803 
804 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
805 {
806 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
807 }
808 
809 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
810 {
811 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
812 }
813 
814 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
815 {
816 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
817 
818 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
819 }
820 
821 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
822 {
823 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
824 
825 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
826 }
827 
828 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
829 {
830 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
831 
832 	return sprintf(buf, "%s\n", dio ? "1" : "0");
833 }
834 
835 LOOP_ATTR_RO(backing_file);
836 LOOP_ATTR_RO(offset);
837 LOOP_ATTR_RO(sizelimit);
838 LOOP_ATTR_RO(autoclear);
839 LOOP_ATTR_RO(partscan);
840 LOOP_ATTR_RO(dio);
841 
842 static struct attribute *loop_attrs[] = {
843 	&loop_attr_backing_file.attr,
844 	&loop_attr_offset.attr,
845 	&loop_attr_sizelimit.attr,
846 	&loop_attr_autoclear.attr,
847 	&loop_attr_partscan.attr,
848 	&loop_attr_dio.attr,
849 	NULL,
850 };
851 
852 static struct attribute_group loop_attribute_group = {
853 	.name = "loop",
854 	.attrs= loop_attrs,
855 };
856 
857 static void loop_sysfs_init(struct loop_device *lo)
858 {
859 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
860 						&loop_attribute_group);
861 }
862 
863 static void loop_sysfs_exit(struct loop_device *lo)
864 {
865 	if (lo->sysfs_inited)
866 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
867 				   &loop_attribute_group);
868 }
869 
870 static void loop_config_discard(struct loop_device *lo)
871 {
872 	struct file *file = lo->lo_backing_file;
873 	struct inode *inode = file->f_mapping->host;
874 	struct request_queue *q = lo->lo_queue;
875 	u32 granularity, max_discard_sectors;
876 
877 	/*
878 	 * If the backing device is a block device, mirror its zeroing
879 	 * capability. Set the discard sectors to the block device's zeroing
880 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
881 	 * not blkdev_issue_discard(). This maintains consistent behavior with
882 	 * file-backed loop devices: discarded regions read back as zero.
883 	 */
884 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
885 		struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
886 
887 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
888 		granularity = backingq->limits.discard_granularity ?:
889 			queue_physical_block_size(backingq);
890 
891 	/*
892 	 * We use punch hole to reclaim the free space used by the
893 	 * image a.k.a. discard. However we do not support discard if
894 	 * encryption is enabled, because it may give an attacker
895 	 * useful information.
896 	 */
897 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
898 		max_discard_sectors = 0;
899 		granularity = 0;
900 
901 	} else {
902 		max_discard_sectors = UINT_MAX >> 9;
903 		granularity = inode->i_sb->s_blocksize;
904 	}
905 
906 	if (max_discard_sectors) {
907 		q->limits.discard_granularity = granularity;
908 		blk_queue_max_discard_sectors(q, max_discard_sectors);
909 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
910 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
911 	} else {
912 		q->limits.discard_granularity = 0;
913 		blk_queue_max_discard_sectors(q, 0);
914 		blk_queue_max_write_zeroes_sectors(q, 0);
915 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
916 	}
917 	q->limits.discard_alignment = 0;
918 }
919 
920 struct loop_worker {
921 	struct rb_node rb_node;
922 	struct work_struct work;
923 	struct list_head cmd_list;
924 	struct list_head idle_list;
925 	struct loop_device *lo;
926 	struct cgroup_subsys_state *blkcg_css;
927 	unsigned long last_ran_at;
928 };
929 
930 static void loop_workfn(struct work_struct *work);
931 static void loop_rootcg_workfn(struct work_struct *work);
932 static void loop_free_idle_workers(struct timer_list *timer);
933 
934 #ifdef CONFIG_BLK_CGROUP
935 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
936 {
937 	return !css || css == blkcg_root_css;
938 }
939 #else
940 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
941 {
942 	return !css;
943 }
944 #endif
945 
946 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
947 {
948 	struct rb_node **node = &(lo->worker_tree.rb_node), *parent = NULL;
949 	struct loop_worker *cur_worker, *worker = NULL;
950 	struct work_struct *work;
951 	struct list_head *cmd_list;
952 
953 	spin_lock_irq(&lo->lo_work_lock);
954 
955 	if (queue_on_root_worker(cmd->blkcg_css))
956 		goto queue_work;
957 
958 	node = &lo->worker_tree.rb_node;
959 
960 	while (*node) {
961 		parent = *node;
962 		cur_worker = container_of(*node, struct loop_worker, rb_node);
963 		if (cur_worker->blkcg_css == cmd->blkcg_css) {
964 			worker = cur_worker;
965 			break;
966 		} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
967 			node = &(*node)->rb_left;
968 		} else {
969 			node = &(*node)->rb_right;
970 		}
971 	}
972 	if (worker)
973 		goto queue_work;
974 
975 	worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
976 	/*
977 	 * In the event we cannot allocate a worker, just queue on the
978 	 * rootcg worker and issue the I/O as the rootcg
979 	 */
980 	if (!worker) {
981 		cmd->blkcg_css = NULL;
982 		if (cmd->memcg_css)
983 			css_put(cmd->memcg_css);
984 		cmd->memcg_css = NULL;
985 		goto queue_work;
986 	}
987 
988 	worker->blkcg_css = cmd->blkcg_css;
989 	css_get(worker->blkcg_css);
990 	INIT_WORK(&worker->work, loop_workfn);
991 	INIT_LIST_HEAD(&worker->cmd_list);
992 	INIT_LIST_HEAD(&worker->idle_list);
993 	worker->lo = lo;
994 	rb_link_node(&worker->rb_node, parent, node);
995 	rb_insert_color(&worker->rb_node, &lo->worker_tree);
996 queue_work:
997 	if (worker) {
998 		/*
999 		 * We need to remove from the idle list here while
1000 		 * holding the lock so that the idle timer doesn't
1001 		 * free the worker
1002 		 */
1003 		if (!list_empty(&worker->idle_list))
1004 			list_del_init(&worker->idle_list);
1005 		work = &worker->work;
1006 		cmd_list = &worker->cmd_list;
1007 	} else {
1008 		work = &lo->rootcg_work;
1009 		cmd_list = &lo->rootcg_cmd_list;
1010 	}
1011 	list_add_tail(&cmd->list_entry, cmd_list);
1012 	queue_work(lo->workqueue, work);
1013 	spin_unlock_irq(&lo->lo_work_lock);
1014 }
1015 
1016 static void loop_update_rotational(struct loop_device *lo)
1017 {
1018 	struct file *file = lo->lo_backing_file;
1019 	struct inode *file_inode = file->f_mapping->host;
1020 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
1021 	struct request_queue *q = lo->lo_queue;
1022 	bool nonrot = true;
1023 
1024 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
1025 	if (file_bdev)
1026 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
1027 
1028 	if (nonrot)
1029 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1030 	else
1031 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1032 }
1033 
1034 static int
1035 loop_release_xfer(struct loop_device *lo)
1036 {
1037 	int err = 0;
1038 	struct loop_func_table *xfer = lo->lo_encryption;
1039 
1040 	if (xfer) {
1041 		if (xfer->release)
1042 			err = xfer->release(lo);
1043 		lo->transfer = NULL;
1044 		lo->lo_encryption = NULL;
1045 		module_put(xfer->owner);
1046 	}
1047 	return err;
1048 }
1049 
1050 static int
1051 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1052 	       const struct loop_info64 *i)
1053 {
1054 	int err = 0;
1055 
1056 	if (xfer) {
1057 		struct module *owner = xfer->owner;
1058 
1059 		if (!try_module_get(owner))
1060 			return -EINVAL;
1061 		if (xfer->init)
1062 			err = xfer->init(lo, i);
1063 		if (err)
1064 			module_put(owner);
1065 		else
1066 			lo->lo_encryption = xfer;
1067 	}
1068 	return err;
1069 }
1070 
1071 /**
1072  * loop_set_status_from_info - configure device from loop_info
1073  * @lo: struct loop_device to configure
1074  * @info: struct loop_info64 to configure the device with
1075  *
1076  * Configures the loop device parameters according to the passed
1077  * in loop_info64 configuration.
1078  */
1079 static int
1080 loop_set_status_from_info(struct loop_device *lo,
1081 			  const struct loop_info64 *info)
1082 {
1083 	int err;
1084 	struct loop_func_table *xfer;
1085 	kuid_t uid = current_uid();
1086 
1087 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1088 		return -EINVAL;
1089 
1090 	err = loop_release_xfer(lo);
1091 	if (err)
1092 		return err;
1093 
1094 	if (info->lo_encrypt_type) {
1095 		unsigned int type = info->lo_encrypt_type;
1096 
1097 		if (type >= MAX_LO_CRYPT)
1098 			return -EINVAL;
1099 		xfer = xfer_funcs[type];
1100 		if (xfer == NULL)
1101 			return -EINVAL;
1102 	} else
1103 		xfer = NULL;
1104 
1105 	err = loop_init_xfer(lo, xfer, info);
1106 	if (err)
1107 		return err;
1108 
1109 	lo->lo_offset = info->lo_offset;
1110 	lo->lo_sizelimit = info->lo_sizelimit;
1111 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1112 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1113 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1114 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1115 
1116 	if (!xfer)
1117 		xfer = &none_funcs;
1118 	lo->transfer = xfer->transfer;
1119 	lo->ioctl = xfer->ioctl;
1120 
1121 	lo->lo_flags = info->lo_flags;
1122 
1123 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1124 	lo->lo_init[0] = info->lo_init[0];
1125 	lo->lo_init[1] = info->lo_init[1];
1126 	if (info->lo_encrypt_key_size) {
1127 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1128 		       info->lo_encrypt_key_size);
1129 		lo->lo_key_owner = uid;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int loop_configure(struct loop_device *lo, fmode_t mode,
1136 			  struct block_device *bdev,
1137 			  const struct loop_config *config)
1138 {
1139 	struct file	*file;
1140 	struct inode	*inode;
1141 	struct address_space *mapping;
1142 	int		error;
1143 	loff_t		size;
1144 	bool		partscan;
1145 	unsigned short  bsize;
1146 
1147 	/* This is safe, since we have a reference from open(). */
1148 	__module_get(THIS_MODULE);
1149 
1150 	error = -EBADF;
1151 	file = fget(config->fd);
1152 	if (!file)
1153 		goto out;
1154 
1155 	/*
1156 	 * If we don't hold exclusive handle for the device, upgrade to it
1157 	 * here to avoid changing device under exclusive owner.
1158 	 */
1159 	if (!(mode & FMODE_EXCL)) {
1160 		error = bd_prepare_to_claim(bdev, loop_configure);
1161 		if (error)
1162 			goto out_putf;
1163 	}
1164 
1165 	error = mutex_lock_killable(&lo->lo_mutex);
1166 	if (error)
1167 		goto out_bdev;
1168 
1169 	error = -EBUSY;
1170 	if (lo->lo_state != Lo_unbound)
1171 		goto out_unlock;
1172 
1173 	error = loop_validate_file(file, bdev);
1174 	if (error)
1175 		goto out_unlock;
1176 
1177 	mapping = file->f_mapping;
1178 	inode = mapping->host;
1179 
1180 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1181 		error = -EINVAL;
1182 		goto out_unlock;
1183 	}
1184 
1185 	if (config->block_size) {
1186 		error = loop_validate_block_size(config->block_size);
1187 		if (error)
1188 			goto out_unlock;
1189 	}
1190 
1191 	error = loop_set_status_from_info(lo, &config->info);
1192 	if (error)
1193 		goto out_unlock;
1194 
1195 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1196 	    !file->f_op->write_iter)
1197 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1198 
1199 	lo->workqueue = alloc_workqueue("loop%d",
1200 					WQ_UNBOUND | WQ_FREEZABLE,
1201 					0,
1202 					lo->lo_number);
1203 	if (!lo->workqueue) {
1204 		error = -ENOMEM;
1205 		goto out_unlock;
1206 	}
1207 
1208 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1209 
1210 	INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
1211 	INIT_LIST_HEAD(&lo->rootcg_cmd_list);
1212 	INIT_LIST_HEAD(&lo->idle_worker_list);
1213 	lo->worker_tree = RB_ROOT;
1214 	timer_setup(&lo->timer, loop_free_idle_workers,
1215 		TIMER_DEFERRABLE);
1216 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1217 	lo->lo_device = bdev;
1218 	lo->lo_backing_file = file;
1219 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1220 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1221 
1222 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1223 		blk_queue_write_cache(lo->lo_queue, true, false);
1224 
1225 	if (config->block_size)
1226 		bsize = config->block_size;
1227 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1228 		/* In case of direct I/O, match underlying block size */
1229 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1230 	else
1231 		bsize = 512;
1232 
1233 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1234 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1235 	blk_queue_io_min(lo->lo_queue, bsize);
1236 
1237 	loop_config_discard(lo);
1238 	loop_update_rotational(lo);
1239 	loop_update_dio(lo);
1240 	loop_sysfs_init(lo);
1241 
1242 	size = get_loop_size(lo, file);
1243 	loop_set_size(lo, size);
1244 
1245 	lo->lo_state = Lo_bound;
1246 	if (part_shift)
1247 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1248 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1249 	if (partscan)
1250 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1251 
1252 	/* Grab the block_device to prevent its destruction after we
1253 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1254 	 */
1255 	bdgrab(bdev);
1256 	mutex_unlock(&lo->lo_mutex);
1257 	if (partscan)
1258 		loop_reread_partitions(lo);
1259 	if (!(mode & FMODE_EXCL))
1260 		bd_abort_claiming(bdev, loop_configure);
1261 	return 0;
1262 
1263 out_unlock:
1264 	mutex_unlock(&lo->lo_mutex);
1265 out_bdev:
1266 	if (!(mode & FMODE_EXCL))
1267 		bd_abort_claiming(bdev, loop_configure);
1268 out_putf:
1269 	fput(file);
1270 out:
1271 	/* This is safe: open() is still holding a reference. */
1272 	module_put(THIS_MODULE);
1273 	return error;
1274 }
1275 
1276 static int __loop_clr_fd(struct loop_device *lo, bool release)
1277 {
1278 	struct file *filp = NULL;
1279 	gfp_t gfp = lo->old_gfp_mask;
1280 	struct block_device *bdev = lo->lo_device;
1281 	int err = 0;
1282 	bool partscan = false;
1283 	int lo_number;
1284 	struct loop_worker *pos, *worker;
1285 
1286 	mutex_lock(&lo->lo_mutex);
1287 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1288 		err = -ENXIO;
1289 		goto out_unlock;
1290 	}
1291 
1292 	filp = lo->lo_backing_file;
1293 	if (filp == NULL) {
1294 		err = -EINVAL;
1295 		goto out_unlock;
1296 	}
1297 
1298 	if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1299 		blk_queue_write_cache(lo->lo_queue, false, false);
1300 
1301 	/* freeze request queue during the transition */
1302 	blk_mq_freeze_queue(lo->lo_queue);
1303 
1304 	destroy_workqueue(lo->workqueue);
1305 	spin_lock_irq(&lo->lo_work_lock);
1306 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
1307 				idle_list) {
1308 		list_del(&worker->idle_list);
1309 		rb_erase(&worker->rb_node, &lo->worker_tree);
1310 		css_put(worker->blkcg_css);
1311 		kfree(worker);
1312 	}
1313 	spin_unlock_irq(&lo->lo_work_lock);
1314 	del_timer_sync(&lo->timer);
1315 
1316 	spin_lock_irq(&lo->lo_lock);
1317 	lo->lo_backing_file = NULL;
1318 	spin_unlock_irq(&lo->lo_lock);
1319 
1320 	loop_release_xfer(lo);
1321 	lo->transfer = NULL;
1322 	lo->ioctl = NULL;
1323 	lo->lo_device = NULL;
1324 	lo->lo_encryption = NULL;
1325 	lo->lo_offset = 0;
1326 	lo->lo_sizelimit = 0;
1327 	lo->lo_encrypt_key_size = 0;
1328 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1329 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1330 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1331 	blk_queue_logical_block_size(lo->lo_queue, 512);
1332 	blk_queue_physical_block_size(lo->lo_queue, 512);
1333 	blk_queue_io_min(lo->lo_queue, 512);
1334 	if (bdev) {
1335 		bdput(bdev);
1336 		invalidate_bdev(bdev);
1337 		bdev->bd_inode->i_mapping->wb_err = 0;
1338 	}
1339 	set_capacity(lo->lo_disk, 0);
1340 	loop_sysfs_exit(lo);
1341 	if (bdev) {
1342 		/* let user-space know about this change */
1343 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1344 	}
1345 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1346 	/* This is safe: open() is still holding a reference. */
1347 	module_put(THIS_MODULE);
1348 	blk_mq_unfreeze_queue(lo->lo_queue);
1349 
1350 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1351 	lo_number = lo->lo_number;
1352 out_unlock:
1353 	mutex_unlock(&lo->lo_mutex);
1354 	if (partscan) {
1355 		/*
1356 		 * open_mutex has been held already in release path, so don't
1357 		 * acquire it if this function is called in such case.
1358 		 *
1359 		 * If the reread partition isn't from release path, lo_refcnt
1360 		 * must be at least one and it can only become zero when the
1361 		 * current holder is released.
1362 		 */
1363 		if (!release)
1364 			mutex_lock(&lo->lo_disk->open_mutex);
1365 		err = bdev_disk_changed(lo->lo_disk, false);
1366 		if (!release)
1367 			mutex_unlock(&lo->lo_disk->open_mutex);
1368 		if (err)
1369 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1370 				__func__, lo_number, err);
1371 		/* Device is gone, no point in returning error */
1372 		err = 0;
1373 	}
1374 
1375 	/*
1376 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1377 	 * finished.
1378 	 *
1379 	 * There cannot be anybody else entering __loop_clr_fd() as
1380 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1381 	 * protects us from all the other places trying to change the 'lo'
1382 	 * device.
1383 	 */
1384 	mutex_lock(&lo->lo_mutex);
1385 	lo->lo_flags = 0;
1386 	if (!part_shift)
1387 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1388 	lo->lo_state = Lo_unbound;
1389 	mutex_unlock(&lo->lo_mutex);
1390 
1391 	/*
1392 	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1393 	 * lo_mutex triggers a circular lock dependency possibility warning as
1394 	 * fput can take open_mutex which is usually taken before lo_mutex.
1395 	 */
1396 	if (filp)
1397 		fput(filp);
1398 	return err;
1399 }
1400 
1401 static int loop_clr_fd(struct loop_device *lo)
1402 {
1403 	int err;
1404 
1405 	err = mutex_lock_killable(&lo->lo_mutex);
1406 	if (err)
1407 		return err;
1408 	if (lo->lo_state != Lo_bound) {
1409 		mutex_unlock(&lo->lo_mutex);
1410 		return -ENXIO;
1411 	}
1412 	/*
1413 	 * If we've explicitly asked to tear down the loop device,
1414 	 * and it has an elevated reference count, set it for auto-teardown when
1415 	 * the last reference goes away. This stops $!~#$@ udev from
1416 	 * preventing teardown because it decided that it needs to run blkid on
1417 	 * the loopback device whenever they appear. xfstests is notorious for
1418 	 * failing tests because blkid via udev races with a losetup
1419 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1420 	 * command to fail with EBUSY.
1421 	 */
1422 	if (atomic_read(&lo->lo_refcnt) > 1) {
1423 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1424 		mutex_unlock(&lo->lo_mutex);
1425 		return 0;
1426 	}
1427 	lo->lo_state = Lo_rundown;
1428 	mutex_unlock(&lo->lo_mutex);
1429 
1430 	return __loop_clr_fd(lo, false);
1431 }
1432 
1433 static int
1434 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1435 {
1436 	int err;
1437 	struct block_device *bdev;
1438 	kuid_t uid = current_uid();
1439 	int prev_lo_flags;
1440 	bool partscan = false;
1441 	bool size_changed = false;
1442 
1443 	err = mutex_lock_killable(&lo->lo_mutex);
1444 	if (err)
1445 		return err;
1446 	if (lo->lo_encrypt_key_size &&
1447 	    !uid_eq(lo->lo_key_owner, uid) &&
1448 	    !capable(CAP_SYS_ADMIN)) {
1449 		err = -EPERM;
1450 		goto out_unlock;
1451 	}
1452 	if (lo->lo_state != Lo_bound) {
1453 		err = -ENXIO;
1454 		goto out_unlock;
1455 	}
1456 
1457 	if (lo->lo_offset != info->lo_offset ||
1458 	    lo->lo_sizelimit != info->lo_sizelimit) {
1459 		size_changed = true;
1460 		sync_blockdev(lo->lo_device);
1461 		invalidate_bdev(lo->lo_device);
1462 	}
1463 
1464 	/* I/O need to be drained during transfer transition */
1465 	blk_mq_freeze_queue(lo->lo_queue);
1466 
1467 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1468 		/* If any pages were dirtied after invalidate_bdev(), try again */
1469 		err = -EAGAIN;
1470 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1471 			__func__, lo->lo_number, lo->lo_file_name,
1472 			lo->lo_device->bd_inode->i_mapping->nrpages);
1473 		goto out_unfreeze;
1474 	}
1475 
1476 	prev_lo_flags = lo->lo_flags;
1477 
1478 	err = loop_set_status_from_info(lo, info);
1479 	if (err)
1480 		goto out_unfreeze;
1481 
1482 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1483 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1484 	/* For those flags, use the previous values instead */
1485 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1486 	/* For flags that can't be cleared, use previous values too */
1487 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1488 
1489 	if (size_changed) {
1490 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1491 					   lo->lo_backing_file);
1492 		loop_set_size(lo, new_size);
1493 	}
1494 
1495 	loop_config_discard(lo);
1496 
1497 	/* update dio if lo_offset or transfer is changed */
1498 	__loop_update_dio(lo, lo->use_dio);
1499 
1500 out_unfreeze:
1501 	blk_mq_unfreeze_queue(lo->lo_queue);
1502 
1503 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1504 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1505 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1506 		bdev = lo->lo_device;
1507 		partscan = true;
1508 	}
1509 out_unlock:
1510 	mutex_unlock(&lo->lo_mutex);
1511 	if (partscan)
1512 		loop_reread_partitions(lo);
1513 
1514 	return err;
1515 }
1516 
1517 static int
1518 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1519 {
1520 	struct path path;
1521 	struct kstat stat;
1522 	int ret;
1523 
1524 	ret = mutex_lock_killable(&lo->lo_mutex);
1525 	if (ret)
1526 		return ret;
1527 	if (lo->lo_state != Lo_bound) {
1528 		mutex_unlock(&lo->lo_mutex);
1529 		return -ENXIO;
1530 	}
1531 
1532 	memset(info, 0, sizeof(*info));
1533 	info->lo_number = lo->lo_number;
1534 	info->lo_offset = lo->lo_offset;
1535 	info->lo_sizelimit = lo->lo_sizelimit;
1536 	info->lo_flags = lo->lo_flags;
1537 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1538 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1539 	info->lo_encrypt_type =
1540 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1541 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1542 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1543 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1544 		       lo->lo_encrypt_key_size);
1545 	}
1546 
1547 	/* Drop lo_mutex while we call into the filesystem. */
1548 	path = lo->lo_backing_file->f_path;
1549 	path_get(&path);
1550 	mutex_unlock(&lo->lo_mutex);
1551 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1552 	if (!ret) {
1553 		info->lo_device = huge_encode_dev(stat.dev);
1554 		info->lo_inode = stat.ino;
1555 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1556 	}
1557 	path_put(&path);
1558 	return ret;
1559 }
1560 
1561 static void
1562 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1563 {
1564 	memset(info64, 0, sizeof(*info64));
1565 	info64->lo_number = info->lo_number;
1566 	info64->lo_device = info->lo_device;
1567 	info64->lo_inode = info->lo_inode;
1568 	info64->lo_rdevice = info->lo_rdevice;
1569 	info64->lo_offset = info->lo_offset;
1570 	info64->lo_sizelimit = 0;
1571 	info64->lo_encrypt_type = info->lo_encrypt_type;
1572 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1573 	info64->lo_flags = info->lo_flags;
1574 	info64->lo_init[0] = info->lo_init[0];
1575 	info64->lo_init[1] = info->lo_init[1];
1576 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1577 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1578 	else
1579 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1580 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1581 }
1582 
1583 static int
1584 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1585 {
1586 	memset(info, 0, sizeof(*info));
1587 	info->lo_number = info64->lo_number;
1588 	info->lo_device = info64->lo_device;
1589 	info->lo_inode = info64->lo_inode;
1590 	info->lo_rdevice = info64->lo_rdevice;
1591 	info->lo_offset = info64->lo_offset;
1592 	info->lo_encrypt_type = info64->lo_encrypt_type;
1593 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1594 	info->lo_flags = info64->lo_flags;
1595 	info->lo_init[0] = info64->lo_init[0];
1596 	info->lo_init[1] = info64->lo_init[1];
1597 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1598 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1599 	else
1600 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1601 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1602 
1603 	/* error in case values were truncated */
1604 	if (info->lo_device != info64->lo_device ||
1605 	    info->lo_rdevice != info64->lo_rdevice ||
1606 	    info->lo_inode != info64->lo_inode ||
1607 	    info->lo_offset != info64->lo_offset)
1608 		return -EOVERFLOW;
1609 
1610 	return 0;
1611 }
1612 
1613 static int
1614 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1615 {
1616 	struct loop_info info;
1617 	struct loop_info64 info64;
1618 
1619 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1620 		return -EFAULT;
1621 	loop_info64_from_old(&info, &info64);
1622 	return loop_set_status(lo, &info64);
1623 }
1624 
1625 static int
1626 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1627 {
1628 	struct loop_info64 info64;
1629 
1630 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1631 		return -EFAULT;
1632 	return loop_set_status(lo, &info64);
1633 }
1634 
1635 static int
1636 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1637 	struct loop_info info;
1638 	struct loop_info64 info64;
1639 	int err;
1640 
1641 	if (!arg)
1642 		return -EINVAL;
1643 	err = loop_get_status(lo, &info64);
1644 	if (!err)
1645 		err = loop_info64_to_old(&info64, &info);
1646 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1647 		err = -EFAULT;
1648 
1649 	return err;
1650 }
1651 
1652 static int
1653 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1654 	struct loop_info64 info64;
1655 	int err;
1656 
1657 	if (!arg)
1658 		return -EINVAL;
1659 	err = loop_get_status(lo, &info64);
1660 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1661 		err = -EFAULT;
1662 
1663 	return err;
1664 }
1665 
1666 static int loop_set_capacity(struct loop_device *lo)
1667 {
1668 	loff_t size;
1669 
1670 	if (unlikely(lo->lo_state != Lo_bound))
1671 		return -ENXIO;
1672 
1673 	size = get_loop_size(lo, lo->lo_backing_file);
1674 	loop_set_size(lo, size);
1675 
1676 	return 0;
1677 }
1678 
1679 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1680 {
1681 	int error = -ENXIO;
1682 	if (lo->lo_state != Lo_bound)
1683 		goto out;
1684 
1685 	__loop_update_dio(lo, !!arg);
1686 	if (lo->use_dio == !!arg)
1687 		return 0;
1688 	error = -EINVAL;
1689  out:
1690 	return error;
1691 }
1692 
1693 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1694 {
1695 	int err = 0;
1696 
1697 	if (lo->lo_state != Lo_bound)
1698 		return -ENXIO;
1699 
1700 	err = loop_validate_block_size(arg);
1701 	if (err)
1702 		return err;
1703 
1704 	if (lo->lo_queue->limits.logical_block_size == arg)
1705 		return 0;
1706 
1707 	sync_blockdev(lo->lo_device);
1708 	invalidate_bdev(lo->lo_device);
1709 
1710 	blk_mq_freeze_queue(lo->lo_queue);
1711 
1712 	/* invalidate_bdev should have truncated all the pages */
1713 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1714 		err = -EAGAIN;
1715 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1716 			__func__, lo->lo_number, lo->lo_file_name,
1717 			lo->lo_device->bd_inode->i_mapping->nrpages);
1718 		goto out_unfreeze;
1719 	}
1720 
1721 	blk_queue_logical_block_size(lo->lo_queue, arg);
1722 	blk_queue_physical_block_size(lo->lo_queue, arg);
1723 	blk_queue_io_min(lo->lo_queue, arg);
1724 	loop_update_dio(lo);
1725 out_unfreeze:
1726 	blk_mq_unfreeze_queue(lo->lo_queue);
1727 
1728 	return err;
1729 }
1730 
1731 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1732 			   unsigned long arg)
1733 {
1734 	int err;
1735 
1736 	err = mutex_lock_killable(&lo->lo_mutex);
1737 	if (err)
1738 		return err;
1739 	switch (cmd) {
1740 	case LOOP_SET_CAPACITY:
1741 		err = loop_set_capacity(lo);
1742 		break;
1743 	case LOOP_SET_DIRECT_IO:
1744 		err = loop_set_dio(lo, arg);
1745 		break;
1746 	case LOOP_SET_BLOCK_SIZE:
1747 		err = loop_set_block_size(lo, arg);
1748 		break;
1749 	default:
1750 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1751 	}
1752 	mutex_unlock(&lo->lo_mutex);
1753 	return err;
1754 }
1755 
1756 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1757 	unsigned int cmd, unsigned long arg)
1758 {
1759 	struct loop_device *lo = bdev->bd_disk->private_data;
1760 	void __user *argp = (void __user *) arg;
1761 	int err;
1762 
1763 	switch (cmd) {
1764 	case LOOP_SET_FD: {
1765 		/*
1766 		 * Legacy case - pass in a zeroed out struct loop_config with
1767 		 * only the file descriptor set , which corresponds with the
1768 		 * default parameters we'd have used otherwise.
1769 		 */
1770 		struct loop_config config;
1771 
1772 		memset(&config, 0, sizeof(config));
1773 		config.fd = arg;
1774 
1775 		return loop_configure(lo, mode, bdev, &config);
1776 	}
1777 	case LOOP_CONFIGURE: {
1778 		struct loop_config config;
1779 
1780 		if (copy_from_user(&config, argp, sizeof(config)))
1781 			return -EFAULT;
1782 
1783 		return loop_configure(lo, mode, bdev, &config);
1784 	}
1785 	case LOOP_CHANGE_FD:
1786 		return loop_change_fd(lo, bdev, arg);
1787 	case LOOP_CLR_FD:
1788 		return loop_clr_fd(lo);
1789 	case LOOP_SET_STATUS:
1790 		err = -EPERM;
1791 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1792 			err = loop_set_status_old(lo, argp);
1793 		}
1794 		break;
1795 	case LOOP_GET_STATUS:
1796 		return loop_get_status_old(lo, argp);
1797 	case LOOP_SET_STATUS64:
1798 		err = -EPERM;
1799 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1800 			err = loop_set_status64(lo, argp);
1801 		}
1802 		break;
1803 	case LOOP_GET_STATUS64:
1804 		return loop_get_status64(lo, argp);
1805 	case LOOP_SET_CAPACITY:
1806 	case LOOP_SET_DIRECT_IO:
1807 	case LOOP_SET_BLOCK_SIZE:
1808 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1809 			return -EPERM;
1810 		fallthrough;
1811 	default:
1812 		err = lo_simple_ioctl(lo, cmd, arg);
1813 		break;
1814 	}
1815 
1816 	return err;
1817 }
1818 
1819 #ifdef CONFIG_COMPAT
1820 struct compat_loop_info {
1821 	compat_int_t	lo_number;      /* ioctl r/o */
1822 	compat_dev_t	lo_device;      /* ioctl r/o */
1823 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1824 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1825 	compat_int_t	lo_offset;
1826 	compat_int_t	lo_encrypt_type;
1827 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1828 	compat_int_t	lo_flags;       /* ioctl r/o */
1829 	char		lo_name[LO_NAME_SIZE];
1830 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1831 	compat_ulong_t	lo_init[2];
1832 	char		reserved[4];
1833 };
1834 
1835 /*
1836  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1837  * - noinlined to reduce stack space usage in main part of driver
1838  */
1839 static noinline int
1840 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1841 			struct loop_info64 *info64)
1842 {
1843 	struct compat_loop_info info;
1844 
1845 	if (copy_from_user(&info, arg, sizeof(info)))
1846 		return -EFAULT;
1847 
1848 	memset(info64, 0, sizeof(*info64));
1849 	info64->lo_number = info.lo_number;
1850 	info64->lo_device = info.lo_device;
1851 	info64->lo_inode = info.lo_inode;
1852 	info64->lo_rdevice = info.lo_rdevice;
1853 	info64->lo_offset = info.lo_offset;
1854 	info64->lo_sizelimit = 0;
1855 	info64->lo_encrypt_type = info.lo_encrypt_type;
1856 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1857 	info64->lo_flags = info.lo_flags;
1858 	info64->lo_init[0] = info.lo_init[0];
1859 	info64->lo_init[1] = info.lo_init[1];
1860 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1861 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1862 	else
1863 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1864 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1865 	return 0;
1866 }
1867 
1868 /*
1869  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1870  * - noinlined to reduce stack space usage in main part of driver
1871  */
1872 static noinline int
1873 loop_info64_to_compat(const struct loop_info64 *info64,
1874 		      struct compat_loop_info __user *arg)
1875 {
1876 	struct compat_loop_info info;
1877 
1878 	memset(&info, 0, sizeof(info));
1879 	info.lo_number = info64->lo_number;
1880 	info.lo_device = info64->lo_device;
1881 	info.lo_inode = info64->lo_inode;
1882 	info.lo_rdevice = info64->lo_rdevice;
1883 	info.lo_offset = info64->lo_offset;
1884 	info.lo_encrypt_type = info64->lo_encrypt_type;
1885 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1886 	info.lo_flags = info64->lo_flags;
1887 	info.lo_init[0] = info64->lo_init[0];
1888 	info.lo_init[1] = info64->lo_init[1];
1889 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1890 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1891 	else
1892 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1893 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1894 
1895 	/* error in case values were truncated */
1896 	if (info.lo_device != info64->lo_device ||
1897 	    info.lo_rdevice != info64->lo_rdevice ||
1898 	    info.lo_inode != info64->lo_inode ||
1899 	    info.lo_offset != info64->lo_offset ||
1900 	    info.lo_init[0] != info64->lo_init[0] ||
1901 	    info.lo_init[1] != info64->lo_init[1])
1902 		return -EOVERFLOW;
1903 
1904 	if (copy_to_user(arg, &info, sizeof(info)))
1905 		return -EFAULT;
1906 	return 0;
1907 }
1908 
1909 static int
1910 loop_set_status_compat(struct loop_device *lo,
1911 		       const struct compat_loop_info __user *arg)
1912 {
1913 	struct loop_info64 info64;
1914 	int ret;
1915 
1916 	ret = loop_info64_from_compat(arg, &info64);
1917 	if (ret < 0)
1918 		return ret;
1919 	return loop_set_status(lo, &info64);
1920 }
1921 
1922 static int
1923 loop_get_status_compat(struct loop_device *lo,
1924 		       struct compat_loop_info __user *arg)
1925 {
1926 	struct loop_info64 info64;
1927 	int err;
1928 
1929 	if (!arg)
1930 		return -EINVAL;
1931 	err = loop_get_status(lo, &info64);
1932 	if (!err)
1933 		err = loop_info64_to_compat(&info64, arg);
1934 	return err;
1935 }
1936 
1937 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1938 			   unsigned int cmd, unsigned long arg)
1939 {
1940 	struct loop_device *lo = bdev->bd_disk->private_data;
1941 	int err;
1942 
1943 	switch(cmd) {
1944 	case LOOP_SET_STATUS:
1945 		err = loop_set_status_compat(lo,
1946 			     (const struct compat_loop_info __user *)arg);
1947 		break;
1948 	case LOOP_GET_STATUS:
1949 		err = loop_get_status_compat(lo,
1950 				     (struct compat_loop_info __user *)arg);
1951 		break;
1952 	case LOOP_SET_CAPACITY:
1953 	case LOOP_CLR_FD:
1954 	case LOOP_GET_STATUS64:
1955 	case LOOP_SET_STATUS64:
1956 	case LOOP_CONFIGURE:
1957 		arg = (unsigned long) compat_ptr(arg);
1958 		fallthrough;
1959 	case LOOP_SET_FD:
1960 	case LOOP_CHANGE_FD:
1961 	case LOOP_SET_BLOCK_SIZE:
1962 	case LOOP_SET_DIRECT_IO:
1963 		err = lo_ioctl(bdev, mode, cmd, arg);
1964 		break;
1965 	default:
1966 		err = -ENOIOCTLCMD;
1967 		break;
1968 	}
1969 	return err;
1970 }
1971 #endif
1972 
1973 static int lo_open(struct block_device *bdev, fmode_t mode)
1974 {
1975 	struct loop_device *lo = bdev->bd_disk->private_data;
1976 	int err;
1977 
1978 	err = mutex_lock_killable(&lo->lo_mutex);
1979 	if (err)
1980 		return err;
1981 	if (lo->lo_state == Lo_deleting)
1982 		err = -ENXIO;
1983 	else
1984 		atomic_inc(&lo->lo_refcnt);
1985 	mutex_unlock(&lo->lo_mutex);
1986 	return err;
1987 }
1988 
1989 static void lo_release(struct gendisk *disk, fmode_t mode)
1990 {
1991 	struct loop_device *lo = disk->private_data;
1992 
1993 	mutex_lock(&lo->lo_mutex);
1994 	if (atomic_dec_return(&lo->lo_refcnt))
1995 		goto out_unlock;
1996 
1997 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1998 		if (lo->lo_state != Lo_bound)
1999 			goto out_unlock;
2000 		lo->lo_state = Lo_rundown;
2001 		mutex_unlock(&lo->lo_mutex);
2002 		/*
2003 		 * In autoclear mode, stop the loop thread
2004 		 * and remove configuration after last close.
2005 		 */
2006 		__loop_clr_fd(lo, true);
2007 		return;
2008 	} else if (lo->lo_state == Lo_bound) {
2009 		/*
2010 		 * Otherwise keep thread (if running) and config,
2011 		 * but flush possible ongoing bios in thread.
2012 		 */
2013 		blk_mq_freeze_queue(lo->lo_queue);
2014 		blk_mq_unfreeze_queue(lo->lo_queue);
2015 	}
2016 
2017 out_unlock:
2018 	mutex_unlock(&lo->lo_mutex);
2019 }
2020 
2021 static const struct block_device_operations lo_fops = {
2022 	.owner =	THIS_MODULE,
2023 	.open =		lo_open,
2024 	.release =	lo_release,
2025 	.ioctl =	lo_ioctl,
2026 #ifdef CONFIG_COMPAT
2027 	.compat_ioctl =	lo_compat_ioctl,
2028 #endif
2029 };
2030 
2031 /*
2032  * And now the modules code and kernel interface.
2033  */
2034 static int max_loop;
2035 module_param(max_loop, int, 0444);
2036 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
2037 module_param(max_part, int, 0444);
2038 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
2039 MODULE_LICENSE("GPL");
2040 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
2041 
2042 int loop_register_transfer(struct loop_func_table *funcs)
2043 {
2044 	unsigned int n = funcs->number;
2045 
2046 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
2047 		return -EINVAL;
2048 	xfer_funcs[n] = funcs;
2049 	return 0;
2050 }
2051 
2052 static int unregister_transfer_cb(int id, void *ptr, void *data)
2053 {
2054 	struct loop_device *lo = ptr;
2055 	struct loop_func_table *xfer = data;
2056 
2057 	mutex_lock(&lo->lo_mutex);
2058 	if (lo->lo_encryption == xfer)
2059 		loop_release_xfer(lo);
2060 	mutex_unlock(&lo->lo_mutex);
2061 	return 0;
2062 }
2063 
2064 int loop_unregister_transfer(int number)
2065 {
2066 	unsigned int n = number;
2067 	struct loop_func_table *xfer;
2068 
2069 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
2070 		return -EINVAL;
2071 
2072 	xfer_funcs[n] = NULL;
2073 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
2074 	return 0;
2075 }
2076 
2077 EXPORT_SYMBOL(loop_register_transfer);
2078 EXPORT_SYMBOL(loop_unregister_transfer);
2079 
2080 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
2081 		const struct blk_mq_queue_data *bd)
2082 {
2083 	struct request *rq = bd->rq;
2084 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2085 	struct loop_device *lo = rq->q->queuedata;
2086 
2087 	blk_mq_start_request(rq);
2088 
2089 	if (lo->lo_state != Lo_bound)
2090 		return BLK_STS_IOERR;
2091 
2092 	switch (req_op(rq)) {
2093 	case REQ_OP_FLUSH:
2094 	case REQ_OP_DISCARD:
2095 	case REQ_OP_WRITE_ZEROES:
2096 		cmd->use_aio = false;
2097 		break;
2098 	default:
2099 		cmd->use_aio = lo->use_dio;
2100 		break;
2101 	}
2102 
2103 	/* always use the first bio's css */
2104 	cmd->blkcg_css = NULL;
2105 	cmd->memcg_css = NULL;
2106 #ifdef CONFIG_BLK_CGROUP
2107 	if (rq->bio && rq->bio->bi_blkg) {
2108 		cmd->blkcg_css = &bio_blkcg(rq->bio)->css;
2109 #ifdef CONFIG_MEMCG
2110 		cmd->memcg_css =
2111 			cgroup_get_e_css(cmd->blkcg_css->cgroup,
2112 					&memory_cgrp_subsys);
2113 #endif
2114 	}
2115 #endif
2116 	loop_queue_work(lo, cmd);
2117 
2118 	return BLK_STS_OK;
2119 }
2120 
2121 static void loop_handle_cmd(struct loop_cmd *cmd)
2122 {
2123 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2124 	const bool write = op_is_write(req_op(rq));
2125 	struct loop_device *lo = rq->q->queuedata;
2126 	int ret = 0;
2127 	struct mem_cgroup *old_memcg = NULL;
2128 
2129 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2130 		ret = -EIO;
2131 		goto failed;
2132 	}
2133 
2134 	if (cmd->blkcg_css)
2135 		kthread_associate_blkcg(cmd->blkcg_css);
2136 	if (cmd->memcg_css)
2137 		old_memcg = set_active_memcg(
2138 			mem_cgroup_from_css(cmd->memcg_css));
2139 
2140 	ret = do_req_filebacked(lo, rq);
2141 
2142 	if (cmd->blkcg_css)
2143 		kthread_associate_blkcg(NULL);
2144 
2145 	if (cmd->memcg_css) {
2146 		set_active_memcg(old_memcg);
2147 		css_put(cmd->memcg_css);
2148 	}
2149  failed:
2150 	/* complete non-aio request */
2151 	if (!cmd->use_aio || ret) {
2152 		if (ret == -EOPNOTSUPP)
2153 			cmd->ret = ret;
2154 		else
2155 			cmd->ret = ret ? -EIO : 0;
2156 		if (likely(!blk_should_fake_timeout(rq->q)))
2157 			blk_mq_complete_request(rq);
2158 	}
2159 }
2160 
2161 static void loop_set_timer(struct loop_device *lo)
2162 {
2163 	timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
2164 }
2165 
2166 static void loop_process_work(struct loop_worker *worker,
2167 			struct list_head *cmd_list, struct loop_device *lo)
2168 {
2169 	int orig_flags = current->flags;
2170 	struct loop_cmd *cmd;
2171 
2172 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
2173 	spin_lock_irq(&lo->lo_work_lock);
2174 	while (!list_empty(cmd_list)) {
2175 		cmd = container_of(
2176 			cmd_list->next, struct loop_cmd, list_entry);
2177 		list_del(cmd_list->next);
2178 		spin_unlock_irq(&lo->lo_work_lock);
2179 
2180 		loop_handle_cmd(cmd);
2181 		cond_resched();
2182 
2183 		spin_lock_irq(&lo->lo_work_lock);
2184 	}
2185 
2186 	/*
2187 	 * We only add to the idle list if there are no pending cmds
2188 	 * *and* the worker will not run again which ensures that it
2189 	 * is safe to free any worker on the idle list
2190 	 */
2191 	if (worker && !work_pending(&worker->work)) {
2192 		worker->last_ran_at = jiffies;
2193 		list_add_tail(&worker->idle_list, &lo->idle_worker_list);
2194 		loop_set_timer(lo);
2195 	}
2196 	spin_unlock_irq(&lo->lo_work_lock);
2197 	current->flags = orig_flags;
2198 }
2199 
2200 static void loop_workfn(struct work_struct *work)
2201 {
2202 	struct loop_worker *worker =
2203 		container_of(work, struct loop_worker, work);
2204 	loop_process_work(worker, &worker->cmd_list, worker->lo);
2205 }
2206 
2207 static void loop_rootcg_workfn(struct work_struct *work)
2208 {
2209 	struct loop_device *lo =
2210 		container_of(work, struct loop_device, rootcg_work);
2211 	loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
2212 }
2213 
2214 static void loop_free_idle_workers(struct timer_list *timer)
2215 {
2216 	struct loop_device *lo = container_of(timer, struct loop_device, timer);
2217 	struct loop_worker *pos, *worker;
2218 
2219 	spin_lock_irq(&lo->lo_work_lock);
2220 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
2221 				idle_list) {
2222 		if (time_is_after_jiffies(worker->last_ran_at +
2223 						LOOP_IDLE_WORKER_TIMEOUT))
2224 			break;
2225 		list_del(&worker->idle_list);
2226 		rb_erase(&worker->rb_node, &lo->worker_tree);
2227 		css_put(worker->blkcg_css);
2228 		kfree(worker);
2229 	}
2230 	if (!list_empty(&lo->idle_worker_list))
2231 		loop_set_timer(lo);
2232 	spin_unlock_irq(&lo->lo_work_lock);
2233 }
2234 
2235 static const struct blk_mq_ops loop_mq_ops = {
2236 	.queue_rq       = loop_queue_rq,
2237 	.complete	= lo_complete_rq,
2238 };
2239 
2240 static int loop_add(struct loop_device **l, int i)
2241 {
2242 	struct loop_device *lo;
2243 	struct gendisk *disk;
2244 	int err;
2245 
2246 	err = -ENOMEM;
2247 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2248 	if (!lo)
2249 		goto out;
2250 
2251 	lo->lo_state = Lo_unbound;
2252 
2253 	/* allocate id, if @id >= 0, we're requesting that specific id */
2254 	if (i >= 0) {
2255 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2256 		if (err == -ENOSPC)
2257 			err = -EEXIST;
2258 	} else {
2259 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2260 	}
2261 	if (err < 0)
2262 		goto out_free_dev;
2263 	i = err;
2264 
2265 	err = -ENOMEM;
2266 	lo->tag_set.ops = &loop_mq_ops;
2267 	lo->tag_set.nr_hw_queues = 1;
2268 	lo->tag_set.queue_depth = 128;
2269 	lo->tag_set.numa_node = NUMA_NO_NODE;
2270 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2271 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2272 	lo->tag_set.driver_data = lo;
2273 
2274 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2275 	if (err)
2276 		goto out_free_idr;
2277 
2278 	disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2279 	if (IS_ERR(disk)) {
2280 		err = PTR_ERR(disk);
2281 		goto out_cleanup_tags;
2282 	}
2283 	lo->lo_queue = lo->lo_disk->queue;
2284 
2285 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2286 
2287 	/*
2288 	 * By default, we do buffer IO, so it doesn't make sense to enable
2289 	 * merge because the I/O submitted to backing file is handled page by
2290 	 * page. For directio mode, merge does help to dispatch bigger request
2291 	 * to underlayer disk. We will enable merge once directio is enabled.
2292 	 */
2293 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2294 
2295 	/*
2296 	 * Disable partition scanning by default. The in-kernel partition
2297 	 * scanning can be requested individually per-device during its
2298 	 * setup. Userspace can always add and remove partitions from all
2299 	 * devices. The needed partition minors are allocated from the
2300 	 * extended minor space, the main loop device numbers will continue
2301 	 * to match the loop minors, regardless of the number of partitions
2302 	 * used.
2303 	 *
2304 	 * If max_part is given, partition scanning is globally enabled for
2305 	 * all loop devices. The minors for the main loop devices will be
2306 	 * multiples of max_part.
2307 	 *
2308 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2309 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2310 	 * complicated, are too static, inflexible and may surprise
2311 	 * userspace tools. Parameters like this in general should be avoided.
2312 	 */
2313 	if (!part_shift)
2314 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2315 	disk->flags |= GENHD_FL_EXT_DEVT;
2316 	atomic_set(&lo->lo_refcnt, 0);
2317 	mutex_init(&lo->lo_mutex);
2318 	lo->lo_number		= i;
2319 	spin_lock_init(&lo->lo_lock);
2320 	spin_lock_init(&lo->lo_work_lock);
2321 	disk->major		= LOOP_MAJOR;
2322 	disk->first_minor	= i << part_shift;
2323 	disk->minors		= 1 << part_shift;
2324 	disk->fops		= &lo_fops;
2325 	disk->private_data	= lo;
2326 	disk->queue		= lo->lo_queue;
2327 	sprintf(disk->disk_name, "loop%d", i);
2328 	add_disk(disk);
2329 	*l = lo;
2330 	return lo->lo_number;
2331 
2332 out_cleanup_tags:
2333 	blk_mq_free_tag_set(&lo->tag_set);
2334 out_free_idr:
2335 	idr_remove(&loop_index_idr, i);
2336 out_free_dev:
2337 	kfree(lo);
2338 out:
2339 	return err;
2340 }
2341 
2342 static void loop_remove(struct loop_device *lo)
2343 {
2344 	del_gendisk(lo->lo_disk);
2345 	blk_cleanup_disk(lo->lo_disk);
2346 	blk_mq_free_tag_set(&lo->tag_set);
2347 	mutex_destroy(&lo->lo_mutex);
2348 	kfree(lo);
2349 }
2350 
2351 static int find_free_cb(int id, void *ptr, void *data)
2352 {
2353 	struct loop_device *lo = ptr;
2354 	struct loop_device **l = data;
2355 
2356 	if (lo->lo_state == Lo_unbound) {
2357 		*l = lo;
2358 		return 1;
2359 	}
2360 	return 0;
2361 }
2362 
2363 static int loop_lookup(struct loop_device **l, int i)
2364 {
2365 	struct loop_device *lo;
2366 	int ret = -ENODEV;
2367 
2368 	if (i < 0) {
2369 		int err;
2370 
2371 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2372 		if (err == 1) {
2373 			*l = lo;
2374 			ret = lo->lo_number;
2375 		}
2376 		goto out;
2377 	}
2378 
2379 	/* lookup and return a specific i */
2380 	lo = idr_find(&loop_index_idr, i);
2381 	if (lo) {
2382 		*l = lo;
2383 		ret = lo->lo_number;
2384 	}
2385 out:
2386 	return ret;
2387 }
2388 
2389 static void loop_probe(dev_t dev)
2390 {
2391 	int idx = MINOR(dev) >> part_shift;
2392 	struct loop_device *lo;
2393 
2394 	if (max_loop && idx >= max_loop)
2395 		return;
2396 
2397 	mutex_lock(&loop_ctl_mutex);
2398 	if (loop_lookup(&lo, idx) < 0)
2399 		loop_add(&lo, idx);
2400 	mutex_unlock(&loop_ctl_mutex);
2401 }
2402 
2403 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2404 			       unsigned long parm)
2405 {
2406 	struct loop_device *lo;
2407 	int ret;
2408 
2409 	ret = mutex_lock_killable(&loop_ctl_mutex);
2410 	if (ret)
2411 		return ret;
2412 
2413 	ret = -ENOSYS;
2414 	switch (cmd) {
2415 	case LOOP_CTL_ADD:
2416 		ret = loop_lookup(&lo, parm);
2417 		if (ret >= 0) {
2418 			ret = -EEXIST;
2419 			break;
2420 		}
2421 		ret = loop_add(&lo, parm);
2422 		break;
2423 	case LOOP_CTL_REMOVE:
2424 		ret = loop_lookup(&lo, parm);
2425 		if (ret < 0)
2426 			break;
2427 		ret = mutex_lock_killable(&lo->lo_mutex);
2428 		if (ret)
2429 			break;
2430 		if (lo->lo_state != Lo_unbound) {
2431 			ret = -EBUSY;
2432 			mutex_unlock(&lo->lo_mutex);
2433 			break;
2434 		}
2435 		if (atomic_read(&lo->lo_refcnt) > 0) {
2436 			ret = -EBUSY;
2437 			mutex_unlock(&lo->lo_mutex);
2438 			break;
2439 		}
2440 		lo->lo_state = Lo_deleting;
2441 		mutex_unlock(&lo->lo_mutex);
2442 		idr_remove(&loop_index_idr, lo->lo_number);
2443 		loop_remove(lo);
2444 		break;
2445 	case LOOP_CTL_GET_FREE:
2446 		ret = loop_lookup(&lo, -1);
2447 		if (ret >= 0)
2448 			break;
2449 		ret = loop_add(&lo, -1);
2450 	}
2451 	mutex_unlock(&loop_ctl_mutex);
2452 
2453 	return ret;
2454 }
2455 
2456 static const struct file_operations loop_ctl_fops = {
2457 	.open		= nonseekable_open,
2458 	.unlocked_ioctl	= loop_control_ioctl,
2459 	.compat_ioctl	= loop_control_ioctl,
2460 	.owner		= THIS_MODULE,
2461 	.llseek		= noop_llseek,
2462 };
2463 
2464 static struct miscdevice loop_misc = {
2465 	.minor		= LOOP_CTRL_MINOR,
2466 	.name		= "loop-control",
2467 	.fops		= &loop_ctl_fops,
2468 };
2469 
2470 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2471 MODULE_ALIAS("devname:loop-control");
2472 
2473 static int __init loop_init(void)
2474 {
2475 	int i, nr;
2476 	struct loop_device *lo;
2477 	int err;
2478 
2479 	part_shift = 0;
2480 	if (max_part > 0) {
2481 		part_shift = fls(max_part);
2482 
2483 		/*
2484 		 * Adjust max_part according to part_shift as it is exported
2485 		 * to user space so that user can decide correct minor number
2486 		 * if [s]he want to create more devices.
2487 		 *
2488 		 * Note that -1 is required because partition 0 is reserved
2489 		 * for the whole disk.
2490 		 */
2491 		max_part = (1UL << part_shift) - 1;
2492 	}
2493 
2494 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2495 		err = -EINVAL;
2496 		goto err_out;
2497 	}
2498 
2499 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2500 		err = -EINVAL;
2501 		goto err_out;
2502 	}
2503 
2504 	/*
2505 	 * If max_loop is specified, create that many devices upfront.
2506 	 * This also becomes a hard limit. If max_loop is not specified,
2507 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2508 	 * init time. Loop devices can be requested on-demand with the
2509 	 * /dev/loop-control interface, or be instantiated by accessing
2510 	 * a 'dead' device node.
2511 	 */
2512 	if (max_loop)
2513 		nr = max_loop;
2514 	else
2515 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2516 
2517 	err = misc_register(&loop_misc);
2518 	if (err < 0)
2519 		goto err_out;
2520 
2521 
2522 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2523 		err = -EIO;
2524 		goto misc_out;
2525 	}
2526 
2527 	/* pre-create number of devices given by config or max_loop */
2528 	mutex_lock(&loop_ctl_mutex);
2529 	for (i = 0; i < nr; i++)
2530 		loop_add(&lo, i);
2531 	mutex_unlock(&loop_ctl_mutex);
2532 
2533 	printk(KERN_INFO "loop: module loaded\n");
2534 	return 0;
2535 
2536 misc_out:
2537 	misc_deregister(&loop_misc);
2538 err_out:
2539 	return err;
2540 }
2541 
2542 static int loop_exit_cb(int id, void *ptr, void *data)
2543 {
2544 	struct loop_device *lo = ptr;
2545 
2546 	loop_remove(lo);
2547 	return 0;
2548 }
2549 
2550 static void __exit loop_exit(void)
2551 {
2552 	mutex_lock(&loop_ctl_mutex);
2553 
2554 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2555 	idr_destroy(&loop_index_idr);
2556 
2557 	unregister_blkdev(LOOP_MAJOR, "loop");
2558 
2559 	misc_deregister(&loop_misc);
2560 
2561 	mutex_unlock(&loop_ctl_mutex);
2562 }
2563 
2564 module_init(loop_init);
2565 module_exit(loop_exit);
2566 
2567 #ifndef MODULE
2568 static int __init max_loop_setup(char *str)
2569 {
2570 	max_loop = simple_strtol(str, NULL, 0);
2571 	return 1;
2572 }
2573 
2574 __setup("max_loop=", max_loop_setup);
2575 #endif
2576