1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include "loop.h" 80 81 #include <linux/uaccess.h> 82 83 static DEFINE_IDR(loop_index_idr); 84 static DEFINE_MUTEX(loop_index_mutex); 85 86 static int max_part; 87 static int part_shift; 88 89 static int transfer_xor(struct loop_device *lo, int cmd, 90 struct page *raw_page, unsigned raw_off, 91 struct page *loop_page, unsigned loop_off, 92 int size, sector_t real_block) 93 { 94 char *raw_buf = kmap_atomic(raw_page) + raw_off; 95 char *loop_buf = kmap_atomic(loop_page) + loop_off; 96 char *in, *out, *key; 97 int i, keysize; 98 99 if (cmd == READ) { 100 in = raw_buf; 101 out = loop_buf; 102 } else { 103 in = loop_buf; 104 out = raw_buf; 105 } 106 107 key = lo->lo_encrypt_key; 108 keysize = lo->lo_encrypt_key_size; 109 for (i = 0; i < size; i++) 110 *out++ = *in++ ^ key[(i & 511) % keysize]; 111 112 kunmap_atomic(loop_buf); 113 kunmap_atomic(raw_buf); 114 cond_resched(); 115 return 0; 116 } 117 118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 119 { 120 if (unlikely(info->lo_encrypt_key_size <= 0)) 121 return -EINVAL; 122 return 0; 123 } 124 125 static struct loop_func_table none_funcs = { 126 .number = LO_CRYPT_NONE, 127 }; 128 129 static struct loop_func_table xor_funcs = { 130 .number = LO_CRYPT_XOR, 131 .transfer = transfer_xor, 132 .init = xor_init 133 }; 134 135 /* xfer_funcs[0] is special - its release function is never called */ 136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 137 &none_funcs, 138 &xor_funcs 139 }; 140 141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 142 { 143 loff_t loopsize; 144 145 /* Compute loopsize in bytes */ 146 loopsize = i_size_read(file->f_mapping->host); 147 if (offset > 0) 148 loopsize -= offset; 149 /* offset is beyond i_size, weird but possible */ 150 if (loopsize < 0) 151 return 0; 152 153 if (sizelimit > 0 && sizelimit < loopsize) 154 loopsize = sizelimit; 155 /* 156 * Unfortunately, if we want to do I/O on the device, 157 * the number of 512-byte sectors has to fit into a sector_t. 158 */ 159 return loopsize >> 9; 160 } 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 165 } 166 167 static void __loop_update_dio(struct loop_device *lo, bool dio) 168 { 169 struct file *file = lo->lo_backing_file; 170 struct address_space *mapping = file->f_mapping; 171 struct inode *inode = mapping->host; 172 unsigned short sb_bsize = 0; 173 unsigned dio_align = 0; 174 bool use_dio; 175 176 if (inode->i_sb->s_bdev) { 177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 178 dio_align = sb_bsize - 1; 179 } 180 181 /* 182 * We support direct I/O only if lo_offset is aligned with the 183 * logical I/O size of backing device, and the logical block 184 * size of loop is bigger than the backing device's and the loop 185 * needn't transform transfer. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane applications should be PAGE_SIZE aligned 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 mapping->a_ops->direct_IO && 195 !lo->transfer) 196 use_dio = true; 197 else 198 use_dio = false; 199 } else { 200 use_dio = false; 201 } 202 203 if (lo->use_dio == use_dio) 204 return; 205 206 /* flush dirty pages before changing direct IO */ 207 vfs_fsync(file, 0); 208 209 /* 210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 212 * will get updated by ioctl(LOOP_GET_STATUS) 213 */ 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) 217 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 218 else 219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 220 blk_mq_unfreeze_queue(lo->lo_queue); 221 } 222 223 static int 224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 225 { 226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 227 sector_t x = (sector_t)size; 228 struct block_device *bdev = lo->lo_device; 229 230 if (unlikely((loff_t)x != size)) 231 return -EFBIG; 232 if (lo->lo_offset != offset) 233 lo->lo_offset = offset; 234 if (lo->lo_sizelimit != sizelimit) 235 lo->lo_sizelimit = sizelimit; 236 set_capacity(lo->lo_disk, x); 237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 238 /* let user-space know about the new size */ 239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 240 return 0; 241 } 242 243 static inline int 244 lo_do_transfer(struct loop_device *lo, int cmd, 245 struct page *rpage, unsigned roffs, 246 struct page *lpage, unsigned loffs, 247 int size, sector_t rblock) 248 { 249 int ret; 250 251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 252 if (likely(!ret)) 253 return 0; 254 255 printk_ratelimited(KERN_ERR 256 "loop: Transfer error at byte offset %llu, length %i.\n", 257 (unsigned long long)rblock << 9, size); 258 return ret; 259 } 260 261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 262 { 263 struct iov_iter i; 264 ssize_t bw; 265 266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len); 267 268 file_start_write(file); 269 bw = vfs_iter_write(file, &i, ppos); 270 file_end_write(file); 271 272 if (likely(bw == bvec->bv_len)) 273 return 0; 274 275 printk_ratelimited(KERN_ERR 276 "loop: Write error at byte offset %llu, length %i.\n", 277 (unsigned long long)*ppos, bvec->bv_len); 278 if (bw >= 0) 279 bw = -EIO; 280 return bw; 281 } 282 283 static int lo_write_simple(struct loop_device *lo, struct request *rq, 284 loff_t pos) 285 { 286 struct bio_vec bvec; 287 struct req_iterator iter; 288 int ret = 0; 289 290 rq_for_each_segment(bvec, rq, iter) { 291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 292 if (ret < 0) 293 break; 294 cond_resched(); 295 } 296 297 return ret; 298 } 299 300 /* 301 * This is the slow, transforming version that needs to double buffer the 302 * data as it cannot do the transformations in place without having direct 303 * access to the destination pages of the backing file. 304 */ 305 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 306 loff_t pos) 307 { 308 struct bio_vec bvec, b; 309 struct req_iterator iter; 310 struct page *page; 311 int ret = 0; 312 313 page = alloc_page(GFP_NOIO); 314 if (unlikely(!page)) 315 return -ENOMEM; 316 317 rq_for_each_segment(bvec, rq, iter) { 318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 319 bvec.bv_offset, bvec.bv_len, pos >> 9); 320 if (unlikely(ret)) 321 break; 322 323 b.bv_page = page; 324 b.bv_offset = 0; 325 b.bv_len = bvec.bv_len; 326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 327 if (ret < 0) 328 break; 329 } 330 331 __free_page(page); 332 return ret; 333 } 334 335 static int lo_read_simple(struct loop_device *lo, struct request *rq, 336 loff_t pos) 337 { 338 struct bio_vec bvec; 339 struct req_iterator iter; 340 struct iov_iter i; 341 ssize_t len; 342 343 rq_for_each_segment(bvec, rq, iter) { 344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 346 if (len < 0) 347 return len; 348 349 flush_dcache_page(bvec.bv_page); 350 351 if (len != bvec.bv_len) { 352 struct bio *bio; 353 354 __rq_for_each_bio(bio, rq) 355 zero_fill_bio(bio); 356 break; 357 } 358 cond_resched(); 359 } 360 361 return 0; 362 } 363 364 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 365 loff_t pos) 366 { 367 struct bio_vec bvec, b; 368 struct req_iterator iter; 369 struct iov_iter i; 370 struct page *page; 371 ssize_t len; 372 int ret = 0; 373 374 page = alloc_page(GFP_NOIO); 375 if (unlikely(!page)) 376 return -ENOMEM; 377 378 rq_for_each_segment(bvec, rq, iter) { 379 loff_t offset = pos; 380 381 b.bv_page = page; 382 b.bv_offset = 0; 383 b.bv_len = bvec.bv_len; 384 385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 387 if (len < 0) { 388 ret = len; 389 goto out_free_page; 390 } 391 392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 393 bvec.bv_offset, len, offset >> 9); 394 if (ret) 395 goto out_free_page; 396 397 flush_dcache_page(bvec.bv_page); 398 399 if (len != bvec.bv_len) { 400 struct bio *bio; 401 402 __rq_for_each_bio(bio, rq) 403 zero_fill_bio(bio); 404 break; 405 } 406 } 407 408 ret = 0; 409 out_free_page: 410 __free_page(page); 411 return ret; 412 } 413 414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 415 { 416 /* 417 * We use punch hole to reclaim the free space used by the 418 * image a.k.a. discard. However we do not support discard if 419 * encryption is enabled, because it may give an attacker 420 * useful information. 421 */ 422 struct file *file = lo->lo_backing_file; 423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 424 int ret; 425 426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 427 ret = -EOPNOTSUPP; 428 goto out; 429 } 430 431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 433 ret = -EIO; 434 out: 435 return ret; 436 } 437 438 static int lo_req_flush(struct loop_device *lo, struct request *rq) 439 { 440 struct file *file = lo->lo_backing_file; 441 int ret = vfs_fsync(file, 0); 442 if (unlikely(ret && ret != -EINVAL)) 443 ret = -EIO; 444 445 return ret; 446 } 447 448 static void lo_complete_rq(struct request *rq) 449 { 450 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 451 452 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio && 453 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) { 454 struct bio *bio = cmd->rq->bio; 455 456 bio_advance(bio, cmd->ret); 457 zero_fill_bio(bio); 458 } 459 460 blk_mq_end_request(rq, cmd->ret < 0 ? -EIO : 0); 461 } 462 463 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 464 { 465 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 466 467 cmd->ret = ret; 468 blk_mq_complete_request(cmd->rq); 469 } 470 471 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 472 loff_t pos, bool rw) 473 { 474 struct iov_iter iter; 475 struct bio_vec *bvec; 476 struct bio *bio = cmd->rq->bio; 477 struct file *file = lo->lo_backing_file; 478 int ret; 479 480 /* nomerge for loop request queue */ 481 WARN_ON(cmd->rq->bio != cmd->rq->biotail); 482 483 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 484 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 485 bio_segments(bio), blk_rq_bytes(cmd->rq)); 486 /* 487 * This bio may be started from the middle of the 'bvec' 488 * because of bio splitting, so offset from the bvec must 489 * be passed to iov iterator 490 */ 491 iter.iov_offset = bio->bi_iter.bi_bvec_done; 492 493 cmd->iocb.ki_pos = pos; 494 cmd->iocb.ki_filp = file; 495 cmd->iocb.ki_complete = lo_rw_aio_complete; 496 cmd->iocb.ki_flags = IOCB_DIRECT; 497 498 if (rw == WRITE) 499 ret = call_write_iter(file, &cmd->iocb, &iter); 500 else 501 ret = call_read_iter(file, &cmd->iocb, &iter); 502 503 if (ret != -EIOCBQUEUED) 504 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 505 return 0; 506 } 507 508 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 509 { 510 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 511 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 512 513 /* 514 * lo_write_simple and lo_read_simple should have been covered 515 * by io submit style function like lo_rw_aio(), one blocker 516 * is that lo_read_simple() need to call flush_dcache_page after 517 * the page is written from kernel, and it isn't easy to handle 518 * this in io submit style function which submits all segments 519 * of the req at one time. And direct read IO doesn't need to 520 * run flush_dcache_page(). 521 */ 522 switch (req_op(rq)) { 523 case REQ_OP_FLUSH: 524 return lo_req_flush(lo, rq); 525 case REQ_OP_DISCARD: 526 case REQ_OP_WRITE_ZEROES: 527 return lo_discard(lo, rq, pos); 528 case REQ_OP_WRITE: 529 if (lo->transfer) 530 return lo_write_transfer(lo, rq, pos); 531 else if (cmd->use_aio) 532 return lo_rw_aio(lo, cmd, pos, WRITE); 533 else 534 return lo_write_simple(lo, rq, pos); 535 case REQ_OP_READ: 536 if (lo->transfer) 537 return lo_read_transfer(lo, rq, pos); 538 else if (cmd->use_aio) 539 return lo_rw_aio(lo, cmd, pos, READ); 540 else 541 return lo_read_simple(lo, rq, pos); 542 default: 543 WARN_ON_ONCE(1); 544 return -EIO; 545 break; 546 } 547 } 548 549 struct switch_request { 550 struct file *file; 551 struct completion wait; 552 }; 553 554 static inline void loop_update_dio(struct loop_device *lo) 555 { 556 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 557 lo->use_dio); 558 } 559 560 /* 561 * Do the actual switch; called from the BIO completion routine 562 */ 563 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 564 { 565 struct file *file = p->file; 566 struct file *old_file = lo->lo_backing_file; 567 struct address_space *mapping; 568 569 /* if no new file, only flush of queued bios requested */ 570 if (!file) 571 return; 572 573 mapping = file->f_mapping; 574 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 575 lo->lo_backing_file = file; 576 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 577 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 578 lo->old_gfp_mask = mapping_gfp_mask(mapping); 579 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 580 loop_update_dio(lo); 581 } 582 583 /* 584 * loop_switch performs the hard work of switching a backing store. 585 * First it needs to flush existing IO, it does this by sending a magic 586 * BIO down the pipe. The completion of this BIO does the actual switch. 587 */ 588 static int loop_switch(struct loop_device *lo, struct file *file) 589 { 590 struct switch_request w; 591 592 w.file = file; 593 594 /* freeze queue and wait for completion of scheduled requests */ 595 blk_mq_freeze_queue(lo->lo_queue); 596 597 /* do the switch action */ 598 do_loop_switch(lo, &w); 599 600 /* unfreeze */ 601 blk_mq_unfreeze_queue(lo->lo_queue); 602 603 return 0; 604 } 605 606 /* 607 * Helper to flush the IOs in loop, but keeping loop thread running 608 */ 609 static int loop_flush(struct loop_device *lo) 610 { 611 return loop_switch(lo, NULL); 612 } 613 614 static void loop_reread_partitions(struct loop_device *lo, 615 struct block_device *bdev) 616 { 617 int rc; 618 619 /* 620 * bd_mutex has been held already in release path, so don't 621 * acquire it if this function is called in such case. 622 * 623 * If the reread partition isn't from release path, lo_refcnt 624 * must be at least one and it can only become zero when the 625 * current holder is released. 626 */ 627 if (!atomic_read(&lo->lo_refcnt)) 628 rc = __blkdev_reread_part(bdev); 629 else 630 rc = blkdev_reread_part(bdev); 631 if (rc) 632 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 633 __func__, lo->lo_number, lo->lo_file_name, rc); 634 } 635 636 /* 637 * loop_change_fd switched the backing store of a loopback device to 638 * a new file. This is useful for operating system installers to free up 639 * the original file and in High Availability environments to switch to 640 * an alternative location for the content in case of server meltdown. 641 * This can only work if the loop device is used read-only, and if the 642 * new backing store is the same size and type as the old backing store. 643 */ 644 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 645 unsigned int arg) 646 { 647 struct file *file, *old_file; 648 struct inode *inode; 649 int error; 650 651 error = -ENXIO; 652 if (lo->lo_state != Lo_bound) 653 goto out; 654 655 /* the loop device has to be read-only */ 656 error = -EINVAL; 657 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 658 goto out; 659 660 error = -EBADF; 661 file = fget(arg); 662 if (!file) 663 goto out; 664 665 inode = file->f_mapping->host; 666 old_file = lo->lo_backing_file; 667 668 error = -EINVAL; 669 670 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 671 goto out_putf; 672 673 /* size of the new backing store needs to be the same */ 674 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 675 goto out_putf; 676 677 /* and ... switch */ 678 error = loop_switch(lo, file); 679 if (error) 680 goto out_putf; 681 682 fput(old_file); 683 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 684 loop_reread_partitions(lo, bdev); 685 return 0; 686 687 out_putf: 688 fput(file); 689 out: 690 return error; 691 } 692 693 static inline int is_loop_device(struct file *file) 694 { 695 struct inode *i = file->f_mapping->host; 696 697 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 698 } 699 700 /* loop sysfs attributes */ 701 702 static ssize_t loop_attr_show(struct device *dev, char *page, 703 ssize_t (*callback)(struct loop_device *, char *)) 704 { 705 struct gendisk *disk = dev_to_disk(dev); 706 struct loop_device *lo = disk->private_data; 707 708 return callback(lo, page); 709 } 710 711 #define LOOP_ATTR_RO(_name) \ 712 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 713 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 714 struct device_attribute *attr, char *b) \ 715 { \ 716 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 717 } \ 718 static struct device_attribute loop_attr_##_name = \ 719 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 720 721 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 722 { 723 ssize_t ret; 724 char *p = NULL; 725 726 spin_lock_irq(&lo->lo_lock); 727 if (lo->lo_backing_file) 728 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 729 spin_unlock_irq(&lo->lo_lock); 730 731 if (IS_ERR_OR_NULL(p)) 732 ret = PTR_ERR(p); 733 else { 734 ret = strlen(p); 735 memmove(buf, p, ret); 736 buf[ret++] = '\n'; 737 buf[ret] = 0; 738 } 739 740 return ret; 741 } 742 743 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 744 { 745 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 746 } 747 748 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 749 { 750 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 751 } 752 753 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 754 { 755 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 756 757 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 758 } 759 760 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 761 { 762 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 763 764 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 765 } 766 767 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 768 { 769 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 770 771 return sprintf(buf, "%s\n", dio ? "1" : "0"); 772 } 773 774 LOOP_ATTR_RO(backing_file); 775 LOOP_ATTR_RO(offset); 776 LOOP_ATTR_RO(sizelimit); 777 LOOP_ATTR_RO(autoclear); 778 LOOP_ATTR_RO(partscan); 779 LOOP_ATTR_RO(dio); 780 781 static struct attribute *loop_attrs[] = { 782 &loop_attr_backing_file.attr, 783 &loop_attr_offset.attr, 784 &loop_attr_sizelimit.attr, 785 &loop_attr_autoclear.attr, 786 &loop_attr_partscan.attr, 787 &loop_attr_dio.attr, 788 NULL, 789 }; 790 791 static struct attribute_group loop_attribute_group = { 792 .name = "loop", 793 .attrs= loop_attrs, 794 }; 795 796 static int loop_sysfs_init(struct loop_device *lo) 797 { 798 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 799 &loop_attribute_group); 800 } 801 802 static void loop_sysfs_exit(struct loop_device *lo) 803 { 804 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 805 &loop_attribute_group); 806 } 807 808 static void loop_config_discard(struct loop_device *lo) 809 { 810 struct file *file = lo->lo_backing_file; 811 struct inode *inode = file->f_mapping->host; 812 struct request_queue *q = lo->lo_queue; 813 814 /* 815 * We use punch hole to reclaim the free space used by the 816 * image a.k.a. discard. However we do not support discard if 817 * encryption is enabled, because it may give an attacker 818 * useful information. 819 */ 820 if ((!file->f_op->fallocate) || 821 lo->lo_encrypt_key_size) { 822 q->limits.discard_granularity = 0; 823 q->limits.discard_alignment = 0; 824 blk_queue_max_discard_sectors(q, 0); 825 blk_queue_max_write_zeroes_sectors(q, 0); 826 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 827 return; 828 } 829 830 q->limits.discard_granularity = inode->i_sb->s_blocksize; 831 q->limits.discard_alignment = 0; 832 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 833 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 834 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 835 } 836 837 static void loop_unprepare_queue(struct loop_device *lo) 838 { 839 kthread_flush_worker(&lo->worker); 840 kthread_stop(lo->worker_task); 841 } 842 843 static int loop_prepare_queue(struct loop_device *lo) 844 { 845 kthread_init_worker(&lo->worker); 846 lo->worker_task = kthread_run(kthread_worker_fn, 847 &lo->worker, "loop%d", lo->lo_number); 848 if (IS_ERR(lo->worker_task)) 849 return -ENOMEM; 850 set_user_nice(lo->worker_task, MIN_NICE); 851 return 0; 852 } 853 854 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 855 struct block_device *bdev, unsigned int arg) 856 { 857 struct file *file, *f; 858 struct inode *inode; 859 struct address_space *mapping; 860 unsigned lo_blocksize; 861 int lo_flags = 0; 862 int error; 863 loff_t size; 864 865 /* This is safe, since we have a reference from open(). */ 866 __module_get(THIS_MODULE); 867 868 error = -EBADF; 869 file = fget(arg); 870 if (!file) 871 goto out; 872 873 error = -EBUSY; 874 if (lo->lo_state != Lo_unbound) 875 goto out_putf; 876 877 /* Avoid recursion */ 878 f = file; 879 while (is_loop_device(f)) { 880 struct loop_device *l; 881 882 if (f->f_mapping->host->i_bdev == bdev) 883 goto out_putf; 884 885 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 886 if (l->lo_state == Lo_unbound) { 887 error = -EINVAL; 888 goto out_putf; 889 } 890 f = l->lo_backing_file; 891 } 892 893 mapping = file->f_mapping; 894 inode = mapping->host; 895 896 error = -EINVAL; 897 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 898 goto out_putf; 899 900 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 901 !file->f_op->write_iter) 902 lo_flags |= LO_FLAGS_READ_ONLY; 903 904 lo_blocksize = S_ISBLK(inode->i_mode) ? 905 inode->i_bdev->bd_block_size : PAGE_SIZE; 906 907 error = -EFBIG; 908 size = get_loop_size(lo, file); 909 if ((loff_t)(sector_t)size != size) 910 goto out_putf; 911 error = loop_prepare_queue(lo); 912 if (error) 913 goto out_putf; 914 915 error = 0; 916 917 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 918 919 lo->use_dio = false; 920 lo->lo_blocksize = lo_blocksize; 921 lo->lo_device = bdev; 922 lo->lo_flags = lo_flags; 923 lo->lo_backing_file = file; 924 lo->transfer = NULL; 925 lo->ioctl = NULL; 926 lo->lo_sizelimit = 0; 927 lo->old_gfp_mask = mapping_gfp_mask(mapping); 928 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 929 930 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 931 blk_queue_write_cache(lo->lo_queue, true, false); 932 933 loop_update_dio(lo); 934 set_capacity(lo->lo_disk, size); 935 bd_set_size(bdev, size << 9); 936 loop_sysfs_init(lo); 937 /* let user-space know about the new size */ 938 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 939 940 set_blocksize(bdev, lo_blocksize); 941 942 lo->lo_state = Lo_bound; 943 if (part_shift) 944 lo->lo_flags |= LO_FLAGS_PARTSCAN; 945 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 946 loop_reread_partitions(lo, bdev); 947 948 /* Grab the block_device to prevent its destruction after we 949 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 950 */ 951 bdgrab(bdev); 952 return 0; 953 954 out_putf: 955 fput(file); 956 out: 957 /* This is safe: open() is still holding a reference. */ 958 module_put(THIS_MODULE); 959 return error; 960 } 961 962 static int 963 loop_release_xfer(struct loop_device *lo) 964 { 965 int err = 0; 966 struct loop_func_table *xfer = lo->lo_encryption; 967 968 if (xfer) { 969 if (xfer->release) 970 err = xfer->release(lo); 971 lo->transfer = NULL; 972 lo->lo_encryption = NULL; 973 module_put(xfer->owner); 974 } 975 return err; 976 } 977 978 static int 979 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 980 const struct loop_info64 *i) 981 { 982 int err = 0; 983 984 if (xfer) { 985 struct module *owner = xfer->owner; 986 987 if (!try_module_get(owner)) 988 return -EINVAL; 989 if (xfer->init) 990 err = xfer->init(lo, i); 991 if (err) 992 module_put(owner); 993 else 994 lo->lo_encryption = xfer; 995 } 996 return err; 997 } 998 999 static int loop_clr_fd(struct loop_device *lo) 1000 { 1001 struct file *filp = lo->lo_backing_file; 1002 gfp_t gfp = lo->old_gfp_mask; 1003 struct block_device *bdev = lo->lo_device; 1004 1005 if (lo->lo_state != Lo_bound) 1006 return -ENXIO; 1007 1008 /* 1009 * If we've explicitly asked to tear down the loop device, 1010 * and it has an elevated reference count, set it for auto-teardown when 1011 * the last reference goes away. This stops $!~#$@ udev from 1012 * preventing teardown because it decided that it needs to run blkid on 1013 * the loopback device whenever they appear. xfstests is notorious for 1014 * failing tests because blkid via udev races with a losetup 1015 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1016 * command to fail with EBUSY. 1017 */ 1018 if (atomic_read(&lo->lo_refcnt) > 1) { 1019 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1020 mutex_unlock(&lo->lo_ctl_mutex); 1021 return 0; 1022 } 1023 1024 if (filp == NULL) 1025 return -EINVAL; 1026 1027 /* freeze request queue during the transition */ 1028 blk_mq_freeze_queue(lo->lo_queue); 1029 1030 spin_lock_irq(&lo->lo_lock); 1031 lo->lo_state = Lo_rundown; 1032 lo->lo_backing_file = NULL; 1033 spin_unlock_irq(&lo->lo_lock); 1034 1035 loop_release_xfer(lo); 1036 lo->transfer = NULL; 1037 lo->ioctl = NULL; 1038 lo->lo_device = NULL; 1039 lo->lo_encryption = NULL; 1040 lo->lo_offset = 0; 1041 lo->lo_sizelimit = 0; 1042 lo->lo_encrypt_key_size = 0; 1043 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1044 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1045 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1046 if (bdev) { 1047 bdput(bdev); 1048 invalidate_bdev(bdev); 1049 } 1050 set_capacity(lo->lo_disk, 0); 1051 loop_sysfs_exit(lo); 1052 if (bdev) { 1053 bd_set_size(bdev, 0); 1054 /* let user-space know about this change */ 1055 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1056 } 1057 mapping_set_gfp_mask(filp->f_mapping, gfp); 1058 lo->lo_state = Lo_unbound; 1059 /* This is safe: open() is still holding a reference. */ 1060 module_put(THIS_MODULE); 1061 blk_mq_unfreeze_queue(lo->lo_queue); 1062 1063 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1064 loop_reread_partitions(lo, bdev); 1065 lo->lo_flags = 0; 1066 if (!part_shift) 1067 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1068 loop_unprepare_queue(lo); 1069 mutex_unlock(&lo->lo_ctl_mutex); 1070 /* 1071 * Need not hold lo_ctl_mutex to fput backing file. 1072 * Calling fput holding lo_ctl_mutex triggers a circular 1073 * lock dependency possibility warning as fput can take 1074 * bd_mutex which is usually taken before lo_ctl_mutex. 1075 */ 1076 fput(filp); 1077 return 0; 1078 } 1079 1080 static int 1081 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1082 { 1083 int err; 1084 struct loop_func_table *xfer; 1085 kuid_t uid = current_uid(); 1086 1087 if (lo->lo_encrypt_key_size && 1088 !uid_eq(lo->lo_key_owner, uid) && 1089 !capable(CAP_SYS_ADMIN)) 1090 return -EPERM; 1091 if (lo->lo_state != Lo_bound) 1092 return -ENXIO; 1093 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1094 return -EINVAL; 1095 1096 /* I/O need to be drained during transfer transition */ 1097 blk_mq_freeze_queue(lo->lo_queue); 1098 1099 err = loop_release_xfer(lo); 1100 if (err) 1101 goto exit; 1102 1103 if (info->lo_encrypt_type) { 1104 unsigned int type = info->lo_encrypt_type; 1105 1106 if (type >= MAX_LO_CRYPT) 1107 return -EINVAL; 1108 xfer = xfer_funcs[type]; 1109 if (xfer == NULL) 1110 return -EINVAL; 1111 } else 1112 xfer = NULL; 1113 1114 err = loop_init_xfer(lo, xfer, info); 1115 if (err) 1116 goto exit; 1117 1118 if (lo->lo_offset != info->lo_offset || 1119 lo->lo_sizelimit != info->lo_sizelimit) 1120 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1121 err = -EFBIG; 1122 goto exit; 1123 } 1124 1125 loop_config_discard(lo); 1126 1127 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1128 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1129 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1130 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1131 1132 if (!xfer) 1133 xfer = &none_funcs; 1134 lo->transfer = xfer->transfer; 1135 lo->ioctl = xfer->ioctl; 1136 1137 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1138 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1139 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1140 1141 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1142 lo->lo_init[0] = info->lo_init[0]; 1143 lo->lo_init[1] = info->lo_init[1]; 1144 if (info->lo_encrypt_key_size) { 1145 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1146 info->lo_encrypt_key_size); 1147 lo->lo_key_owner = uid; 1148 } 1149 1150 /* update dio if lo_offset or transfer is changed */ 1151 __loop_update_dio(lo, lo->use_dio); 1152 1153 exit: 1154 blk_mq_unfreeze_queue(lo->lo_queue); 1155 1156 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1157 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1158 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1159 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1160 loop_reread_partitions(lo, lo->lo_device); 1161 } 1162 1163 return err; 1164 } 1165 1166 static int 1167 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1168 { 1169 struct file *file = lo->lo_backing_file; 1170 struct kstat stat; 1171 int error; 1172 1173 if (lo->lo_state != Lo_bound) 1174 return -ENXIO; 1175 error = vfs_getattr(&file->f_path, &stat, 1176 STATX_INO, AT_STATX_SYNC_AS_STAT); 1177 if (error) 1178 return error; 1179 memset(info, 0, sizeof(*info)); 1180 info->lo_number = lo->lo_number; 1181 info->lo_device = huge_encode_dev(stat.dev); 1182 info->lo_inode = stat.ino; 1183 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1184 info->lo_offset = lo->lo_offset; 1185 info->lo_sizelimit = lo->lo_sizelimit; 1186 info->lo_flags = lo->lo_flags; 1187 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1188 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1189 info->lo_encrypt_type = 1190 lo->lo_encryption ? lo->lo_encryption->number : 0; 1191 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1192 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1193 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1194 lo->lo_encrypt_key_size); 1195 } 1196 return 0; 1197 } 1198 1199 static void 1200 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1201 { 1202 memset(info64, 0, sizeof(*info64)); 1203 info64->lo_number = info->lo_number; 1204 info64->lo_device = info->lo_device; 1205 info64->lo_inode = info->lo_inode; 1206 info64->lo_rdevice = info->lo_rdevice; 1207 info64->lo_offset = info->lo_offset; 1208 info64->lo_sizelimit = 0; 1209 info64->lo_encrypt_type = info->lo_encrypt_type; 1210 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1211 info64->lo_flags = info->lo_flags; 1212 info64->lo_init[0] = info->lo_init[0]; 1213 info64->lo_init[1] = info->lo_init[1]; 1214 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1215 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1216 else 1217 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1218 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1219 } 1220 1221 static int 1222 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1223 { 1224 memset(info, 0, sizeof(*info)); 1225 info->lo_number = info64->lo_number; 1226 info->lo_device = info64->lo_device; 1227 info->lo_inode = info64->lo_inode; 1228 info->lo_rdevice = info64->lo_rdevice; 1229 info->lo_offset = info64->lo_offset; 1230 info->lo_encrypt_type = info64->lo_encrypt_type; 1231 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1232 info->lo_flags = info64->lo_flags; 1233 info->lo_init[0] = info64->lo_init[0]; 1234 info->lo_init[1] = info64->lo_init[1]; 1235 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1236 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1237 else 1238 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1239 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1240 1241 /* error in case values were truncated */ 1242 if (info->lo_device != info64->lo_device || 1243 info->lo_rdevice != info64->lo_rdevice || 1244 info->lo_inode != info64->lo_inode || 1245 info->lo_offset != info64->lo_offset) 1246 return -EOVERFLOW; 1247 1248 return 0; 1249 } 1250 1251 static int 1252 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1253 { 1254 struct loop_info info; 1255 struct loop_info64 info64; 1256 1257 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1258 return -EFAULT; 1259 loop_info64_from_old(&info, &info64); 1260 return loop_set_status(lo, &info64); 1261 } 1262 1263 static int 1264 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1265 { 1266 struct loop_info64 info64; 1267 1268 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1269 return -EFAULT; 1270 return loop_set_status(lo, &info64); 1271 } 1272 1273 static int 1274 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1275 struct loop_info info; 1276 struct loop_info64 info64; 1277 int err = 0; 1278 1279 if (!arg) 1280 err = -EINVAL; 1281 if (!err) 1282 err = loop_get_status(lo, &info64); 1283 if (!err) 1284 err = loop_info64_to_old(&info64, &info); 1285 if (!err && copy_to_user(arg, &info, sizeof(info))) 1286 err = -EFAULT; 1287 1288 return err; 1289 } 1290 1291 static int 1292 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1293 struct loop_info64 info64; 1294 int err = 0; 1295 1296 if (!arg) 1297 err = -EINVAL; 1298 if (!err) 1299 err = loop_get_status(lo, &info64); 1300 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1301 err = -EFAULT; 1302 1303 return err; 1304 } 1305 1306 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1307 { 1308 if (unlikely(lo->lo_state != Lo_bound)) 1309 return -ENXIO; 1310 1311 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1312 } 1313 1314 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1315 { 1316 int error = -ENXIO; 1317 if (lo->lo_state != Lo_bound) 1318 goto out; 1319 1320 __loop_update_dio(lo, !!arg); 1321 if (lo->use_dio == !!arg) 1322 return 0; 1323 error = -EINVAL; 1324 out: 1325 return error; 1326 } 1327 1328 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1329 unsigned int cmd, unsigned long arg) 1330 { 1331 struct loop_device *lo = bdev->bd_disk->private_data; 1332 int err; 1333 1334 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1335 switch (cmd) { 1336 case LOOP_SET_FD: 1337 err = loop_set_fd(lo, mode, bdev, arg); 1338 break; 1339 case LOOP_CHANGE_FD: 1340 err = loop_change_fd(lo, bdev, arg); 1341 break; 1342 case LOOP_CLR_FD: 1343 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1344 err = loop_clr_fd(lo); 1345 if (!err) 1346 goto out_unlocked; 1347 break; 1348 case LOOP_SET_STATUS: 1349 err = -EPERM; 1350 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1351 err = loop_set_status_old(lo, 1352 (struct loop_info __user *)arg); 1353 break; 1354 case LOOP_GET_STATUS: 1355 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1356 break; 1357 case LOOP_SET_STATUS64: 1358 err = -EPERM; 1359 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1360 err = loop_set_status64(lo, 1361 (struct loop_info64 __user *) arg); 1362 break; 1363 case LOOP_GET_STATUS64: 1364 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1365 break; 1366 case LOOP_SET_CAPACITY: 1367 err = -EPERM; 1368 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1369 err = loop_set_capacity(lo, bdev); 1370 break; 1371 case LOOP_SET_DIRECT_IO: 1372 err = -EPERM; 1373 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1374 err = loop_set_dio(lo, arg); 1375 break; 1376 default: 1377 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1378 } 1379 mutex_unlock(&lo->lo_ctl_mutex); 1380 1381 out_unlocked: 1382 return err; 1383 } 1384 1385 #ifdef CONFIG_COMPAT 1386 struct compat_loop_info { 1387 compat_int_t lo_number; /* ioctl r/o */ 1388 compat_dev_t lo_device; /* ioctl r/o */ 1389 compat_ulong_t lo_inode; /* ioctl r/o */ 1390 compat_dev_t lo_rdevice; /* ioctl r/o */ 1391 compat_int_t lo_offset; 1392 compat_int_t lo_encrypt_type; 1393 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1394 compat_int_t lo_flags; /* ioctl r/o */ 1395 char lo_name[LO_NAME_SIZE]; 1396 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1397 compat_ulong_t lo_init[2]; 1398 char reserved[4]; 1399 }; 1400 1401 /* 1402 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1403 * - noinlined to reduce stack space usage in main part of driver 1404 */ 1405 static noinline int 1406 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1407 struct loop_info64 *info64) 1408 { 1409 struct compat_loop_info info; 1410 1411 if (copy_from_user(&info, arg, sizeof(info))) 1412 return -EFAULT; 1413 1414 memset(info64, 0, sizeof(*info64)); 1415 info64->lo_number = info.lo_number; 1416 info64->lo_device = info.lo_device; 1417 info64->lo_inode = info.lo_inode; 1418 info64->lo_rdevice = info.lo_rdevice; 1419 info64->lo_offset = info.lo_offset; 1420 info64->lo_sizelimit = 0; 1421 info64->lo_encrypt_type = info.lo_encrypt_type; 1422 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1423 info64->lo_flags = info.lo_flags; 1424 info64->lo_init[0] = info.lo_init[0]; 1425 info64->lo_init[1] = info.lo_init[1]; 1426 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1427 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1428 else 1429 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1430 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1431 return 0; 1432 } 1433 1434 /* 1435 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1436 * - noinlined to reduce stack space usage in main part of driver 1437 */ 1438 static noinline int 1439 loop_info64_to_compat(const struct loop_info64 *info64, 1440 struct compat_loop_info __user *arg) 1441 { 1442 struct compat_loop_info info; 1443 1444 memset(&info, 0, sizeof(info)); 1445 info.lo_number = info64->lo_number; 1446 info.lo_device = info64->lo_device; 1447 info.lo_inode = info64->lo_inode; 1448 info.lo_rdevice = info64->lo_rdevice; 1449 info.lo_offset = info64->lo_offset; 1450 info.lo_encrypt_type = info64->lo_encrypt_type; 1451 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1452 info.lo_flags = info64->lo_flags; 1453 info.lo_init[0] = info64->lo_init[0]; 1454 info.lo_init[1] = info64->lo_init[1]; 1455 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1456 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1457 else 1458 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1459 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1460 1461 /* error in case values were truncated */ 1462 if (info.lo_device != info64->lo_device || 1463 info.lo_rdevice != info64->lo_rdevice || 1464 info.lo_inode != info64->lo_inode || 1465 info.lo_offset != info64->lo_offset || 1466 info.lo_init[0] != info64->lo_init[0] || 1467 info.lo_init[1] != info64->lo_init[1]) 1468 return -EOVERFLOW; 1469 1470 if (copy_to_user(arg, &info, sizeof(info))) 1471 return -EFAULT; 1472 return 0; 1473 } 1474 1475 static int 1476 loop_set_status_compat(struct loop_device *lo, 1477 const struct compat_loop_info __user *arg) 1478 { 1479 struct loop_info64 info64; 1480 int ret; 1481 1482 ret = loop_info64_from_compat(arg, &info64); 1483 if (ret < 0) 1484 return ret; 1485 return loop_set_status(lo, &info64); 1486 } 1487 1488 static int 1489 loop_get_status_compat(struct loop_device *lo, 1490 struct compat_loop_info __user *arg) 1491 { 1492 struct loop_info64 info64; 1493 int err = 0; 1494 1495 if (!arg) 1496 err = -EINVAL; 1497 if (!err) 1498 err = loop_get_status(lo, &info64); 1499 if (!err) 1500 err = loop_info64_to_compat(&info64, arg); 1501 return err; 1502 } 1503 1504 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1505 unsigned int cmd, unsigned long arg) 1506 { 1507 struct loop_device *lo = bdev->bd_disk->private_data; 1508 int err; 1509 1510 switch(cmd) { 1511 case LOOP_SET_STATUS: 1512 mutex_lock(&lo->lo_ctl_mutex); 1513 err = loop_set_status_compat( 1514 lo, (const struct compat_loop_info __user *) arg); 1515 mutex_unlock(&lo->lo_ctl_mutex); 1516 break; 1517 case LOOP_GET_STATUS: 1518 mutex_lock(&lo->lo_ctl_mutex); 1519 err = loop_get_status_compat( 1520 lo, (struct compat_loop_info __user *) arg); 1521 mutex_unlock(&lo->lo_ctl_mutex); 1522 break; 1523 case LOOP_SET_CAPACITY: 1524 case LOOP_CLR_FD: 1525 case LOOP_GET_STATUS64: 1526 case LOOP_SET_STATUS64: 1527 arg = (unsigned long) compat_ptr(arg); 1528 case LOOP_SET_FD: 1529 case LOOP_CHANGE_FD: 1530 err = lo_ioctl(bdev, mode, cmd, arg); 1531 break; 1532 default: 1533 err = -ENOIOCTLCMD; 1534 break; 1535 } 1536 return err; 1537 } 1538 #endif 1539 1540 static int lo_open(struct block_device *bdev, fmode_t mode) 1541 { 1542 struct loop_device *lo; 1543 int err = 0; 1544 1545 mutex_lock(&loop_index_mutex); 1546 lo = bdev->bd_disk->private_data; 1547 if (!lo) { 1548 err = -ENXIO; 1549 goto out; 1550 } 1551 1552 atomic_inc(&lo->lo_refcnt); 1553 out: 1554 mutex_unlock(&loop_index_mutex); 1555 return err; 1556 } 1557 1558 static void lo_release(struct gendisk *disk, fmode_t mode) 1559 { 1560 struct loop_device *lo = disk->private_data; 1561 int err; 1562 1563 if (atomic_dec_return(&lo->lo_refcnt)) 1564 return; 1565 1566 mutex_lock(&lo->lo_ctl_mutex); 1567 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1568 /* 1569 * In autoclear mode, stop the loop thread 1570 * and remove configuration after last close. 1571 */ 1572 err = loop_clr_fd(lo); 1573 if (!err) 1574 return; 1575 } else { 1576 /* 1577 * Otherwise keep thread (if running) and config, 1578 * but flush possible ongoing bios in thread. 1579 */ 1580 loop_flush(lo); 1581 } 1582 1583 mutex_unlock(&lo->lo_ctl_mutex); 1584 } 1585 1586 static const struct block_device_operations lo_fops = { 1587 .owner = THIS_MODULE, 1588 .open = lo_open, 1589 .release = lo_release, 1590 .ioctl = lo_ioctl, 1591 #ifdef CONFIG_COMPAT 1592 .compat_ioctl = lo_compat_ioctl, 1593 #endif 1594 }; 1595 1596 /* 1597 * And now the modules code and kernel interface. 1598 */ 1599 static int max_loop; 1600 module_param(max_loop, int, S_IRUGO); 1601 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1602 module_param(max_part, int, S_IRUGO); 1603 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1604 MODULE_LICENSE("GPL"); 1605 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1606 1607 int loop_register_transfer(struct loop_func_table *funcs) 1608 { 1609 unsigned int n = funcs->number; 1610 1611 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1612 return -EINVAL; 1613 xfer_funcs[n] = funcs; 1614 return 0; 1615 } 1616 1617 static int unregister_transfer_cb(int id, void *ptr, void *data) 1618 { 1619 struct loop_device *lo = ptr; 1620 struct loop_func_table *xfer = data; 1621 1622 mutex_lock(&lo->lo_ctl_mutex); 1623 if (lo->lo_encryption == xfer) 1624 loop_release_xfer(lo); 1625 mutex_unlock(&lo->lo_ctl_mutex); 1626 return 0; 1627 } 1628 1629 int loop_unregister_transfer(int number) 1630 { 1631 unsigned int n = number; 1632 struct loop_func_table *xfer; 1633 1634 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1635 return -EINVAL; 1636 1637 xfer_funcs[n] = NULL; 1638 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1639 return 0; 1640 } 1641 1642 EXPORT_SYMBOL(loop_register_transfer); 1643 EXPORT_SYMBOL(loop_unregister_transfer); 1644 1645 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1646 const struct blk_mq_queue_data *bd) 1647 { 1648 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); 1649 struct loop_device *lo = cmd->rq->q->queuedata; 1650 1651 blk_mq_start_request(bd->rq); 1652 1653 if (lo->lo_state != Lo_bound) 1654 return BLK_MQ_RQ_QUEUE_ERROR; 1655 1656 switch (req_op(cmd->rq)) { 1657 case REQ_OP_FLUSH: 1658 case REQ_OP_DISCARD: 1659 case REQ_OP_WRITE_ZEROES: 1660 cmd->use_aio = false; 1661 break; 1662 default: 1663 cmd->use_aio = lo->use_dio; 1664 break; 1665 } 1666 1667 kthread_queue_work(&lo->worker, &cmd->work); 1668 1669 return BLK_MQ_RQ_QUEUE_OK; 1670 } 1671 1672 static void loop_handle_cmd(struct loop_cmd *cmd) 1673 { 1674 const bool write = op_is_write(req_op(cmd->rq)); 1675 struct loop_device *lo = cmd->rq->q->queuedata; 1676 int ret = 0; 1677 1678 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1679 ret = -EIO; 1680 goto failed; 1681 } 1682 1683 ret = do_req_filebacked(lo, cmd->rq); 1684 failed: 1685 /* complete non-aio request */ 1686 if (!cmd->use_aio || ret) { 1687 cmd->ret = ret ? -EIO : 0; 1688 blk_mq_complete_request(cmd->rq); 1689 } 1690 } 1691 1692 static void loop_queue_work(struct kthread_work *work) 1693 { 1694 struct loop_cmd *cmd = 1695 container_of(work, struct loop_cmd, work); 1696 1697 loop_handle_cmd(cmd); 1698 } 1699 1700 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1701 unsigned int hctx_idx, unsigned int numa_node) 1702 { 1703 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1704 1705 cmd->rq = rq; 1706 kthread_init_work(&cmd->work, loop_queue_work); 1707 1708 return 0; 1709 } 1710 1711 static const struct blk_mq_ops loop_mq_ops = { 1712 .queue_rq = loop_queue_rq, 1713 .init_request = loop_init_request, 1714 .complete = lo_complete_rq, 1715 }; 1716 1717 static int loop_add(struct loop_device **l, int i) 1718 { 1719 struct loop_device *lo; 1720 struct gendisk *disk; 1721 int err; 1722 1723 err = -ENOMEM; 1724 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1725 if (!lo) 1726 goto out; 1727 1728 lo->lo_state = Lo_unbound; 1729 1730 /* allocate id, if @id >= 0, we're requesting that specific id */ 1731 if (i >= 0) { 1732 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1733 if (err == -ENOSPC) 1734 err = -EEXIST; 1735 } else { 1736 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1737 } 1738 if (err < 0) 1739 goto out_free_dev; 1740 i = err; 1741 1742 err = -ENOMEM; 1743 lo->tag_set.ops = &loop_mq_ops; 1744 lo->tag_set.nr_hw_queues = 1; 1745 lo->tag_set.queue_depth = 128; 1746 lo->tag_set.numa_node = NUMA_NO_NODE; 1747 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1748 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1749 lo->tag_set.driver_data = lo; 1750 1751 err = blk_mq_alloc_tag_set(&lo->tag_set); 1752 if (err) 1753 goto out_free_idr; 1754 1755 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1756 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1757 err = PTR_ERR(lo->lo_queue); 1758 goto out_cleanup_tags; 1759 } 1760 lo->lo_queue->queuedata = lo; 1761 1762 /* 1763 * It doesn't make sense to enable merge because the I/O 1764 * submitted to backing file is handled page by page. 1765 */ 1766 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1767 1768 err = -ENOMEM; 1769 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1770 if (!disk) 1771 goto out_free_queue; 1772 1773 /* 1774 * Disable partition scanning by default. The in-kernel partition 1775 * scanning can be requested individually per-device during its 1776 * setup. Userspace can always add and remove partitions from all 1777 * devices. The needed partition minors are allocated from the 1778 * extended minor space, the main loop device numbers will continue 1779 * to match the loop minors, regardless of the number of partitions 1780 * used. 1781 * 1782 * If max_part is given, partition scanning is globally enabled for 1783 * all loop devices. The minors for the main loop devices will be 1784 * multiples of max_part. 1785 * 1786 * Note: Global-for-all-devices, set-only-at-init, read-only module 1787 * parameteters like 'max_loop' and 'max_part' make things needlessly 1788 * complicated, are too static, inflexible and may surprise 1789 * userspace tools. Parameters like this in general should be avoided. 1790 */ 1791 if (!part_shift) 1792 disk->flags |= GENHD_FL_NO_PART_SCAN; 1793 disk->flags |= GENHD_FL_EXT_DEVT; 1794 mutex_init(&lo->lo_ctl_mutex); 1795 atomic_set(&lo->lo_refcnt, 0); 1796 lo->lo_number = i; 1797 spin_lock_init(&lo->lo_lock); 1798 disk->major = LOOP_MAJOR; 1799 disk->first_minor = i << part_shift; 1800 disk->fops = &lo_fops; 1801 disk->private_data = lo; 1802 disk->queue = lo->lo_queue; 1803 sprintf(disk->disk_name, "loop%d", i); 1804 add_disk(disk); 1805 *l = lo; 1806 return lo->lo_number; 1807 1808 out_free_queue: 1809 blk_cleanup_queue(lo->lo_queue); 1810 out_cleanup_tags: 1811 blk_mq_free_tag_set(&lo->tag_set); 1812 out_free_idr: 1813 idr_remove(&loop_index_idr, i); 1814 out_free_dev: 1815 kfree(lo); 1816 out: 1817 return err; 1818 } 1819 1820 static void loop_remove(struct loop_device *lo) 1821 { 1822 blk_cleanup_queue(lo->lo_queue); 1823 del_gendisk(lo->lo_disk); 1824 blk_mq_free_tag_set(&lo->tag_set); 1825 put_disk(lo->lo_disk); 1826 kfree(lo); 1827 } 1828 1829 static int find_free_cb(int id, void *ptr, void *data) 1830 { 1831 struct loop_device *lo = ptr; 1832 struct loop_device **l = data; 1833 1834 if (lo->lo_state == Lo_unbound) { 1835 *l = lo; 1836 return 1; 1837 } 1838 return 0; 1839 } 1840 1841 static int loop_lookup(struct loop_device **l, int i) 1842 { 1843 struct loop_device *lo; 1844 int ret = -ENODEV; 1845 1846 if (i < 0) { 1847 int err; 1848 1849 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1850 if (err == 1) { 1851 *l = lo; 1852 ret = lo->lo_number; 1853 } 1854 goto out; 1855 } 1856 1857 /* lookup and return a specific i */ 1858 lo = idr_find(&loop_index_idr, i); 1859 if (lo) { 1860 *l = lo; 1861 ret = lo->lo_number; 1862 } 1863 out: 1864 return ret; 1865 } 1866 1867 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1868 { 1869 struct loop_device *lo; 1870 struct kobject *kobj; 1871 int err; 1872 1873 mutex_lock(&loop_index_mutex); 1874 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1875 if (err < 0) 1876 err = loop_add(&lo, MINOR(dev) >> part_shift); 1877 if (err < 0) 1878 kobj = NULL; 1879 else 1880 kobj = get_disk(lo->lo_disk); 1881 mutex_unlock(&loop_index_mutex); 1882 1883 *part = 0; 1884 return kobj; 1885 } 1886 1887 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1888 unsigned long parm) 1889 { 1890 struct loop_device *lo; 1891 int ret = -ENOSYS; 1892 1893 mutex_lock(&loop_index_mutex); 1894 switch (cmd) { 1895 case LOOP_CTL_ADD: 1896 ret = loop_lookup(&lo, parm); 1897 if (ret >= 0) { 1898 ret = -EEXIST; 1899 break; 1900 } 1901 ret = loop_add(&lo, parm); 1902 break; 1903 case LOOP_CTL_REMOVE: 1904 ret = loop_lookup(&lo, parm); 1905 if (ret < 0) 1906 break; 1907 mutex_lock(&lo->lo_ctl_mutex); 1908 if (lo->lo_state != Lo_unbound) { 1909 ret = -EBUSY; 1910 mutex_unlock(&lo->lo_ctl_mutex); 1911 break; 1912 } 1913 if (atomic_read(&lo->lo_refcnt) > 0) { 1914 ret = -EBUSY; 1915 mutex_unlock(&lo->lo_ctl_mutex); 1916 break; 1917 } 1918 lo->lo_disk->private_data = NULL; 1919 mutex_unlock(&lo->lo_ctl_mutex); 1920 idr_remove(&loop_index_idr, lo->lo_number); 1921 loop_remove(lo); 1922 break; 1923 case LOOP_CTL_GET_FREE: 1924 ret = loop_lookup(&lo, -1); 1925 if (ret >= 0) 1926 break; 1927 ret = loop_add(&lo, -1); 1928 } 1929 mutex_unlock(&loop_index_mutex); 1930 1931 return ret; 1932 } 1933 1934 static const struct file_operations loop_ctl_fops = { 1935 .open = nonseekable_open, 1936 .unlocked_ioctl = loop_control_ioctl, 1937 .compat_ioctl = loop_control_ioctl, 1938 .owner = THIS_MODULE, 1939 .llseek = noop_llseek, 1940 }; 1941 1942 static struct miscdevice loop_misc = { 1943 .minor = LOOP_CTRL_MINOR, 1944 .name = "loop-control", 1945 .fops = &loop_ctl_fops, 1946 }; 1947 1948 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1949 MODULE_ALIAS("devname:loop-control"); 1950 1951 static int __init loop_init(void) 1952 { 1953 int i, nr; 1954 unsigned long range; 1955 struct loop_device *lo; 1956 int err; 1957 1958 err = misc_register(&loop_misc); 1959 if (err < 0) 1960 return err; 1961 1962 part_shift = 0; 1963 if (max_part > 0) { 1964 part_shift = fls(max_part); 1965 1966 /* 1967 * Adjust max_part according to part_shift as it is exported 1968 * to user space so that user can decide correct minor number 1969 * if [s]he want to create more devices. 1970 * 1971 * Note that -1 is required because partition 0 is reserved 1972 * for the whole disk. 1973 */ 1974 max_part = (1UL << part_shift) - 1; 1975 } 1976 1977 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1978 err = -EINVAL; 1979 goto misc_out; 1980 } 1981 1982 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1983 err = -EINVAL; 1984 goto misc_out; 1985 } 1986 1987 /* 1988 * If max_loop is specified, create that many devices upfront. 1989 * This also becomes a hard limit. If max_loop is not specified, 1990 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1991 * init time. Loop devices can be requested on-demand with the 1992 * /dev/loop-control interface, or be instantiated by accessing 1993 * a 'dead' device node. 1994 */ 1995 if (max_loop) { 1996 nr = max_loop; 1997 range = max_loop << part_shift; 1998 } else { 1999 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2000 range = 1UL << MINORBITS; 2001 } 2002 2003 if (register_blkdev(LOOP_MAJOR, "loop")) { 2004 err = -EIO; 2005 goto misc_out; 2006 } 2007 2008 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2009 THIS_MODULE, loop_probe, NULL, NULL); 2010 2011 /* pre-create number of devices given by config or max_loop */ 2012 mutex_lock(&loop_index_mutex); 2013 for (i = 0; i < nr; i++) 2014 loop_add(&lo, i); 2015 mutex_unlock(&loop_index_mutex); 2016 2017 printk(KERN_INFO "loop: module loaded\n"); 2018 return 0; 2019 2020 misc_out: 2021 misc_deregister(&loop_misc); 2022 return err; 2023 } 2024 2025 static int loop_exit_cb(int id, void *ptr, void *data) 2026 { 2027 struct loop_device *lo = ptr; 2028 2029 loop_remove(lo); 2030 return 0; 2031 } 2032 2033 static void __exit loop_exit(void) 2034 { 2035 unsigned long range; 2036 2037 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2038 2039 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2040 idr_destroy(&loop_index_idr); 2041 2042 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2043 unregister_blkdev(LOOP_MAJOR, "loop"); 2044 2045 misc_deregister(&loop_misc); 2046 } 2047 2048 module_init(loop_init); 2049 module_exit(loop_exit); 2050 2051 #ifndef MODULE 2052 static int __init max_loop_setup(char *str) 2053 { 2054 max_loop = simple_strtol(str, NULL, 0); 2055 return 1; 2056 } 2057 2058 __setup("max_loop=", max_loop_setup); 2059 #endif 2060