xref: /openbmc/linux/drivers/block/loop.c (revision a1e58bbd)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
56 #include <linux/fs.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/freezer.h>
72 #include <linux/writeback.h>
73 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
74 #include <linux/completion.h>
75 #include <linux/highmem.h>
76 #include <linux/gfp.h>
77 #include <linux/kthread.h>
78 #include <linux/splice.h>
79 
80 #include <asm/uaccess.h>
81 
82 static LIST_HEAD(loop_devices);
83 static DEFINE_MUTEX(loop_devices_mutex);
84 
85 /*
86  * Transfer functions
87  */
88 static int transfer_none(struct loop_device *lo, int cmd,
89 			 struct page *raw_page, unsigned raw_off,
90 			 struct page *loop_page, unsigned loop_off,
91 			 int size, sector_t real_block)
92 {
93 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
94 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
95 
96 	if (cmd == READ)
97 		memcpy(loop_buf, raw_buf, size);
98 	else
99 		memcpy(raw_buf, loop_buf, size);
100 
101 	kunmap_atomic(raw_buf, KM_USER0);
102 	kunmap_atomic(loop_buf, KM_USER1);
103 	cond_resched();
104 	return 0;
105 }
106 
107 static int transfer_xor(struct loop_device *lo, int cmd,
108 			struct page *raw_page, unsigned raw_off,
109 			struct page *loop_page, unsigned loop_off,
110 			int size, sector_t real_block)
111 {
112 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
113 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
114 	char *in, *out, *key;
115 	int i, keysize;
116 
117 	if (cmd == READ) {
118 		in = raw_buf;
119 		out = loop_buf;
120 	} else {
121 		in = loop_buf;
122 		out = raw_buf;
123 	}
124 
125 	key = lo->lo_encrypt_key;
126 	keysize = lo->lo_encrypt_key_size;
127 	for (i = 0; i < size; i++)
128 		*out++ = *in++ ^ key[(i & 511) % keysize];
129 
130 	kunmap_atomic(raw_buf, KM_USER0);
131 	kunmap_atomic(loop_buf, KM_USER1);
132 	cond_resched();
133 	return 0;
134 }
135 
136 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
137 {
138 	if (unlikely(info->lo_encrypt_key_size <= 0))
139 		return -EINVAL;
140 	return 0;
141 }
142 
143 static struct loop_func_table none_funcs = {
144 	.number = LO_CRYPT_NONE,
145 	.transfer = transfer_none,
146 };
147 
148 static struct loop_func_table xor_funcs = {
149 	.number = LO_CRYPT_XOR,
150 	.transfer = transfer_xor,
151 	.init = xor_init
152 };
153 
154 /* xfer_funcs[0] is special - its release function is never called */
155 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
156 	&none_funcs,
157 	&xor_funcs
158 };
159 
160 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
161 {
162 	loff_t size, offset, loopsize;
163 
164 	/* Compute loopsize in bytes */
165 	size = i_size_read(file->f_mapping->host);
166 	offset = lo->lo_offset;
167 	loopsize = size - offset;
168 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
169 		loopsize = lo->lo_sizelimit;
170 
171 	/*
172 	 * Unfortunately, if we want to do I/O on the device,
173 	 * the number of 512-byte sectors has to fit into a sector_t.
174 	 */
175 	return loopsize >> 9;
176 }
177 
178 static int
179 figure_loop_size(struct loop_device *lo)
180 {
181 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
182 	sector_t x = (sector_t)size;
183 
184 	if (unlikely((loff_t)x != size))
185 		return -EFBIG;
186 
187 	set_capacity(lo->lo_disk, x);
188 	return 0;
189 }
190 
191 static inline int
192 lo_do_transfer(struct loop_device *lo, int cmd,
193 	       struct page *rpage, unsigned roffs,
194 	       struct page *lpage, unsigned loffs,
195 	       int size, sector_t rblock)
196 {
197 	if (unlikely(!lo->transfer))
198 		return 0;
199 
200 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
201 }
202 
203 /**
204  * do_lo_send_aops - helper for writing data to a loop device
205  *
206  * This is the fast version for backing filesystems which implement the address
207  * space operations write_begin and write_end.
208  */
209 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
210 		int bsize, loff_t pos, struct page *unused)
211 {
212 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
213 	struct address_space *mapping = file->f_mapping;
214 	pgoff_t index;
215 	unsigned offset, bv_offs;
216 	int len, ret;
217 
218 	mutex_lock(&mapping->host->i_mutex);
219 	index = pos >> PAGE_CACHE_SHIFT;
220 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
221 	bv_offs = bvec->bv_offset;
222 	len = bvec->bv_len;
223 	while (len > 0) {
224 		sector_t IV;
225 		unsigned size, copied;
226 		int transfer_result;
227 		struct page *page;
228 		void *fsdata;
229 
230 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
231 		size = PAGE_CACHE_SIZE - offset;
232 		if (size > len)
233 			size = len;
234 
235 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
236 							&page, &fsdata);
237 		if (ret)
238 			goto fail;
239 
240 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
241 				bvec->bv_page, bv_offs, size, IV);
242 		copied = size;
243 		if (unlikely(transfer_result))
244 			copied = 0;
245 
246 		ret = pagecache_write_end(file, mapping, pos, size, copied,
247 							page, fsdata);
248 		if (ret < 0 || ret != copied)
249 			goto fail;
250 
251 		if (unlikely(transfer_result))
252 			goto fail;
253 
254 		bv_offs += copied;
255 		len -= copied;
256 		offset = 0;
257 		index++;
258 		pos += copied;
259 	}
260 	ret = 0;
261 out:
262 	mutex_unlock(&mapping->host->i_mutex);
263 	return ret;
264 fail:
265 	ret = -1;
266 	goto out;
267 }
268 
269 /**
270  * __do_lo_send_write - helper for writing data to a loop device
271  *
272  * This helper just factors out common code between do_lo_send_direct_write()
273  * and do_lo_send_write().
274  */
275 static int __do_lo_send_write(struct file *file,
276 		u8 *buf, const int len, loff_t pos)
277 {
278 	ssize_t bw;
279 	mm_segment_t old_fs = get_fs();
280 
281 	set_fs(get_ds());
282 	bw = file->f_op->write(file, buf, len, &pos);
283 	set_fs(old_fs);
284 	if (likely(bw == len))
285 		return 0;
286 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
287 			(unsigned long long)pos, len);
288 	if (bw >= 0)
289 		bw = -EIO;
290 	return bw;
291 }
292 
293 /**
294  * do_lo_send_direct_write - helper for writing data to a loop device
295  *
296  * This is the fast, non-transforming version for backing filesystems which do
297  * not implement the address space operations write_begin and write_end.
298  * It uses the write file operation which should be present on all writeable
299  * filesystems.
300  */
301 static int do_lo_send_direct_write(struct loop_device *lo,
302 		struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
303 {
304 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
305 			kmap(bvec->bv_page) + bvec->bv_offset,
306 			bvec->bv_len, pos);
307 	kunmap(bvec->bv_page);
308 	cond_resched();
309 	return bw;
310 }
311 
312 /**
313  * do_lo_send_write - helper for writing data to a loop device
314  *
315  * This is the slow, transforming version for filesystems which do not
316  * implement the address space operations write_begin and write_end.  It
317  * uses the write file operation which should be present on all writeable
318  * filesystems.
319  *
320  * Using fops->write is slower than using aops->{prepare,commit}_write in the
321  * transforming case because we need to double buffer the data as we cannot do
322  * the transformations in place as we do not have direct access to the
323  * destination pages of the backing file.
324  */
325 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
326 		int bsize, loff_t pos, struct page *page)
327 {
328 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
329 			bvec->bv_offset, bvec->bv_len, pos >> 9);
330 	if (likely(!ret))
331 		return __do_lo_send_write(lo->lo_backing_file,
332 				page_address(page), bvec->bv_len,
333 				pos);
334 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
335 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
336 	if (ret > 0)
337 		ret = -EIO;
338 	return ret;
339 }
340 
341 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
342 		loff_t pos)
343 {
344 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
345 			struct page *page);
346 	struct bio_vec *bvec;
347 	struct page *page = NULL;
348 	int i, ret = 0;
349 
350 	do_lo_send = do_lo_send_aops;
351 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
352 		do_lo_send = do_lo_send_direct_write;
353 		if (lo->transfer != transfer_none) {
354 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
355 			if (unlikely(!page))
356 				goto fail;
357 			kmap(page);
358 			do_lo_send = do_lo_send_write;
359 		}
360 	}
361 	bio_for_each_segment(bvec, bio, i) {
362 		ret = do_lo_send(lo, bvec, bsize, pos, page);
363 		if (ret < 0)
364 			break;
365 		pos += bvec->bv_len;
366 	}
367 	if (page) {
368 		kunmap(page);
369 		__free_page(page);
370 	}
371 out:
372 	return ret;
373 fail:
374 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
375 	ret = -ENOMEM;
376 	goto out;
377 }
378 
379 struct lo_read_data {
380 	struct loop_device *lo;
381 	struct page *page;
382 	unsigned offset;
383 	int bsize;
384 };
385 
386 static int
387 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
388 		struct splice_desc *sd)
389 {
390 	struct lo_read_data *p = sd->u.data;
391 	struct loop_device *lo = p->lo;
392 	struct page *page = buf->page;
393 	sector_t IV;
394 	size_t size;
395 	int ret;
396 
397 	ret = buf->ops->confirm(pipe, buf);
398 	if (unlikely(ret))
399 		return ret;
400 
401 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
402 							(buf->offset >> 9);
403 	size = sd->len;
404 	if (size > p->bsize)
405 		size = p->bsize;
406 
407 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
408 		printk(KERN_ERR "loop: transfer error block %ld\n",
409 		       page->index);
410 		size = -EINVAL;
411 	}
412 
413 	flush_dcache_page(p->page);
414 
415 	if (size > 0)
416 		p->offset += size;
417 
418 	return size;
419 }
420 
421 static int
422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
423 {
424 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
425 }
426 
427 static int
428 do_lo_receive(struct loop_device *lo,
429 	      struct bio_vec *bvec, int bsize, loff_t pos)
430 {
431 	struct lo_read_data cookie;
432 	struct splice_desc sd;
433 	struct file *file;
434 	long retval;
435 
436 	cookie.lo = lo;
437 	cookie.page = bvec->bv_page;
438 	cookie.offset = bvec->bv_offset;
439 	cookie.bsize = bsize;
440 
441 	sd.len = 0;
442 	sd.total_len = bvec->bv_len;
443 	sd.flags = 0;
444 	sd.pos = pos;
445 	sd.u.data = &cookie;
446 
447 	file = lo->lo_backing_file;
448 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
449 
450 	if (retval < 0)
451 		return retval;
452 
453 	return 0;
454 }
455 
456 static int
457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
458 {
459 	struct bio_vec *bvec;
460 	int i, ret = 0;
461 
462 	bio_for_each_segment(bvec, bio, i) {
463 		ret = do_lo_receive(lo, bvec, bsize, pos);
464 		if (ret < 0)
465 			break;
466 		pos += bvec->bv_len;
467 	}
468 	return ret;
469 }
470 
471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
472 {
473 	loff_t pos;
474 	int ret;
475 
476 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
477 	if (bio_rw(bio) == WRITE)
478 		ret = lo_send(lo, bio, lo->lo_blocksize, pos);
479 	else
480 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
481 	return ret;
482 }
483 
484 /*
485  * Add bio to back of pending list
486  */
487 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
488 {
489 	if (lo->lo_biotail) {
490 		lo->lo_biotail->bi_next = bio;
491 		lo->lo_biotail = bio;
492 	} else
493 		lo->lo_bio = lo->lo_biotail = bio;
494 }
495 
496 /*
497  * Grab first pending buffer
498  */
499 static struct bio *loop_get_bio(struct loop_device *lo)
500 {
501 	struct bio *bio;
502 
503 	if ((bio = lo->lo_bio)) {
504 		if (bio == lo->lo_biotail)
505 			lo->lo_biotail = NULL;
506 		lo->lo_bio = bio->bi_next;
507 		bio->bi_next = NULL;
508 	}
509 
510 	return bio;
511 }
512 
513 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
514 {
515 	struct loop_device *lo = q->queuedata;
516 	int rw = bio_rw(old_bio);
517 
518 	if (rw == READA)
519 		rw = READ;
520 
521 	BUG_ON(!lo || (rw != READ && rw != WRITE));
522 
523 	spin_lock_irq(&lo->lo_lock);
524 	if (lo->lo_state != Lo_bound)
525 		goto out;
526 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
527 		goto out;
528 	loop_add_bio(lo, old_bio);
529 	wake_up(&lo->lo_event);
530 	spin_unlock_irq(&lo->lo_lock);
531 	return 0;
532 
533 out:
534 	spin_unlock_irq(&lo->lo_lock);
535 	bio_io_error(old_bio);
536 	return 0;
537 }
538 
539 /*
540  * kick off io on the underlying address space
541  */
542 static void loop_unplug(struct request_queue *q)
543 {
544 	struct loop_device *lo = q->queuedata;
545 
546 	clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
547 	blk_run_address_space(lo->lo_backing_file->f_mapping);
548 }
549 
550 struct switch_request {
551 	struct file *file;
552 	struct completion wait;
553 };
554 
555 static void do_loop_switch(struct loop_device *, struct switch_request *);
556 
557 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
558 {
559 	if (unlikely(!bio->bi_bdev)) {
560 		do_loop_switch(lo, bio->bi_private);
561 		bio_put(bio);
562 	} else {
563 		int ret = do_bio_filebacked(lo, bio);
564 		bio_endio(bio, ret);
565 	}
566 }
567 
568 /*
569  * worker thread that handles reads/writes to file backed loop devices,
570  * to avoid blocking in our make_request_fn. it also does loop decrypting
571  * on reads for block backed loop, as that is too heavy to do from
572  * b_end_io context where irqs may be disabled.
573  *
574  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
575  * calling kthread_stop().  Therefore once kthread_should_stop() is
576  * true, make_request will not place any more requests.  Therefore
577  * once kthread_should_stop() is true and lo_bio is NULL, we are
578  * done with the loop.
579  */
580 static int loop_thread(void *data)
581 {
582 	struct loop_device *lo = data;
583 	struct bio *bio;
584 
585 	set_user_nice(current, -20);
586 
587 	while (!kthread_should_stop() || lo->lo_bio) {
588 
589 		wait_event_interruptible(lo->lo_event,
590 				lo->lo_bio || kthread_should_stop());
591 
592 		if (!lo->lo_bio)
593 			continue;
594 		spin_lock_irq(&lo->lo_lock);
595 		bio = loop_get_bio(lo);
596 		spin_unlock_irq(&lo->lo_lock);
597 
598 		BUG_ON(!bio);
599 		loop_handle_bio(lo, bio);
600 	}
601 
602 	return 0;
603 }
604 
605 /*
606  * loop_switch performs the hard work of switching a backing store.
607  * First it needs to flush existing IO, it does this by sending a magic
608  * BIO down the pipe. The completion of this BIO does the actual switch.
609  */
610 static int loop_switch(struct loop_device *lo, struct file *file)
611 {
612 	struct switch_request w;
613 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
614 	if (!bio)
615 		return -ENOMEM;
616 	init_completion(&w.wait);
617 	w.file = file;
618 	bio->bi_private = &w;
619 	bio->bi_bdev = NULL;
620 	loop_make_request(lo->lo_queue, bio);
621 	wait_for_completion(&w.wait);
622 	return 0;
623 }
624 
625 /*
626  * Do the actual switch; called from the BIO completion routine
627  */
628 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
629 {
630 	struct file *file = p->file;
631 	struct file *old_file = lo->lo_backing_file;
632 	struct address_space *mapping = file->f_mapping;
633 
634 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
635 	lo->lo_backing_file = file;
636 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
637 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
638 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
639 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
640 	complete(&p->wait);
641 }
642 
643 
644 /*
645  * loop_change_fd switched the backing store of a loopback device to
646  * a new file. This is useful for operating system installers to free up
647  * the original file and in High Availability environments to switch to
648  * an alternative location for the content in case of server meltdown.
649  * This can only work if the loop device is used read-only, and if the
650  * new backing store is the same size and type as the old backing store.
651  */
652 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
653 		       struct block_device *bdev, unsigned int arg)
654 {
655 	struct file	*file, *old_file;
656 	struct inode	*inode;
657 	int		error;
658 
659 	error = -ENXIO;
660 	if (lo->lo_state != Lo_bound)
661 		goto out;
662 
663 	/* the loop device has to be read-only */
664 	error = -EINVAL;
665 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
666 		goto out;
667 
668 	error = -EBADF;
669 	file = fget(arg);
670 	if (!file)
671 		goto out;
672 
673 	inode = file->f_mapping->host;
674 	old_file = lo->lo_backing_file;
675 
676 	error = -EINVAL;
677 
678 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
679 		goto out_putf;
680 
681 	/* new backing store needs to support loop (eg splice_read) */
682 	if (!inode->i_fop->splice_read)
683 		goto out_putf;
684 
685 	/* size of the new backing store needs to be the same */
686 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
687 		goto out_putf;
688 
689 	/* and ... switch */
690 	error = loop_switch(lo, file);
691 	if (error)
692 		goto out_putf;
693 
694 	fput(old_file);
695 	return 0;
696 
697  out_putf:
698 	fput(file);
699  out:
700 	return error;
701 }
702 
703 static inline int is_loop_device(struct file *file)
704 {
705 	struct inode *i = file->f_mapping->host;
706 
707 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
708 }
709 
710 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
711 		       struct block_device *bdev, unsigned int arg)
712 {
713 	struct file	*file, *f;
714 	struct inode	*inode;
715 	struct address_space *mapping;
716 	unsigned lo_blocksize;
717 	int		lo_flags = 0;
718 	int		error;
719 	loff_t		size;
720 
721 	/* This is safe, since we have a reference from open(). */
722 	__module_get(THIS_MODULE);
723 
724 	error = -EBADF;
725 	file = fget(arg);
726 	if (!file)
727 		goto out;
728 
729 	error = -EBUSY;
730 	if (lo->lo_state != Lo_unbound)
731 		goto out_putf;
732 
733 	/* Avoid recursion */
734 	f = file;
735 	while (is_loop_device(f)) {
736 		struct loop_device *l;
737 
738 		if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
739 			goto out_putf;
740 
741 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
742 		if (l->lo_state == Lo_unbound) {
743 			error = -EINVAL;
744 			goto out_putf;
745 		}
746 		f = l->lo_backing_file;
747 	}
748 
749 	mapping = file->f_mapping;
750 	inode = mapping->host;
751 
752 	if (!(file->f_mode & FMODE_WRITE))
753 		lo_flags |= LO_FLAGS_READ_ONLY;
754 
755 	error = -EINVAL;
756 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
757 		const struct address_space_operations *aops = mapping->a_ops;
758 		/*
759 		 * If we can't read - sorry. If we only can't write - well,
760 		 * it's going to be read-only.
761 		 */
762 		if (!file->f_op->splice_read)
763 			goto out_putf;
764 		if (aops->prepare_write || aops->write_begin)
765 			lo_flags |= LO_FLAGS_USE_AOPS;
766 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
767 			lo_flags |= LO_FLAGS_READ_ONLY;
768 
769 		lo_blocksize = S_ISBLK(inode->i_mode) ?
770 			inode->i_bdev->bd_block_size : PAGE_SIZE;
771 
772 		error = 0;
773 	} else {
774 		goto out_putf;
775 	}
776 
777 	size = get_loop_size(lo, file);
778 
779 	if ((loff_t)(sector_t)size != size) {
780 		error = -EFBIG;
781 		goto out_putf;
782 	}
783 
784 	if (!(lo_file->f_mode & FMODE_WRITE))
785 		lo_flags |= LO_FLAGS_READ_ONLY;
786 
787 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
788 
789 	lo->lo_blocksize = lo_blocksize;
790 	lo->lo_device = bdev;
791 	lo->lo_flags = lo_flags;
792 	lo->lo_backing_file = file;
793 	lo->transfer = transfer_none;
794 	lo->ioctl = NULL;
795 	lo->lo_sizelimit = 0;
796 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
797 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
798 
799 	lo->lo_bio = lo->lo_biotail = NULL;
800 
801 	/*
802 	 * set queue make_request_fn, and add limits based on lower level
803 	 * device
804 	 */
805 	blk_queue_make_request(lo->lo_queue, loop_make_request);
806 	lo->lo_queue->queuedata = lo;
807 	lo->lo_queue->unplug_fn = loop_unplug;
808 
809 	set_capacity(lo->lo_disk, size);
810 	bd_set_size(bdev, size << 9);
811 
812 	set_blocksize(bdev, lo_blocksize);
813 
814 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
815 						lo->lo_number);
816 	if (IS_ERR(lo->lo_thread)) {
817 		error = PTR_ERR(lo->lo_thread);
818 		goto out_clr;
819 	}
820 	lo->lo_state = Lo_bound;
821 	wake_up_process(lo->lo_thread);
822 	return 0;
823 
824 out_clr:
825 	lo->lo_thread = NULL;
826 	lo->lo_device = NULL;
827 	lo->lo_backing_file = NULL;
828 	lo->lo_flags = 0;
829 	set_capacity(lo->lo_disk, 0);
830 	invalidate_bdev(bdev);
831 	bd_set_size(bdev, 0);
832 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
833 	lo->lo_state = Lo_unbound;
834  out_putf:
835 	fput(file);
836  out:
837 	/* This is safe: open() is still holding a reference. */
838 	module_put(THIS_MODULE);
839 	return error;
840 }
841 
842 static int
843 loop_release_xfer(struct loop_device *lo)
844 {
845 	int err = 0;
846 	struct loop_func_table *xfer = lo->lo_encryption;
847 
848 	if (xfer) {
849 		if (xfer->release)
850 			err = xfer->release(lo);
851 		lo->transfer = NULL;
852 		lo->lo_encryption = NULL;
853 		module_put(xfer->owner);
854 	}
855 	return err;
856 }
857 
858 static int
859 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
860 	       const struct loop_info64 *i)
861 {
862 	int err = 0;
863 
864 	if (xfer) {
865 		struct module *owner = xfer->owner;
866 
867 		if (!try_module_get(owner))
868 			return -EINVAL;
869 		if (xfer->init)
870 			err = xfer->init(lo, i);
871 		if (err)
872 			module_put(owner);
873 		else
874 			lo->lo_encryption = xfer;
875 	}
876 	return err;
877 }
878 
879 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
880 {
881 	struct file *filp = lo->lo_backing_file;
882 	gfp_t gfp = lo->old_gfp_mask;
883 
884 	if (lo->lo_state != Lo_bound)
885 		return -ENXIO;
886 
887 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
888 		return -EBUSY;
889 
890 	if (filp == NULL)
891 		return -EINVAL;
892 
893 	spin_lock_irq(&lo->lo_lock);
894 	lo->lo_state = Lo_rundown;
895 	spin_unlock_irq(&lo->lo_lock);
896 
897 	kthread_stop(lo->lo_thread);
898 
899 	lo->lo_backing_file = NULL;
900 
901 	loop_release_xfer(lo);
902 	lo->transfer = NULL;
903 	lo->ioctl = NULL;
904 	lo->lo_device = NULL;
905 	lo->lo_encryption = NULL;
906 	lo->lo_offset = 0;
907 	lo->lo_sizelimit = 0;
908 	lo->lo_encrypt_key_size = 0;
909 	lo->lo_flags = 0;
910 	lo->lo_thread = NULL;
911 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
912 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
913 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
914 	invalidate_bdev(bdev);
915 	set_capacity(lo->lo_disk, 0);
916 	bd_set_size(bdev, 0);
917 	mapping_set_gfp_mask(filp->f_mapping, gfp);
918 	lo->lo_state = Lo_unbound;
919 	fput(filp);
920 	/* This is safe: open() is still holding a reference. */
921 	module_put(THIS_MODULE);
922 	return 0;
923 }
924 
925 static int
926 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
927 {
928 	int err;
929 	struct loop_func_table *xfer;
930 
931 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
932 	    !capable(CAP_SYS_ADMIN))
933 		return -EPERM;
934 	if (lo->lo_state != Lo_bound)
935 		return -ENXIO;
936 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
937 		return -EINVAL;
938 
939 	err = loop_release_xfer(lo);
940 	if (err)
941 		return err;
942 
943 	if (info->lo_encrypt_type) {
944 		unsigned int type = info->lo_encrypt_type;
945 
946 		if (type >= MAX_LO_CRYPT)
947 			return -EINVAL;
948 		xfer = xfer_funcs[type];
949 		if (xfer == NULL)
950 			return -EINVAL;
951 	} else
952 		xfer = NULL;
953 
954 	err = loop_init_xfer(lo, xfer, info);
955 	if (err)
956 		return err;
957 
958 	if (lo->lo_offset != info->lo_offset ||
959 	    lo->lo_sizelimit != info->lo_sizelimit) {
960 		lo->lo_offset = info->lo_offset;
961 		lo->lo_sizelimit = info->lo_sizelimit;
962 		if (figure_loop_size(lo))
963 			return -EFBIG;
964 	}
965 
966 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
967 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
968 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
969 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
970 
971 	if (!xfer)
972 		xfer = &none_funcs;
973 	lo->transfer = xfer->transfer;
974 	lo->ioctl = xfer->ioctl;
975 
976 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
977 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
978 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
979 
980 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
981 	lo->lo_init[0] = info->lo_init[0];
982 	lo->lo_init[1] = info->lo_init[1];
983 	if (info->lo_encrypt_key_size) {
984 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
985 		       info->lo_encrypt_key_size);
986 		lo->lo_key_owner = current->uid;
987 	}
988 
989 	return 0;
990 }
991 
992 static int
993 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
994 {
995 	struct file *file = lo->lo_backing_file;
996 	struct kstat stat;
997 	int error;
998 
999 	if (lo->lo_state != Lo_bound)
1000 		return -ENXIO;
1001 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1002 	if (error)
1003 		return error;
1004 	memset(info, 0, sizeof(*info));
1005 	info->lo_number = lo->lo_number;
1006 	info->lo_device = huge_encode_dev(stat.dev);
1007 	info->lo_inode = stat.ino;
1008 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1009 	info->lo_offset = lo->lo_offset;
1010 	info->lo_sizelimit = lo->lo_sizelimit;
1011 	info->lo_flags = lo->lo_flags;
1012 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1013 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1014 	info->lo_encrypt_type =
1015 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1016 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1017 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1018 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1019 		       lo->lo_encrypt_key_size);
1020 	}
1021 	return 0;
1022 }
1023 
1024 static void
1025 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1026 {
1027 	memset(info64, 0, sizeof(*info64));
1028 	info64->lo_number = info->lo_number;
1029 	info64->lo_device = info->lo_device;
1030 	info64->lo_inode = info->lo_inode;
1031 	info64->lo_rdevice = info->lo_rdevice;
1032 	info64->lo_offset = info->lo_offset;
1033 	info64->lo_sizelimit = 0;
1034 	info64->lo_encrypt_type = info->lo_encrypt_type;
1035 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1036 	info64->lo_flags = info->lo_flags;
1037 	info64->lo_init[0] = info->lo_init[0];
1038 	info64->lo_init[1] = info->lo_init[1];
1039 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1040 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1041 	else
1042 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1043 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1044 }
1045 
1046 static int
1047 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1048 {
1049 	memset(info, 0, sizeof(*info));
1050 	info->lo_number = info64->lo_number;
1051 	info->lo_device = info64->lo_device;
1052 	info->lo_inode = info64->lo_inode;
1053 	info->lo_rdevice = info64->lo_rdevice;
1054 	info->lo_offset = info64->lo_offset;
1055 	info->lo_encrypt_type = info64->lo_encrypt_type;
1056 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1057 	info->lo_flags = info64->lo_flags;
1058 	info->lo_init[0] = info64->lo_init[0];
1059 	info->lo_init[1] = info64->lo_init[1];
1060 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1061 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1062 	else
1063 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1064 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1065 
1066 	/* error in case values were truncated */
1067 	if (info->lo_device != info64->lo_device ||
1068 	    info->lo_rdevice != info64->lo_rdevice ||
1069 	    info->lo_inode != info64->lo_inode ||
1070 	    info->lo_offset != info64->lo_offset)
1071 		return -EOVERFLOW;
1072 
1073 	return 0;
1074 }
1075 
1076 static int
1077 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1078 {
1079 	struct loop_info info;
1080 	struct loop_info64 info64;
1081 
1082 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1083 		return -EFAULT;
1084 	loop_info64_from_old(&info, &info64);
1085 	return loop_set_status(lo, &info64);
1086 }
1087 
1088 static int
1089 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1090 {
1091 	struct loop_info64 info64;
1092 
1093 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1094 		return -EFAULT;
1095 	return loop_set_status(lo, &info64);
1096 }
1097 
1098 static int
1099 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1100 	struct loop_info info;
1101 	struct loop_info64 info64;
1102 	int err = 0;
1103 
1104 	if (!arg)
1105 		err = -EINVAL;
1106 	if (!err)
1107 		err = loop_get_status(lo, &info64);
1108 	if (!err)
1109 		err = loop_info64_to_old(&info64, &info);
1110 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1111 		err = -EFAULT;
1112 
1113 	return err;
1114 }
1115 
1116 static int
1117 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1118 	struct loop_info64 info64;
1119 	int err = 0;
1120 
1121 	if (!arg)
1122 		err = -EINVAL;
1123 	if (!err)
1124 		err = loop_get_status(lo, &info64);
1125 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1126 		err = -EFAULT;
1127 
1128 	return err;
1129 }
1130 
1131 static int lo_ioctl(struct inode * inode, struct file * file,
1132 	unsigned int cmd, unsigned long arg)
1133 {
1134 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1135 	int err;
1136 
1137 	mutex_lock(&lo->lo_ctl_mutex);
1138 	switch (cmd) {
1139 	case LOOP_SET_FD:
1140 		err = loop_set_fd(lo, file, inode->i_bdev, arg);
1141 		break;
1142 	case LOOP_CHANGE_FD:
1143 		err = loop_change_fd(lo, file, inode->i_bdev, arg);
1144 		break;
1145 	case LOOP_CLR_FD:
1146 		err = loop_clr_fd(lo, inode->i_bdev);
1147 		break;
1148 	case LOOP_SET_STATUS:
1149 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1150 		break;
1151 	case LOOP_GET_STATUS:
1152 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1153 		break;
1154 	case LOOP_SET_STATUS64:
1155 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1156 		break;
1157 	case LOOP_GET_STATUS64:
1158 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1159 		break;
1160 	default:
1161 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1162 	}
1163 	mutex_unlock(&lo->lo_ctl_mutex);
1164 	return err;
1165 }
1166 
1167 #ifdef CONFIG_COMPAT
1168 struct compat_loop_info {
1169 	compat_int_t	lo_number;      /* ioctl r/o */
1170 	compat_dev_t	lo_device;      /* ioctl r/o */
1171 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1172 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1173 	compat_int_t	lo_offset;
1174 	compat_int_t	lo_encrypt_type;
1175 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1176 	compat_int_t	lo_flags;       /* ioctl r/o */
1177 	char		lo_name[LO_NAME_SIZE];
1178 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1179 	compat_ulong_t	lo_init[2];
1180 	char		reserved[4];
1181 };
1182 
1183 /*
1184  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1185  * - noinlined to reduce stack space usage in main part of driver
1186  */
1187 static noinline int
1188 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1189 			struct loop_info64 *info64)
1190 {
1191 	struct compat_loop_info info;
1192 
1193 	if (copy_from_user(&info, arg, sizeof(info)))
1194 		return -EFAULT;
1195 
1196 	memset(info64, 0, sizeof(*info64));
1197 	info64->lo_number = info.lo_number;
1198 	info64->lo_device = info.lo_device;
1199 	info64->lo_inode = info.lo_inode;
1200 	info64->lo_rdevice = info.lo_rdevice;
1201 	info64->lo_offset = info.lo_offset;
1202 	info64->lo_sizelimit = 0;
1203 	info64->lo_encrypt_type = info.lo_encrypt_type;
1204 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1205 	info64->lo_flags = info.lo_flags;
1206 	info64->lo_init[0] = info.lo_init[0];
1207 	info64->lo_init[1] = info.lo_init[1];
1208 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1209 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1210 	else
1211 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1212 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1213 	return 0;
1214 }
1215 
1216 /*
1217  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1218  * - noinlined to reduce stack space usage in main part of driver
1219  */
1220 static noinline int
1221 loop_info64_to_compat(const struct loop_info64 *info64,
1222 		      struct compat_loop_info __user *arg)
1223 {
1224 	struct compat_loop_info info;
1225 
1226 	memset(&info, 0, sizeof(info));
1227 	info.lo_number = info64->lo_number;
1228 	info.lo_device = info64->lo_device;
1229 	info.lo_inode = info64->lo_inode;
1230 	info.lo_rdevice = info64->lo_rdevice;
1231 	info.lo_offset = info64->lo_offset;
1232 	info.lo_encrypt_type = info64->lo_encrypt_type;
1233 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1234 	info.lo_flags = info64->lo_flags;
1235 	info.lo_init[0] = info64->lo_init[0];
1236 	info.lo_init[1] = info64->lo_init[1];
1237 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1238 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1239 	else
1240 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1241 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1242 
1243 	/* error in case values were truncated */
1244 	if (info.lo_device != info64->lo_device ||
1245 	    info.lo_rdevice != info64->lo_rdevice ||
1246 	    info.lo_inode != info64->lo_inode ||
1247 	    info.lo_offset != info64->lo_offset ||
1248 	    info.lo_init[0] != info64->lo_init[0] ||
1249 	    info.lo_init[1] != info64->lo_init[1])
1250 		return -EOVERFLOW;
1251 
1252 	if (copy_to_user(arg, &info, sizeof(info)))
1253 		return -EFAULT;
1254 	return 0;
1255 }
1256 
1257 static int
1258 loop_set_status_compat(struct loop_device *lo,
1259 		       const struct compat_loop_info __user *arg)
1260 {
1261 	struct loop_info64 info64;
1262 	int ret;
1263 
1264 	ret = loop_info64_from_compat(arg, &info64);
1265 	if (ret < 0)
1266 		return ret;
1267 	return loop_set_status(lo, &info64);
1268 }
1269 
1270 static int
1271 loop_get_status_compat(struct loop_device *lo,
1272 		       struct compat_loop_info __user *arg)
1273 {
1274 	struct loop_info64 info64;
1275 	int err = 0;
1276 
1277 	if (!arg)
1278 		err = -EINVAL;
1279 	if (!err)
1280 		err = loop_get_status(lo, &info64);
1281 	if (!err)
1282 		err = loop_info64_to_compat(&info64, arg);
1283 	return err;
1284 }
1285 
1286 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1287 {
1288 	struct inode *inode = file->f_path.dentry->d_inode;
1289 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1290 	int err;
1291 
1292 	switch(cmd) {
1293 	case LOOP_SET_STATUS:
1294 		mutex_lock(&lo->lo_ctl_mutex);
1295 		err = loop_set_status_compat(
1296 			lo, (const struct compat_loop_info __user *) arg);
1297 		mutex_unlock(&lo->lo_ctl_mutex);
1298 		break;
1299 	case LOOP_GET_STATUS:
1300 		mutex_lock(&lo->lo_ctl_mutex);
1301 		err = loop_get_status_compat(
1302 			lo, (struct compat_loop_info __user *) arg);
1303 		mutex_unlock(&lo->lo_ctl_mutex);
1304 		break;
1305 	case LOOP_CLR_FD:
1306 	case LOOP_GET_STATUS64:
1307 	case LOOP_SET_STATUS64:
1308 		arg = (unsigned long) compat_ptr(arg);
1309 	case LOOP_SET_FD:
1310 	case LOOP_CHANGE_FD:
1311 		err = lo_ioctl(inode, file, cmd, arg);
1312 		break;
1313 	default:
1314 		err = -ENOIOCTLCMD;
1315 		break;
1316 	}
1317 	return err;
1318 }
1319 #endif
1320 
1321 static int lo_open(struct inode *inode, struct file *file)
1322 {
1323 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1324 
1325 	mutex_lock(&lo->lo_ctl_mutex);
1326 	lo->lo_refcnt++;
1327 	mutex_unlock(&lo->lo_ctl_mutex);
1328 
1329 	return 0;
1330 }
1331 
1332 static int lo_release(struct inode *inode, struct file *file)
1333 {
1334 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1335 
1336 	mutex_lock(&lo->lo_ctl_mutex);
1337 	--lo->lo_refcnt;
1338 
1339 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt)
1340 		loop_clr_fd(lo, inode->i_bdev);
1341 
1342 	mutex_unlock(&lo->lo_ctl_mutex);
1343 
1344 	return 0;
1345 }
1346 
1347 static struct block_device_operations lo_fops = {
1348 	.owner =	THIS_MODULE,
1349 	.open =		lo_open,
1350 	.release =	lo_release,
1351 	.ioctl =	lo_ioctl,
1352 #ifdef CONFIG_COMPAT
1353 	.compat_ioctl =	lo_compat_ioctl,
1354 #endif
1355 };
1356 
1357 /*
1358  * And now the modules code and kernel interface.
1359  */
1360 static int max_loop;
1361 module_param(max_loop, int, 0);
1362 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1363 MODULE_LICENSE("GPL");
1364 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1365 
1366 int loop_register_transfer(struct loop_func_table *funcs)
1367 {
1368 	unsigned int n = funcs->number;
1369 
1370 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1371 		return -EINVAL;
1372 	xfer_funcs[n] = funcs;
1373 	return 0;
1374 }
1375 
1376 int loop_unregister_transfer(int number)
1377 {
1378 	unsigned int n = number;
1379 	struct loop_device *lo;
1380 	struct loop_func_table *xfer;
1381 
1382 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1383 		return -EINVAL;
1384 
1385 	xfer_funcs[n] = NULL;
1386 
1387 	list_for_each_entry(lo, &loop_devices, lo_list) {
1388 		mutex_lock(&lo->lo_ctl_mutex);
1389 
1390 		if (lo->lo_encryption == xfer)
1391 			loop_release_xfer(lo);
1392 
1393 		mutex_unlock(&lo->lo_ctl_mutex);
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 EXPORT_SYMBOL(loop_register_transfer);
1400 EXPORT_SYMBOL(loop_unregister_transfer);
1401 
1402 static struct loop_device *loop_alloc(int i)
1403 {
1404 	struct loop_device *lo;
1405 	struct gendisk *disk;
1406 
1407 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1408 	if (!lo)
1409 		goto out;
1410 
1411 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1412 	if (!lo->lo_queue)
1413 		goto out_free_dev;
1414 
1415 	disk = lo->lo_disk = alloc_disk(1);
1416 	if (!disk)
1417 		goto out_free_queue;
1418 
1419 	mutex_init(&lo->lo_ctl_mutex);
1420 	lo->lo_number		= i;
1421 	lo->lo_thread		= NULL;
1422 	init_waitqueue_head(&lo->lo_event);
1423 	spin_lock_init(&lo->lo_lock);
1424 	disk->major		= LOOP_MAJOR;
1425 	disk->first_minor	= i;
1426 	disk->fops		= &lo_fops;
1427 	disk->private_data	= lo;
1428 	disk->queue		= lo->lo_queue;
1429 	sprintf(disk->disk_name, "loop%d", i);
1430 	return lo;
1431 
1432 out_free_queue:
1433 	blk_cleanup_queue(lo->lo_queue);
1434 out_free_dev:
1435 	kfree(lo);
1436 out:
1437 	return NULL;
1438 }
1439 
1440 static void loop_free(struct loop_device *lo)
1441 {
1442 	blk_cleanup_queue(lo->lo_queue);
1443 	put_disk(lo->lo_disk);
1444 	list_del(&lo->lo_list);
1445 	kfree(lo);
1446 }
1447 
1448 static struct loop_device *loop_init_one(int i)
1449 {
1450 	struct loop_device *lo;
1451 
1452 	list_for_each_entry(lo, &loop_devices, lo_list) {
1453 		if (lo->lo_number == i)
1454 			return lo;
1455 	}
1456 
1457 	lo = loop_alloc(i);
1458 	if (lo) {
1459 		add_disk(lo->lo_disk);
1460 		list_add_tail(&lo->lo_list, &loop_devices);
1461 	}
1462 	return lo;
1463 }
1464 
1465 static void loop_del_one(struct loop_device *lo)
1466 {
1467 	del_gendisk(lo->lo_disk);
1468 	loop_free(lo);
1469 }
1470 
1471 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1472 {
1473 	struct loop_device *lo;
1474 	struct kobject *kobj;
1475 
1476 	mutex_lock(&loop_devices_mutex);
1477 	lo = loop_init_one(dev & MINORMASK);
1478 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1479 	mutex_unlock(&loop_devices_mutex);
1480 
1481 	*part = 0;
1482 	return kobj;
1483 }
1484 
1485 static int __init loop_init(void)
1486 {
1487 	int i, nr;
1488 	unsigned long range;
1489 	struct loop_device *lo, *next;
1490 
1491 	/*
1492 	 * loop module now has a feature to instantiate underlying device
1493 	 * structure on-demand, provided that there is an access dev node.
1494 	 * However, this will not work well with user space tool that doesn't
1495 	 * know about such "feature".  In order to not break any existing
1496 	 * tool, we do the following:
1497 	 *
1498 	 * (1) if max_loop is specified, create that many upfront, and this
1499 	 *     also becomes a hard limit.
1500 	 * (2) if max_loop is not specified, create 8 loop device on module
1501 	 *     load, user can further extend loop device by create dev node
1502 	 *     themselves and have kernel automatically instantiate actual
1503 	 *     device on-demand.
1504 	 */
1505 	if (max_loop > 1UL << MINORBITS)
1506 		return -EINVAL;
1507 
1508 	if (max_loop) {
1509 		nr = max_loop;
1510 		range = max_loop;
1511 	} else {
1512 		nr = 8;
1513 		range = 1UL << MINORBITS;
1514 	}
1515 
1516 	if (register_blkdev(LOOP_MAJOR, "loop"))
1517 		return -EIO;
1518 
1519 	for (i = 0; i < nr; i++) {
1520 		lo = loop_alloc(i);
1521 		if (!lo)
1522 			goto Enomem;
1523 		list_add_tail(&lo->lo_list, &loop_devices);
1524 	}
1525 
1526 	/* point of no return */
1527 
1528 	list_for_each_entry(lo, &loop_devices, lo_list)
1529 		add_disk(lo->lo_disk);
1530 
1531 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1532 				  THIS_MODULE, loop_probe, NULL, NULL);
1533 
1534 	printk(KERN_INFO "loop: module loaded\n");
1535 	return 0;
1536 
1537 Enomem:
1538 	printk(KERN_INFO "loop: out of memory\n");
1539 
1540 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1541 		loop_free(lo);
1542 
1543 	unregister_blkdev(LOOP_MAJOR, "loop");
1544 	return -ENOMEM;
1545 }
1546 
1547 static void __exit loop_exit(void)
1548 {
1549 	unsigned long range;
1550 	struct loop_device *lo, *next;
1551 
1552 	range = max_loop ? max_loop :  1UL << MINORBITS;
1553 
1554 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1555 		loop_del_one(lo);
1556 
1557 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1558 	unregister_blkdev(LOOP_MAJOR, "loop");
1559 }
1560 
1561 module_init(loop_init);
1562 module_exit(loop_exit);
1563 
1564 #ifndef MODULE
1565 static int __init max_loop_setup(char *str)
1566 {
1567 	max_loop = simple_strtol(str, NULL, 0);
1568 	return 1;
1569 }
1570 
1571 __setup("max_loop=", max_loop_setup);
1572 #endif
1573