1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations prepare_write and/or commit_write are not available on the 44 * backing filesystem. 45 * Anton Altaparmakov, 16 Feb 2005 46 * 47 * Still To Fix: 48 * - Advisory locking is ignored here. 49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 50 * 51 */ 52 53 #include <linux/module.h> 54 #include <linux/moduleparam.h> 55 #include <linux/sched.h> 56 #include <linux/fs.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/smp_lock.h> 66 #include <linux/swap.h> 67 #include <linux/slab.h> 68 #include <linux/loop.h> 69 #include <linux/compat.h> 70 #include <linux/suspend.h> 71 #include <linux/freezer.h> 72 #include <linux/writeback.h> 73 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 74 #include <linux/completion.h> 75 #include <linux/highmem.h> 76 #include <linux/gfp.h> 77 #include <linux/kthread.h> 78 #include <linux/splice.h> 79 80 #include <asm/uaccess.h> 81 82 static LIST_HEAD(loop_devices); 83 static DEFINE_MUTEX(loop_devices_mutex); 84 85 /* 86 * Transfer functions 87 */ 88 static int transfer_none(struct loop_device *lo, int cmd, 89 struct page *raw_page, unsigned raw_off, 90 struct page *loop_page, unsigned loop_off, 91 int size, sector_t real_block) 92 { 93 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 94 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 95 96 if (cmd == READ) 97 memcpy(loop_buf, raw_buf, size); 98 else 99 memcpy(raw_buf, loop_buf, size); 100 101 kunmap_atomic(raw_buf, KM_USER0); 102 kunmap_atomic(loop_buf, KM_USER1); 103 cond_resched(); 104 return 0; 105 } 106 107 static int transfer_xor(struct loop_device *lo, int cmd, 108 struct page *raw_page, unsigned raw_off, 109 struct page *loop_page, unsigned loop_off, 110 int size, sector_t real_block) 111 { 112 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 113 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 114 char *in, *out, *key; 115 int i, keysize; 116 117 if (cmd == READ) { 118 in = raw_buf; 119 out = loop_buf; 120 } else { 121 in = loop_buf; 122 out = raw_buf; 123 } 124 125 key = lo->lo_encrypt_key; 126 keysize = lo->lo_encrypt_key_size; 127 for (i = 0; i < size; i++) 128 *out++ = *in++ ^ key[(i & 511) % keysize]; 129 130 kunmap_atomic(raw_buf, KM_USER0); 131 kunmap_atomic(loop_buf, KM_USER1); 132 cond_resched(); 133 return 0; 134 } 135 136 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 137 { 138 if (unlikely(info->lo_encrypt_key_size <= 0)) 139 return -EINVAL; 140 return 0; 141 } 142 143 static struct loop_func_table none_funcs = { 144 .number = LO_CRYPT_NONE, 145 .transfer = transfer_none, 146 }; 147 148 static struct loop_func_table xor_funcs = { 149 .number = LO_CRYPT_XOR, 150 .transfer = transfer_xor, 151 .init = xor_init 152 }; 153 154 /* xfer_funcs[0] is special - its release function is never called */ 155 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 156 &none_funcs, 157 &xor_funcs 158 }; 159 160 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 161 { 162 loff_t size, offset, loopsize; 163 164 /* Compute loopsize in bytes */ 165 size = i_size_read(file->f_mapping->host); 166 offset = lo->lo_offset; 167 loopsize = size - offset; 168 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 169 loopsize = lo->lo_sizelimit; 170 171 /* 172 * Unfortunately, if we want to do I/O on the device, 173 * the number of 512-byte sectors has to fit into a sector_t. 174 */ 175 return loopsize >> 9; 176 } 177 178 static int 179 figure_loop_size(struct loop_device *lo) 180 { 181 loff_t size = get_loop_size(lo, lo->lo_backing_file); 182 sector_t x = (sector_t)size; 183 184 if (unlikely((loff_t)x != size)) 185 return -EFBIG; 186 187 set_capacity(lo->lo_disk, x); 188 return 0; 189 } 190 191 static inline int 192 lo_do_transfer(struct loop_device *lo, int cmd, 193 struct page *rpage, unsigned roffs, 194 struct page *lpage, unsigned loffs, 195 int size, sector_t rblock) 196 { 197 if (unlikely(!lo->transfer)) 198 return 0; 199 200 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 201 } 202 203 /** 204 * do_lo_send_aops - helper for writing data to a loop device 205 * 206 * This is the fast version for backing filesystems which implement the address 207 * space operations write_begin and write_end. 208 */ 209 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 210 int bsize, loff_t pos, struct page *unused) 211 { 212 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 213 struct address_space *mapping = file->f_mapping; 214 pgoff_t index; 215 unsigned offset, bv_offs; 216 int len, ret; 217 218 mutex_lock(&mapping->host->i_mutex); 219 index = pos >> PAGE_CACHE_SHIFT; 220 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 221 bv_offs = bvec->bv_offset; 222 len = bvec->bv_len; 223 while (len > 0) { 224 sector_t IV; 225 unsigned size, copied; 226 int transfer_result; 227 struct page *page; 228 void *fsdata; 229 230 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 231 size = PAGE_CACHE_SIZE - offset; 232 if (size > len) 233 size = len; 234 235 ret = pagecache_write_begin(file, mapping, pos, size, 0, 236 &page, &fsdata); 237 if (ret) 238 goto fail; 239 240 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 241 bvec->bv_page, bv_offs, size, IV); 242 copied = size; 243 if (unlikely(transfer_result)) 244 copied = 0; 245 246 ret = pagecache_write_end(file, mapping, pos, size, copied, 247 page, fsdata); 248 if (ret < 0 || ret != copied) 249 goto fail; 250 251 if (unlikely(transfer_result)) 252 goto fail; 253 254 bv_offs += copied; 255 len -= copied; 256 offset = 0; 257 index++; 258 pos += copied; 259 } 260 ret = 0; 261 out: 262 mutex_unlock(&mapping->host->i_mutex); 263 return ret; 264 fail: 265 ret = -1; 266 goto out; 267 } 268 269 /** 270 * __do_lo_send_write - helper for writing data to a loop device 271 * 272 * This helper just factors out common code between do_lo_send_direct_write() 273 * and do_lo_send_write(). 274 */ 275 static int __do_lo_send_write(struct file *file, 276 u8 *buf, const int len, loff_t pos) 277 { 278 ssize_t bw; 279 mm_segment_t old_fs = get_fs(); 280 281 set_fs(get_ds()); 282 bw = file->f_op->write(file, buf, len, &pos); 283 set_fs(old_fs); 284 if (likely(bw == len)) 285 return 0; 286 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 287 (unsigned long long)pos, len); 288 if (bw >= 0) 289 bw = -EIO; 290 return bw; 291 } 292 293 /** 294 * do_lo_send_direct_write - helper for writing data to a loop device 295 * 296 * This is the fast, non-transforming version for backing filesystems which do 297 * not implement the address space operations write_begin and write_end. 298 * It uses the write file operation which should be present on all writeable 299 * filesystems. 300 */ 301 static int do_lo_send_direct_write(struct loop_device *lo, 302 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page) 303 { 304 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 305 kmap(bvec->bv_page) + bvec->bv_offset, 306 bvec->bv_len, pos); 307 kunmap(bvec->bv_page); 308 cond_resched(); 309 return bw; 310 } 311 312 /** 313 * do_lo_send_write - helper for writing data to a loop device 314 * 315 * This is the slow, transforming version for filesystems which do not 316 * implement the address space operations write_begin and write_end. It 317 * uses the write file operation which should be present on all writeable 318 * filesystems. 319 * 320 * Using fops->write is slower than using aops->{prepare,commit}_write in the 321 * transforming case because we need to double buffer the data as we cannot do 322 * the transformations in place as we do not have direct access to the 323 * destination pages of the backing file. 324 */ 325 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 326 int bsize, loff_t pos, struct page *page) 327 { 328 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 329 bvec->bv_offset, bvec->bv_len, pos >> 9); 330 if (likely(!ret)) 331 return __do_lo_send_write(lo->lo_backing_file, 332 page_address(page), bvec->bv_len, 333 pos); 334 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 335 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 336 if (ret > 0) 337 ret = -EIO; 338 return ret; 339 } 340 341 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize, 342 loff_t pos) 343 { 344 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t, 345 struct page *page); 346 struct bio_vec *bvec; 347 struct page *page = NULL; 348 int i, ret = 0; 349 350 do_lo_send = do_lo_send_aops; 351 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 352 do_lo_send = do_lo_send_direct_write; 353 if (lo->transfer != transfer_none) { 354 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 355 if (unlikely(!page)) 356 goto fail; 357 kmap(page); 358 do_lo_send = do_lo_send_write; 359 } 360 } 361 bio_for_each_segment(bvec, bio, i) { 362 ret = do_lo_send(lo, bvec, bsize, pos, page); 363 if (ret < 0) 364 break; 365 pos += bvec->bv_len; 366 } 367 if (page) { 368 kunmap(page); 369 __free_page(page); 370 } 371 out: 372 return ret; 373 fail: 374 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 375 ret = -ENOMEM; 376 goto out; 377 } 378 379 struct lo_read_data { 380 struct loop_device *lo; 381 struct page *page; 382 unsigned offset; 383 int bsize; 384 }; 385 386 static int 387 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 388 struct splice_desc *sd) 389 { 390 struct lo_read_data *p = sd->u.data; 391 struct loop_device *lo = p->lo; 392 struct page *page = buf->page; 393 sector_t IV; 394 size_t size; 395 int ret; 396 397 ret = buf->ops->confirm(pipe, buf); 398 if (unlikely(ret)) 399 return ret; 400 401 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 402 (buf->offset >> 9); 403 size = sd->len; 404 if (size > p->bsize) 405 size = p->bsize; 406 407 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 408 printk(KERN_ERR "loop: transfer error block %ld\n", 409 page->index); 410 size = -EINVAL; 411 } 412 413 flush_dcache_page(p->page); 414 415 if (size > 0) 416 p->offset += size; 417 418 return size; 419 } 420 421 static int 422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 423 { 424 return __splice_from_pipe(pipe, sd, lo_splice_actor); 425 } 426 427 static int 428 do_lo_receive(struct loop_device *lo, 429 struct bio_vec *bvec, int bsize, loff_t pos) 430 { 431 struct lo_read_data cookie; 432 struct splice_desc sd; 433 struct file *file; 434 long retval; 435 436 cookie.lo = lo; 437 cookie.page = bvec->bv_page; 438 cookie.offset = bvec->bv_offset; 439 cookie.bsize = bsize; 440 441 sd.len = 0; 442 sd.total_len = bvec->bv_len; 443 sd.flags = 0; 444 sd.pos = pos; 445 sd.u.data = &cookie; 446 447 file = lo->lo_backing_file; 448 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 449 450 if (retval < 0) 451 return retval; 452 453 return 0; 454 } 455 456 static int 457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 458 { 459 struct bio_vec *bvec; 460 int i, ret = 0; 461 462 bio_for_each_segment(bvec, bio, i) { 463 ret = do_lo_receive(lo, bvec, bsize, pos); 464 if (ret < 0) 465 break; 466 pos += bvec->bv_len; 467 } 468 return ret; 469 } 470 471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 472 { 473 loff_t pos; 474 int ret; 475 476 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 477 if (bio_rw(bio) == WRITE) 478 ret = lo_send(lo, bio, lo->lo_blocksize, pos); 479 else 480 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 481 return ret; 482 } 483 484 /* 485 * Add bio to back of pending list 486 */ 487 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 488 { 489 if (lo->lo_biotail) { 490 lo->lo_biotail->bi_next = bio; 491 lo->lo_biotail = bio; 492 } else 493 lo->lo_bio = lo->lo_biotail = bio; 494 } 495 496 /* 497 * Grab first pending buffer 498 */ 499 static struct bio *loop_get_bio(struct loop_device *lo) 500 { 501 struct bio *bio; 502 503 if ((bio = lo->lo_bio)) { 504 if (bio == lo->lo_biotail) 505 lo->lo_biotail = NULL; 506 lo->lo_bio = bio->bi_next; 507 bio->bi_next = NULL; 508 } 509 510 return bio; 511 } 512 513 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 514 { 515 struct loop_device *lo = q->queuedata; 516 int rw = bio_rw(old_bio); 517 518 if (rw == READA) 519 rw = READ; 520 521 BUG_ON(!lo || (rw != READ && rw != WRITE)); 522 523 spin_lock_irq(&lo->lo_lock); 524 if (lo->lo_state != Lo_bound) 525 goto out; 526 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 527 goto out; 528 loop_add_bio(lo, old_bio); 529 wake_up(&lo->lo_event); 530 spin_unlock_irq(&lo->lo_lock); 531 return 0; 532 533 out: 534 spin_unlock_irq(&lo->lo_lock); 535 bio_io_error(old_bio); 536 return 0; 537 } 538 539 /* 540 * kick off io on the underlying address space 541 */ 542 static void loop_unplug(struct request_queue *q) 543 { 544 struct loop_device *lo = q->queuedata; 545 546 clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags); 547 blk_run_address_space(lo->lo_backing_file->f_mapping); 548 } 549 550 struct switch_request { 551 struct file *file; 552 struct completion wait; 553 }; 554 555 static void do_loop_switch(struct loop_device *, struct switch_request *); 556 557 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 558 { 559 if (unlikely(!bio->bi_bdev)) { 560 do_loop_switch(lo, bio->bi_private); 561 bio_put(bio); 562 } else { 563 int ret = do_bio_filebacked(lo, bio); 564 bio_endio(bio, ret); 565 } 566 } 567 568 /* 569 * worker thread that handles reads/writes to file backed loop devices, 570 * to avoid blocking in our make_request_fn. it also does loop decrypting 571 * on reads for block backed loop, as that is too heavy to do from 572 * b_end_io context where irqs may be disabled. 573 * 574 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 575 * calling kthread_stop(). Therefore once kthread_should_stop() is 576 * true, make_request will not place any more requests. Therefore 577 * once kthread_should_stop() is true and lo_bio is NULL, we are 578 * done with the loop. 579 */ 580 static int loop_thread(void *data) 581 { 582 struct loop_device *lo = data; 583 struct bio *bio; 584 585 set_user_nice(current, -20); 586 587 while (!kthread_should_stop() || lo->lo_bio) { 588 589 wait_event_interruptible(lo->lo_event, 590 lo->lo_bio || kthread_should_stop()); 591 592 if (!lo->lo_bio) 593 continue; 594 spin_lock_irq(&lo->lo_lock); 595 bio = loop_get_bio(lo); 596 spin_unlock_irq(&lo->lo_lock); 597 598 BUG_ON(!bio); 599 loop_handle_bio(lo, bio); 600 } 601 602 return 0; 603 } 604 605 /* 606 * loop_switch performs the hard work of switching a backing store. 607 * First it needs to flush existing IO, it does this by sending a magic 608 * BIO down the pipe. The completion of this BIO does the actual switch. 609 */ 610 static int loop_switch(struct loop_device *lo, struct file *file) 611 { 612 struct switch_request w; 613 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 614 if (!bio) 615 return -ENOMEM; 616 init_completion(&w.wait); 617 w.file = file; 618 bio->bi_private = &w; 619 bio->bi_bdev = NULL; 620 loop_make_request(lo->lo_queue, bio); 621 wait_for_completion(&w.wait); 622 return 0; 623 } 624 625 /* 626 * Do the actual switch; called from the BIO completion routine 627 */ 628 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 629 { 630 struct file *file = p->file; 631 struct file *old_file = lo->lo_backing_file; 632 struct address_space *mapping = file->f_mapping; 633 634 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 635 lo->lo_backing_file = file; 636 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 637 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 638 lo->old_gfp_mask = mapping_gfp_mask(mapping); 639 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 640 complete(&p->wait); 641 } 642 643 644 /* 645 * loop_change_fd switched the backing store of a loopback device to 646 * a new file. This is useful for operating system installers to free up 647 * the original file and in High Availability environments to switch to 648 * an alternative location for the content in case of server meltdown. 649 * This can only work if the loop device is used read-only, and if the 650 * new backing store is the same size and type as the old backing store. 651 */ 652 static int loop_change_fd(struct loop_device *lo, struct file *lo_file, 653 struct block_device *bdev, unsigned int arg) 654 { 655 struct file *file, *old_file; 656 struct inode *inode; 657 int error; 658 659 error = -ENXIO; 660 if (lo->lo_state != Lo_bound) 661 goto out; 662 663 /* the loop device has to be read-only */ 664 error = -EINVAL; 665 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 666 goto out; 667 668 error = -EBADF; 669 file = fget(arg); 670 if (!file) 671 goto out; 672 673 inode = file->f_mapping->host; 674 old_file = lo->lo_backing_file; 675 676 error = -EINVAL; 677 678 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 679 goto out_putf; 680 681 /* new backing store needs to support loop (eg splice_read) */ 682 if (!inode->i_fop->splice_read) 683 goto out_putf; 684 685 /* size of the new backing store needs to be the same */ 686 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 687 goto out_putf; 688 689 /* and ... switch */ 690 error = loop_switch(lo, file); 691 if (error) 692 goto out_putf; 693 694 fput(old_file); 695 return 0; 696 697 out_putf: 698 fput(file); 699 out: 700 return error; 701 } 702 703 static inline int is_loop_device(struct file *file) 704 { 705 struct inode *i = file->f_mapping->host; 706 707 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 708 } 709 710 static int loop_set_fd(struct loop_device *lo, struct file *lo_file, 711 struct block_device *bdev, unsigned int arg) 712 { 713 struct file *file, *f; 714 struct inode *inode; 715 struct address_space *mapping; 716 unsigned lo_blocksize; 717 int lo_flags = 0; 718 int error; 719 loff_t size; 720 721 /* This is safe, since we have a reference from open(). */ 722 __module_get(THIS_MODULE); 723 724 error = -EBADF; 725 file = fget(arg); 726 if (!file) 727 goto out; 728 729 error = -EBUSY; 730 if (lo->lo_state != Lo_unbound) 731 goto out_putf; 732 733 /* Avoid recursion */ 734 f = file; 735 while (is_loop_device(f)) { 736 struct loop_device *l; 737 738 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev) 739 goto out_putf; 740 741 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 742 if (l->lo_state == Lo_unbound) { 743 error = -EINVAL; 744 goto out_putf; 745 } 746 f = l->lo_backing_file; 747 } 748 749 mapping = file->f_mapping; 750 inode = mapping->host; 751 752 if (!(file->f_mode & FMODE_WRITE)) 753 lo_flags |= LO_FLAGS_READ_ONLY; 754 755 error = -EINVAL; 756 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 757 const struct address_space_operations *aops = mapping->a_ops; 758 /* 759 * If we can't read - sorry. If we only can't write - well, 760 * it's going to be read-only. 761 */ 762 if (!file->f_op->splice_read) 763 goto out_putf; 764 if (aops->prepare_write || aops->write_begin) 765 lo_flags |= LO_FLAGS_USE_AOPS; 766 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 767 lo_flags |= LO_FLAGS_READ_ONLY; 768 769 lo_blocksize = S_ISBLK(inode->i_mode) ? 770 inode->i_bdev->bd_block_size : PAGE_SIZE; 771 772 error = 0; 773 } else { 774 goto out_putf; 775 } 776 777 size = get_loop_size(lo, file); 778 779 if ((loff_t)(sector_t)size != size) { 780 error = -EFBIG; 781 goto out_putf; 782 } 783 784 if (!(lo_file->f_mode & FMODE_WRITE)) 785 lo_flags |= LO_FLAGS_READ_ONLY; 786 787 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 788 789 lo->lo_blocksize = lo_blocksize; 790 lo->lo_device = bdev; 791 lo->lo_flags = lo_flags; 792 lo->lo_backing_file = file; 793 lo->transfer = transfer_none; 794 lo->ioctl = NULL; 795 lo->lo_sizelimit = 0; 796 lo->old_gfp_mask = mapping_gfp_mask(mapping); 797 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 798 799 lo->lo_bio = lo->lo_biotail = NULL; 800 801 /* 802 * set queue make_request_fn, and add limits based on lower level 803 * device 804 */ 805 blk_queue_make_request(lo->lo_queue, loop_make_request); 806 lo->lo_queue->queuedata = lo; 807 lo->lo_queue->unplug_fn = loop_unplug; 808 809 set_capacity(lo->lo_disk, size); 810 bd_set_size(bdev, size << 9); 811 812 set_blocksize(bdev, lo_blocksize); 813 814 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 815 lo->lo_number); 816 if (IS_ERR(lo->lo_thread)) { 817 error = PTR_ERR(lo->lo_thread); 818 goto out_clr; 819 } 820 lo->lo_state = Lo_bound; 821 wake_up_process(lo->lo_thread); 822 return 0; 823 824 out_clr: 825 lo->lo_thread = NULL; 826 lo->lo_device = NULL; 827 lo->lo_backing_file = NULL; 828 lo->lo_flags = 0; 829 set_capacity(lo->lo_disk, 0); 830 invalidate_bdev(bdev); 831 bd_set_size(bdev, 0); 832 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 833 lo->lo_state = Lo_unbound; 834 out_putf: 835 fput(file); 836 out: 837 /* This is safe: open() is still holding a reference. */ 838 module_put(THIS_MODULE); 839 return error; 840 } 841 842 static int 843 loop_release_xfer(struct loop_device *lo) 844 { 845 int err = 0; 846 struct loop_func_table *xfer = lo->lo_encryption; 847 848 if (xfer) { 849 if (xfer->release) 850 err = xfer->release(lo); 851 lo->transfer = NULL; 852 lo->lo_encryption = NULL; 853 module_put(xfer->owner); 854 } 855 return err; 856 } 857 858 static int 859 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 860 const struct loop_info64 *i) 861 { 862 int err = 0; 863 864 if (xfer) { 865 struct module *owner = xfer->owner; 866 867 if (!try_module_get(owner)) 868 return -EINVAL; 869 if (xfer->init) 870 err = xfer->init(lo, i); 871 if (err) 872 module_put(owner); 873 else 874 lo->lo_encryption = xfer; 875 } 876 return err; 877 } 878 879 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 880 { 881 struct file *filp = lo->lo_backing_file; 882 gfp_t gfp = lo->old_gfp_mask; 883 884 if (lo->lo_state != Lo_bound) 885 return -ENXIO; 886 887 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 888 return -EBUSY; 889 890 if (filp == NULL) 891 return -EINVAL; 892 893 spin_lock_irq(&lo->lo_lock); 894 lo->lo_state = Lo_rundown; 895 spin_unlock_irq(&lo->lo_lock); 896 897 kthread_stop(lo->lo_thread); 898 899 lo->lo_backing_file = NULL; 900 901 loop_release_xfer(lo); 902 lo->transfer = NULL; 903 lo->ioctl = NULL; 904 lo->lo_device = NULL; 905 lo->lo_encryption = NULL; 906 lo->lo_offset = 0; 907 lo->lo_sizelimit = 0; 908 lo->lo_encrypt_key_size = 0; 909 lo->lo_flags = 0; 910 lo->lo_thread = NULL; 911 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 912 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 913 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 914 invalidate_bdev(bdev); 915 set_capacity(lo->lo_disk, 0); 916 bd_set_size(bdev, 0); 917 mapping_set_gfp_mask(filp->f_mapping, gfp); 918 lo->lo_state = Lo_unbound; 919 fput(filp); 920 /* This is safe: open() is still holding a reference. */ 921 module_put(THIS_MODULE); 922 return 0; 923 } 924 925 static int 926 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 927 { 928 int err; 929 struct loop_func_table *xfer; 930 931 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && 932 !capable(CAP_SYS_ADMIN)) 933 return -EPERM; 934 if (lo->lo_state != Lo_bound) 935 return -ENXIO; 936 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 937 return -EINVAL; 938 939 err = loop_release_xfer(lo); 940 if (err) 941 return err; 942 943 if (info->lo_encrypt_type) { 944 unsigned int type = info->lo_encrypt_type; 945 946 if (type >= MAX_LO_CRYPT) 947 return -EINVAL; 948 xfer = xfer_funcs[type]; 949 if (xfer == NULL) 950 return -EINVAL; 951 } else 952 xfer = NULL; 953 954 err = loop_init_xfer(lo, xfer, info); 955 if (err) 956 return err; 957 958 if (lo->lo_offset != info->lo_offset || 959 lo->lo_sizelimit != info->lo_sizelimit) { 960 lo->lo_offset = info->lo_offset; 961 lo->lo_sizelimit = info->lo_sizelimit; 962 if (figure_loop_size(lo)) 963 return -EFBIG; 964 } 965 966 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 967 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 968 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 969 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 970 971 if (!xfer) 972 xfer = &none_funcs; 973 lo->transfer = xfer->transfer; 974 lo->ioctl = xfer->ioctl; 975 976 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 977 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 978 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 979 980 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 981 lo->lo_init[0] = info->lo_init[0]; 982 lo->lo_init[1] = info->lo_init[1]; 983 if (info->lo_encrypt_key_size) { 984 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 985 info->lo_encrypt_key_size); 986 lo->lo_key_owner = current->uid; 987 } 988 989 return 0; 990 } 991 992 static int 993 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 994 { 995 struct file *file = lo->lo_backing_file; 996 struct kstat stat; 997 int error; 998 999 if (lo->lo_state != Lo_bound) 1000 return -ENXIO; 1001 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1002 if (error) 1003 return error; 1004 memset(info, 0, sizeof(*info)); 1005 info->lo_number = lo->lo_number; 1006 info->lo_device = huge_encode_dev(stat.dev); 1007 info->lo_inode = stat.ino; 1008 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1009 info->lo_offset = lo->lo_offset; 1010 info->lo_sizelimit = lo->lo_sizelimit; 1011 info->lo_flags = lo->lo_flags; 1012 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1013 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1014 info->lo_encrypt_type = 1015 lo->lo_encryption ? lo->lo_encryption->number : 0; 1016 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1017 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1018 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1019 lo->lo_encrypt_key_size); 1020 } 1021 return 0; 1022 } 1023 1024 static void 1025 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1026 { 1027 memset(info64, 0, sizeof(*info64)); 1028 info64->lo_number = info->lo_number; 1029 info64->lo_device = info->lo_device; 1030 info64->lo_inode = info->lo_inode; 1031 info64->lo_rdevice = info->lo_rdevice; 1032 info64->lo_offset = info->lo_offset; 1033 info64->lo_sizelimit = 0; 1034 info64->lo_encrypt_type = info->lo_encrypt_type; 1035 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1036 info64->lo_flags = info->lo_flags; 1037 info64->lo_init[0] = info->lo_init[0]; 1038 info64->lo_init[1] = info->lo_init[1]; 1039 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1040 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1041 else 1042 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1043 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1044 } 1045 1046 static int 1047 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1048 { 1049 memset(info, 0, sizeof(*info)); 1050 info->lo_number = info64->lo_number; 1051 info->lo_device = info64->lo_device; 1052 info->lo_inode = info64->lo_inode; 1053 info->lo_rdevice = info64->lo_rdevice; 1054 info->lo_offset = info64->lo_offset; 1055 info->lo_encrypt_type = info64->lo_encrypt_type; 1056 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1057 info->lo_flags = info64->lo_flags; 1058 info->lo_init[0] = info64->lo_init[0]; 1059 info->lo_init[1] = info64->lo_init[1]; 1060 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1061 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1062 else 1063 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1064 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1065 1066 /* error in case values were truncated */ 1067 if (info->lo_device != info64->lo_device || 1068 info->lo_rdevice != info64->lo_rdevice || 1069 info->lo_inode != info64->lo_inode || 1070 info->lo_offset != info64->lo_offset) 1071 return -EOVERFLOW; 1072 1073 return 0; 1074 } 1075 1076 static int 1077 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1078 { 1079 struct loop_info info; 1080 struct loop_info64 info64; 1081 1082 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1083 return -EFAULT; 1084 loop_info64_from_old(&info, &info64); 1085 return loop_set_status(lo, &info64); 1086 } 1087 1088 static int 1089 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1090 { 1091 struct loop_info64 info64; 1092 1093 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1094 return -EFAULT; 1095 return loop_set_status(lo, &info64); 1096 } 1097 1098 static int 1099 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1100 struct loop_info info; 1101 struct loop_info64 info64; 1102 int err = 0; 1103 1104 if (!arg) 1105 err = -EINVAL; 1106 if (!err) 1107 err = loop_get_status(lo, &info64); 1108 if (!err) 1109 err = loop_info64_to_old(&info64, &info); 1110 if (!err && copy_to_user(arg, &info, sizeof(info))) 1111 err = -EFAULT; 1112 1113 return err; 1114 } 1115 1116 static int 1117 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1118 struct loop_info64 info64; 1119 int err = 0; 1120 1121 if (!arg) 1122 err = -EINVAL; 1123 if (!err) 1124 err = loop_get_status(lo, &info64); 1125 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1126 err = -EFAULT; 1127 1128 return err; 1129 } 1130 1131 static int lo_ioctl(struct inode * inode, struct file * file, 1132 unsigned int cmd, unsigned long arg) 1133 { 1134 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1135 int err; 1136 1137 mutex_lock(&lo->lo_ctl_mutex); 1138 switch (cmd) { 1139 case LOOP_SET_FD: 1140 err = loop_set_fd(lo, file, inode->i_bdev, arg); 1141 break; 1142 case LOOP_CHANGE_FD: 1143 err = loop_change_fd(lo, file, inode->i_bdev, arg); 1144 break; 1145 case LOOP_CLR_FD: 1146 err = loop_clr_fd(lo, inode->i_bdev); 1147 break; 1148 case LOOP_SET_STATUS: 1149 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1150 break; 1151 case LOOP_GET_STATUS: 1152 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1153 break; 1154 case LOOP_SET_STATUS64: 1155 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1156 break; 1157 case LOOP_GET_STATUS64: 1158 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1159 break; 1160 default: 1161 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1162 } 1163 mutex_unlock(&lo->lo_ctl_mutex); 1164 return err; 1165 } 1166 1167 #ifdef CONFIG_COMPAT 1168 struct compat_loop_info { 1169 compat_int_t lo_number; /* ioctl r/o */ 1170 compat_dev_t lo_device; /* ioctl r/o */ 1171 compat_ulong_t lo_inode; /* ioctl r/o */ 1172 compat_dev_t lo_rdevice; /* ioctl r/o */ 1173 compat_int_t lo_offset; 1174 compat_int_t lo_encrypt_type; 1175 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1176 compat_int_t lo_flags; /* ioctl r/o */ 1177 char lo_name[LO_NAME_SIZE]; 1178 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1179 compat_ulong_t lo_init[2]; 1180 char reserved[4]; 1181 }; 1182 1183 /* 1184 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1185 * - noinlined to reduce stack space usage in main part of driver 1186 */ 1187 static noinline int 1188 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1189 struct loop_info64 *info64) 1190 { 1191 struct compat_loop_info info; 1192 1193 if (copy_from_user(&info, arg, sizeof(info))) 1194 return -EFAULT; 1195 1196 memset(info64, 0, sizeof(*info64)); 1197 info64->lo_number = info.lo_number; 1198 info64->lo_device = info.lo_device; 1199 info64->lo_inode = info.lo_inode; 1200 info64->lo_rdevice = info.lo_rdevice; 1201 info64->lo_offset = info.lo_offset; 1202 info64->lo_sizelimit = 0; 1203 info64->lo_encrypt_type = info.lo_encrypt_type; 1204 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1205 info64->lo_flags = info.lo_flags; 1206 info64->lo_init[0] = info.lo_init[0]; 1207 info64->lo_init[1] = info.lo_init[1]; 1208 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1209 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1210 else 1211 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1212 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1213 return 0; 1214 } 1215 1216 /* 1217 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1218 * - noinlined to reduce stack space usage in main part of driver 1219 */ 1220 static noinline int 1221 loop_info64_to_compat(const struct loop_info64 *info64, 1222 struct compat_loop_info __user *arg) 1223 { 1224 struct compat_loop_info info; 1225 1226 memset(&info, 0, sizeof(info)); 1227 info.lo_number = info64->lo_number; 1228 info.lo_device = info64->lo_device; 1229 info.lo_inode = info64->lo_inode; 1230 info.lo_rdevice = info64->lo_rdevice; 1231 info.lo_offset = info64->lo_offset; 1232 info.lo_encrypt_type = info64->lo_encrypt_type; 1233 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1234 info.lo_flags = info64->lo_flags; 1235 info.lo_init[0] = info64->lo_init[0]; 1236 info.lo_init[1] = info64->lo_init[1]; 1237 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1238 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1239 else 1240 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1241 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1242 1243 /* error in case values were truncated */ 1244 if (info.lo_device != info64->lo_device || 1245 info.lo_rdevice != info64->lo_rdevice || 1246 info.lo_inode != info64->lo_inode || 1247 info.lo_offset != info64->lo_offset || 1248 info.lo_init[0] != info64->lo_init[0] || 1249 info.lo_init[1] != info64->lo_init[1]) 1250 return -EOVERFLOW; 1251 1252 if (copy_to_user(arg, &info, sizeof(info))) 1253 return -EFAULT; 1254 return 0; 1255 } 1256 1257 static int 1258 loop_set_status_compat(struct loop_device *lo, 1259 const struct compat_loop_info __user *arg) 1260 { 1261 struct loop_info64 info64; 1262 int ret; 1263 1264 ret = loop_info64_from_compat(arg, &info64); 1265 if (ret < 0) 1266 return ret; 1267 return loop_set_status(lo, &info64); 1268 } 1269 1270 static int 1271 loop_get_status_compat(struct loop_device *lo, 1272 struct compat_loop_info __user *arg) 1273 { 1274 struct loop_info64 info64; 1275 int err = 0; 1276 1277 if (!arg) 1278 err = -EINVAL; 1279 if (!err) 1280 err = loop_get_status(lo, &info64); 1281 if (!err) 1282 err = loop_info64_to_compat(&info64, arg); 1283 return err; 1284 } 1285 1286 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1287 { 1288 struct inode *inode = file->f_path.dentry->d_inode; 1289 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1290 int err; 1291 1292 switch(cmd) { 1293 case LOOP_SET_STATUS: 1294 mutex_lock(&lo->lo_ctl_mutex); 1295 err = loop_set_status_compat( 1296 lo, (const struct compat_loop_info __user *) arg); 1297 mutex_unlock(&lo->lo_ctl_mutex); 1298 break; 1299 case LOOP_GET_STATUS: 1300 mutex_lock(&lo->lo_ctl_mutex); 1301 err = loop_get_status_compat( 1302 lo, (struct compat_loop_info __user *) arg); 1303 mutex_unlock(&lo->lo_ctl_mutex); 1304 break; 1305 case LOOP_CLR_FD: 1306 case LOOP_GET_STATUS64: 1307 case LOOP_SET_STATUS64: 1308 arg = (unsigned long) compat_ptr(arg); 1309 case LOOP_SET_FD: 1310 case LOOP_CHANGE_FD: 1311 err = lo_ioctl(inode, file, cmd, arg); 1312 break; 1313 default: 1314 err = -ENOIOCTLCMD; 1315 break; 1316 } 1317 return err; 1318 } 1319 #endif 1320 1321 static int lo_open(struct inode *inode, struct file *file) 1322 { 1323 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1324 1325 mutex_lock(&lo->lo_ctl_mutex); 1326 lo->lo_refcnt++; 1327 mutex_unlock(&lo->lo_ctl_mutex); 1328 1329 return 0; 1330 } 1331 1332 static int lo_release(struct inode *inode, struct file *file) 1333 { 1334 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1335 1336 mutex_lock(&lo->lo_ctl_mutex); 1337 --lo->lo_refcnt; 1338 1339 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt) 1340 loop_clr_fd(lo, inode->i_bdev); 1341 1342 mutex_unlock(&lo->lo_ctl_mutex); 1343 1344 return 0; 1345 } 1346 1347 static struct block_device_operations lo_fops = { 1348 .owner = THIS_MODULE, 1349 .open = lo_open, 1350 .release = lo_release, 1351 .ioctl = lo_ioctl, 1352 #ifdef CONFIG_COMPAT 1353 .compat_ioctl = lo_compat_ioctl, 1354 #endif 1355 }; 1356 1357 /* 1358 * And now the modules code and kernel interface. 1359 */ 1360 static int max_loop; 1361 module_param(max_loop, int, 0); 1362 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1363 MODULE_LICENSE("GPL"); 1364 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1365 1366 int loop_register_transfer(struct loop_func_table *funcs) 1367 { 1368 unsigned int n = funcs->number; 1369 1370 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1371 return -EINVAL; 1372 xfer_funcs[n] = funcs; 1373 return 0; 1374 } 1375 1376 int loop_unregister_transfer(int number) 1377 { 1378 unsigned int n = number; 1379 struct loop_device *lo; 1380 struct loop_func_table *xfer; 1381 1382 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1383 return -EINVAL; 1384 1385 xfer_funcs[n] = NULL; 1386 1387 list_for_each_entry(lo, &loop_devices, lo_list) { 1388 mutex_lock(&lo->lo_ctl_mutex); 1389 1390 if (lo->lo_encryption == xfer) 1391 loop_release_xfer(lo); 1392 1393 mutex_unlock(&lo->lo_ctl_mutex); 1394 } 1395 1396 return 0; 1397 } 1398 1399 EXPORT_SYMBOL(loop_register_transfer); 1400 EXPORT_SYMBOL(loop_unregister_transfer); 1401 1402 static struct loop_device *loop_alloc(int i) 1403 { 1404 struct loop_device *lo; 1405 struct gendisk *disk; 1406 1407 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1408 if (!lo) 1409 goto out; 1410 1411 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1412 if (!lo->lo_queue) 1413 goto out_free_dev; 1414 1415 disk = lo->lo_disk = alloc_disk(1); 1416 if (!disk) 1417 goto out_free_queue; 1418 1419 mutex_init(&lo->lo_ctl_mutex); 1420 lo->lo_number = i; 1421 lo->lo_thread = NULL; 1422 init_waitqueue_head(&lo->lo_event); 1423 spin_lock_init(&lo->lo_lock); 1424 disk->major = LOOP_MAJOR; 1425 disk->first_minor = i; 1426 disk->fops = &lo_fops; 1427 disk->private_data = lo; 1428 disk->queue = lo->lo_queue; 1429 sprintf(disk->disk_name, "loop%d", i); 1430 return lo; 1431 1432 out_free_queue: 1433 blk_cleanup_queue(lo->lo_queue); 1434 out_free_dev: 1435 kfree(lo); 1436 out: 1437 return NULL; 1438 } 1439 1440 static void loop_free(struct loop_device *lo) 1441 { 1442 blk_cleanup_queue(lo->lo_queue); 1443 put_disk(lo->lo_disk); 1444 list_del(&lo->lo_list); 1445 kfree(lo); 1446 } 1447 1448 static struct loop_device *loop_init_one(int i) 1449 { 1450 struct loop_device *lo; 1451 1452 list_for_each_entry(lo, &loop_devices, lo_list) { 1453 if (lo->lo_number == i) 1454 return lo; 1455 } 1456 1457 lo = loop_alloc(i); 1458 if (lo) { 1459 add_disk(lo->lo_disk); 1460 list_add_tail(&lo->lo_list, &loop_devices); 1461 } 1462 return lo; 1463 } 1464 1465 static void loop_del_one(struct loop_device *lo) 1466 { 1467 del_gendisk(lo->lo_disk); 1468 loop_free(lo); 1469 } 1470 1471 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1472 { 1473 struct loop_device *lo; 1474 struct kobject *kobj; 1475 1476 mutex_lock(&loop_devices_mutex); 1477 lo = loop_init_one(dev & MINORMASK); 1478 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1479 mutex_unlock(&loop_devices_mutex); 1480 1481 *part = 0; 1482 return kobj; 1483 } 1484 1485 static int __init loop_init(void) 1486 { 1487 int i, nr; 1488 unsigned long range; 1489 struct loop_device *lo, *next; 1490 1491 /* 1492 * loop module now has a feature to instantiate underlying device 1493 * structure on-demand, provided that there is an access dev node. 1494 * However, this will not work well with user space tool that doesn't 1495 * know about such "feature". In order to not break any existing 1496 * tool, we do the following: 1497 * 1498 * (1) if max_loop is specified, create that many upfront, and this 1499 * also becomes a hard limit. 1500 * (2) if max_loop is not specified, create 8 loop device on module 1501 * load, user can further extend loop device by create dev node 1502 * themselves and have kernel automatically instantiate actual 1503 * device on-demand. 1504 */ 1505 if (max_loop > 1UL << MINORBITS) 1506 return -EINVAL; 1507 1508 if (max_loop) { 1509 nr = max_loop; 1510 range = max_loop; 1511 } else { 1512 nr = 8; 1513 range = 1UL << MINORBITS; 1514 } 1515 1516 if (register_blkdev(LOOP_MAJOR, "loop")) 1517 return -EIO; 1518 1519 for (i = 0; i < nr; i++) { 1520 lo = loop_alloc(i); 1521 if (!lo) 1522 goto Enomem; 1523 list_add_tail(&lo->lo_list, &loop_devices); 1524 } 1525 1526 /* point of no return */ 1527 1528 list_for_each_entry(lo, &loop_devices, lo_list) 1529 add_disk(lo->lo_disk); 1530 1531 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1532 THIS_MODULE, loop_probe, NULL, NULL); 1533 1534 printk(KERN_INFO "loop: module loaded\n"); 1535 return 0; 1536 1537 Enomem: 1538 printk(KERN_INFO "loop: out of memory\n"); 1539 1540 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1541 loop_free(lo); 1542 1543 unregister_blkdev(LOOP_MAJOR, "loop"); 1544 return -ENOMEM; 1545 } 1546 1547 static void __exit loop_exit(void) 1548 { 1549 unsigned long range; 1550 struct loop_device *lo, *next; 1551 1552 range = max_loop ? max_loop : 1UL << MINORBITS; 1553 1554 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1555 loop_del_one(lo); 1556 1557 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1558 unregister_blkdev(LOOP_MAJOR, "loop"); 1559 } 1560 1561 module_init(loop_init); 1562 module_exit(loop_exit); 1563 1564 #ifndef MODULE 1565 static int __init max_loop_setup(char *str) 1566 { 1567 max_loop = simple_strtol(str, NULL, 0); 1568 return 1; 1569 } 1570 1571 __setup("max_loop=", max_loop_setup); 1572 #endif 1573