xref: /openbmc/linux/drivers/block/loop.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	if (lo->lo_state == Lo_bound)
218 		blk_mq_freeze_queue(lo->lo_queue);
219 	lo->use_dio = use_dio;
220 	if (use_dio) {
221 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 	} else {
224 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 	}
227 	if (lo->lo_state == Lo_bound)
228 		blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230 
231 static int
232 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
233 {
234 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
235 	sector_t x = (sector_t)size;
236 	struct block_device *bdev = lo->lo_device;
237 
238 	if (unlikely((loff_t)x != size))
239 		return -EFBIG;
240 	if (lo->lo_offset != offset)
241 		lo->lo_offset = offset;
242 	if (lo->lo_sizelimit != sizelimit)
243 		lo->lo_sizelimit = sizelimit;
244 	set_capacity(lo->lo_disk, x);
245 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
246 	/* let user-space know about the new size */
247 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
248 	return 0;
249 }
250 
251 static inline int
252 lo_do_transfer(struct loop_device *lo, int cmd,
253 	       struct page *rpage, unsigned roffs,
254 	       struct page *lpage, unsigned loffs,
255 	       int size, sector_t rblock)
256 {
257 	int ret;
258 
259 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
260 	if (likely(!ret))
261 		return 0;
262 
263 	printk_ratelimited(KERN_ERR
264 		"loop: Transfer error at byte offset %llu, length %i.\n",
265 		(unsigned long long)rblock << 9, size);
266 	return ret;
267 }
268 
269 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
270 {
271 	struct iov_iter i;
272 	ssize_t bw;
273 
274 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
275 
276 	file_start_write(file);
277 	bw = vfs_iter_write(file, &i, ppos, 0);
278 	file_end_write(file);
279 
280 	if (likely(bw ==  bvec->bv_len))
281 		return 0;
282 
283 	printk_ratelimited(KERN_ERR
284 		"loop: Write error at byte offset %llu, length %i.\n",
285 		(unsigned long long)*ppos, bvec->bv_len);
286 	if (bw >= 0)
287 		bw = -EIO;
288 	return bw;
289 }
290 
291 static int lo_write_simple(struct loop_device *lo, struct request *rq,
292 		loff_t pos)
293 {
294 	struct bio_vec bvec;
295 	struct req_iterator iter;
296 	int ret = 0;
297 
298 	rq_for_each_segment(bvec, rq, iter) {
299 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
300 		if (ret < 0)
301 			break;
302 		cond_resched();
303 	}
304 
305 	return ret;
306 }
307 
308 /*
309  * This is the slow, transforming version that needs to double buffer the
310  * data as it cannot do the transformations in place without having direct
311  * access to the destination pages of the backing file.
312  */
313 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
314 		loff_t pos)
315 {
316 	struct bio_vec bvec, b;
317 	struct req_iterator iter;
318 	struct page *page;
319 	int ret = 0;
320 
321 	page = alloc_page(GFP_NOIO);
322 	if (unlikely(!page))
323 		return -ENOMEM;
324 
325 	rq_for_each_segment(bvec, rq, iter) {
326 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
327 			bvec.bv_offset, bvec.bv_len, pos >> 9);
328 		if (unlikely(ret))
329 			break;
330 
331 		b.bv_page = page;
332 		b.bv_offset = 0;
333 		b.bv_len = bvec.bv_len;
334 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
335 		if (ret < 0)
336 			break;
337 	}
338 
339 	__free_page(page);
340 	return ret;
341 }
342 
343 static int lo_read_simple(struct loop_device *lo, struct request *rq,
344 		loff_t pos)
345 {
346 	struct bio_vec bvec;
347 	struct req_iterator iter;
348 	struct iov_iter i;
349 	ssize_t len;
350 
351 	rq_for_each_segment(bvec, rq, iter) {
352 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
353 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
354 		if (len < 0)
355 			return len;
356 
357 		flush_dcache_page(bvec.bv_page);
358 
359 		if (len != bvec.bv_len) {
360 			struct bio *bio;
361 
362 			__rq_for_each_bio(bio, rq)
363 				zero_fill_bio(bio);
364 			break;
365 		}
366 		cond_resched();
367 	}
368 
369 	return 0;
370 }
371 
372 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
373 		loff_t pos)
374 {
375 	struct bio_vec bvec, b;
376 	struct req_iterator iter;
377 	struct iov_iter i;
378 	struct page *page;
379 	ssize_t len;
380 	int ret = 0;
381 
382 	page = alloc_page(GFP_NOIO);
383 	if (unlikely(!page))
384 		return -ENOMEM;
385 
386 	rq_for_each_segment(bvec, rq, iter) {
387 		loff_t offset = pos;
388 
389 		b.bv_page = page;
390 		b.bv_offset = 0;
391 		b.bv_len = bvec.bv_len;
392 
393 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
394 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
395 		if (len < 0) {
396 			ret = len;
397 			goto out_free_page;
398 		}
399 
400 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
401 			bvec.bv_offset, len, offset >> 9);
402 		if (ret)
403 			goto out_free_page;
404 
405 		flush_dcache_page(bvec.bv_page);
406 
407 		if (len != bvec.bv_len) {
408 			struct bio *bio;
409 
410 			__rq_for_each_bio(bio, rq)
411 				zero_fill_bio(bio);
412 			break;
413 		}
414 	}
415 
416 	ret = 0;
417 out_free_page:
418 	__free_page(page);
419 	return ret;
420 }
421 
422 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
423 			int mode)
424 {
425 	/*
426 	 * We use fallocate to manipulate the space mappings used by the image
427 	 * a.k.a. discard/zerorange. However we do not support this if
428 	 * encryption is enabled, because it may give an attacker useful
429 	 * information.
430 	 */
431 	struct file *file = lo->lo_backing_file;
432 	struct request_queue *q = lo->lo_queue;
433 	int ret;
434 
435 	mode |= FALLOC_FL_KEEP_SIZE;
436 
437 	if (!blk_queue_discard(q)) {
438 		ret = -EOPNOTSUPP;
439 		goto out;
440 	}
441 
442 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
443 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
444 		ret = -EIO;
445  out:
446 	return ret;
447 }
448 
449 static int lo_req_flush(struct loop_device *lo, struct request *rq)
450 {
451 	struct file *file = lo->lo_backing_file;
452 	int ret = vfs_fsync(file, 0);
453 	if (unlikely(ret && ret != -EINVAL))
454 		ret = -EIO;
455 
456 	return ret;
457 }
458 
459 static void lo_complete_rq(struct request *rq)
460 {
461 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
462 	blk_status_t ret = BLK_STS_OK;
463 
464 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
465 	    req_op(rq) != REQ_OP_READ) {
466 		if (cmd->ret < 0)
467 			ret = errno_to_blk_status(cmd->ret);
468 		goto end_io;
469 	}
470 
471 	/*
472 	 * Short READ - if we got some data, advance our request and
473 	 * retry it. If we got no data, end the rest with EIO.
474 	 */
475 	if (cmd->ret) {
476 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
477 		cmd->ret = 0;
478 		blk_mq_requeue_request(rq, true);
479 	} else {
480 		if (cmd->use_aio) {
481 			struct bio *bio = rq->bio;
482 
483 			while (bio) {
484 				zero_fill_bio(bio);
485 				bio = bio->bi_next;
486 			}
487 		}
488 		ret = BLK_STS_IOERR;
489 end_io:
490 		blk_mq_end_request(rq, ret);
491 	}
492 }
493 
494 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
495 {
496 	struct request *rq = blk_mq_rq_from_pdu(cmd);
497 
498 	if (!atomic_dec_and_test(&cmd->ref))
499 		return;
500 	kfree(cmd->bvec);
501 	cmd->bvec = NULL;
502 	blk_mq_complete_request(rq);
503 }
504 
505 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
506 {
507 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
508 
509 	if (cmd->css)
510 		css_put(cmd->css);
511 	cmd->ret = ret;
512 	lo_rw_aio_do_completion(cmd);
513 }
514 
515 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
516 		     loff_t pos, bool rw)
517 {
518 	struct iov_iter iter;
519 	struct req_iterator rq_iter;
520 	struct bio_vec *bvec;
521 	struct request *rq = blk_mq_rq_from_pdu(cmd);
522 	struct bio *bio = rq->bio;
523 	struct file *file = lo->lo_backing_file;
524 	struct bio_vec tmp;
525 	unsigned int offset;
526 	int nr_bvec = 0;
527 	int ret;
528 
529 	rq_for_each_bvec(tmp, rq, rq_iter)
530 		nr_bvec++;
531 
532 	if (rq->bio != rq->biotail) {
533 
534 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
535 				     GFP_NOIO);
536 		if (!bvec)
537 			return -EIO;
538 		cmd->bvec = bvec;
539 
540 		/*
541 		 * The bios of the request may be started from the middle of
542 		 * the 'bvec' because of bio splitting, so we can't directly
543 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
544 		 * API will take care of all details for us.
545 		 */
546 		rq_for_each_bvec(tmp, rq, rq_iter) {
547 			*bvec = tmp;
548 			bvec++;
549 		}
550 		bvec = cmd->bvec;
551 		offset = 0;
552 	} else {
553 		/*
554 		 * Same here, this bio may be started from the middle of the
555 		 * 'bvec' because of bio splitting, so offset from the bvec
556 		 * must be passed to iov iterator
557 		 */
558 		offset = bio->bi_iter.bi_bvec_done;
559 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
560 	}
561 	atomic_set(&cmd->ref, 2);
562 
563 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
564 	iter.iov_offset = offset;
565 
566 	cmd->iocb.ki_pos = pos;
567 	cmd->iocb.ki_filp = file;
568 	cmd->iocb.ki_complete = lo_rw_aio_complete;
569 	cmd->iocb.ki_flags = IOCB_DIRECT;
570 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
571 	if (cmd->css)
572 		kthread_associate_blkcg(cmd->css);
573 
574 	if (rw == WRITE)
575 		ret = call_write_iter(file, &cmd->iocb, &iter);
576 	else
577 		ret = call_read_iter(file, &cmd->iocb, &iter);
578 
579 	lo_rw_aio_do_completion(cmd);
580 	kthread_associate_blkcg(NULL);
581 
582 	if (ret != -EIOCBQUEUED)
583 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
584 	return 0;
585 }
586 
587 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
588 {
589 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
590 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
591 
592 	/*
593 	 * lo_write_simple and lo_read_simple should have been covered
594 	 * by io submit style function like lo_rw_aio(), one blocker
595 	 * is that lo_read_simple() need to call flush_dcache_page after
596 	 * the page is written from kernel, and it isn't easy to handle
597 	 * this in io submit style function which submits all segments
598 	 * of the req at one time. And direct read IO doesn't need to
599 	 * run flush_dcache_page().
600 	 */
601 	switch (req_op(rq)) {
602 	case REQ_OP_FLUSH:
603 		return lo_req_flush(lo, rq);
604 	case REQ_OP_WRITE_ZEROES:
605 		/*
606 		 * If the caller doesn't want deallocation, call zeroout to
607 		 * write zeroes the range.  Otherwise, punch them out.
608 		 */
609 		return lo_fallocate(lo, rq, pos,
610 			(rq->cmd_flags & REQ_NOUNMAP) ?
611 				FALLOC_FL_ZERO_RANGE :
612 				FALLOC_FL_PUNCH_HOLE);
613 	case REQ_OP_DISCARD:
614 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
615 	case REQ_OP_WRITE:
616 		if (lo->transfer)
617 			return lo_write_transfer(lo, rq, pos);
618 		else if (cmd->use_aio)
619 			return lo_rw_aio(lo, cmd, pos, WRITE);
620 		else
621 			return lo_write_simple(lo, rq, pos);
622 	case REQ_OP_READ:
623 		if (lo->transfer)
624 			return lo_read_transfer(lo, rq, pos);
625 		else if (cmd->use_aio)
626 			return lo_rw_aio(lo, cmd, pos, READ);
627 		else
628 			return lo_read_simple(lo, rq, pos);
629 	default:
630 		WARN_ON_ONCE(1);
631 		return -EIO;
632 	}
633 }
634 
635 static inline void loop_update_dio(struct loop_device *lo)
636 {
637 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
638 			lo->use_dio);
639 }
640 
641 static void loop_reread_partitions(struct loop_device *lo,
642 				   struct block_device *bdev)
643 {
644 	int rc;
645 
646 	mutex_lock(&bdev->bd_mutex);
647 	rc = bdev_disk_changed(bdev, false);
648 	mutex_unlock(&bdev->bd_mutex);
649 	if (rc)
650 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
651 			__func__, lo->lo_number, lo->lo_file_name, rc);
652 }
653 
654 static inline int is_loop_device(struct file *file)
655 {
656 	struct inode *i = file->f_mapping->host;
657 
658 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
659 }
660 
661 static int loop_validate_file(struct file *file, struct block_device *bdev)
662 {
663 	struct inode	*inode = file->f_mapping->host;
664 	struct file	*f = file;
665 
666 	/* Avoid recursion */
667 	while (is_loop_device(f)) {
668 		struct loop_device *l;
669 
670 		if (f->f_mapping->host->i_bdev == bdev)
671 			return -EBADF;
672 
673 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
674 		if (l->lo_state != Lo_bound) {
675 			return -EINVAL;
676 		}
677 		f = l->lo_backing_file;
678 	}
679 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
680 		return -EINVAL;
681 	return 0;
682 }
683 
684 /*
685  * loop_change_fd switched the backing store of a loopback device to
686  * a new file. This is useful for operating system installers to free up
687  * the original file and in High Availability environments to switch to
688  * an alternative location for the content in case of server meltdown.
689  * This can only work if the loop device is used read-only, and if the
690  * new backing store is the same size and type as the old backing store.
691  */
692 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
693 			  unsigned int arg)
694 {
695 	struct file	*file = NULL, *old_file;
696 	int		error;
697 	bool		partscan;
698 
699 	error = mutex_lock_killable(&loop_ctl_mutex);
700 	if (error)
701 		return error;
702 	error = -ENXIO;
703 	if (lo->lo_state != Lo_bound)
704 		goto out_err;
705 
706 	/* the loop device has to be read-only */
707 	error = -EINVAL;
708 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
709 		goto out_err;
710 
711 	error = -EBADF;
712 	file = fget(arg);
713 	if (!file)
714 		goto out_err;
715 
716 	error = loop_validate_file(file, bdev);
717 	if (error)
718 		goto out_err;
719 
720 	old_file = lo->lo_backing_file;
721 
722 	error = -EINVAL;
723 
724 	/* size of the new backing store needs to be the same */
725 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
726 		goto out_err;
727 
728 	/* and ... switch */
729 	blk_mq_freeze_queue(lo->lo_queue);
730 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
731 	lo->lo_backing_file = file;
732 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
733 	mapping_set_gfp_mask(file->f_mapping,
734 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
735 	loop_update_dio(lo);
736 	blk_mq_unfreeze_queue(lo->lo_queue);
737 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
738 	mutex_unlock(&loop_ctl_mutex);
739 	/*
740 	 * We must drop file reference outside of loop_ctl_mutex as dropping
741 	 * the file ref can take bd_mutex which creates circular locking
742 	 * dependency.
743 	 */
744 	fput(old_file);
745 	if (partscan)
746 		loop_reread_partitions(lo, bdev);
747 	return 0;
748 
749 out_err:
750 	mutex_unlock(&loop_ctl_mutex);
751 	if (file)
752 		fput(file);
753 	return error;
754 }
755 
756 /* loop sysfs attributes */
757 
758 static ssize_t loop_attr_show(struct device *dev, char *page,
759 			      ssize_t (*callback)(struct loop_device *, char *))
760 {
761 	struct gendisk *disk = dev_to_disk(dev);
762 	struct loop_device *lo = disk->private_data;
763 
764 	return callback(lo, page);
765 }
766 
767 #define LOOP_ATTR_RO(_name)						\
768 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
769 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
770 				struct device_attribute *attr, char *b)	\
771 {									\
772 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
773 }									\
774 static struct device_attribute loop_attr_##_name =			\
775 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
776 
777 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
778 {
779 	ssize_t ret;
780 	char *p = NULL;
781 
782 	spin_lock_irq(&lo->lo_lock);
783 	if (lo->lo_backing_file)
784 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
785 	spin_unlock_irq(&lo->lo_lock);
786 
787 	if (IS_ERR_OR_NULL(p))
788 		ret = PTR_ERR(p);
789 	else {
790 		ret = strlen(p);
791 		memmove(buf, p, ret);
792 		buf[ret++] = '\n';
793 		buf[ret] = 0;
794 	}
795 
796 	return ret;
797 }
798 
799 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
800 {
801 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
802 }
803 
804 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
805 {
806 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
807 }
808 
809 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
810 {
811 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
812 
813 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
814 }
815 
816 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
817 {
818 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
819 
820 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
821 }
822 
823 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
824 {
825 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
826 
827 	return sprintf(buf, "%s\n", dio ? "1" : "0");
828 }
829 
830 LOOP_ATTR_RO(backing_file);
831 LOOP_ATTR_RO(offset);
832 LOOP_ATTR_RO(sizelimit);
833 LOOP_ATTR_RO(autoclear);
834 LOOP_ATTR_RO(partscan);
835 LOOP_ATTR_RO(dio);
836 
837 static struct attribute *loop_attrs[] = {
838 	&loop_attr_backing_file.attr,
839 	&loop_attr_offset.attr,
840 	&loop_attr_sizelimit.attr,
841 	&loop_attr_autoclear.attr,
842 	&loop_attr_partscan.attr,
843 	&loop_attr_dio.attr,
844 	NULL,
845 };
846 
847 static struct attribute_group loop_attribute_group = {
848 	.name = "loop",
849 	.attrs= loop_attrs,
850 };
851 
852 static void loop_sysfs_init(struct loop_device *lo)
853 {
854 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
855 						&loop_attribute_group);
856 }
857 
858 static void loop_sysfs_exit(struct loop_device *lo)
859 {
860 	if (lo->sysfs_inited)
861 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
862 				   &loop_attribute_group);
863 }
864 
865 static void loop_config_discard(struct loop_device *lo)
866 {
867 	struct file *file = lo->lo_backing_file;
868 	struct inode *inode = file->f_mapping->host;
869 	struct request_queue *q = lo->lo_queue;
870 
871 	/*
872 	 * If the backing device is a block device, mirror its zeroing
873 	 * capability. Set the discard sectors to the block device's zeroing
874 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
875 	 * not blkdev_issue_discard(). This maintains consistent behavior with
876 	 * file-backed loop devices: discarded regions read back as zero.
877 	 */
878 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
879 		struct request_queue *backingq;
880 
881 		backingq = bdev_get_queue(inode->i_bdev);
882 		blk_queue_max_discard_sectors(q,
883 			backingq->limits.max_write_zeroes_sectors);
884 
885 		blk_queue_max_write_zeroes_sectors(q,
886 			backingq->limits.max_write_zeroes_sectors);
887 
888 	/*
889 	 * We use punch hole to reclaim the free space used by the
890 	 * image a.k.a. discard. However we do not support discard if
891 	 * encryption is enabled, because it may give an attacker
892 	 * useful information.
893 	 */
894 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
895 		q->limits.discard_granularity = 0;
896 		q->limits.discard_alignment = 0;
897 		blk_queue_max_discard_sectors(q, 0);
898 		blk_queue_max_write_zeroes_sectors(q, 0);
899 
900 	} else {
901 		q->limits.discard_granularity = inode->i_sb->s_blocksize;
902 		q->limits.discard_alignment = 0;
903 
904 		blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
905 		blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
906 	}
907 
908 	if (q->limits.max_write_zeroes_sectors)
909 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
910 	else
911 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
912 }
913 
914 static void loop_unprepare_queue(struct loop_device *lo)
915 {
916 	kthread_flush_worker(&lo->worker);
917 	kthread_stop(lo->worker_task);
918 }
919 
920 static int loop_kthread_worker_fn(void *worker_ptr)
921 {
922 	current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO;
923 	return kthread_worker_fn(worker_ptr);
924 }
925 
926 static int loop_prepare_queue(struct loop_device *lo)
927 {
928 	kthread_init_worker(&lo->worker);
929 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
930 			&lo->worker, "loop%d", lo->lo_number);
931 	if (IS_ERR(lo->worker_task))
932 		return -ENOMEM;
933 	set_user_nice(lo->worker_task, MIN_NICE);
934 	return 0;
935 }
936 
937 static void loop_update_rotational(struct loop_device *lo)
938 {
939 	struct file *file = lo->lo_backing_file;
940 	struct inode *file_inode = file->f_mapping->host;
941 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
942 	struct request_queue *q = lo->lo_queue;
943 	bool nonrot = true;
944 
945 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
946 	if (file_bdev)
947 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
948 
949 	if (nonrot)
950 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
951 	else
952 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
953 }
954 
955 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
956 		       struct block_device *bdev, unsigned int arg)
957 {
958 	struct file	*file;
959 	struct inode	*inode;
960 	struct address_space *mapping;
961 	struct block_device *claimed_bdev = NULL;
962 	int		lo_flags = 0;
963 	int		error;
964 	loff_t		size;
965 	bool		partscan;
966 
967 	/* This is safe, since we have a reference from open(). */
968 	__module_get(THIS_MODULE);
969 
970 	error = -EBADF;
971 	file = fget(arg);
972 	if (!file)
973 		goto out;
974 
975 	/*
976 	 * If we don't hold exclusive handle for the device, upgrade to it
977 	 * here to avoid changing device under exclusive owner.
978 	 */
979 	if (!(mode & FMODE_EXCL)) {
980 		claimed_bdev = bd_start_claiming(bdev, loop_set_fd);
981 		if (IS_ERR(claimed_bdev)) {
982 			error = PTR_ERR(claimed_bdev);
983 			goto out_putf;
984 		}
985 	}
986 
987 	error = mutex_lock_killable(&loop_ctl_mutex);
988 	if (error)
989 		goto out_bdev;
990 
991 	error = -EBUSY;
992 	if (lo->lo_state != Lo_unbound)
993 		goto out_unlock;
994 
995 	error = loop_validate_file(file, bdev);
996 	if (error)
997 		goto out_unlock;
998 
999 	mapping = file->f_mapping;
1000 	inode = mapping->host;
1001 
1002 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1003 	    !file->f_op->write_iter)
1004 		lo_flags |= LO_FLAGS_READ_ONLY;
1005 
1006 	error = -EFBIG;
1007 	size = get_loop_size(lo, file);
1008 	if ((loff_t)(sector_t)size != size)
1009 		goto out_unlock;
1010 	error = loop_prepare_queue(lo);
1011 	if (error)
1012 		goto out_unlock;
1013 
1014 	error = 0;
1015 
1016 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
1017 
1018 	lo->use_dio = false;
1019 	lo->lo_device = bdev;
1020 	lo->lo_flags = lo_flags;
1021 	lo->lo_backing_file = file;
1022 	lo->transfer = NULL;
1023 	lo->ioctl = NULL;
1024 	lo->lo_sizelimit = 0;
1025 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1026 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1027 
1028 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1029 		blk_queue_write_cache(lo->lo_queue, true, false);
1030 
1031 	if (io_is_direct(lo->lo_backing_file) && inode->i_sb->s_bdev) {
1032 		/* In case of direct I/O, match underlying block size */
1033 		unsigned short bsize = bdev_logical_block_size(
1034 			inode->i_sb->s_bdev);
1035 
1036 		blk_queue_logical_block_size(lo->lo_queue, bsize);
1037 		blk_queue_physical_block_size(lo->lo_queue, bsize);
1038 		blk_queue_io_min(lo->lo_queue, bsize);
1039 	}
1040 
1041 	loop_update_rotational(lo);
1042 	loop_update_dio(lo);
1043 	set_capacity(lo->lo_disk, size);
1044 	bd_set_size(bdev, size << 9);
1045 	loop_sysfs_init(lo);
1046 	/* let user-space know about the new size */
1047 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1048 
1049 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1050 		      block_size(inode->i_bdev) : PAGE_SIZE);
1051 
1052 	lo->lo_state = Lo_bound;
1053 	if (part_shift)
1054 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1055 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1056 
1057 	/* Grab the block_device to prevent its destruction after we
1058 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1059 	 */
1060 	bdgrab(bdev);
1061 	mutex_unlock(&loop_ctl_mutex);
1062 	if (partscan)
1063 		loop_reread_partitions(lo, bdev);
1064 	if (claimed_bdev)
1065 		bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1066 	return 0;
1067 
1068 out_unlock:
1069 	mutex_unlock(&loop_ctl_mutex);
1070 out_bdev:
1071 	if (claimed_bdev)
1072 		bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1073 out_putf:
1074 	fput(file);
1075 out:
1076 	/* This is safe: open() is still holding a reference. */
1077 	module_put(THIS_MODULE);
1078 	return error;
1079 }
1080 
1081 static int
1082 loop_release_xfer(struct loop_device *lo)
1083 {
1084 	int err = 0;
1085 	struct loop_func_table *xfer = lo->lo_encryption;
1086 
1087 	if (xfer) {
1088 		if (xfer->release)
1089 			err = xfer->release(lo);
1090 		lo->transfer = NULL;
1091 		lo->lo_encryption = NULL;
1092 		module_put(xfer->owner);
1093 	}
1094 	return err;
1095 }
1096 
1097 static int
1098 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1099 	       const struct loop_info64 *i)
1100 {
1101 	int err = 0;
1102 
1103 	if (xfer) {
1104 		struct module *owner = xfer->owner;
1105 
1106 		if (!try_module_get(owner))
1107 			return -EINVAL;
1108 		if (xfer->init)
1109 			err = xfer->init(lo, i);
1110 		if (err)
1111 			module_put(owner);
1112 		else
1113 			lo->lo_encryption = xfer;
1114 	}
1115 	return err;
1116 }
1117 
1118 static int __loop_clr_fd(struct loop_device *lo, bool release)
1119 {
1120 	struct file *filp = NULL;
1121 	gfp_t gfp = lo->old_gfp_mask;
1122 	struct block_device *bdev = lo->lo_device;
1123 	int err = 0;
1124 	bool partscan = false;
1125 	int lo_number;
1126 
1127 	mutex_lock(&loop_ctl_mutex);
1128 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1129 		err = -ENXIO;
1130 		goto out_unlock;
1131 	}
1132 
1133 	filp = lo->lo_backing_file;
1134 	if (filp == NULL) {
1135 		err = -EINVAL;
1136 		goto out_unlock;
1137 	}
1138 
1139 	/* freeze request queue during the transition */
1140 	blk_mq_freeze_queue(lo->lo_queue);
1141 
1142 	spin_lock_irq(&lo->lo_lock);
1143 	lo->lo_backing_file = NULL;
1144 	spin_unlock_irq(&lo->lo_lock);
1145 
1146 	loop_release_xfer(lo);
1147 	lo->transfer = NULL;
1148 	lo->ioctl = NULL;
1149 	lo->lo_device = NULL;
1150 	lo->lo_encryption = NULL;
1151 	lo->lo_offset = 0;
1152 	lo->lo_sizelimit = 0;
1153 	lo->lo_encrypt_key_size = 0;
1154 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1155 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1156 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1157 	blk_queue_logical_block_size(lo->lo_queue, 512);
1158 	blk_queue_physical_block_size(lo->lo_queue, 512);
1159 	blk_queue_io_min(lo->lo_queue, 512);
1160 	if (bdev) {
1161 		bdput(bdev);
1162 		invalidate_bdev(bdev);
1163 		bdev->bd_inode->i_mapping->wb_err = 0;
1164 	}
1165 	set_capacity(lo->lo_disk, 0);
1166 	loop_sysfs_exit(lo);
1167 	if (bdev) {
1168 		bd_set_size(bdev, 0);
1169 		/* let user-space know about this change */
1170 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1171 	}
1172 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1173 	/* This is safe: open() is still holding a reference. */
1174 	module_put(THIS_MODULE);
1175 	blk_mq_unfreeze_queue(lo->lo_queue);
1176 
1177 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1178 	lo_number = lo->lo_number;
1179 	loop_unprepare_queue(lo);
1180 out_unlock:
1181 	mutex_unlock(&loop_ctl_mutex);
1182 	if (partscan) {
1183 		/*
1184 		 * bd_mutex has been held already in release path, so don't
1185 		 * acquire it if this function is called in such case.
1186 		 *
1187 		 * If the reread partition isn't from release path, lo_refcnt
1188 		 * must be at least one and it can only become zero when the
1189 		 * current holder is released.
1190 		 */
1191 		if (!release)
1192 			mutex_lock(&bdev->bd_mutex);
1193 		err = bdev_disk_changed(bdev, false);
1194 		if (!release)
1195 			mutex_unlock(&bdev->bd_mutex);
1196 		if (err)
1197 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1198 				__func__, lo_number, err);
1199 		/* Device is gone, no point in returning error */
1200 		err = 0;
1201 	}
1202 
1203 	/*
1204 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1205 	 * finished.
1206 	 *
1207 	 * There cannot be anybody else entering __loop_clr_fd() as
1208 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1209 	 * protects us from all the other places trying to change the 'lo'
1210 	 * device.
1211 	 */
1212 	mutex_lock(&loop_ctl_mutex);
1213 	lo->lo_flags = 0;
1214 	if (!part_shift)
1215 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1216 	lo->lo_state = Lo_unbound;
1217 	mutex_unlock(&loop_ctl_mutex);
1218 
1219 	/*
1220 	 * Need not hold loop_ctl_mutex to fput backing file.
1221 	 * Calling fput holding loop_ctl_mutex triggers a circular
1222 	 * lock dependency possibility warning as fput can take
1223 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1224 	 */
1225 	if (filp)
1226 		fput(filp);
1227 	return err;
1228 }
1229 
1230 static int loop_clr_fd(struct loop_device *lo)
1231 {
1232 	int err;
1233 
1234 	err = mutex_lock_killable(&loop_ctl_mutex);
1235 	if (err)
1236 		return err;
1237 	if (lo->lo_state != Lo_bound) {
1238 		mutex_unlock(&loop_ctl_mutex);
1239 		return -ENXIO;
1240 	}
1241 	/*
1242 	 * If we've explicitly asked to tear down the loop device,
1243 	 * and it has an elevated reference count, set it for auto-teardown when
1244 	 * the last reference goes away. This stops $!~#$@ udev from
1245 	 * preventing teardown because it decided that it needs to run blkid on
1246 	 * the loopback device whenever they appear. xfstests is notorious for
1247 	 * failing tests because blkid via udev races with a losetup
1248 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1249 	 * command to fail with EBUSY.
1250 	 */
1251 	if (atomic_read(&lo->lo_refcnt) > 1) {
1252 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1253 		mutex_unlock(&loop_ctl_mutex);
1254 		return 0;
1255 	}
1256 	lo->lo_state = Lo_rundown;
1257 	mutex_unlock(&loop_ctl_mutex);
1258 
1259 	return __loop_clr_fd(lo, false);
1260 }
1261 
1262 static int
1263 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1264 {
1265 	int err;
1266 	struct loop_func_table *xfer;
1267 	kuid_t uid = current_uid();
1268 	struct block_device *bdev;
1269 	bool partscan = false;
1270 
1271 	err = mutex_lock_killable(&loop_ctl_mutex);
1272 	if (err)
1273 		return err;
1274 	if (lo->lo_encrypt_key_size &&
1275 	    !uid_eq(lo->lo_key_owner, uid) &&
1276 	    !capable(CAP_SYS_ADMIN)) {
1277 		err = -EPERM;
1278 		goto out_unlock;
1279 	}
1280 	if (lo->lo_state != Lo_bound) {
1281 		err = -ENXIO;
1282 		goto out_unlock;
1283 	}
1284 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1285 		err = -EINVAL;
1286 		goto out_unlock;
1287 	}
1288 
1289 	if (lo->lo_offset != info->lo_offset ||
1290 	    lo->lo_sizelimit != info->lo_sizelimit) {
1291 		sync_blockdev(lo->lo_device);
1292 		kill_bdev(lo->lo_device);
1293 	}
1294 
1295 	/* I/O need to be drained during transfer transition */
1296 	blk_mq_freeze_queue(lo->lo_queue);
1297 
1298 	err = loop_release_xfer(lo);
1299 	if (err)
1300 		goto out_unfreeze;
1301 
1302 	if (info->lo_encrypt_type) {
1303 		unsigned int type = info->lo_encrypt_type;
1304 
1305 		if (type >= MAX_LO_CRYPT) {
1306 			err = -EINVAL;
1307 			goto out_unfreeze;
1308 		}
1309 		xfer = xfer_funcs[type];
1310 		if (xfer == NULL) {
1311 			err = -EINVAL;
1312 			goto out_unfreeze;
1313 		}
1314 	} else
1315 		xfer = NULL;
1316 
1317 	err = loop_init_xfer(lo, xfer, info);
1318 	if (err)
1319 		goto out_unfreeze;
1320 
1321 	if (lo->lo_offset != info->lo_offset ||
1322 	    lo->lo_sizelimit != info->lo_sizelimit) {
1323 		/* kill_bdev should have truncated all the pages */
1324 		if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1325 			err = -EAGAIN;
1326 			pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1327 				__func__, lo->lo_number, lo->lo_file_name,
1328 				lo->lo_device->bd_inode->i_mapping->nrpages);
1329 			goto out_unfreeze;
1330 		}
1331 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1332 			err = -EFBIG;
1333 			goto out_unfreeze;
1334 		}
1335 	}
1336 
1337 	loop_config_discard(lo);
1338 
1339 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1340 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1341 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1342 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1343 
1344 	if (!xfer)
1345 		xfer = &none_funcs;
1346 	lo->transfer = xfer->transfer;
1347 	lo->ioctl = xfer->ioctl;
1348 
1349 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1350 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1351 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1352 
1353 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1354 	lo->lo_init[0] = info->lo_init[0];
1355 	lo->lo_init[1] = info->lo_init[1];
1356 	if (info->lo_encrypt_key_size) {
1357 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1358 		       info->lo_encrypt_key_size);
1359 		lo->lo_key_owner = uid;
1360 	}
1361 
1362 	/* update dio if lo_offset or transfer is changed */
1363 	__loop_update_dio(lo, lo->use_dio);
1364 
1365 out_unfreeze:
1366 	blk_mq_unfreeze_queue(lo->lo_queue);
1367 
1368 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1369 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1370 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1371 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1372 		bdev = lo->lo_device;
1373 		partscan = true;
1374 	}
1375 out_unlock:
1376 	mutex_unlock(&loop_ctl_mutex);
1377 	if (partscan)
1378 		loop_reread_partitions(lo, bdev);
1379 
1380 	return err;
1381 }
1382 
1383 static int
1384 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1385 {
1386 	struct path path;
1387 	struct kstat stat;
1388 	int ret;
1389 
1390 	ret = mutex_lock_killable(&loop_ctl_mutex);
1391 	if (ret)
1392 		return ret;
1393 	if (lo->lo_state != Lo_bound) {
1394 		mutex_unlock(&loop_ctl_mutex);
1395 		return -ENXIO;
1396 	}
1397 
1398 	memset(info, 0, sizeof(*info));
1399 	info->lo_number = lo->lo_number;
1400 	info->lo_offset = lo->lo_offset;
1401 	info->lo_sizelimit = lo->lo_sizelimit;
1402 	info->lo_flags = lo->lo_flags;
1403 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1404 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1405 	info->lo_encrypt_type =
1406 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1407 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1408 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1409 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1410 		       lo->lo_encrypt_key_size);
1411 	}
1412 
1413 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1414 	path = lo->lo_backing_file->f_path;
1415 	path_get(&path);
1416 	mutex_unlock(&loop_ctl_mutex);
1417 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1418 	if (!ret) {
1419 		info->lo_device = huge_encode_dev(stat.dev);
1420 		info->lo_inode = stat.ino;
1421 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1422 	}
1423 	path_put(&path);
1424 	return ret;
1425 }
1426 
1427 static void
1428 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1429 {
1430 	memset(info64, 0, sizeof(*info64));
1431 	info64->lo_number = info->lo_number;
1432 	info64->lo_device = info->lo_device;
1433 	info64->lo_inode = info->lo_inode;
1434 	info64->lo_rdevice = info->lo_rdevice;
1435 	info64->lo_offset = info->lo_offset;
1436 	info64->lo_sizelimit = 0;
1437 	info64->lo_encrypt_type = info->lo_encrypt_type;
1438 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1439 	info64->lo_flags = info->lo_flags;
1440 	info64->lo_init[0] = info->lo_init[0];
1441 	info64->lo_init[1] = info->lo_init[1];
1442 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1443 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1444 	else
1445 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1446 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1447 }
1448 
1449 static int
1450 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1451 {
1452 	memset(info, 0, sizeof(*info));
1453 	info->lo_number = info64->lo_number;
1454 	info->lo_device = info64->lo_device;
1455 	info->lo_inode = info64->lo_inode;
1456 	info->lo_rdevice = info64->lo_rdevice;
1457 	info->lo_offset = info64->lo_offset;
1458 	info->lo_encrypt_type = info64->lo_encrypt_type;
1459 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1460 	info->lo_flags = info64->lo_flags;
1461 	info->lo_init[0] = info64->lo_init[0];
1462 	info->lo_init[1] = info64->lo_init[1];
1463 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1464 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1465 	else
1466 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1467 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1468 
1469 	/* error in case values were truncated */
1470 	if (info->lo_device != info64->lo_device ||
1471 	    info->lo_rdevice != info64->lo_rdevice ||
1472 	    info->lo_inode != info64->lo_inode ||
1473 	    info->lo_offset != info64->lo_offset)
1474 		return -EOVERFLOW;
1475 
1476 	return 0;
1477 }
1478 
1479 static int
1480 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1481 {
1482 	struct loop_info info;
1483 	struct loop_info64 info64;
1484 
1485 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1486 		return -EFAULT;
1487 	loop_info64_from_old(&info, &info64);
1488 	return loop_set_status(lo, &info64);
1489 }
1490 
1491 static int
1492 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1493 {
1494 	struct loop_info64 info64;
1495 
1496 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1497 		return -EFAULT;
1498 	return loop_set_status(lo, &info64);
1499 }
1500 
1501 static int
1502 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1503 	struct loop_info info;
1504 	struct loop_info64 info64;
1505 	int err;
1506 
1507 	if (!arg)
1508 		return -EINVAL;
1509 	err = loop_get_status(lo, &info64);
1510 	if (!err)
1511 		err = loop_info64_to_old(&info64, &info);
1512 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1513 		err = -EFAULT;
1514 
1515 	return err;
1516 }
1517 
1518 static int
1519 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1520 	struct loop_info64 info64;
1521 	int err;
1522 
1523 	if (!arg)
1524 		return -EINVAL;
1525 	err = loop_get_status(lo, &info64);
1526 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1527 		err = -EFAULT;
1528 
1529 	return err;
1530 }
1531 
1532 static int loop_set_capacity(struct loop_device *lo)
1533 {
1534 	if (unlikely(lo->lo_state != Lo_bound))
1535 		return -ENXIO;
1536 
1537 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1538 }
1539 
1540 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1541 {
1542 	int error = -ENXIO;
1543 	if (lo->lo_state != Lo_bound)
1544 		goto out;
1545 
1546 	__loop_update_dio(lo, !!arg);
1547 	if (lo->use_dio == !!arg)
1548 		return 0;
1549 	error = -EINVAL;
1550  out:
1551 	return error;
1552 }
1553 
1554 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1555 {
1556 	int err = 0;
1557 
1558 	if (lo->lo_state != Lo_bound)
1559 		return -ENXIO;
1560 
1561 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1562 		return -EINVAL;
1563 
1564 	if (lo->lo_queue->limits.logical_block_size == arg)
1565 		return 0;
1566 
1567 	sync_blockdev(lo->lo_device);
1568 	kill_bdev(lo->lo_device);
1569 
1570 	blk_mq_freeze_queue(lo->lo_queue);
1571 
1572 	/* kill_bdev should have truncated all the pages */
1573 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1574 		err = -EAGAIN;
1575 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1576 			__func__, lo->lo_number, lo->lo_file_name,
1577 			lo->lo_device->bd_inode->i_mapping->nrpages);
1578 		goto out_unfreeze;
1579 	}
1580 
1581 	blk_queue_logical_block_size(lo->lo_queue, arg);
1582 	blk_queue_physical_block_size(lo->lo_queue, arg);
1583 	blk_queue_io_min(lo->lo_queue, arg);
1584 	loop_update_dio(lo);
1585 out_unfreeze:
1586 	blk_mq_unfreeze_queue(lo->lo_queue);
1587 
1588 	return err;
1589 }
1590 
1591 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1592 			   unsigned long arg)
1593 {
1594 	int err;
1595 
1596 	err = mutex_lock_killable(&loop_ctl_mutex);
1597 	if (err)
1598 		return err;
1599 	switch (cmd) {
1600 	case LOOP_SET_CAPACITY:
1601 		err = loop_set_capacity(lo);
1602 		break;
1603 	case LOOP_SET_DIRECT_IO:
1604 		err = loop_set_dio(lo, arg);
1605 		break;
1606 	case LOOP_SET_BLOCK_SIZE:
1607 		err = loop_set_block_size(lo, arg);
1608 		break;
1609 	default:
1610 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1611 	}
1612 	mutex_unlock(&loop_ctl_mutex);
1613 	return err;
1614 }
1615 
1616 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1617 	unsigned int cmd, unsigned long arg)
1618 {
1619 	struct loop_device *lo = bdev->bd_disk->private_data;
1620 	int err;
1621 
1622 	switch (cmd) {
1623 	case LOOP_SET_FD:
1624 		return loop_set_fd(lo, mode, bdev, arg);
1625 	case LOOP_CHANGE_FD:
1626 		return loop_change_fd(lo, bdev, arg);
1627 	case LOOP_CLR_FD:
1628 		return loop_clr_fd(lo);
1629 	case LOOP_SET_STATUS:
1630 		err = -EPERM;
1631 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1632 			err = loop_set_status_old(lo,
1633 					(struct loop_info __user *)arg);
1634 		}
1635 		break;
1636 	case LOOP_GET_STATUS:
1637 		return loop_get_status_old(lo, (struct loop_info __user *) arg);
1638 	case LOOP_SET_STATUS64:
1639 		err = -EPERM;
1640 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1641 			err = loop_set_status64(lo,
1642 					(struct loop_info64 __user *) arg);
1643 		}
1644 		break;
1645 	case LOOP_GET_STATUS64:
1646 		return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1647 	case LOOP_SET_CAPACITY:
1648 	case LOOP_SET_DIRECT_IO:
1649 	case LOOP_SET_BLOCK_SIZE:
1650 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1651 			return -EPERM;
1652 		/* Fall through */
1653 	default:
1654 		err = lo_simple_ioctl(lo, cmd, arg);
1655 		break;
1656 	}
1657 
1658 	return err;
1659 }
1660 
1661 #ifdef CONFIG_COMPAT
1662 struct compat_loop_info {
1663 	compat_int_t	lo_number;      /* ioctl r/o */
1664 	compat_dev_t	lo_device;      /* ioctl r/o */
1665 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1666 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1667 	compat_int_t	lo_offset;
1668 	compat_int_t	lo_encrypt_type;
1669 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1670 	compat_int_t	lo_flags;       /* ioctl r/o */
1671 	char		lo_name[LO_NAME_SIZE];
1672 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1673 	compat_ulong_t	lo_init[2];
1674 	char		reserved[4];
1675 };
1676 
1677 /*
1678  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1679  * - noinlined to reduce stack space usage in main part of driver
1680  */
1681 static noinline int
1682 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1683 			struct loop_info64 *info64)
1684 {
1685 	struct compat_loop_info info;
1686 
1687 	if (copy_from_user(&info, arg, sizeof(info)))
1688 		return -EFAULT;
1689 
1690 	memset(info64, 0, sizeof(*info64));
1691 	info64->lo_number = info.lo_number;
1692 	info64->lo_device = info.lo_device;
1693 	info64->lo_inode = info.lo_inode;
1694 	info64->lo_rdevice = info.lo_rdevice;
1695 	info64->lo_offset = info.lo_offset;
1696 	info64->lo_sizelimit = 0;
1697 	info64->lo_encrypt_type = info.lo_encrypt_type;
1698 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1699 	info64->lo_flags = info.lo_flags;
1700 	info64->lo_init[0] = info.lo_init[0];
1701 	info64->lo_init[1] = info.lo_init[1];
1702 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1703 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1704 	else
1705 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1706 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1712  * - noinlined to reduce stack space usage in main part of driver
1713  */
1714 static noinline int
1715 loop_info64_to_compat(const struct loop_info64 *info64,
1716 		      struct compat_loop_info __user *arg)
1717 {
1718 	struct compat_loop_info info;
1719 
1720 	memset(&info, 0, sizeof(info));
1721 	info.lo_number = info64->lo_number;
1722 	info.lo_device = info64->lo_device;
1723 	info.lo_inode = info64->lo_inode;
1724 	info.lo_rdevice = info64->lo_rdevice;
1725 	info.lo_offset = info64->lo_offset;
1726 	info.lo_encrypt_type = info64->lo_encrypt_type;
1727 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1728 	info.lo_flags = info64->lo_flags;
1729 	info.lo_init[0] = info64->lo_init[0];
1730 	info.lo_init[1] = info64->lo_init[1];
1731 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1732 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1733 	else
1734 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1735 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1736 
1737 	/* error in case values were truncated */
1738 	if (info.lo_device != info64->lo_device ||
1739 	    info.lo_rdevice != info64->lo_rdevice ||
1740 	    info.lo_inode != info64->lo_inode ||
1741 	    info.lo_offset != info64->lo_offset ||
1742 	    info.lo_init[0] != info64->lo_init[0] ||
1743 	    info.lo_init[1] != info64->lo_init[1])
1744 		return -EOVERFLOW;
1745 
1746 	if (copy_to_user(arg, &info, sizeof(info)))
1747 		return -EFAULT;
1748 	return 0;
1749 }
1750 
1751 static int
1752 loop_set_status_compat(struct loop_device *lo,
1753 		       const struct compat_loop_info __user *arg)
1754 {
1755 	struct loop_info64 info64;
1756 	int ret;
1757 
1758 	ret = loop_info64_from_compat(arg, &info64);
1759 	if (ret < 0)
1760 		return ret;
1761 	return loop_set_status(lo, &info64);
1762 }
1763 
1764 static int
1765 loop_get_status_compat(struct loop_device *lo,
1766 		       struct compat_loop_info __user *arg)
1767 {
1768 	struct loop_info64 info64;
1769 	int err;
1770 
1771 	if (!arg)
1772 		return -EINVAL;
1773 	err = loop_get_status(lo, &info64);
1774 	if (!err)
1775 		err = loop_info64_to_compat(&info64, arg);
1776 	return err;
1777 }
1778 
1779 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1780 			   unsigned int cmd, unsigned long arg)
1781 {
1782 	struct loop_device *lo = bdev->bd_disk->private_data;
1783 	int err;
1784 
1785 	switch(cmd) {
1786 	case LOOP_SET_STATUS:
1787 		err = loop_set_status_compat(lo,
1788 			     (const struct compat_loop_info __user *)arg);
1789 		break;
1790 	case LOOP_GET_STATUS:
1791 		err = loop_get_status_compat(lo,
1792 				     (struct compat_loop_info __user *)arg);
1793 		break;
1794 	case LOOP_SET_CAPACITY:
1795 	case LOOP_CLR_FD:
1796 	case LOOP_GET_STATUS64:
1797 	case LOOP_SET_STATUS64:
1798 		arg = (unsigned long) compat_ptr(arg);
1799 		/* fall through */
1800 	case LOOP_SET_FD:
1801 	case LOOP_CHANGE_FD:
1802 	case LOOP_SET_BLOCK_SIZE:
1803 	case LOOP_SET_DIRECT_IO:
1804 		err = lo_ioctl(bdev, mode, cmd, arg);
1805 		break;
1806 	default:
1807 		err = -ENOIOCTLCMD;
1808 		break;
1809 	}
1810 	return err;
1811 }
1812 #endif
1813 
1814 static int lo_open(struct block_device *bdev, fmode_t mode)
1815 {
1816 	struct loop_device *lo;
1817 	int err;
1818 
1819 	err = mutex_lock_killable(&loop_ctl_mutex);
1820 	if (err)
1821 		return err;
1822 	lo = bdev->bd_disk->private_data;
1823 	if (!lo) {
1824 		err = -ENXIO;
1825 		goto out;
1826 	}
1827 
1828 	atomic_inc(&lo->lo_refcnt);
1829 out:
1830 	mutex_unlock(&loop_ctl_mutex);
1831 	return err;
1832 }
1833 
1834 static void lo_release(struct gendisk *disk, fmode_t mode)
1835 {
1836 	struct loop_device *lo;
1837 
1838 	mutex_lock(&loop_ctl_mutex);
1839 	lo = disk->private_data;
1840 	if (atomic_dec_return(&lo->lo_refcnt))
1841 		goto out_unlock;
1842 
1843 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1844 		if (lo->lo_state != Lo_bound)
1845 			goto out_unlock;
1846 		lo->lo_state = Lo_rundown;
1847 		mutex_unlock(&loop_ctl_mutex);
1848 		/*
1849 		 * In autoclear mode, stop the loop thread
1850 		 * and remove configuration after last close.
1851 		 */
1852 		__loop_clr_fd(lo, true);
1853 		return;
1854 	} else if (lo->lo_state == Lo_bound) {
1855 		/*
1856 		 * Otherwise keep thread (if running) and config,
1857 		 * but flush possible ongoing bios in thread.
1858 		 */
1859 		blk_mq_freeze_queue(lo->lo_queue);
1860 		blk_mq_unfreeze_queue(lo->lo_queue);
1861 	}
1862 
1863 out_unlock:
1864 	mutex_unlock(&loop_ctl_mutex);
1865 }
1866 
1867 static const struct block_device_operations lo_fops = {
1868 	.owner =	THIS_MODULE,
1869 	.open =		lo_open,
1870 	.release =	lo_release,
1871 	.ioctl =	lo_ioctl,
1872 #ifdef CONFIG_COMPAT
1873 	.compat_ioctl =	lo_compat_ioctl,
1874 #endif
1875 };
1876 
1877 /*
1878  * And now the modules code and kernel interface.
1879  */
1880 static int max_loop;
1881 module_param(max_loop, int, 0444);
1882 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1883 module_param(max_part, int, 0444);
1884 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1885 MODULE_LICENSE("GPL");
1886 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1887 
1888 int loop_register_transfer(struct loop_func_table *funcs)
1889 {
1890 	unsigned int n = funcs->number;
1891 
1892 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1893 		return -EINVAL;
1894 	xfer_funcs[n] = funcs;
1895 	return 0;
1896 }
1897 
1898 static int unregister_transfer_cb(int id, void *ptr, void *data)
1899 {
1900 	struct loop_device *lo = ptr;
1901 	struct loop_func_table *xfer = data;
1902 
1903 	mutex_lock(&loop_ctl_mutex);
1904 	if (lo->lo_encryption == xfer)
1905 		loop_release_xfer(lo);
1906 	mutex_unlock(&loop_ctl_mutex);
1907 	return 0;
1908 }
1909 
1910 int loop_unregister_transfer(int number)
1911 {
1912 	unsigned int n = number;
1913 	struct loop_func_table *xfer;
1914 
1915 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1916 		return -EINVAL;
1917 
1918 	xfer_funcs[n] = NULL;
1919 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1920 	return 0;
1921 }
1922 
1923 EXPORT_SYMBOL(loop_register_transfer);
1924 EXPORT_SYMBOL(loop_unregister_transfer);
1925 
1926 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1927 		const struct blk_mq_queue_data *bd)
1928 {
1929 	struct request *rq = bd->rq;
1930 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1931 	struct loop_device *lo = rq->q->queuedata;
1932 
1933 	blk_mq_start_request(rq);
1934 
1935 	if (lo->lo_state != Lo_bound)
1936 		return BLK_STS_IOERR;
1937 
1938 	switch (req_op(rq)) {
1939 	case REQ_OP_FLUSH:
1940 	case REQ_OP_DISCARD:
1941 	case REQ_OP_WRITE_ZEROES:
1942 		cmd->use_aio = false;
1943 		break;
1944 	default:
1945 		cmd->use_aio = lo->use_dio;
1946 		break;
1947 	}
1948 
1949 	/* always use the first bio's css */
1950 #ifdef CONFIG_BLK_CGROUP
1951 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1952 		cmd->css = &bio_blkcg(rq->bio)->css;
1953 		css_get(cmd->css);
1954 	} else
1955 #endif
1956 		cmd->css = NULL;
1957 	kthread_queue_work(&lo->worker, &cmd->work);
1958 
1959 	return BLK_STS_OK;
1960 }
1961 
1962 static void loop_handle_cmd(struct loop_cmd *cmd)
1963 {
1964 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1965 	const bool write = op_is_write(req_op(rq));
1966 	struct loop_device *lo = rq->q->queuedata;
1967 	int ret = 0;
1968 
1969 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1970 		ret = -EIO;
1971 		goto failed;
1972 	}
1973 
1974 	ret = do_req_filebacked(lo, rq);
1975  failed:
1976 	/* complete non-aio request */
1977 	if (!cmd->use_aio || ret) {
1978 		if (ret == -EOPNOTSUPP)
1979 			cmd->ret = ret;
1980 		else
1981 			cmd->ret = ret ? -EIO : 0;
1982 		blk_mq_complete_request(rq);
1983 	}
1984 }
1985 
1986 static void loop_queue_work(struct kthread_work *work)
1987 {
1988 	struct loop_cmd *cmd =
1989 		container_of(work, struct loop_cmd, work);
1990 
1991 	loop_handle_cmd(cmd);
1992 }
1993 
1994 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1995 		unsigned int hctx_idx, unsigned int numa_node)
1996 {
1997 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1998 
1999 	kthread_init_work(&cmd->work, loop_queue_work);
2000 	return 0;
2001 }
2002 
2003 static const struct blk_mq_ops loop_mq_ops = {
2004 	.queue_rq       = loop_queue_rq,
2005 	.init_request	= loop_init_request,
2006 	.complete	= lo_complete_rq,
2007 };
2008 
2009 static int loop_add(struct loop_device **l, int i)
2010 {
2011 	struct loop_device *lo;
2012 	struct gendisk *disk;
2013 	int err;
2014 
2015 	err = -ENOMEM;
2016 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2017 	if (!lo)
2018 		goto out;
2019 
2020 	lo->lo_state = Lo_unbound;
2021 
2022 	/* allocate id, if @id >= 0, we're requesting that specific id */
2023 	if (i >= 0) {
2024 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2025 		if (err == -ENOSPC)
2026 			err = -EEXIST;
2027 	} else {
2028 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2029 	}
2030 	if (err < 0)
2031 		goto out_free_dev;
2032 	i = err;
2033 
2034 	err = -ENOMEM;
2035 	lo->tag_set.ops = &loop_mq_ops;
2036 	lo->tag_set.nr_hw_queues = 1;
2037 	lo->tag_set.queue_depth = 128;
2038 	lo->tag_set.numa_node = NUMA_NO_NODE;
2039 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2040 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2041 	lo->tag_set.driver_data = lo;
2042 
2043 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2044 	if (err)
2045 		goto out_free_idr;
2046 
2047 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2048 	if (IS_ERR(lo->lo_queue)) {
2049 		err = PTR_ERR(lo->lo_queue);
2050 		goto out_cleanup_tags;
2051 	}
2052 	lo->lo_queue->queuedata = lo;
2053 
2054 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2055 
2056 	/*
2057 	 * By default, we do buffer IO, so it doesn't make sense to enable
2058 	 * merge because the I/O submitted to backing file is handled page by
2059 	 * page. For directio mode, merge does help to dispatch bigger request
2060 	 * to underlayer disk. We will enable merge once directio is enabled.
2061 	 */
2062 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2063 
2064 	err = -ENOMEM;
2065 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2066 	if (!disk)
2067 		goto out_free_queue;
2068 
2069 	/*
2070 	 * Disable partition scanning by default. The in-kernel partition
2071 	 * scanning can be requested individually per-device during its
2072 	 * setup. Userspace can always add and remove partitions from all
2073 	 * devices. The needed partition minors are allocated from the
2074 	 * extended minor space, the main loop device numbers will continue
2075 	 * to match the loop minors, regardless of the number of partitions
2076 	 * used.
2077 	 *
2078 	 * If max_part is given, partition scanning is globally enabled for
2079 	 * all loop devices. The minors for the main loop devices will be
2080 	 * multiples of max_part.
2081 	 *
2082 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2083 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2084 	 * complicated, are too static, inflexible and may surprise
2085 	 * userspace tools. Parameters like this in general should be avoided.
2086 	 */
2087 	if (!part_shift)
2088 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2089 	disk->flags |= GENHD_FL_EXT_DEVT;
2090 	atomic_set(&lo->lo_refcnt, 0);
2091 	lo->lo_number		= i;
2092 	spin_lock_init(&lo->lo_lock);
2093 	disk->major		= LOOP_MAJOR;
2094 	disk->first_minor	= i << part_shift;
2095 	disk->fops		= &lo_fops;
2096 	disk->private_data	= lo;
2097 	disk->queue		= lo->lo_queue;
2098 	sprintf(disk->disk_name, "loop%d", i);
2099 	add_disk(disk);
2100 	*l = lo;
2101 	return lo->lo_number;
2102 
2103 out_free_queue:
2104 	blk_cleanup_queue(lo->lo_queue);
2105 out_cleanup_tags:
2106 	blk_mq_free_tag_set(&lo->tag_set);
2107 out_free_idr:
2108 	idr_remove(&loop_index_idr, i);
2109 out_free_dev:
2110 	kfree(lo);
2111 out:
2112 	return err;
2113 }
2114 
2115 static void loop_remove(struct loop_device *lo)
2116 {
2117 	del_gendisk(lo->lo_disk);
2118 	blk_cleanup_queue(lo->lo_queue);
2119 	blk_mq_free_tag_set(&lo->tag_set);
2120 	put_disk(lo->lo_disk);
2121 	kfree(lo);
2122 }
2123 
2124 static int find_free_cb(int id, void *ptr, void *data)
2125 {
2126 	struct loop_device *lo = ptr;
2127 	struct loop_device **l = data;
2128 
2129 	if (lo->lo_state == Lo_unbound) {
2130 		*l = lo;
2131 		return 1;
2132 	}
2133 	return 0;
2134 }
2135 
2136 static int loop_lookup(struct loop_device **l, int i)
2137 {
2138 	struct loop_device *lo;
2139 	int ret = -ENODEV;
2140 
2141 	if (i < 0) {
2142 		int err;
2143 
2144 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2145 		if (err == 1) {
2146 			*l = lo;
2147 			ret = lo->lo_number;
2148 		}
2149 		goto out;
2150 	}
2151 
2152 	/* lookup and return a specific i */
2153 	lo = idr_find(&loop_index_idr, i);
2154 	if (lo) {
2155 		*l = lo;
2156 		ret = lo->lo_number;
2157 	}
2158 out:
2159 	return ret;
2160 }
2161 
2162 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2163 {
2164 	struct loop_device *lo;
2165 	struct kobject *kobj;
2166 	int err;
2167 
2168 	mutex_lock(&loop_ctl_mutex);
2169 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2170 	if (err < 0)
2171 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2172 	if (err < 0)
2173 		kobj = NULL;
2174 	else
2175 		kobj = get_disk_and_module(lo->lo_disk);
2176 	mutex_unlock(&loop_ctl_mutex);
2177 
2178 	*part = 0;
2179 	return kobj;
2180 }
2181 
2182 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2183 			       unsigned long parm)
2184 {
2185 	struct loop_device *lo;
2186 	int ret;
2187 
2188 	ret = mutex_lock_killable(&loop_ctl_mutex);
2189 	if (ret)
2190 		return ret;
2191 
2192 	ret = -ENOSYS;
2193 	switch (cmd) {
2194 	case LOOP_CTL_ADD:
2195 		ret = loop_lookup(&lo, parm);
2196 		if (ret >= 0) {
2197 			ret = -EEXIST;
2198 			break;
2199 		}
2200 		ret = loop_add(&lo, parm);
2201 		break;
2202 	case LOOP_CTL_REMOVE:
2203 		ret = loop_lookup(&lo, parm);
2204 		if (ret < 0)
2205 			break;
2206 		if (lo->lo_state != Lo_unbound) {
2207 			ret = -EBUSY;
2208 			break;
2209 		}
2210 		if (atomic_read(&lo->lo_refcnt) > 0) {
2211 			ret = -EBUSY;
2212 			break;
2213 		}
2214 		lo->lo_disk->private_data = NULL;
2215 		idr_remove(&loop_index_idr, lo->lo_number);
2216 		loop_remove(lo);
2217 		break;
2218 	case LOOP_CTL_GET_FREE:
2219 		ret = loop_lookup(&lo, -1);
2220 		if (ret >= 0)
2221 			break;
2222 		ret = loop_add(&lo, -1);
2223 	}
2224 	mutex_unlock(&loop_ctl_mutex);
2225 
2226 	return ret;
2227 }
2228 
2229 static const struct file_operations loop_ctl_fops = {
2230 	.open		= nonseekable_open,
2231 	.unlocked_ioctl	= loop_control_ioctl,
2232 	.compat_ioctl	= loop_control_ioctl,
2233 	.owner		= THIS_MODULE,
2234 	.llseek		= noop_llseek,
2235 };
2236 
2237 static struct miscdevice loop_misc = {
2238 	.minor		= LOOP_CTRL_MINOR,
2239 	.name		= "loop-control",
2240 	.fops		= &loop_ctl_fops,
2241 };
2242 
2243 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2244 MODULE_ALIAS("devname:loop-control");
2245 
2246 static int __init loop_init(void)
2247 {
2248 	int i, nr;
2249 	unsigned long range;
2250 	struct loop_device *lo;
2251 	int err;
2252 
2253 	part_shift = 0;
2254 	if (max_part > 0) {
2255 		part_shift = fls(max_part);
2256 
2257 		/*
2258 		 * Adjust max_part according to part_shift as it is exported
2259 		 * to user space so that user can decide correct minor number
2260 		 * if [s]he want to create more devices.
2261 		 *
2262 		 * Note that -1 is required because partition 0 is reserved
2263 		 * for the whole disk.
2264 		 */
2265 		max_part = (1UL << part_shift) - 1;
2266 	}
2267 
2268 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2269 		err = -EINVAL;
2270 		goto err_out;
2271 	}
2272 
2273 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2274 		err = -EINVAL;
2275 		goto err_out;
2276 	}
2277 
2278 	/*
2279 	 * If max_loop is specified, create that many devices upfront.
2280 	 * This also becomes a hard limit. If max_loop is not specified,
2281 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2282 	 * init time. Loop devices can be requested on-demand with the
2283 	 * /dev/loop-control interface, or be instantiated by accessing
2284 	 * a 'dead' device node.
2285 	 */
2286 	if (max_loop) {
2287 		nr = max_loop;
2288 		range = max_loop << part_shift;
2289 	} else {
2290 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2291 		range = 1UL << MINORBITS;
2292 	}
2293 
2294 	err = misc_register(&loop_misc);
2295 	if (err < 0)
2296 		goto err_out;
2297 
2298 
2299 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2300 		err = -EIO;
2301 		goto misc_out;
2302 	}
2303 
2304 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2305 				  THIS_MODULE, loop_probe, NULL, NULL);
2306 
2307 	/* pre-create number of devices given by config or max_loop */
2308 	mutex_lock(&loop_ctl_mutex);
2309 	for (i = 0; i < nr; i++)
2310 		loop_add(&lo, i);
2311 	mutex_unlock(&loop_ctl_mutex);
2312 
2313 	printk(KERN_INFO "loop: module loaded\n");
2314 	return 0;
2315 
2316 misc_out:
2317 	misc_deregister(&loop_misc);
2318 err_out:
2319 	return err;
2320 }
2321 
2322 static int loop_exit_cb(int id, void *ptr, void *data)
2323 {
2324 	struct loop_device *lo = ptr;
2325 
2326 	loop_remove(lo);
2327 	return 0;
2328 }
2329 
2330 static void __exit loop_exit(void)
2331 {
2332 	unsigned long range;
2333 
2334 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2335 
2336 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2337 	idr_destroy(&loop_index_idr);
2338 
2339 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2340 	unregister_blkdev(LOOP_MAJOR, "loop");
2341 
2342 	misc_deregister(&loop_misc);
2343 }
2344 
2345 module_init(loop_init);
2346 module_exit(loop_exit);
2347 
2348 #ifndef MODULE
2349 static int __init max_loop_setup(char *str)
2350 {
2351 	max_loop = simple_strtol(str, NULL, 0);
2352 	return 1;
2353 }
2354 
2355 __setup("max_loop=", max_loop_setup);
2356 #endif
2357