xref: /openbmc/linux/drivers/block/loop.c (revision 9d749629)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79 
80 #include <asm/uaccess.h>
81 
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(loop_buf);
105 	kunmap_atomic(raw_buf);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(loop_buf);
134 	kunmap_atomic(raw_buf);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165 	loff_t size, loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	size = i_size_read(file->f_mapping->host);
169 	loopsize = size - offset;
170 	/* offset is beyond i_size, wierd but possible */
171 	if (loopsize < 0)
172 		return 0;
173 
174 	if (sizelimit > 0 && sizelimit < loopsize)
175 		loopsize = sizelimit;
176 	/*
177 	 * Unfortunately, if we want to do I/O on the device,
178 	 * the number of 512-byte sectors has to fit into a sector_t.
179 	 */
180 	return loopsize >> 9;
181 }
182 
183 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
184 {
185 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
186 }
187 
188 static int
189 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
190 {
191 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
192 	sector_t x = (sector_t)size;
193 
194 	if (unlikely((loff_t)x != size))
195 		return -EFBIG;
196 	if (lo->lo_offset != offset)
197 		lo->lo_offset = offset;
198 	if (lo->lo_sizelimit != sizelimit)
199 		lo->lo_sizelimit = sizelimit;
200 	set_capacity(lo->lo_disk, x);
201 	return 0;
202 }
203 
204 static inline int
205 lo_do_transfer(struct loop_device *lo, int cmd,
206 	       struct page *rpage, unsigned roffs,
207 	       struct page *lpage, unsigned loffs,
208 	       int size, sector_t rblock)
209 {
210 	if (unlikely(!lo->transfer))
211 		return 0;
212 
213 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
214 }
215 
216 /**
217  * __do_lo_send_write - helper for writing data to a loop device
218  *
219  * This helper just factors out common code between do_lo_send_direct_write()
220  * and do_lo_send_write().
221  */
222 static int __do_lo_send_write(struct file *file,
223 		u8 *buf, const int len, loff_t pos)
224 {
225 	ssize_t bw;
226 	mm_segment_t old_fs = get_fs();
227 
228 	set_fs(get_ds());
229 	bw = file->f_op->write(file, buf, len, &pos);
230 	set_fs(old_fs);
231 	if (likely(bw == len))
232 		return 0;
233 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
234 			(unsigned long long)pos, len);
235 	if (bw >= 0)
236 		bw = -EIO;
237 	return bw;
238 }
239 
240 /**
241  * do_lo_send_direct_write - helper for writing data to a loop device
242  *
243  * This is the fast, non-transforming version that does not need double
244  * buffering.
245  */
246 static int do_lo_send_direct_write(struct loop_device *lo,
247 		struct bio_vec *bvec, loff_t pos, struct page *page)
248 {
249 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
250 			kmap(bvec->bv_page) + bvec->bv_offset,
251 			bvec->bv_len, pos);
252 	kunmap(bvec->bv_page);
253 	cond_resched();
254 	return bw;
255 }
256 
257 /**
258  * do_lo_send_write - helper for writing data to a loop device
259  *
260  * This is the slow, transforming version that needs to double buffer the
261  * data as it cannot do the transformations in place without having direct
262  * access to the destination pages of the backing file.
263  */
264 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
265 		loff_t pos, struct page *page)
266 {
267 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
268 			bvec->bv_offset, bvec->bv_len, pos >> 9);
269 	if (likely(!ret))
270 		return __do_lo_send_write(lo->lo_backing_file,
271 				page_address(page), bvec->bv_len,
272 				pos);
273 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
274 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
275 	if (ret > 0)
276 		ret = -EIO;
277 	return ret;
278 }
279 
280 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
281 {
282 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
283 			struct page *page);
284 	struct bio_vec *bvec;
285 	struct page *page = NULL;
286 	int i, ret = 0;
287 
288 	if (lo->transfer != transfer_none) {
289 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
290 		if (unlikely(!page))
291 			goto fail;
292 		kmap(page);
293 		do_lo_send = do_lo_send_write;
294 	} else {
295 		do_lo_send = do_lo_send_direct_write;
296 	}
297 
298 	bio_for_each_segment(bvec, bio, i) {
299 		ret = do_lo_send(lo, bvec, pos, page);
300 		if (ret < 0)
301 			break;
302 		pos += bvec->bv_len;
303 	}
304 	if (page) {
305 		kunmap(page);
306 		__free_page(page);
307 	}
308 out:
309 	return ret;
310 fail:
311 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
312 	ret = -ENOMEM;
313 	goto out;
314 }
315 
316 struct lo_read_data {
317 	struct loop_device *lo;
318 	struct page *page;
319 	unsigned offset;
320 	int bsize;
321 };
322 
323 static int
324 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
325 		struct splice_desc *sd)
326 {
327 	struct lo_read_data *p = sd->u.data;
328 	struct loop_device *lo = p->lo;
329 	struct page *page = buf->page;
330 	sector_t IV;
331 	int size;
332 
333 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
334 							(buf->offset >> 9);
335 	size = sd->len;
336 	if (size > p->bsize)
337 		size = p->bsize;
338 
339 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
340 		printk(KERN_ERR "loop: transfer error block %ld\n",
341 		       page->index);
342 		size = -EINVAL;
343 	}
344 
345 	flush_dcache_page(p->page);
346 
347 	if (size > 0)
348 		p->offset += size;
349 
350 	return size;
351 }
352 
353 static int
354 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
355 {
356 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
357 }
358 
359 static ssize_t
360 do_lo_receive(struct loop_device *lo,
361 	      struct bio_vec *bvec, int bsize, loff_t pos)
362 {
363 	struct lo_read_data cookie;
364 	struct splice_desc sd;
365 	struct file *file;
366 	ssize_t retval;
367 
368 	cookie.lo = lo;
369 	cookie.page = bvec->bv_page;
370 	cookie.offset = bvec->bv_offset;
371 	cookie.bsize = bsize;
372 
373 	sd.len = 0;
374 	sd.total_len = bvec->bv_len;
375 	sd.flags = 0;
376 	sd.pos = pos;
377 	sd.u.data = &cookie;
378 
379 	file = lo->lo_backing_file;
380 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
381 
382 	return retval;
383 }
384 
385 static int
386 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
387 {
388 	struct bio_vec *bvec;
389 	ssize_t s;
390 	int i;
391 
392 	bio_for_each_segment(bvec, bio, i) {
393 		s = do_lo_receive(lo, bvec, bsize, pos);
394 		if (s < 0)
395 			return s;
396 
397 		if (s != bvec->bv_len) {
398 			zero_fill_bio(bio);
399 			break;
400 		}
401 		pos += bvec->bv_len;
402 	}
403 	return 0;
404 }
405 
406 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
407 {
408 	loff_t pos;
409 	int ret;
410 
411 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
412 
413 	if (bio_rw(bio) == WRITE) {
414 		struct file *file = lo->lo_backing_file;
415 
416 		if (bio->bi_rw & REQ_FLUSH) {
417 			ret = vfs_fsync(file, 0);
418 			if (unlikely(ret && ret != -EINVAL)) {
419 				ret = -EIO;
420 				goto out;
421 			}
422 		}
423 
424 		/*
425 		 * We use punch hole to reclaim the free space used by the
426 		 * image a.k.a. discard. However we do not support discard if
427 		 * encryption is enabled, because it may give an attacker
428 		 * useful information.
429 		 */
430 		if (bio->bi_rw & REQ_DISCARD) {
431 			struct file *file = lo->lo_backing_file;
432 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
433 
434 			if ((!file->f_op->fallocate) ||
435 			    lo->lo_encrypt_key_size) {
436 				ret = -EOPNOTSUPP;
437 				goto out;
438 			}
439 			ret = file->f_op->fallocate(file, mode, pos,
440 						    bio->bi_size);
441 			if (unlikely(ret && ret != -EINVAL &&
442 				     ret != -EOPNOTSUPP))
443 				ret = -EIO;
444 			goto out;
445 		}
446 
447 		ret = lo_send(lo, bio, pos);
448 
449 		if ((bio->bi_rw & REQ_FUA) && !ret) {
450 			ret = vfs_fsync(file, 0);
451 			if (unlikely(ret && ret != -EINVAL))
452 				ret = -EIO;
453 		}
454 	} else
455 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
456 
457 out:
458 	return ret;
459 }
460 
461 /*
462  * Add bio to back of pending list
463  */
464 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
465 {
466 	lo->lo_bio_count++;
467 	bio_list_add(&lo->lo_bio_list, bio);
468 }
469 
470 /*
471  * Grab first pending buffer
472  */
473 static struct bio *loop_get_bio(struct loop_device *lo)
474 {
475 	lo->lo_bio_count--;
476 	return bio_list_pop(&lo->lo_bio_list);
477 }
478 
479 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
480 {
481 	struct loop_device *lo = q->queuedata;
482 	int rw = bio_rw(old_bio);
483 
484 	if (rw == READA)
485 		rw = READ;
486 
487 	BUG_ON(!lo || (rw != READ && rw != WRITE));
488 
489 	spin_lock_irq(&lo->lo_lock);
490 	if (lo->lo_state != Lo_bound)
491 		goto out;
492 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
493 		goto out;
494 	if (lo->lo_bio_count >= q->nr_congestion_on)
495 		wait_event_lock_irq(lo->lo_req_wait,
496 				    lo->lo_bio_count < q->nr_congestion_off,
497 				    lo->lo_lock);
498 	loop_add_bio(lo, old_bio);
499 	wake_up(&lo->lo_event);
500 	spin_unlock_irq(&lo->lo_lock);
501 	return;
502 
503 out:
504 	spin_unlock_irq(&lo->lo_lock);
505 	bio_io_error(old_bio);
506 }
507 
508 struct switch_request {
509 	struct file *file;
510 	struct completion wait;
511 };
512 
513 static void do_loop_switch(struct loop_device *, struct switch_request *);
514 
515 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
516 {
517 	if (unlikely(!bio->bi_bdev)) {
518 		do_loop_switch(lo, bio->bi_private);
519 		bio_put(bio);
520 	} else {
521 		int ret = do_bio_filebacked(lo, bio);
522 		bio_endio(bio, ret);
523 	}
524 }
525 
526 /*
527  * worker thread that handles reads/writes to file backed loop devices,
528  * to avoid blocking in our make_request_fn. it also does loop decrypting
529  * on reads for block backed loop, as that is too heavy to do from
530  * b_end_io context where irqs may be disabled.
531  *
532  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
533  * calling kthread_stop().  Therefore once kthread_should_stop() is
534  * true, make_request will not place any more requests.  Therefore
535  * once kthread_should_stop() is true and lo_bio is NULL, we are
536  * done with the loop.
537  */
538 static int loop_thread(void *data)
539 {
540 	struct loop_device *lo = data;
541 	struct bio *bio;
542 
543 	set_user_nice(current, -20);
544 
545 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
546 
547 		wait_event_interruptible(lo->lo_event,
548 				!bio_list_empty(&lo->lo_bio_list) ||
549 				kthread_should_stop());
550 
551 		if (bio_list_empty(&lo->lo_bio_list))
552 			continue;
553 		spin_lock_irq(&lo->lo_lock);
554 		bio = loop_get_bio(lo);
555 		if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
556 			wake_up(&lo->lo_req_wait);
557 		spin_unlock_irq(&lo->lo_lock);
558 
559 		BUG_ON(!bio);
560 		loop_handle_bio(lo, bio);
561 	}
562 
563 	return 0;
564 }
565 
566 /*
567  * loop_switch performs the hard work of switching a backing store.
568  * First it needs to flush existing IO, it does this by sending a magic
569  * BIO down the pipe. The completion of this BIO does the actual switch.
570  */
571 static int loop_switch(struct loop_device *lo, struct file *file)
572 {
573 	struct switch_request w;
574 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
575 	if (!bio)
576 		return -ENOMEM;
577 	init_completion(&w.wait);
578 	w.file = file;
579 	bio->bi_private = &w;
580 	bio->bi_bdev = NULL;
581 	loop_make_request(lo->lo_queue, bio);
582 	wait_for_completion(&w.wait);
583 	return 0;
584 }
585 
586 /*
587  * Helper to flush the IOs in loop, but keeping loop thread running
588  */
589 static int loop_flush(struct loop_device *lo)
590 {
591 	/* loop not yet configured, no running thread, nothing to flush */
592 	if (!lo->lo_thread)
593 		return 0;
594 
595 	return loop_switch(lo, NULL);
596 }
597 
598 /*
599  * Do the actual switch; called from the BIO completion routine
600  */
601 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
602 {
603 	struct file *file = p->file;
604 	struct file *old_file = lo->lo_backing_file;
605 	struct address_space *mapping;
606 
607 	/* if no new file, only flush of queued bios requested */
608 	if (!file)
609 		goto out;
610 
611 	mapping = file->f_mapping;
612 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
613 	lo->lo_backing_file = file;
614 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
615 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
616 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
617 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
618 out:
619 	complete(&p->wait);
620 }
621 
622 
623 /*
624  * loop_change_fd switched the backing store of a loopback device to
625  * a new file. This is useful for operating system installers to free up
626  * the original file and in High Availability environments to switch to
627  * an alternative location for the content in case of server meltdown.
628  * This can only work if the loop device is used read-only, and if the
629  * new backing store is the same size and type as the old backing store.
630  */
631 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
632 			  unsigned int arg)
633 {
634 	struct file	*file, *old_file;
635 	struct inode	*inode;
636 	int		error;
637 
638 	error = -ENXIO;
639 	if (lo->lo_state != Lo_bound)
640 		goto out;
641 
642 	/* the loop device has to be read-only */
643 	error = -EINVAL;
644 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
645 		goto out;
646 
647 	error = -EBADF;
648 	file = fget(arg);
649 	if (!file)
650 		goto out;
651 
652 	inode = file->f_mapping->host;
653 	old_file = lo->lo_backing_file;
654 
655 	error = -EINVAL;
656 
657 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
658 		goto out_putf;
659 
660 	/* size of the new backing store needs to be the same */
661 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
662 		goto out_putf;
663 
664 	/* and ... switch */
665 	error = loop_switch(lo, file);
666 	if (error)
667 		goto out_putf;
668 
669 	fput(old_file);
670 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
671 		ioctl_by_bdev(bdev, BLKRRPART, 0);
672 	return 0;
673 
674  out_putf:
675 	fput(file);
676  out:
677 	return error;
678 }
679 
680 static inline int is_loop_device(struct file *file)
681 {
682 	struct inode *i = file->f_mapping->host;
683 
684 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
685 }
686 
687 /* loop sysfs attributes */
688 
689 static ssize_t loop_attr_show(struct device *dev, char *page,
690 			      ssize_t (*callback)(struct loop_device *, char *))
691 {
692 	struct gendisk *disk = dev_to_disk(dev);
693 	struct loop_device *lo = disk->private_data;
694 
695 	return callback(lo, page);
696 }
697 
698 #define LOOP_ATTR_RO(_name)						\
699 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
700 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
701 				struct device_attribute *attr, char *b)	\
702 {									\
703 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
704 }									\
705 static struct device_attribute loop_attr_##_name =			\
706 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
707 
708 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
709 {
710 	ssize_t ret;
711 	char *p = NULL;
712 
713 	spin_lock_irq(&lo->lo_lock);
714 	if (lo->lo_backing_file)
715 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
716 	spin_unlock_irq(&lo->lo_lock);
717 
718 	if (IS_ERR_OR_NULL(p))
719 		ret = PTR_ERR(p);
720 	else {
721 		ret = strlen(p);
722 		memmove(buf, p, ret);
723 		buf[ret++] = '\n';
724 		buf[ret] = 0;
725 	}
726 
727 	return ret;
728 }
729 
730 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
731 {
732 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
733 }
734 
735 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
736 {
737 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
738 }
739 
740 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
741 {
742 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
743 
744 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
745 }
746 
747 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
748 {
749 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
750 
751 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
752 }
753 
754 LOOP_ATTR_RO(backing_file);
755 LOOP_ATTR_RO(offset);
756 LOOP_ATTR_RO(sizelimit);
757 LOOP_ATTR_RO(autoclear);
758 LOOP_ATTR_RO(partscan);
759 
760 static struct attribute *loop_attrs[] = {
761 	&loop_attr_backing_file.attr,
762 	&loop_attr_offset.attr,
763 	&loop_attr_sizelimit.attr,
764 	&loop_attr_autoclear.attr,
765 	&loop_attr_partscan.attr,
766 	NULL,
767 };
768 
769 static struct attribute_group loop_attribute_group = {
770 	.name = "loop",
771 	.attrs= loop_attrs,
772 };
773 
774 static int loop_sysfs_init(struct loop_device *lo)
775 {
776 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
777 				  &loop_attribute_group);
778 }
779 
780 static void loop_sysfs_exit(struct loop_device *lo)
781 {
782 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
783 			   &loop_attribute_group);
784 }
785 
786 static void loop_config_discard(struct loop_device *lo)
787 {
788 	struct file *file = lo->lo_backing_file;
789 	struct inode *inode = file->f_mapping->host;
790 	struct request_queue *q = lo->lo_queue;
791 
792 	/*
793 	 * We use punch hole to reclaim the free space used by the
794 	 * image a.k.a. discard. However we do support discard if
795 	 * encryption is enabled, because it may give an attacker
796 	 * useful information.
797 	 */
798 	if ((!file->f_op->fallocate) ||
799 	    lo->lo_encrypt_key_size) {
800 		q->limits.discard_granularity = 0;
801 		q->limits.discard_alignment = 0;
802 		q->limits.max_discard_sectors = 0;
803 		q->limits.discard_zeroes_data = 0;
804 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
805 		return;
806 	}
807 
808 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
809 	q->limits.discard_alignment = 0;
810 	q->limits.max_discard_sectors = UINT_MAX >> 9;
811 	q->limits.discard_zeroes_data = 1;
812 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
813 }
814 
815 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
816 		       struct block_device *bdev, unsigned int arg)
817 {
818 	struct file	*file, *f;
819 	struct inode	*inode;
820 	struct address_space *mapping;
821 	unsigned lo_blocksize;
822 	int		lo_flags = 0;
823 	int		error;
824 	loff_t		size;
825 
826 	/* This is safe, since we have a reference from open(). */
827 	__module_get(THIS_MODULE);
828 
829 	error = -EBADF;
830 	file = fget(arg);
831 	if (!file)
832 		goto out;
833 
834 	error = -EBUSY;
835 	if (lo->lo_state != Lo_unbound)
836 		goto out_putf;
837 
838 	/* Avoid recursion */
839 	f = file;
840 	while (is_loop_device(f)) {
841 		struct loop_device *l;
842 
843 		if (f->f_mapping->host->i_bdev == bdev)
844 			goto out_putf;
845 
846 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
847 		if (l->lo_state == Lo_unbound) {
848 			error = -EINVAL;
849 			goto out_putf;
850 		}
851 		f = l->lo_backing_file;
852 	}
853 
854 	mapping = file->f_mapping;
855 	inode = mapping->host;
856 
857 	error = -EINVAL;
858 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
859 		goto out_putf;
860 
861 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
862 	    !file->f_op->write)
863 		lo_flags |= LO_FLAGS_READ_ONLY;
864 
865 	lo_blocksize = S_ISBLK(inode->i_mode) ?
866 		inode->i_bdev->bd_block_size : PAGE_SIZE;
867 
868 	error = -EFBIG;
869 	size = get_loop_size(lo, file);
870 	if ((loff_t)(sector_t)size != size)
871 		goto out_putf;
872 
873 	error = 0;
874 
875 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
876 
877 	lo->lo_blocksize = lo_blocksize;
878 	lo->lo_device = bdev;
879 	lo->lo_flags = lo_flags;
880 	lo->lo_backing_file = file;
881 	lo->transfer = transfer_none;
882 	lo->ioctl = NULL;
883 	lo->lo_sizelimit = 0;
884 	lo->lo_bio_count = 0;
885 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
886 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
887 
888 	bio_list_init(&lo->lo_bio_list);
889 
890 	/*
891 	 * set queue make_request_fn, and add limits based on lower level
892 	 * device
893 	 */
894 	blk_queue_make_request(lo->lo_queue, loop_make_request);
895 	lo->lo_queue->queuedata = lo;
896 
897 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
898 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
899 
900 	set_capacity(lo->lo_disk, size);
901 	bd_set_size(bdev, size << 9);
902 	loop_sysfs_init(lo);
903 	/* let user-space know about the new size */
904 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
905 
906 	set_blocksize(bdev, lo_blocksize);
907 
908 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
909 						lo->lo_number);
910 	if (IS_ERR(lo->lo_thread)) {
911 		error = PTR_ERR(lo->lo_thread);
912 		goto out_clr;
913 	}
914 	lo->lo_state = Lo_bound;
915 	wake_up_process(lo->lo_thread);
916 	if (part_shift)
917 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
918 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
919 		ioctl_by_bdev(bdev, BLKRRPART, 0);
920 	return 0;
921 
922 out_clr:
923 	loop_sysfs_exit(lo);
924 	lo->lo_thread = NULL;
925 	lo->lo_device = NULL;
926 	lo->lo_backing_file = NULL;
927 	lo->lo_flags = 0;
928 	set_capacity(lo->lo_disk, 0);
929 	invalidate_bdev(bdev);
930 	bd_set_size(bdev, 0);
931 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
932 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
933 	lo->lo_state = Lo_unbound;
934  out_putf:
935 	fput(file);
936  out:
937 	/* This is safe: open() is still holding a reference. */
938 	module_put(THIS_MODULE);
939 	return error;
940 }
941 
942 static int
943 loop_release_xfer(struct loop_device *lo)
944 {
945 	int err = 0;
946 	struct loop_func_table *xfer = lo->lo_encryption;
947 
948 	if (xfer) {
949 		if (xfer->release)
950 			err = xfer->release(lo);
951 		lo->transfer = NULL;
952 		lo->lo_encryption = NULL;
953 		module_put(xfer->owner);
954 	}
955 	return err;
956 }
957 
958 static int
959 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
960 	       const struct loop_info64 *i)
961 {
962 	int err = 0;
963 
964 	if (xfer) {
965 		struct module *owner = xfer->owner;
966 
967 		if (!try_module_get(owner))
968 			return -EINVAL;
969 		if (xfer->init)
970 			err = xfer->init(lo, i);
971 		if (err)
972 			module_put(owner);
973 		else
974 			lo->lo_encryption = xfer;
975 	}
976 	return err;
977 }
978 
979 static int loop_clr_fd(struct loop_device *lo)
980 {
981 	struct file *filp = lo->lo_backing_file;
982 	gfp_t gfp = lo->old_gfp_mask;
983 	struct block_device *bdev = lo->lo_device;
984 
985 	if (lo->lo_state != Lo_bound)
986 		return -ENXIO;
987 
988 	/*
989 	 * If we've explicitly asked to tear down the loop device,
990 	 * and it has an elevated reference count, set it for auto-teardown when
991 	 * the last reference goes away. This stops $!~#$@ udev from
992 	 * preventing teardown because it decided that it needs to run blkid on
993 	 * the loopback device whenever they appear. xfstests is notorious for
994 	 * failing tests because blkid via udev races with a losetup
995 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
996 	 * command to fail with EBUSY.
997 	 */
998 	if (lo->lo_refcnt > 1) {
999 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1000 		mutex_unlock(&lo->lo_ctl_mutex);
1001 		return 0;
1002 	}
1003 
1004 	if (filp == NULL)
1005 		return -EINVAL;
1006 
1007 	spin_lock_irq(&lo->lo_lock);
1008 	lo->lo_state = Lo_rundown;
1009 	spin_unlock_irq(&lo->lo_lock);
1010 
1011 	kthread_stop(lo->lo_thread);
1012 
1013 	spin_lock_irq(&lo->lo_lock);
1014 	lo->lo_backing_file = NULL;
1015 	spin_unlock_irq(&lo->lo_lock);
1016 
1017 	loop_release_xfer(lo);
1018 	lo->transfer = NULL;
1019 	lo->ioctl = NULL;
1020 	lo->lo_device = NULL;
1021 	lo->lo_encryption = NULL;
1022 	lo->lo_offset = 0;
1023 	lo->lo_sizelimit = 0;
1024 	lo->lo_encrypt_key_size = 0;
1025 	lo->lo_thread = NULL;
1026 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1027 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1028 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1029 	if (bdev)
1030 		invalidate_bdev(bdev);
1031 	set_capacity(lo->lo_disk, 0);
1032 	loop_sysfs_exit(lo);
1033 	if (bdev) {
1034 		bd_set_size(bdev, 0);
1035 		/* let user-space know about this change */
1036 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1037 	}
1038 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1039 	lo->lo_state = Lo_unbound;
1040 	/* This is safe: open() is still holding a reference. */
1041 	module_put(THIS_MODULE);
1042 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1043 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1044 	lo->lo_flags = 0;
1045 	if (!part_shift)
1046 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1047 	mutex_unlock(&lo->lo_ctl_mutex);
1048 	/*
1049 	 * Need not hold lo_ctl_mutex to fput backing file.
1050 	 * Calling fput holding lo_ctl_mutex triggers a circular
1051 	 * lock dependency possibility warning as fput can take
1052 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1053 	 */
1054 	fput(filp);
1055 	return 0;
1056 }
1057 
1058 static int
1059 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1060 {
1061 	int err;
1062 	struct loop_func_table *xfer;
1063 	kuid_t uid = current_uid();
1064 
1065 	if (lo->lo_encrypt_key_size &&
1066 	    !uid_eq(lo->lo_key_owner, uid) &&
1067 	    !capable(CAP_SYS_ADMIN))
1068 		return -EPERM;
1069 	if (lo->lo_state != Lo_bound)
1070 		return -ENXIO;
1071 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1072 		return -EINVAL;
1073 
1074 	err = loop_release_xfer(lo);
1075 	if (err)
1076 		return err;
1077 
1078 	if (info->lo_encrypt_type) {
1079 		unsigned int type = info->lo_encrypt_type;
1080 
1081 		if (type >= MAX_LO_CRYPT)
1082 			return -EINVAL;
1083 		xfer = xfer_funcs[type];
1084 		if (xfer == NULL)
1085 			return -EINVAL;
1086 	} else
1087 		xfer = NULL;
1088 
1089 	err = loop_init_xfer(lo, xfer, info);
1090 	if (err)
1091 		return err;
1092 
1093 	if (lo->lo_offset != info->lo_offset ||
1094 	    lo->lo_sizelimit != info->lo_sizelimit) {
1095 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1096 			return -EFBIG;
1097 	}
1098 	loop_config_discard(lo);
1099 
1100 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1101 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1102 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1103 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1104 
1105 	if (!xfer)
1106 		xfer = &none_funcs;
1107 	lo->transfer = xfer->transfer;
1108 	lo->ioctl = xfer->ioctl;
1109 
1110 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1111 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1112 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1113 
1114 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1115 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1116 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1117 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1118 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1119 	}
1120 
1121 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1122 	lo->lo_init[0] = info->lo_init[0];
1123 	lo->lo_init[1] = info->lo_init[1];
1124 	if (info->lo_encrypt_key_size) {
1125 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1126 		       info->lo_encrypt_key_size);
1127 		lo->lo_key_owner = uid;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static int
1134 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1135 {
1136 	struct file *file = lo->lo_backing_file;
1137 	struct kstat stat;
1138 	int error;
1139 
1140 	if (lo->lo_state != Lo_bound)
1141 		return -ENXIO;
1142 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1143 	if (error)
1144 		return error;
1145 	memset(info, 0, sizeof(*info));
1146 	info->lo_number = lo->lo_number;
1147 	info->lo_device = huge_encode_dev(stat.dev);
1148 	info->lo_inode = stat.ino;
1149 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1150 	info->lo_offset = lo->lo_offset;
1151 	info->lo_sizelimit = lo->lo_sizelimit;
1152 	info->lo_flags = lo->lo_flags;
1153 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1154 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1155 	info->lo_encrypt_type =
1156 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1157 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1158 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1159 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1160 		       lo->lo_encrypt_key_size);
1161 	}
1162 	return 0;
1163 }
1164 
1165 static void
1166 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1167 {
1168 	memset(info64, 0, sizeof(*info64));
1169 	info64->lo_number = info->lo_number;
1170 	info64->lo_device = info->lo_device;
1171 	info64->lo_inode = info->lo_inode;
1172 	info64->lo_rdevice = info->lo_rdevice;
1173 	info64->lo_offset = info->lo_offset;
1174 	info64->lo_sizelimit = 0;
1175 	info64->lo_encrypt_type = info->lo_encrypt_type;
1176 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1177 	info64->lo_flags = info->lo_flags;
1178 	info64->lo_init[0] = info->lo_init[0];
1179 	info64->lo_init[1] = info->lo_init[1];
1180 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1181 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1182 	else
1183 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1184 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1185 }
1186 
1187 static int
1188 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1189 {
1190 	memset(info, 0, sizeof(*info));
1191 	info->lo_number = info64->lo_number;
1192 	info->lo_device = info64->lo_device;
1193 	info->lo_inode = info64->lo_inode;
1194 	info->lo_rdevice = info64->lo_rdevice;
1195 	info->lo_offset = info64->lo_offset;
1196 	info->lo_encrypt_type = info64->lo_encrypt_type;
1197 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1198 	info->lo_flags = info64->lo_flags;
1199 	info->lo_init[0] = info64->lo_init[0];
1200 	info->lo_init[1] = info64->lo_init[1];
1201 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1202 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1203 	else
1204 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1205 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1206 
1207 	/* error in case values were truncated */
1208 	if (info->lo_device != info64->lo_device ||
1209 	    info->lo_rdevice != info64->lo_rdevice ||
1210 	    info->lo_inode != info64->lo_inode ||
1211 	    info->lo_offset != info64->lo_offset)
1212 		return -EOVERFLOW;
1213 
1214 	return 0;
1215 }
1216 
1217 static int
1218 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1219 {
1220 	struct loop_info info;
1221 	struct loop_info64 info64;
1222 
1223 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1224 		return -EFAULT;
1225 	loop_info64_from_old(&info, &info64);
1226 	return loop_set_status(lo, &info64);
1227 }
1228 
1229 static int
1230 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1231 {
1232 	struct loop_info64 info64;
1233 
1234 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1235 		return -EFAULT;
1236 	return loop_set_status(lo, &info64);
1237 }
1238 
1239 static int
1240 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1241 	struct loop_info info;
1242 	struct loop_info64 info64;
1243 	int err = 0;
1244 
1245 	if (!arg)
1246 		err = -EINVAL;
1247 	if (!err)
1248 		err = loop_get_status(lo, &info64);
1249 	if (!err)
1250 		err = loop_info64_to_old(&info64, &info);
1251 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1252 		err = -EFAULT;
1253 
1254 	return err;
1255 }
1256 
1257 static int
1258 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1259 	struct loop_info64 info64;
1260 	int err = 0;
1261 
1262 	if (!arg)
1263 		err = -EINVAL;
1264 	if (!err)
1265 		err = loop_get_status(lo, &info64);
1266 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1267 		err = -EFAULT;
1268 
1269 	return err;
1270 }
1271 
1272 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1273 {
1274 	int err;
1275 	sector_t sec;
1276 	loff_t sz;
1277 
1278 	err = -ENXIO;
1279 	if (unlikely(lo->lo_state != Lo_bound))
1280 		goto out;
1281 	err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1282 	if (unlikely(err))
1283 		goto out;
1284 	sec = get_capacity(lo->lo_disk);
1285 	/* the width of sector_t may be narrow for bit-shift */
1286 	sz = sec;
1287 	sz <<= 9;
1288 	mutex_lock(&bdev->bd_mutex);
1289 	bd_set_size(bdev, sz);
1290 	/* let user-space know about the new size */
1291 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1292 	mutex_unlock(&bdev->bd_mutex);
1293 
1294  out:
1295 	return err;
1296 }
1297 
1298 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1299 	unsigned int cmd, unsigned long arg)
1300 {
1301 	struct loop_device *lo = bdev->bd_disk->private_data;
1302 	int err;
1303 
1304 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1305 	switch (cmd) {
1306 	case LOOP_SET_FD:
1307 		err = loop_set_fd(lo, mode, bdev, arg);
1308 		break;
1309 	case LOOP_CHANGE_FD:
1310 		err = loop_change_fd(lo, bdev, arg);
1311 		break;
1312 	case LOOP_CLR_FD:
1313 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1314 		err = loop_clr_fd(lo);
1315 		if (!err)
1316 			goto out_unlocked;
1317 		break;
1318 	case LOOP_SET_STATUS:
1319 		err = -EPERM;
1320 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1321 			err = loop_set_status_old(lo,
1322 					(struct loop_info __user *)arg);
1323 		break;
1324 	case LOOP_GET_STATUS:
1325 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1326 		break;
1327 	case LOOP_SET_STATUS64:
1328 		err = -EPERM;
1329 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1330 			err = loop_set_status64(lo,
1331 					(struct loop_info64 __user *) arg);
1332 		break;
1333 	case LOOP_GET_STATUS64:
1334 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1335 		break;
1336 	case LOOP_SET_CAPACITY:
1337 		err = -EPERM;
1338 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1339 			err = loop_set_capacity(lo, bdev);
1340 		break;
1341 	default:
1342 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1343 	}
1344 	mutex_unlock(&lo->lo_ctl_mutex);
1345 
1346 out_unlocked:
1347 	return err;
1348 }
1349 
1350 #ifdef CONFIG_COMPAT
1351 struct compat_loop_info {
1352 	compat_int_t	lo_number;      /* ioctl r/o */
1353 	compat_dev_t	lo_device;      /* ioctl r/o */
1354 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1355 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1356 	compat_int_t	lo_offset;
1357 	compat_int_t	lo_encrypt_type;
1358 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1359 	compat_int_t	lo_flags;       /* ioctl r/o */
1360 	char		lo_name[LO_NAME_SIZE];
1361 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1362 	compat_ulong_t	lo_init[2];
1363 	char		reserved[4];
1364 };
1365 
1366 /*
1367  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1368  * - noinlined to reduce stack space usage in main part of driver
1369  */
1370 static noinline int
1371 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1372 			struct loop_info64 *info64)
1373 {
1374 	struct compat_loop_info info;
1375 
1376 	if (copy_from_user(&info, arg, sizeof(info)))
1377 		return -EFAULT;
1378 
1379 	memset(info64, 0, sizeof(*info64));
1380 	info64->lo_number = info.lo_number;
1381 	info64->lo_device = info.lo_device;
1382 	info64->lo_inode = info.lo_inode;
1383 	info64->lo_rdevice = info.lo_rdevice;
1384 	info64->lo_offset = info.lo_offset;
1385 	info64->lo_sizelimit = 0;
1386 	info64->lo_encrypt_type = info.lo_encrypt_type;
1387 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1388 	info64->lo_flags = info.lo_flags;
1389 	info64->lo_init[0] = info.lo_init[0];
1390 	info64->lo_init[1] = info.lo_init[1];
1391 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1392 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1393 	else
1394 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1395 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1396 	return 0;
1397 }
1398 
1399 /*
1400  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1401  * - noinlined to reduce stack space usage in main part of driver
1402  */
1403 static noinline int
1404 loop_info64_to_compat(const struct loop_info64 *info64,
1405 		      struct compat_loop_info __user *arg)
1406 {
1407 	struct compat_loop_info info;
1408 
1409 	memset(&info, 0, sizeof(info));
1410 	info.lo_number = info64->lo_number;
1411 	info.lo_device = info64->lo_device;
1412 	info.lo_inode = info64->lo_inode;
1413 	info.lo_rdevice = info64->lo_rdevice;
1414 	info.lo_offset = info64->lo_offset;
1415 	info.lo_encrypt_type = info64->lo_encrypt_type;
1416 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1417 	info.lo_flags = info64->lo_flags;
1418 	info.lo_init[0] = info64->lo_init[0];
1419 	info.lo_init[1] = info64->lo_init[1];
1420 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1421 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1422 	else
1423 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1424 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1425 
1426 	/* error in case values were truncated */
1427 	if (info.lo_device != info64->lo_device ||
1428 	    info.lo_rdevice != info64->lo_rdevice ||
1429 	    info.lo_inode != info64->lo_inode ||
1430 	    info.lo_offset != info64->lo_offset ||
1431 	    info.lo_init[0] != info64->lo_init[0] ||
1432 	    info.lo_init[1] != info64->lo_init[1])
1433 		return -EOVERFLOW;
1434 
1435 	if (copy_to_user(arg, &info, sizeof(info)))
1436 		return -EFAULT;
1437 	return 0;
1438 }
1439 
1440 static int
1441 loop_set_status_compat(struct loop_device *lo,
1442 		       const struct compat_loop_info __user *arg)
1443 {
1444 	struct loop_info64 info64;
1445 	int ret;
1446 
1447 	ret = loop_info64_from_compat(arg, &info64);
1448 	if (ret < 0)
1449 		return ret;
1450 	return loop_set_status(lo, &info64);
1451 }
1452 
1453 static int
1454 loop_get_status_compat(struct loop_device *lo,
1455 		       struct compat_loop_info __user *arg)
1456 {
1457 	struct loop_info64 info64;
1458 	int err = 0;
1459 
1460 	if (!arg)
1461 		err = -EINVAL;
1462 	if (!err)
1463 		err = loop_get_status(lo, &info64);
1464 	if (!err)
1465 		err = loop_info64_to_compat(&info64, arg);
1466 	return err;
1467 }
1468 
1469 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1470 			   unsigned int cmd, unsigned long arg)
1471 {
1472 	struct loop_device *lo = bdev->bd_disk->private_data;
1473 	int err;
1474 
1475 	switch(cmd) {
1476 	case LOOP_SET_STATUS:
1477 		mutex_lock(&lo->lo_ctl_mutex);
1478 		err = loop_set_status_compat(
1479 			lo, (const struct compat_loop_info __user *) arg);
1480 		mutex_unlock(&lo->lo_ctl_mutex);
1481 		break;
1482 	case LOOP_GET_STATUS:
1483 		mutex_lock(&lo->lo_ctl_mutex);
1484 		err = loop_get_status_compat(
1485 			lo, (struct compat_loop_info __user *) arg);
1486 		mutex_unlock(&lo->lo_ctl_mutex);
1487 		break;
1488 	case LOOP_SET_CAPACITY:
1489 	case LOOP_CLR_FD:
1490 	case LOOP_GET_STATUS64:
1491 	case LOOP_SET_STATUS64:
1492 		arg = (unsigned long) compat_ptr(arg);
1493 	case LOOP_SET_FD:
1494 	case LOOP_CHANGE_FD:
1495 		err = lo_ioctl(bdev, mode, cmd, arg);
1496 		break;
1497 	default:
1498 		err = -ENOIOCTLCMD;
1499 		break;
1500 	}
1501 	return err;
1502 }
1503 #endif
1504 
1505 static int lo_open(struct block_device *bdev, fmode_t mode)
1506 {
1507 	struct loop_device *lo;
1508 	int err = 0;
1509 
1510 	mutex_lock(&loop_index_mutex);
1511 	lo = bdev->bd_disk->private_data;
1512 	if (!lo) {
1513 		err = -ENXIO;
1514 		goto out;
1515 	}
1516 
1517 	mutex_lock(&lo->lo_ctl_mutex);
1518 	lo->lo_refcnt++;
1519 	mutex_unlock(&lo->lo_ctl_mutex);
1520 out:
1521 	mutex_unlock(&loop_index_mutex);
1522 	return err;
1523 }
1524 
1525 static int lo_release(struct gendisk *disk, fmode_t mode)
1526 {
1527 	struct loop_device *lo = disk->private_data;
1528 	int err;
1529 
1530 	mutex_lock(&lo->lo_ctl_mutex);
1531 
1532 	if (--lo->lo_refcnt)
1533 		goto out;
1534 
1535 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1536 		/*
1537 		 * In autoclear mode, stop the loop thread
1538 		 * and remove configuration after last close.
1539 		 */
1540 		err = loop_clr_fd(lo);
1541 		if (!err)
1542 			goto out_unlocked;
1543 	} else {
1544 		/*
1545 		 * Otherwise keep thread (if running) and config,
1546 		 * but flush possible ongoing bios in thread.
1547 		 */
1548 		loop_flush(lo);
1549 	}
1550 
1551 out:
1552 	mutex_unlock(&lo->lo_ctl_mutex);
1553 out_unlocked:
1554 	return 0;
1555 }
1556 
1557 static const struct block_device_operations lo_fops = {
1558 	.owner =	THIS_MODULE,
1559 	.open =		lo_open,
1560 	.release =	lo_release,
1561 	.ioctl =	lo_ioctl,
1562 #ifdef CONFIG_COMPAT
1563 	.compat_ioctl =	lo_compat_ioctl,
1564 #endif
1565 };
1566 
1567 /*
1568  * And now the modules code and kernel interface.
1569  */
1570 static int max_loop;
1571 module_param(max_loop, int, S_IRUGO);
1572 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1573 module_param(max_part, int, S_IRUGO);
1574 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1575 MODULE_LICENSE("GPL");
1576 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1577 
1578 int loop_register_transfer(struct loop_func_table *funcs)
1579 {
1580 	unsigned int n = funcs->number;
1581 
1582 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1583 		return -EINVAL;
1584 	xfer_funcs[n] = funcs;
1585 	return 0;
1586 }
1587 
1588 static int unregister_transfer_cb(int id, void *ptr, void *data)
1589 {
1590 	struct loop_device *lo = ptr;
1591 	struct loop_func_table *xfer = data;
1592 
1593 	mutex_lock(&lo->lo_ctl_mutex);
1594 	if (lo->lo_encryption == xfer)
1595 		loop_release_xfer(lo);
1596 	mutex_unlock(&lo->lo_ctl_mutex);
1597 	return 0;
1598 }
1599 
1600 int loop_unregister_transfer(int number)
1601 {
1602 	unsigned int n = number;
1603 	struct loop_func_table *xfer;
1604 
1605 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1606 		return -EINVAL;
1607 
1608 	xfer_funcs[n] = NULL;
1609 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1610 	return 0;
1611 }
1612 
1613 EXPORT_SYMBOL(loop_register_transfer);
1614 EXPORT_SYMBOL(loop_unregister_transfer);
1615 
1616 static int loop_add(struct loop_device **l, int i)
1617 {
1618 	struct loop_device *lo;
1619 	struct gendisk *disk;
1620 	int err;
1621 
1622 	err = -ENOMEM;
1623 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1624 	if (!lo)
1625 		goto out;
1626 
1627 	if (!idr_pre_get(&loop_index_idr, GFP_KERNEL))
1628 		goto out_free_dev;
1629 
1630 	if (i >= 0) {
1631 		int m;
1632 
1633 		/* create specific i in the index */
1634 		err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1635 		if (err >= 0 && i != m) {
1636 			idr_remove(&loop_index_idr, m);
1637 			err = -EEXIST;
1638 		}
1639 	} else if (i == -1) {
1640 		int m;
1641 
1642 		/* get next free nr */
1643 		err = idr_get_new(&loop_index_idr, lo, &m);
1644 		if (err >= 0)
1645 			i = m;
1646 	} else {
1647 		err = -EINVAL;
1648 	}
1649 	if (err < 0)
1650 		goto out_free_dev;
1651 
1652 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1653 	if (!lo->lo_queue)
1654 		goto out_free_dev;
1655 
1656 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1657 	if (!disk)
1658 		goto out_free_queue;
1659 
1660 	/*
1661 	 * Disable partition scanning by default. The in-kernel partition
1662 	 * scanning can be requested individually per-device during its
1663 	 * setup. Userspace can always add and remove partitions from all
1664 	 * devices. The needed partition minors are allocated from the
1665 	 * extended minor space, the main loop device numbers will continue
1666 	 * to match the loop minors, regardless of the number of partitions
1667 	 * used.
1668 	 *
1669 	 * If max_part is given, partition scanning is globally enabled for
1670 	 * all loop devices. The minors for the main loop devices will be
1671 	 * multiples of max_part.
1672 	 *
1673 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1674 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1675 	 * complicated, are too static, inflexible and may surprise
1676 	 * userspace tools. Parameters like this in general should be avoided.
1677 	 */
1678 	if (!part_shift)
1679 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1680 	disk->flags |= GENHD_FL_EXT_DEVT;
1681 	mutex_init(&lo->lo_ctl_mutex);
1682 	lo->lo_number		= i;
1683 	lo->lo_thread		= NULL;
1684 	init_waitqueue_head(&lo->lo_event);
1685 	init_waitqueue_head(&lo->lo_req_wait);
1686 	spin_lock_init(&lo->lo_lock);
1687 	disk->major		= LOOP_MAJOR;
1688 	disk->first_minor	= i << part_shift;
1689 	disk->fops		= &lo_fops;
1690 	disk->private_data	= lo;
1691 	disk->queue		= lo->lo_queue;
1692 	sprintf(disk->disk_name, "loop%d", i);
1693 	add_disk(disk);
1694 	*l = lo;
1695 	return lo->lo_number;
1696 
1697 out_free_queue:
1698 	blk_cleanup_queue(lo->lo_queue);
1699 out_free_dev:
1700 	kfree(lo);
1701 out:
1702 	return err;
1703 }
1704 
1705 static void loop_remove(struct loop_device *lo)
1706 {
1707 	del_gendisk(lo->lo_disk);
1708 	blk_cleanup_queue(lo->lo_queue);
1709 	put_disk(lo->lo_disk);
1710 	kfree(lo);
1711 }
1712 
1713 static int find_free_cb(int id, void *ptr, void *data)
1714 {
1715 	struct loop_device *lo = ptr;
1716 	struct loop_device **l = data;
1717 
1718 	if (lo->lo_state == Lo_unbound) {
1719 		*l = lo;
1720 		return 1;
1721 	}
1722 	return 0;
1723 }
1724 
1725 static int loop_lookup(struct loop_device **l, int i)
1726 {
1727 	struct loop_device *lo;
1728 	int ret = -ENODEV;
1729 
1730 	if (i < 0) {
1731 		int err;
1732 
1733 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1734 		if (err == 1) {
1735 			*l = lo;
1736 			ret = lo->lo_number;
1737 		}
1738 		goto out;
1739 	}
1740 
1741 	/* lookup and return a specific i */
1742 	lo = idr_find(&loop_index_idr, i);
1743 	if (lo) {
1744 		*l = lo;
1745 		ret = lo->lo_number;
1746 	}
1747 out:
1748 	return ret;
1749 }
1750 
1751 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1752 {
1753 	struct loop_device *lo;
1754 	struct kobject *kobj;
1755 	int err;
1756 
1757 	mutex_lock(&loop_index_mutex);
1758 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1759 	if (err < 0)
1760 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1761 	if (err < 0)
1762 		kobj = ERR_PTR(err);
1763 	else
1764 		kobj = get_disk(lo->lo_disk);
1765 	mutex_unlock(&loop_index_mutex);
1766 
1767 	*part = 0;
1768 	return kobj;
1769 }
1770 
1771 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1772 			       unsigned long parm)
1773 {
1774 	struct loop_device *lo;
1775 	int ret = -ENOSYS;
1776 
1777 	mutex_lock(&loop_index_mutex);
1778 	switch (cmd) {
1779 	case LOOP_CTL_ADD:
1780 		ret = loop_lookup(&lo, parm);
1781 		if (ret >= 0) {
1782 			ret = -EEXIST;
1783 			break;
1784 		}
1785 		ret = loop_add(&lo, parm);
1786 		break;
1787 	case LOOP_CTL_REMOVE:
1788 		ret = loop_lookup(&lo, parm);
1789 		if (ret < 0)
1790 			break;
1791 		mutex_lock(&lo->lo_ctl_mutex);
1792 		if (lo->lo_state != Lo_unbound) {
1793 			ret = -EBUSY;
1794 			mutex_unlock(&lo->lo_ctl_mutex);
1795 			break;
1796 		}
1797 		if (lo->lo_refcnt > 0) {
1798 			ret = -EBUSY;
1799 			mutex_unlock(&lo->lo_ctl_mutex);
1800 			break;
1801 		}
1802 		lo->lo_disk->private_data = NULL;
1803 		mutex_unlock(&lo->lo_ctl_mutex);
1804 		idr_remove(&loop_index_idr, lo->lo_number);
1805 		loop_remove(lo);
1806 		break;
1807 	case LOOP_CTL_GET_FREE:
1808 		ret = loop_lookup(&lo, -1);
1809 		if (ret >= 0)
1810 			break;
1811 		ret = loop_add(&lo, -1);
1812 	}
1813 	mutex_unlock(&loop_index_mutex);
1814 
1815 	return ret;
1816 }
1817 
1818 static const struct file_operations loop_ctl_fops = {
1819 	.open		= nonseekable_open,
1820 	.unlocked_ioctl	= loop_control_ioctl,
1821 	.compat_ioctl	= loop_control_ioctl,
1822 	.owner		= THIS_MODULE,
1823 	.llseek		= noop_llseek,
1824 };
1825 
1826 static struct miscdevice loop_misc = {
1827 	.minor		= LOOP_CTRL_MINOR,
1828 	.name		= "loop-control",
1829 	.fops		= &loop_ctl_fops,
1830 };
1831 
1832 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1833 MODULE_ALIAS("devname:loop-control");
1834 
1835 static int __init loop_init(void)
1836 {
1837 	int i, nr;
1838 	unsigned long range;
1839 	struct loop_device *lo;
1840 	int err;
1841 
1842 	err = misc_register(&loop_misc);
1843 	if (err < 0)
1844 		return err;
1845 
1846 	part_shift = 0;
1847 	if (max_part > 0) {
1848 		part_shift = fls(max_part);
1849 
1850 		/*
1851 		 * Adjust max_part according to part_shift as it is exported
1852 		 * to user space so that user can decide correct minor number
1853 		 * if [s]he want to create more devices.
1854 		 *
1855 		 * Note that -1 is required because partition 0 is reserved
1856 		 * for the whole disk.
1857 		 */
1858 		max_part = (1UL << part_shift) - 1;
1859 	}
1860 
1861 	if ((1UL << part_shift) > DISK_MAX_PARTS)
1862 		return -EINVAL;
1863 
1864 	if (max_loop > 1UL << (MINORBITS - part_shift))
1865 		return -EINVAL;
1866 
1867 	/*
1868 	 * If max_loop is specified, create that many devices upfront.
1869 	 * This also becomes a hard limit. If max_loop is not specified,
1870 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1871 	 * init time. Loop devices can be requested on-demand with the
1872 	 * /dev/loop-control interface, or be instantiated by accessing
1873 	 * a 'dead' device node.
1874 	 */
1875 	if (max_loop) {
1876 		nr = max_loop;
1877 		range = max_loop << part_shift;
1878 	} else {
1879 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1880 		range = 1UL << MINORBITS;
1881 	}
1882 
1883 	if (register_blkdev(LOOP_MAJOR, "loop"))
1884 		return -EIO;
1885 
1886 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1887 				  THIS_MODULE, loop_probe, NULL, NULL);
1888 
1889 	/* pre-create number of devices given by config or max_loop */
1890 	mutex_lock(&loop_index_mutex);
1891 	for (i = 0; i < nr; i++)
1892 		loop_add(&lo, i);
1893 	mutex_unlock(&loop_index_mutex);
1894 
1895 	printk(KERN_INFO "loop: module loaded\n");
1896 	return 0;
1897 }
1898 
1899 static int loop_exit_cb(int id, void *ptr, void *data)
1900 {
1901 	struct loop_device *lo = ptr;
1902 
1903 	loop_remove(lo);
1904 	return 0;
1905 }
1906 
1907 static void __exit loop_exit(void)
1908 {
1909 	unsigned long range;
1910 
1911 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1912 
1913 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1914 	idr_remove_all(&loop_index_idr);
1915 	idr_destroy(&loop_index_idr);
1916 
1917 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1918 	unregister_blkdev(LOOP_MAJOR, "loop");
1919 
1920 	misc_deregister(&loop_misc);
1921 }
1922 
1923 module_init(loop_init);
1924 module_exit(loop_exit);
1925 
1926 #ifndef MODULE
1927 static int __init max_loop_setup(char *str)
1928 {
1929 	max_loop = simple_strtol(str, NULL, 0);
1930 	return 1;
1931 }
1932 
1933 __setup("max_loop=", max_loop_setup);
1934 #endif
1935