1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/loop.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/kthread.h> 75 #include <linux/splice.h> 76 #include <linux/sysfs.h> 77 #include <linux/miscdevice.h> 78 #include <linux/falloc.h> 79 80 #include <asm/uaccess.h> 81 82 static DEFINE_IDR(loop_index_idr); 83 static DEFINE_MUTEX(loop_index_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf); 105 kunmap_atomic(raw_buf); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf); 134 kunmap_atomic(raw_buf); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 164 { 165 loff_t size, loopsize; 166 167 /* Compute loopsize in bytes */ 168 size = i_size_read(file->f_mapping->host); 169 loopsize = size - offset; 170 /* offset is beyond i_size, wierd but possible */ 171 if (loopsize < 0) 172 return 0; 173 174 if (sizelimit > 0 && sizelimit < loopsize) 175 loopsize = sizelimit; 176 /* 177 * Unfortunately, if we want to do I/O on the device, 178 * the number of 512-byte sectors has to fit into a sector_t. 179 */ 180 return loopsize >> 9; 181 } 182 183 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 184 { 185 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 186 } 187 188 static int 189 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 190 { 191 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 192 sector_t x = (sector_t)size; 193 194 if (unlikely((loff_t)x != size)) 195 return -EFBIG; 196 if (lo->lo_offset != offset) 197 lo->lo_offset = offset; 198 if (lo->lo_sizelimit != sizelimit) 199 lo->lo_sizelimit = sizelimit; 200 set_capacity(lo->lo_disk, x); 201 return 0; 202 } 203 204 static inline int 205 lo_do_transfer(struct loop_device *lo, int cmd, 206 struct page *rpage, unsigned roffs, 207 struct page *lpage, unsigned loffs, 208 int size, sector_t rblock) 209 { 210 if (unlikely(!lo->transfer)) 211 return 0; 212 213 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 214 } 215 216 /** 217 * __do_lo_send_write - helper for writing data to a loop device 218 * 219 * This helper just factors out common code between do_lo_send_direct_write() 220 * and do_lo_send_write(). 221 */ 222 static int __do_lo_send_write(struct file *file, 223 u8 *buf, const int len, loff_t pos) 224 { 225 ssize_t bw; 226 mm_segment_t old_fs = get_fs(); 227 228 set_fs(get_ds()); 229 bw = file->f_op->write(file, buf, len, &pos); 230 set_fs(old_fs); 231 if (likely(bw == len)) 232 return 0; 233 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 234 (unsigned long long)pos, len); 235 if (bw >= 0) 236 bw = -EIO; 237 return bw; 238 } 239 240 /** 241 * do_lo_send_direct_write - helper for writing data to a loop device 242 * 243 * This is the fast, non-transforming version that does not need double 244 * buffering. 245 */ 246 static int do_lo_send_direct_write(struct loop_device *lo, 247 struct bio_vec *bvec, loff_t pos, struct page *page) 248 { 249 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 250 kmap(bvec->bv_page) + bvec->bv_offset, 251 bvec->bv_len, pos); 252 kunmap(bvec->bv_page); 253 cond_resched(); 254 return bw; 255 } 256 257 /** 258 * do_lo_send_write - helper for writing data to a loop device 259 * 260 * This is the slow, transforming version that needs to double buffer the 261 * data as it cannot do the transformations in place without having direct 262 * access to the destination pages of the backing file. 263 */ 264 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 265 loff_t pos, struct page *page) 266 { 267 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 268 bvec->bv_offset, bvec->bv_len, pos >> 9); 269 if (likely(!ret)) 270 return __do_lo_send_write(lo->lo_backing_file, 271 page_address(page), bvec->bv_len, 272 pos); 273 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 274 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 275 if (ret > 0) 276 ret = -EIO; 277 return ret; 278 } 279 280 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 281 { 282 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 283 struct page *page); 284 struct bio_vec *bvec; 285 struct page *page = NULL; 286 int i, ret = 0; 287 288 if (lo->transfer != transfer_none) { 289 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 290 if (unlikely(!page)) 291 goto fail; 292 kmap(page); 293 do_lo_send = do_lo_send_write; 294 } else { 295 do_lo_send = do_lo_send_direct_write; 296 } 297 298 bio_for_each_segment(bvec, bio, i) { 299 ret = do_lo_send(lo, bvec, pos, page); 300 if (ret < 0) 301 break; 302 pos += bvec->bv_len; 303 } 304 if (page) { 305 kunmap(page); 306 __free_page(page); 307 } 308 out: 309 return ret; 310 fail: 311 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 312 ret = -ENOMEM; 313 goto out; 314 } 315 316 struct lo_read_data { 317 struct loop_device *lo; 318 struct page *page; 319 unsigned offset; 320 int bsize; 321 }; 322 323 static int 324 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 325 struct splice_desc *sd) 326 { 327 struct lo_read_data *p = sd->u.data; 328 struct loop_device *lo = p->lo; 329 struct page *page = buf->page; 330 sector_t IV; 331 int size; 332 333 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 334 (buf->offset >> 9); 335 size = sd->len; 336 if (size > p->bsize) 337 size = p->bsize; 338 339 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 340 printk(KERN_ERR "loop: transfer error block %ld\n", 341 page->index); 342 size = -EINVAL; 343 } 344 345 flush_dcache_page(p->page); 346 347 if (size > 0) 348 p->offset += size; 349 350 return size; 351 } 352 353 static int 354 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 355 { 356 return __splice_from_pipe(pipe, sd, lo_splice_actor); 357 } 358 359 static ssize_t 360 do_lo_receive(struct loop_device *lo, 361 struct bio_vec *bvec, int bsize, loff_t pos) 362 { 363 struct lo_read_data cookie; 364 struct splice_desc sd; 365 struct file *file; 366 ssize_t retval; 367 368 cookie.lo = lo; 369 cookie.page = bvec->bv_page; 370 cookie.offset = bvec->bv_offset; 371 cookie.bsize = bsize; 372 373 sd.len = 0; 374 sd.total_len = bvec->bv_len; 375 sd.flags = 0; 376 sd.pos = pos; 377 sd.u.data = &cookie; 378 379 file = lo->lo_backing_file; 380 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 381 382 return retval; 383 } 384 385 static int 386 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 387 { 388 struct bio_vec *bvec; 389 ssize_t s; 390 int i; 391 392 bio_for_each_segment(bvec, bio, i) { 393 s = do_lo_receive(lo, bvec, bsize, pos); 394 if (s < 0) 395 return s; 396 397 if (s != bvec->bv_len) { 398 zero_fill_bio(bio); 399 break; 400 } 401 pos += bvec->bv_len; 402 } 403 return 0; 404 } 405 406 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 407 { 408 loff_t pos; 409 int ret; 410 411 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 412 413 if (bio_rw(bio) == WRITE) { 414 struct file *file = lo->lo_backing_file; 415 416 if (bio->bi_rw & REQ_FLUSH) { 417 ret = vfs_fsync(file, 0); 418 if (unlikely(ret && ret != -EINVAL)) { 419 ret = -EIO; 420 goto out; 421 } 422 } 423 424 /* 425 * We use punch hole to reclaim the free space used by the 426 * image a.k.a. discard. However we do not support discard if 427 * encryption is enabled, because it may give an attacker 428 * useful information. 429 */ 430 if (bio->bi_rw & REQ_DISCARD) { 431 struct file *file = lo->lo_backing_file; 432 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 433 434 if ((!file->f_op->fallocate) || 435 lo->lo_encrypt_key_size) { 436 ret = -EOPNOTSUPP; 437 goto out; 438 } 439 ret = file->f_op->fallocate(file, mode, pos, 440 bio->bi_size); 441 if (unlikely(ret && ret != -EINVAL && 442 ret != -EOPNOTSUPP)) 443 ret = -EIO; 444 goto out; 445 } 446 447 ret = lo_send(lo, bio, pos); 448 449 if ((bio->bi_rw & REQ_FUA) && !ret) { 450 ret = vfs_fsync(file, 0); 451 if (unlikely(ret && ret != -EINVAL)) 452 ret = -EIO; 453 } 454 } else 455 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 456 457 out: 458 return ret; 459 } 460 461 /* 462 * Add bio to back of pending list 463 */ 464 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 465 { 466 lo->lo_bio_count++; 467 bio_list_add(&lo->lo_bio_list, bio); 468 } 469 470 /* 471 * Grab first pending buffer 472 */ 473 static struct bio *loop_get_bio(struct loop_device *lo) 474 { 475 lo->lo_bio_count--; 476 return bio_list_pop(&lo->lo_bio_list); 477 } 478 479 static void loop_make_request(struct request_queue *q, struct bio *old_bio) 480 { 481 struct loop_device *lo = q->queuedata; 482 int rw = bio_rw(old_bio); 483 484 if (rw == READA) 485 rw = READ; 486 487 BUG_ON(!lo || (rw != READ && rw != WRITE)); 488 489 spin_lock_irq(&lo->lo_lock); 490 if (lo->lo_state != Lo_bound) 491 goto out; 492 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 493 goto out; 494 if (lo->lo_bio_count >= q->nr_congestion_on) 495 wait_event_lock_irq(lo->lo_req_wait, 496 lo->lo_bio_count < q->nr_congestion_off, 497 lo->lo_lock); 498 loop_add_bio(lo, old_bio); 499 wake_up(&lo->lo_event); 500 spin_unlock_irq(&lo->lo_lock); 501 return; 502 503 out: 504 spin_unlock_irq(&lo->lo_lock); 505 bio_io_error(old_bio); 506 } 507 508 struct switch_request { 509 struct file *file; 510 struct completion wait; 511 }; 512 513 static void do_loop_switch(struct loop_device *, struct switch_request *); 514 515 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 516 { 517 if (unlikely(!bio->bi_bdev)) { 518 do_loop_switch(lo, bio->bi_private); 519 bio_put(bio); 520 } else { 521 int ret = do_bio_filebacked(lo, bio); 522 bio_endio(bio, ret); 523 } 524 } 525 526 /* 527 * worker thread that handles reads/writes to file backed loop devices, 528 * to avoid blocking in our make_request_fn. it also does loop decrypting 529 * on reads for block backed loop, as that is too heavy to do from 530 * b_end_io context where irqs may be disabled. 531 * 532 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 533 * calling kthread_stop(). Therefore once kthread_should_stop() is 534 * true, make_request will not place any more requests. Therefore 535 * once kthread_should_stop() is true and lo_bio is NULL, we are 536 * done with the loop. 537 */ 538 static int loop_thread(void *data) 539 { 540 struct loop_device *lo = data; 541 struct bio *bio; 542 543 set_user_nice(current, -20); 544 545 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 546 547 wait_event_interruptible(lo->lo_event, 548 !bio_list_empty(&lo->lo_bio_list) || 549 kthread_should_stop()); 550 551 if (bio_list_empty(&lo->lo_bio_list)) 552 continue; 553 spin_lock_irq(&lo->lo_lock); 554 bio = loop_get_bio(lo); 555 if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off) 556 wake_up(&lo->lo_req_wait); 557 spin_unlock_irq(&lo->lo_lock); 558 559 BUG_ON(!bio); 560 loop_handle_bio(lo, bio); 561 } 562 563 return 0; 564 } 565 566 /* 567 * loop_switch performs the hard work of switching a backing store. 568 * First it needs to flush existing IO, it does this by sending a magic 569 * BIO down the pipe. The completion of this BIO does the actual switch. 570 */ 571 static int loop_switch(struct loop_device *lo, struct file *file) 572 { 573 struct switch_request w; 574 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 575 if (!bio) 576 return -ENOMEM; 577 init_completion(&w.wait); 578 w.file = file; 579 bio->bi_private = &w; 580 bio->bi_bdev = NULL; 581 loop_make_request(lo->lo_queue, bio); 582 wait_for_completion(&w.wait); 583 return 0; 584 } 585 586 /* 587 * Helper to flush the IOs in loop, but keeping loop thread running 588 */ 589 static int loop_flush(struct loop_device *lo) 590 { 591 /* loop not yet configured, no running thread, nothing to flush */ 592 if (!lo->lo_thread) 593 return 0; 594 595 return loop_switch(lo, NULL); 596 } 597 598 /* 599 * Do the actual switch; called from the BIO completion routine 600 */ 601 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 602 { 603 struct file *file = p->file; 604 struct file *old_file = lo->lo_backing_file; 605 struct address_space *mapping; 606 607 /* if no new file, only flush of queued bios requested */ 608 if (!file) 609 goto out; 610 611 mapping = file->f_mapping; 612 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 613 lo->lo_backing_file = file; 614 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 615 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 616 lo->old_gfp_mask = mapping_gfp_mask(mapping); 617 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 618 out: 619 complete(&p->wait); 620 } 621 622 623 /* 624 * loop_change_fd switched the backing store of a loopback device to 625 * a new file. This is useful for operating system installers to free up 626 * the original file and in High Availability environments to switch to 627 * an alternative location for the content in case of server meltdown. 628 * This can only work if the loop device is used read-only, and if the 629 * new backing store is the same size and type as the old backing store. 630 */ 631 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 632 unsigned int arg) 633 { 634 struct file *file, *old_file; 635 struct inode *inode; 636 int error; 637 638 error = -ENXIO; 639 if (lo->lo_state != Lo_bound) 640 goto out; 641 642 /* the loop device has to be read-only */ 643 error = -EINVAL; 644 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 645 goto out; 646 647 error = -EBADF; 648 file = fget(arg); 649 if (!file) 650 goto out; 651 652 inode = file->f_mapping->host; 653 old_file = lo->lo_backing_file; 654 655 error = -EINVAL; 656 657 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 658 goto out_putf; 659 660 /* size of the new backing store needs to be the same */ 661 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 662 goto out_putf; 663 664 /* and ... switch */ 665 error = loop_switch(lo, file); 666 if (error) 667 goto out_putf; 668 669 fput(old_file); 670 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 671 ioctl_by_bdev(bdev, BLKRRPART, 0); 672 return 0; 673 674 out_putf: 675 fput(file); 676 out: 677 return error; 678 } 679 680 static inline int is_loop_device(struct file *file) 681 { 682 struct inode *i = file->f_mapping->host; 683 684 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 685 } 686 687 /* loop sysfs attributes */ 688 689 static ssize_t loop_attr_show(struct device *dev, char *page, 690 ssize_t (*callback)(struct loop_device *, char *)) 691 { 692 struct gendisk *disk = dev_to_disk(dev); 693 struct loop_device *lo = disk->private_data; 694 695 return callback(lo, page); 696 } 697 698 #define LOOP_ATTR_RO(_name) \ 699 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 700 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 701 struct device_attribute *attr, char *b) \ 702 { \ 703 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 704 } \ 705 static struct device_attribute loop_attr_##_name = \ 706 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 707 708 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 709 { 710 ssize_t ret; 711 char *p = NULL; 712 713 spin_lock_irq(&lo->lo_lock); 714 if (lo->lo_backing_file) 715 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 716 spin_unlock_irq(&lo->lo_lock); 717 718 if (IS_ERR_OR_NULL(p)) 719 ret = PTR_ERR(p); 720 else { 721 ret = strlen(p); 722 memmove(buf, p, ret); 723 buf[ret++] = '\n'; 724 buf[ret] = 0; 725 } 726 727 return ret; 728 } 729 730 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 731 { 732 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 733 } 734 735 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 736 { 737 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 738 } 739 740 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 741 { 742 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 743 744 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 745 } 746 747 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 748 { 749 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 750 751 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 752 } 753 754 LOOP_ATTR_RO(backing_file); 755 LOOP_ATTR_RO(offset); 756 LOOP_ATTR_RO(sizelimit); 757 LOOP_ATTR_RO(autoclear); 758 LOOP_ATTR_RO(partscan); 759 760 static struct attribute *loop_attrs[] = { 761 &loop_attr_backing_file.attr, 762 &loop_attr_offset.attr, 763 &loop_attr_sizelimit.attr, 764 &loop_attr_autoclear.attr, 765 &loop_attr_partscan.attr, 766 NULL, 767 }; 768 769 static struct attribute_group loop_attribute_group = { 770 .name = "loop", 771 .attrs= loop_attrs, 772 }; 773 774 static int loop_sysfs_init(struct loop_device *lo) 775 { 776 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 777 &loop_attribute_group); 778 } 779 780 static void loop_sysfs_exit(struct loop_device *lo) 781 { 782 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 783 &loop_attribute_group); 784 } 785 786 static void loop_config_discard(struct loop_device *lo) 787 { 788 struct file *file = lo->lo_backing_file; 789 struct inode *inode = file->f_mapping->host; 790 struct request_queue *q = lo->lo_queue; 791 792 /* 793 * We use punch hole to reclaim the free space used by the 794 * image a.k.a. discard. However we do support discard if 795 * encryption is enabled, because it may give an attacker 796 * useful information. 797 */ 798 if ((!file->f_op->fallocate) || 799 lo->lo_encrypt_key_size) { 800 q->limits.discard_granularity = 0; 801 q->limits.discard_alignment = 0; 802 q->limits.max_discard_sectors = 0; 803 q->limits.discard_zeroes_data = 0; 804 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 805 return; 806 } 807 808 q->limits.discard_granularity = inode->i_sb->s_blocksize; 809 q->limits.discard_alignment = 0; 810 q->limits.max_discard_sectors = UINT_MAX >> 9; 811 q->limits.discard_zeroes_data = 1; 812 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 813 } 814 815 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 816 struct block_device *bdev, unsigned int arg) 817 { 818 struct file *file, *f; 819 struct inode *inode; 820 struct address_space *mapping; 821 unsigned lo_blocksize; 822 int lo_flags = 0; 823 int error; 824 loff_t size; 825 826 /* This is safe, since we have a reference from open(). */ 827 __module_get(THIS_MODULE); 828 829 error = -EBADF; 830 file = fget(arg); 831 if (!file) 832 goto out; 833 834 error = -EBUSY; 835 if (lo->lo_state != Lo_unbound) 836 goto out_putf; 837 838 /* Avoid recursion */ 839 f = file; 840 while (is_loop_device(f)) { 841 struct loop_device *l; 842 843 if (f->f_mapping->host->i_bdev == bdev) 844 goto out_putf; 845 846 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 847 if (l->lo_state == Lo_unbound) { 848 error = -EINVAL; 849 goto out_putf; 850 } 851 f = l->lo_backing_file; 852 } 853 854 mapping = file->f_mapping; 855 inode = mapping->host; 856 857 error = -EINVAL; 858 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 859 goto out_putf; 860 861 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 862 !file->f_op->write) 863 lo_flags |= LO_FLAGS_READ_ONLY; 864 865 lo_blocksize = S_ISBLK(inode->i_mode) ? 866 inode->i_bdev->bd_block_size : PAGE_SIZE; 867 868 error = -EFBIG; 869 size = get_loop_size(lo, file); 870 if ((loff_t)(sector_t)size != size) 871 goto out_putf; 872 873 error = 0; 874 875 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 876 877 lo->lo_blocksize = lo_blocksize; 878 lo->lo_device = bdev; 879 lo->lo_flags = lo_flags; 880 lo->lo_backing_file = file; 881 lo->transfer = transfer_none; 882 lo->ioctl = NULL; 883 lo->lo_sizelimit = 0; 884 lo->lo_bio_count = 0; 885 lo->old_gfp_mask = mapping_gfp_mask(mapping); 886 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 887 888 bio_list_init(&lo->lo_bio_list); 889 890 /* 891 * set queue make_request_fn, and add limits based on lower level 892 * device 893 */ 894 blk_queue_make_request(lo->lo_queue, loop_make_request); 895 lo->lo_queue->queuedata = lo; 896 897 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 898 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 899 900 set_capacity(lo->lo_disk, size); 901 bd_set_size(bdev, size << 9); 902 loop_sysfs_init(lo); 903 /* let user-space know about the new size */ 904 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 905 906 set_blocksize(bdev, lo_blocksize); 907 908 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 909 lo->lo_number); 910 if (IS_ERR(lo->lo_thread)) { 911 error = PTR_ERR(lo->lo_thread); 912 goto out_clr; 913 } 914 lo->lo_state = Lo_bound; 915 wake_up_process(lo->lo_thread); 916 if (part_shift) 917 lo->lo_flags |= LO_FLAGS_PARTSCAN; 918 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 919 ioctl_by_bdev(bdev, BLKRRPART, 0); 920 return 0; 921 922 out_clr: 923 loop_sysfs_exit(lo); 924 lo->lo_thread = NULL; 925 lo->lo_device = NULL; 926 lo->lo_backing_file = NULL; 927 lo->lo_flags = 0; 928 set_capacity(lo->lo_disk, 0); 929 invalidate_bdev(bdev); 930 bd_set_size(bdev, 0); 931 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 932 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 933 lo->lo_state = Lo_unbound; 934 out_putf: 935 fput(file); 936 out: 937 /* This is safe: open() is still holding a reference. */ 938 module_put(THIS_MODULE); 939 return error; 940 } 941 942 static int 943 loop_release_xfer(struct loop_device *lo) 944 { 945 int err = 0; 946 struct loop_func_table *xfer = lo->lo_encryption; 947 948 if (xfer) { 949 if (xfer->release) 950 err = xfer->release(lo); 951 lo->transfer = NULL; 952 lo->lo_encryption = NULL; 953 module_put(xfer->owner); 954 } 955 return err; 956 } 957 958 static int 959 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 960 const struct loop_info64 *i) 961 { 962 int err = 0; 963 964 if (xfer) { 965 struct module *owner = xfer->owner; 966 967 if (!try_module_get(owner)) 968 return -EINVAL; 969 if (xfer->init) 970 err = xfer->init(lo, i); 971 if (err) 972 module_put(owner); 973 else 974 lo->lo_encryption = xfer; 975 } 976 return err; 977 } 978 979 static int loop_clr_fd(struct loop_device *lo) 980 { 981 struct file *filp = lo->lo_backing_file; 982 gfp_t gfp = lo->old_gfp_mask; 983 struct block_device *bdev = lo->lo_device; 984 985 if (lo->lo_state != Lo_bound) 986 return -ENXIO; 987 988 /* 989 * If we've explicitly asked to tear down the loop device, 990 * and it has an elevated reference count, set it for auto-teardown when 991 * the last reference goes away. This stops $!~#$@ udev from 992 * preventing teardown because it decided that it needs to run blkid on 993 * the loopback device whenever they appear. xfstests is notorious for 994 * failing tests because blkid via udev races with a losetup 995 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 996 * command to fail with EBUSY. 997 */ 998 if (lo->lo_refcnt > 1) { 999 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1000 mutex_unlock(&lo->lo_ctl_mutex); 1001 return 0; 1002 } 1003 1004 if (filp == NULL) 1005 return -EINVAL; 1006 1007 spin_lock_irq(&lo->lo_lock); 1008 lo->lo_state = Lo_rundown; 1009 spin_unlock_irq(&lo->lo_lock); 1010 1011 kthread_stop(lo->lo_thread); 1012 1013 spin_lock_irq(&lo->lo_lock); 1014 lo->lo_backing_file = NULL; 1015 spin_unlock_irq(&lo->lo_lock); 1016 1017 loop_release_xfer(lo); 1018 lo->transfer = NULL; 1019 lo->ioctl = NULL; 1020 lo->lo_device = NULL; 1021 lo->lo_encryption = NULL; 1022 lo->lo_offset = 0; 1023 lo->lo_sizelimit = 0; 1024 lo->lo_encrypt_key_size = 0; 1025 lo->lo_thread = NULL; 1026 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1027 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1028 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1029 if (bdev) 1030 invalidate_bdev(bdev); 1031 set_capacity(lo->lo_disk, 0); 1032 loop_sysfs_exit(lo); 1033 if (bdev) { 1034 bd_set_size(bdev, 0); 1035 /* let user-space know about this change */ 1036 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1037 } 1038 mapping_set_gfp_mask(filp->f_mapping, gfp); 1039 lo->lo_state = Lo_unbound; 1040 /* This is safe: open() is still holding a reference. */ 1041 module_put(THIS_MODULE); 1042 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1043 ioctl_by_bdev(bdev, BLKRRPART, 0); 1044 lo->lo_flags = 0; 1045 if (!part_shift) 1046 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1047 mutex_unlock(&lo->lo_ctl_mutex); 1048 /* 1049 * Need not hold lo_ctl_mutex to fput backing file. 1050 * Calling fput holding lo_ctl_mutex triggers a circular 1051 * lock dependency possibility warning as fput can take 1052 * bd_mutex which is usually taken before lo_ctl_mutex. 1053 */ 1054 fput(filp); 1055 return 0; 1056 } 1057 1058 static int 1059 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1060 { 1061 int err; 1062 struct loop_func_table *xfer; 1063 kuid_t uid = current_uid(); 1064 1065 if (lo->lo_encrypt_key_size && 1066 !uid_eq(lo->lo_key_owner, uid) && 1067 !capable(CAP_SYS_ADMIN)) 1068 return -EPERM; 1069 if (lo->lo_state != Lo_bound) 1070 return -ENXIO; 1071 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1072 return -EINVAL; 1073 1074 err = loop_release_xfer(lo); 1075 if (err) 1076 return err; 1077 1078 if (info->lo_encrypt_type) { 1079 unsigned int type = info->lo_encrypt_type; 1080 1081 if (type >= MAX_LO_CRYPT) 1082 return -EINVAL; 1083 xfer = xfer_funcs[type]; 1084 if (xfer == NULL) 1085 return -EINVAL; 1086 } else 1087 xfer = NULL; 1088 1089 err = loop_init_xfer(lo, xfer, info); 1090 if (err) 1091 return err; 1092 1093 if (lo->lo_offset != info->lo_offset || 1094 lo->lo_sizelimit != info->lo_sizelimit) { 1095 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1096 return -EFBIG; 1097 } 1098 loop_config_discard(lo); 1099 1100 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1101 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1102 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1103 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1104 1105 if (!xfer) 1106 xfer = &none_funcs; 1107 lo->transfer = xfer->transfer; 1108 lo->ioctl = xfer->ioctl; 1109 1110 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1111 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1112 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1113 1114 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1115 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1116 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1117 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1118 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0); 1119 } 1120 1121 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1122 lo->lo_init[0] = info->lo_init[0]; 1123 lo->lo_init[1] = info->lo_init[1]; 1124 if (info->lo_encrypt_key_size) { 1125 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1126 info->lo_encrypt_key_size); 1127 lo->lo_key_owner = uid; 1128 } 1129 1130 return 0; 1131 } 1132 1133 static int 1134 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1135 { 1136 struct file *file = lo->lo_backing_file; 1137 struct kstat stat; 1138 int error; 1139 1140 if (lo->lo_state != Lo_bound) 1141 return -ENXIO; 1142 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1143 if (error) 1144 return error; 1145 memset(info, 0, sizeof(*info)); 1146 info->lo_number = lo->lo_number; 1147 info->lo_device = huge_encode_dev(stat.dev); 1148 info->lo_inode = stat.ino; 1149 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1150 info->lo_offset = lo->lo_offset; 1151 info->lo_sizelimit = lo->lo_sizelimit; 1152 info->lo_flags = lo->lo_flags; 1153 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1154 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1155 info->lo_encrypt_type = 1156 lo->lo_encryption ? lo->lo_encryption->number : 0; 1157 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1158 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1159 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1160 lo->lo_encrypt_key_size); 1161 } 1162 return 0; 1163 } 1164 1165 static void 1166 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1167 { 1168 memset(info64, 0, sizeof(*info64)); 1169 info64->lo_number = info->lo_number; 1170 info64->lo_device = info->lo_device; 1171 info64->lo_inode = info->lo_inode; 1172 info64->lo_rdevice = info->lo_rdevice; 1173 info64->lo_offset = info->lo_offset; 1174 info64->lo_sizelimit = 0; 1175 info64->lo_encrypt_type = info->lo_encrypt_type; 1176 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1177 info64->lo_flags = info->lo_flags; 1178 info64->lo_init[0] = info->lo_init[0]; 1179 info64->lo_init[1] = info->lo_init[1]; 1180 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1181 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1182 else 1183 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1184 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1185 } 1186 1187 static int 1188 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1189 { 1190 memset(info, 0, sizeof(*info)); 1191 info->lo_number = info64->lo_number; 1192 info->lo_device = info64->lo_device; 1193 info->lo_inode = info64->lo_inode; 1194 info->lo_rdevice = info64->lo_rdevice; 1195 info->lo_offset = info64->lo_offset; 1196 info->lo_encrypt_type = info64->lo_encrypt_type; 1197 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1198 info->lo_flags = info64->lo_flags; 1199 info->lo_init[0] = info64->lo_init[0]; 1200 info->lo_init[1] = info64->lo_init[1]; 1201 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1202 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1203 else 1204 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1205 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1206 1207 /* error in case values were truncated */ 1208 if (info->lo_device != info64->lo_device || 1209 info->lo_rdevice != info64->lo_rdevice || 1210 info->lo_inode != info64->lo_inode || 1211 info->lo_offset != info64->lo_offset) 1212 return -EOVERFLOW; 1213 1214 return 0; 1215 } 1216 1217 static int 1218 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1219 { 1220 struct loop_info info; 1221 struct loop_info64 info64; 1222 1223 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1224 return -EFAULT; 1225 loop_info64_from_old(&info, &info64); 1226 return loop_set_status(lo, &info64); 1227 } 1228 1229 static int 1230 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1231 { 1232 struct loop_info64 info64; 1233 1234 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1235 return -EFAULT; 1236 return loop_set_status(lo, &info64); 1237 } 1238 1239 static int 1240 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1241 struct loop_info info; 1242 struct loop_info64 info64; 1243 int err = 0; 1244 1245 if (!arg) 1246 err = -EINVAL; 1247 if (!err) 1248 err = loop_get_status(lo, &info64); 1249 if (!err) 1250 err = loop_info64_to_old(&info64, &info); 1251 if (!err && copy_to_user(arg, &info, sizeof(info))) 1252 err = -EFAULT; 1253 1254 return err; 1255 } 1256 1257 static int 1258 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1259 struct loop_info64 info64; 1260 int err = 0; 1261 1262 if (!arg) 1263 err = -EINVAL; 1264 if (!err) 1265 err = loop_get_status(lo, &info64); 1266 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1267 err = -EFAULT; 1268 1269 return err; 1270 } 1271 1272 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1273 { 1274 int err; 1275 sector_t sec; 1276 loff_t sz; 1277 1278 err = -ENXIO; 1279 if (unlikely(lo->lo_state != Lo_bound)) 1280 goto out; 1281 err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1282 if (unlikely(err)) 1283 goto out; 1284 sec = get_capacity(lo->lo_disk); 1285 /* the width of sector_t may be narrow for bit-shift */ 1286 sz = sec; 1287 sz <<= 9; 1288 mutex_lock(&bdev->bd_mutex); 1289 bd_set_size(bdev, sz); 1290 /* let user-space know about the new size */ 1291 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1292 mutex_unlock(&bdev->bd_mutex); 1293 1294 out: 1295 return err; 1296 } 1297 1298 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1299 unsigned int cmd, unsigned long arg) 1300 { 1301 struct loop_device *lo = bdev->bd_disk->private_data; 1302 int err; 1303 1304 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1305 switch (cmd) { 1306 case LOOP_SET_FD: 1307 err = loop_set_fd(lo, mode, bdev, arg); 1308 break; 1309 case LOOP_CHANGE_FD: 1310 err = loop_change_fd(lo, bdev, arg); 1311 break; 1312 case LOOP_CLR_FD: 1313 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1314 err = loop_clr_fd(lo); 1315 if (!err) 1316 goto out_unlocked; 1317 break; 1318 case LOOP_SET_STATUS: 1319 err = -EPERM; 1320 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1321 err = loop_set_status_old(lo, 1322 (struct loop_info __user *)arg); 1323 break; 1324 case LOOP_GET_STATUS: 1325 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1326 break; 1327 case LOOP_SET_STATUS64: 1328 err = -EPERM; 1329 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1330 err = loop_set_status64(lo, 1331 (struct loop_info64 __user *) arg); 1332 break; 1333 case LOOP_GET_STATUS64: 1334 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1335 break; 1336 case LOOP_SET_CAPACITY: 1337 err = -EPERM; 1338 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1339 err = loop_set_capacity(lo, bdev); 1340 break; 1341 default: 1342 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1343 } 1344 mutex_unlock(&lo->lo_ctl_mutex); 1345 1346 out_unlocked: 1347 return err; 1348 } 1349 1350 #ifdef CONFIG_COMPAT 1351 struct compat_loop_info { 1352 compat_int_t lo_number; /* ioctl r/o */ 1353 compat_dev_t lo_device; /* ioctl r/o */ 1354 compat_ulong_t lo_inode; /* ioctl r/o */ 1355 compat_dev_t lo_rdevice; /* ioctl r/o */ 1356 compat_int_t lo_offset; 1357 compat_int_t lo_encrypt_type; 1358 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1359 compat_int_t lo_flags; /* ioctl r/o */ 1360 char lo_name[LO_NAME_SIZE]; 1361 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1362 compat_ulong_t lo_init[2]; 1363 char reserved[4]; 1364 }; 1365 1366 /* 1367 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1368 * - noinlined to reduce stack space usage in main part of driver 1369 */ 1370 static noinline int 1371 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1372 struct loop_info64 *info64) 1373 { 1374 struct compat_loop_info info; 1375 1376 if (copy_from_user(&info, arg, sizeof(info))) 1377 return -EFAULT; 1378 1379 memset(info64, 0, sizeof(*info64)); 1380 info64->lo_number = info.lo_number; 1381 info64->lo_device = info.lo_device; 1382 info64->lo_inode = info.lo_inode; 1383 info64->lo_rdevice = info.lo_rdevice; 1384 info64->lo_offset = info.lo_offset; 1385 info64->lo_sizelimit = 0; 1386 info64->lo_encrypt_type = info.lo_encrypt_type; 1387 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1388 info64->lo_flags = info.lo_flags; 1389 info64->lo_init[0] = info.lo_init[0]; 1390 info64->lo_init[1] = info.lo_init[1]; 1391 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1392 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1393 else 1394 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1395 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1396 return 0; 1397 } 1398 1399 /* 1400 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1401 * - noinlined to reduce stack space usage in main part of driver 1402 */ 1403 static noinline int 1404 loop_info64_to_compat(const struct loop_info64 *info64, 1405 struct compat_loop_info __user *arg) 1406 { 1407 struct compat_loop_info info; 1408 1409 memset(&info, 0, sizeof(info)); 1410 info.lo_number = info64->lo_number; 1411 info.lo_device = info64->lo_device; 1412 info.lo_inode = info64->lo_inode; 1413 info.lo_rdevice = info64->lo_rdevice; 1414 info.lo_offset = info64->lo_offset; 1415 info.lo_encrypt_type = info64->lo_encrypt_type; 1416 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1417 info.lo_flags = info64->lo_flags; 1418 info.lo_init[0] = info64->lo_init[0]; 1419 info.lo_init[1] = info64->lo_init[1]; 1420 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1421 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1422 else 1423 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1424 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1425 1426 /* error in case values were truncated */ 1427 if (info.lo_device != info64->lo_device || 1428 info.lo_rdevice != info64->lo_rdevice || 1429 info.lo_inode != info64->lo_inode || 1430 info.lo_offset != info64->lo_offset || 1431 info.lo_init[0] != info64->lo_init[0] || 1432 info.lo_init[1] != info64->lo_init[1]) 1433 return -EOVERFLOW; 1434 1435 if (copy_to_user(arg, &info, sizeof(info))) 1436 return -EFAULT; 1437 return 0; 1438 } 1439 1440 static int 1441 loop_set_status_compat(struct loop_device *lo, 1442 const struct compat_loop_info __user *arg) 1443 { 1444 struct loop_info64 info64; 1445 int ret; 1446 1447 ret = loop_info64_from_compat(arg, &info64); 1448 if (ret < 0) 1449 return ret; 1450 return loop_set_status(lo, &info64); 1451 } 1452 1453 static int 1454 loop_get_status_compat(struct loop_device *lo, 1455 struct compat_loop_info __user *arg) 1456 { 1457 struct loop_info64 info64; 1458 int err = 0; 1459 1460 if (!arg) 1461 err = -EINVAL; 1462 if (!err) 1463 err = loop_get_status(lo, &info64); 1464 if (!err) 1465 err = loop_info64_to_compat(&info64, arg); 1466 return err; 1467 } 1468 1469 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1470 unsigned int cmd, unsigned long arg) 1471 { 1472 struct loop_device *lo = bdev->bd_disk->private_data; 1473 int err; 1474 1475 switch(cmd) { 1476 case LOOP_SET_STATUS: 1477 mutex_lock(&lo->lo_ctl_mutex); 1478 err = loop_set_status_compat( 1479 lo, (const struct compat_loop_info __user *) arg); 1480 mutex_unlock(&lo->lo_ctl_mutex); 1481 break; 1482 case LOOP_GET_STATUS: 1483 mutex_lock(&lo->lo_ctl_mutex); 1484 err = loop_get_status_compat( 1485 lo, (struct compat_loop_info __user *) arg); 1486 mutex_unlock(&lo->lo_ctl_mutex); 1487 break; 1488 case LOOP_SET_CAPACITY: 1489 case LOOP_CLR_FD: 1490 case LOOP_GET_STATUS64: 1491 case LOOP_SET_STATUS64: 1492 arg = (unsigned long) compat_ptr(arg); 1493 case LOOP_SET_FD: 1494 case LOOP_CHANGE_FD: 1495 err = lo_ioctl(bdev, mode, cmd, arg); 1496 break; 1497 default: 1498 err = -ENOIOCTLCMD; 1499 break; 1500 } 1501 return err; 1502 } 1503 #endif 1504 1505 static int lo_open(struct block_device *bdev, fmode_t mode) 1506 { 1507 struct loop_device *lo; 1508 int err = 0; 1509 1510 mutex_lock(&loop_index_mutex); 1511 lo = bdev->bd_disk->private_data; 1512 if (!lo) { 1513 err = -ENXIO; 1514 goto out; 1515 } 1516 1517 mutex_lock(&lo->lo_ctl_mutex); 1518 lo->lo_refcnt++; 1519 mutex_unlock(&lo->lo_ctl_mutex); 1520 out: 1521 mutex_unlock(&loop_index_mutex); 1522 return err; 1523 } 1524 1525 static int lo_release(struct gendisk *disk, fmode_t mode) 1526 { 1527 struct loop_device *lo = disk->private_data; 1528 int err; 1529 1530 mutex_lock(&lo->lo_ctl_mutex); 1531 1532 if (--lo->lo_refcnt) 1533 goto out; 1534 1535 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1536 /* 1537 * In autoclear mode, stop the loop thread 1538 * and remove configuration after last close. 1539 */ 1540 err = loop_clr_fd(lo); 1541 if (!err) 1542 goto out_unlocked; 1543 } else { 1544 /* 1545 * Otherwise keep thread (if running) and config, 1546 * but flush possible ongoing bios in thread. 1547 */ 1548 loop_flush(lo); 1549 } 1550 1551 out: 1552 mutex_unlock(&lo->lo_ctl_mutex); 1553 out_unlocked: 1554 return 0; 1555 } 1556 1557 static const struct block_device_operations lo_fops = { 1558 .owner = THIS_MODULE, 1559 .open = lo_open, 1560 .release = lo_release, 1561 .ioctl = lo_ioctl, 1562 #ifdef CONFIG_COMPAT 1563 .compat_ioctl = lo_compat_ioctl, 1564 #endif 1565 }; 1566 1567 /* 1568 * And now the modules code and kernel interface. 1569 */ 1570 static int max_loop; 1571 module_param(max_loop, int, S_IRUGO); 1572 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1573 module_param(max_part, int, S_IRUGO); 1574 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1575 MODULE_LICENSE("GPL"); 1576 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1577 1578 int loop_register_transfer(struct loop_func_table *funcs) 1579 { 1580 unsigned int n = funcs->number; 1581 1582 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1583 return -EINVAL; 1584 xfer_funcs[n] = funcs; 1585 return 0; 1586 } 1587 1588 static int unregister_transfer_cb(int id, void *ptr, void *data) 1589 { 1590 struct loop_device *lo = ptr; 1591 struct loop_func_table *xfer = data; 1592 1593 mutex_lock(&lo->lo_ctl_mutex); 1594 if (lo->lo_encryption == xfer) 1595 loop_release_xfer(lo); 1596 mutex_unlock(&lo->lo_ctl_mutex); 1597 return 0; 1598 } 1599 1600 int loop_unregister_transfer(int number) 1601 { 1602 unsigned int n = number; 1603 struct loop_func_table *xfer; 1604 1605 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1606 return -EINVAL; 1607 1608 xfer_funcs[n] = NULL; 1609 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1610 return 0; 1611 } 1612 1613 EXPORT_SYMBOL(loop_register_transfer); 1614 EXPORT_SYMBOL(loop_unregister_transfer); 1615 1616 static int loop_add(struct loop_device **l, int i) 1617 { 1618 struct loop_device *lo; 1619 struct gendisk *disk; 1620 int err; 1621 1622 err = -ENOMEM; 1623 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1624 if (!lo) 1625 goto out; 1626 1627 if (!idr_pre_get(&loop_index_idr, GFP_KERNEL)) 1628 goto out_free_dev; 1629 1630 if (i >= 0) { 1631 int m; 1632 1633 /* create specific i in the index */ 1634 err = idr_get_new_above(&loop_index_idr, lo, i, &m); 1635 if (err >= 0 && i != m) { 1636 idr_remove(&loop_index_idr, m); 1637 err = -EEXIST; 1638 } 1639 } else if (i == -1) { 1640 int m; 1641 1642 /* get next free nr */ 1643 err = idr_get_new(&loop_index_idr, lo, &m); 1644 if (err >= 0) 1645 i = m; 1646 } else { 1647 err = -EINVAL; 1648 } 1649 if (err < 0) 1650 goto out_free_dev; 1651 1652 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1653 if (!lo->lo_queue) 1654 goto out_free_dev; 1655 1656 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1657 if (!disk) 1658 goto out_free_queue; 1659 1660 /* 1661 * Disable partition scanning by default. The in-kernel partition 1662 * scanning can be requested individually per-device during its 1663 * setup. Userspace can always add and remove partitions from all 1664 * devices. The needed partition minors are allocated from the 1665 * extended minor space, the main loop device numbers will continue 1666 * to match the loop minors, regardless of the number of partitions 1667 * used. 1668 * 1669 * If max_part is given, partition scanning is globally enabled for 1670 * all loop devices. The minors for the main loop devices will be 1671 * multiples of max_part. 1672 * 1673 * Note: Global-for-all-devices, set-only-at-init, read-only module 1674 * parameteters like 'max_loop' and 'max_part' make things needlessly 1675 * complicated, are too static, inflexible and may surprise 1676 * userspace tools. Parameters like this in general should be avoided. 1677 */ 1678 if (!part_shift) 1679 disk->flags |= GENHD_FL_NO_PART_SCAN; 1680 disk->flags |= GENHD_FL_EXT_DEVT; 1681 mutex_init(&lo->lo_ctl_mutex); 1682 lo->lo_number = i; 1683 lo->lo_thread = NULL; 1684 init_waitqueue_head(&lo->lo_event); 1685 init_waitqueue_head(&lo->lo_req_wait); 1686 spin_lock_init(&lo->lo_lock); 1687 disk->major = LOOP_MAJOR; 1688 disk->first_minor = i << part_shift; 1689 disk->fops = &lo_fops; 1690 disk->private_data = lo; 1691 disk->queue = lo->lo_queue; 1692 sprintf(disk->disk_name, "loop%d", i); 1693 add_disk(disk); 1694 *l = lo; 1695 return lo->lo_number; 1696 1697 out_free_queue: 1698 blk_cleanup_queue(lo->lo_queue); 1699 out_free_dev: 1700 kfree(lo); 1701 out: 1702 return err; 1703 } 1704 1705 static void loop_remove(struct loop_device *lo) 1706 { 1707 del_gendisk(lo->lo_disk); 1708 blk_cleanup_queue(lo->lo_queue); 1709 put_disk(lo->lo_disk); 1710 kfree(lo); 1711 } 1712 1713 static int find_free_cb(int id, void *ptr, void *data) 1714 { 1715 struct loop_device *lo = ptr; 1716 struct loop_device **l = data; 1717 1718 if (lo->lo_state == Lo_unbound) { 1719 *l = lo; 1720 return 1; 1721 } 1722 return 0; 1723 } 1724 1725 static int loop_lookup(struct loop_device **l, int i) 1726 { 1727 struct loop_device *lo; 1728 int ret = -ENODEV; 1729 1730 if (i < 0) { 1731 int err; 1732 1733 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1734 if (err == 1) { 1735 *l = lo; 1736 ret = lo->lo_number; 1737 } 1738 goto out; 1739 } 1740 1741 /* lookup and return a specific i */ 1742 lo = idr_find(&loop_index_idr, i); 1743 if (lo) { 1744 *l = lo; 1745 ret = lo->lo_number; 1746 } 1747 out: 1748 return ret; 1749 } 1750 1751 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1752 { 1753 struct loop_device *lo; 1754 struct kobject *kobj; 1755 int err; 1756 1757 mutex_lock(&loop_index_mutex); 1758 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1759 if (err < 0) 1760 err = loop_add(&lo, MINOR(dev) >> part_shift); 1761 if (err < 0) 1762 kobj = ERR_PTR(err); 1763 else 1764 kobj = get_disk(lo->lo_disk); 1765 mutex_unlock(&loop_index_mutex); 1766 1767 *part = 0; 1768 return kobj; 1769 } 1770 1771 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1772 unsigned long parm) 1773 { 1774 struct loop_device *lo; 1775 int ret = -ENOSYS; 1776 1777 mutex_lock(&loop_index_mutex); 1778 switch (cmd) { 1779 case LOOP_CTL_ADD: 1780 ret = loop_lookup(&lo, parm); 1781 if (ret >= 0) { 1782 ret = -EEXIST; 1783 break; 1784 } 1785 ret = loop_add(&lo, parm); 1786 break; 1787 case LOOP_CTL_REMOVE: 1788 ret = loop_lookup(&lo, parm); 1789 if (ret < 0) 1790 break; 1791 mutex_lock(&lo->lo_ctl_mutex); 1792 if (lo->lo_state != Lo_unbound) { 1793 ret = -EBUSY; 1794 mutex_unlock(&lo->lo_ctl_mutex); 1795 break; 1796 } 1797 if (lo->lo_refcnt > 0) { 1798 ret = -EBUSY; 1799 mutex_unlock(&lo->lo_ctl_mutex); 1800 break; 1801 } 1802 lo->lo_disk->private_data = NULL; 1803 mutex_unlock(&lo->lo_ctl_mutex); 1804 idr_remove(&loop_index_idr, lo->lo_number); 1805 loop_remove(lo); 1806 break; 1807 case LOOP_CTL_GET_FREE: 1808 ret = loop_lookup(&lo, -1); 1809 if (ret >= 0) 1810 break; 1811 ret = loop_add(&lo, -1); 1812 } 1813 mutex_unlock(&loop_index_mutex); 1814 1815 return ret; 1816 } 1817 1818 static const struct file_operations loop_ctl_fops = { 1819 .open = nonseekable_open, 1820 .unlocked_ioctl = loop_control_ioctl, 1821 .compat_ioctl = loop_control_ioctl, 1822 .owner = THIS_MODULE, 1823 .llseek = noop_llseek, 1824 }; 1825 1826 static struct miscdevice loop_misc = { 1827 .minor = LOOP_CTRL_MINOR, 1828 .name = "loop-control", 1829 .fops = &loop_ctl_fops, 1830 }; 1831 1832 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1833 MODULE_ALIAS("devname:loop-control"); 1834 1835 static int __init loop_init(void) 1836 { 1837 int i, nr; 1838 unsigned long range; 1839 struct loop_device *lo; 1840 int err; 1841 1842 err = misc_register(&loop_misc); 1843 if (err < 0) 1844 return err; 1845 1846 part_shift = 0; 1847 if (max_part > 0) { 1848 part_shift = fls(max_part); 1849 1850 /* 1851 * Adjust max_part according to part_shift as it is exported 1852 * to user space so that user can decide correct minor number 1853 * if [s]he want to create more devices. 1854 * 1855 * Note that -1 is required because partition 0 is reserved 1856 * for the whole disk. 1857 */ 1858 max_part = (1UL << part_shift) - 1; 1859 } 1860 1861 if ((1UL << part_shift) > DISK_MAX_PARTS) 1862 return -EINVAL; 1863 1864 if (max_loop > 1UL << (MINORBITS - part_shift)) 1865 return -EINVAL; 1866 1867 /* 1868 * If max_loop is specified, create that many devices upfront. 1869 * This also becomes a hard limit. If max_loop is not specified, 1870 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1871 * init time. Loop devices can be requested on-demand with the 1872 * /dev/loop-control interface, or be instantiated by accessing 1873 * a 'dead' device node. 1874 */ 1875 if (max_loop) { 1876 nr = max_loop; 1877 range = max_loop << part_shift; 1878 } else { 1879 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1880 range = 1UL << MINORBITS; 1881 } 1882 1883 if (register_blkdev(LOOP_MAJOR, "loop")) 1884 return -EIO; 1885 1886 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1887 THIS_MODULE, loop_probe, NULL, NULL); 1888 1889 /* pre-create number of devices given by config or max_loop */ 1890 mutex_lock(&loop_index_mutex); 1891 for (i = 0; i < nr; i++) 1892 loop_add(&lo, i); 1893 mutex_unlock(&loop_index_mutex); 1894 1895 printk(KERN_INFO "loop: module loaded\n"); 1896 return 0; 1897 } 1898 1899 static int loop_exit_cb(int id, void *ptr, void *data) 1900 { 1901 struct loop_device *lo = ptr; 1902 1903 loop_remove(lo); 1904 return 0; 1905 } 1906 1907 static void __exit loop_exit(void) 1908 { 1909 unsigned long range; 1910 1911 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 1912 1913 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 1914 idr_remove_all(&loop_index_idr); 1915 idr_destroy(&loop_index_idr); 1916 1917 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1918 unregister_blkdev(LOOP_MAJOR, "loop"); 1919 1920 misc_deregister(&loop_misc); 1921 } 1922 1923 module_init(loop_init); 1924 module_exit(loop_exit); 1925 1926 #ifndef MODULE 1927 static int __init max_loop_setup(char *str) 1928 { 1929 max_loop = simple_strtol(str, NULL, 0); 1930 return 1; 1931 } 1932 1933 __setup("max_loop=", max_loop_setup); 1934 #endif 1935