1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include "loop.h" 80 81 #include <asm/uaccess.h> 82 83 static DEFINE_IDR(loop_index_idr); 84 static DEFINE_MUTEX(loop_index_mutex); 85 86 static int max_part; 87 static int part_shift; 88 89 static int transfer_xor(struct loop_device *lo, int cmd, 90 struct page *raw_page, unsigned raw_off, 91 struct page *loop_page, unsigned loop_off, 92 int size, sector_t real_block) 93 { 94 char *raw_buf = kmap_atomic(raw_page) + raw_off; 95 char *loop_buf = kmap_atomic(loop_page) + loop_off; 96 char *in, *out, *key; 97 int i, keysize; 98 99 if (cmd == READ) { 100 in = raw_buf; 101 out = loop_buf; 102 } else { 103 in = loop_buf; 104 out = raw_buf; 105 } 106 107 key = lo->lo_encrypt_key; 108 keysize = lo->lo_encrypt_key_size; 109 for (i = 0; i < size; i++) 110 *out++ = *in++ ^ key[(i & 511) % keysize]; 111 112 kunmap_atomic(loop_buf); 113 kunmap_atomic(raw_buf); 114 cond_resched(); 115 return 0; 116 } 117 118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 119 { 120 if (unlikely(info->lo_encrypt_key_size <= 0)) 121 return -EINVAL; 122 return 0; 123 } 124 125 static struct loop_func_table none_funcs = { 126 .number = LO_CRYPT_NONE, 127 }; 128 129 static struct loop_func_table xor_funcs = { 130 .number = LO_CRYPT_XOR, 131 .transfer = transfer_xor, 132 .init = xor_init 133 }; 134 135 /* xfer_funcs[0] is special - its release function is never called */ 136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 137 &none_funcs, 138 &xor_funcs 139 }; 140 141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 142 { 143 loff_t loopsize; 144 145 /* Compute loopsize in bytes */ 146 loopsize = i_size_read(file->f_mapping->host); 147 if (offset > 0) 148 loopsize -= offset; 149 /* offset is beyond i_size, weird but possible */ 150 if (loopsize < 0) 151 return 0; 152 153 if (sizelimit > 0 && sizelimit < loopsize) 154 loopsize = sizelimit; 155 /* 156 * Unfortunately, if we want to do I/O on the device, 157 * the number of 512-byte sectors has to fit into a sector_t. 158 */ 159 return loopsize >> 9; 160 } 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 165 } 166 167 static void __loop_update_dio(struct loop_device *lo, bool dio) 168 { 169 struct file *file = lo->lo_backing_file; 170 struct address_space *mapping = file->f_mapping; 171 struct inode *inode = mapping->host; 172 unsigned short sb_bsize = 0; 173 unsigned dio_align = 0; 174 bool use_dio; 175 176 if (inode->i_sb->s_bdev) { 177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 178 dio_align = sb_bsize - 1; 179 } 180 181 /* 182 * We support direct I/O only if lo_offset is aligned with the 183 * logical I/O size of backing device, and the logical block 184 * size of loop is bigger than the backing device's and the loop 185 * needn't transform transfer. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane appplications should be PAGE_SIZE algined 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 mapping->a_ops->direct_IO && 195 !lo->transfer) 196 use_dio = true; 197 else 198 use_dio = false; 199 } else { 200 use_dio = false; 201 } 202 203 if (lo->use_dio == use_dio) 204 return; 205 206 /* flush dirty pages before changing direct IO */ 207 vfs_fsync(file, 0); 208 209 /* 210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 212 * will get updated by ioctl(LOOP_GET_STATUS) 213 */ 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) 217 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 218 else 219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 220 blk_mq_unfreeze_queue(lo->lo_queue); 221 } 222 223 static int 224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 225 { 226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 227 sector_t x = (sector_t)size; 228 struct block_device *bdev = lo->lo_device; 229 230 if (unlikely((loff_t)x != size)) 231 return -EFBIG; 232 if (lo->lo_offset != offset) 233 lo->lo_offset = offset; 234 if (lo->lo_sizelimit != sizelimit) 235 lo->lo_sizelimit = sizelimit; 236 set_capacity(lo->lo_disk, x); 237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 238 /* let user-space know about the new size */ 239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 240 return 0; 241 } 242 243 static inline int 244 lo_do_transfer(struct loop_device *lo, int cmd, 245 struct page *rpage, unsigned roffs, 246 struct page *lpage, unsigned loffs, 247 int size, sector_t rblock) 248 { 249 int ret; 250 251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 252 if (likely(!ret)) 253 return 0; 254 255 printk_ratelimited(KERN_ERR 256 "loop: Transfer error at byte offset %llu, length %i.\n", 257 (unsigned long long)rblock << 9, size); 258 return ret; 259 } 260 261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 262 { 263 struct iov_iter i; 264 ssize_t bw; 265 266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len); 267 268 file_start_write(file); 269 bw = vfs_iter_write(file, &i, ppos); 270 file_end_write(file); 271 272 if (likely(bw == bvec->bv_len)) 273 return 0; 274 275 printk_ratelimited(KERN_ERR 276 "loop: Write error at byte offset %llu, length %i.\n", 277 (unsigned long long)*ppos, bvec->bv_len); 278 if (bw >= 0) 279 bw = -EIO; 280 return bw; 281 } 282 283 static int lo_write_simple(struct loop_device *lo, struct request *rq, 284 loff_t pos) 285 { 286 struct bio_vec bvec; 287 struct req_iterator iter; 288 int ret = 0; 289 290 rq_for_each_segment(bvec, rq, iter) { 291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 292 if (ret < 0) 293 break; 294 cond_resched(); 295 } 296 297 return ret; 298 } 299 300 /* 301 * This is the slow, transforming version that needs to double buffer the 302 * data as it cannot do the transformations in place without having direct 303 * access to the destination pages of the backing file. 304 */ 305 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 306 loff_t pos) 307 { 308 struct bio_vec bvec, b; 309 struct req_iterator iter; 310 struct page *page; 311 int ret = 0; 312 313 page = alloc_page(GFP_NOIO); 314 if (unlikely(!page)) 315 return -ENOMEM; 316 317 rq_for_each_segment(bvec, rq, iter) { 318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 319 bvec.bv_offset, bvec.bv_len, pos >> 9); 320 if (unlikely(ret)) 321 break; 322 323 b.bv_page = page; 324 b.bv_offset = 0; 325 b.bv_len = bvec.bv_len; 326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 327 if (ret < 0) 328 break; 329 } 330 331 __free_page(page); 332 return ret; 333 } 334 335 static int lo_read_simple(struct loop_device *lo, struct request *rq, 336 loff_t pos) 337 { 338 struct bio_vec bvec; 339 struct req_iterator iter; 340 struct iov_iter i; 341 ssize_t len; 342 343 rq_for_each_segment(bvec, rq, iter) { 344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 346 if (len < 0) 347 return len; 348 349 flush_dcache_page(bvec.bv_page); 350 351 if (len != bvec.bv_len) { 352 struct bio *bio; 353 354 __rq_for_each_bio(bio, rq) 355 zero_fill_bio(bio); 356 break; 357 } 358 cond_resched(); 359 } 360 361 return 0; 362 } 363 364 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 365 loff_t pos) 366 { 367 struct bio_vec bvec, b; 368 struct req_iterator iter; 369 struct iov_iter i; 370 struct page *page; 371 ssize_t len; 372 int ret = 0; 373 374 page = alloc_page(GFP_NOIO); 375 if (unlikely(!page)) 376 return -ENOMEM; 377 378 rq_for_each_segment(bvec, rq, iter) { 379 loff_t offset = pos; 380 381 b.bv_page = page; 382 b.bv_offset = 0; 383 b.bv_len = bvec.bv_len; 384 385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 387 if (len < 0) { 388 ret = len; 389 goto out_free_page; 390 } 391 392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 393 bvec.bv_offset, len, offset >> 9); 394 if (ret) 395 goto out_free_page; 396 397 flush_dcache_page(bvec.bv_page); 398 399 if (len != bvec.bv_len) { 400 struct bio *bio; 401 402 __rq_for_each_bio(bio, rq) 403 zero_fill_bio(bio); 404 break; 405 } 406 } 407 408 ret = 0; 409 out_free_page: 410 __free_page(page); 411 return ret; 412 } 413 414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 415 { 416 /* 417 * We use punch hole to reclaim the free space used by the 418 * image a.k.a. discard. However we do not support discard if 419 * encryption is enabled, because it may give an attacker 420 * useful information. 421 */ 422 struct file *file = lo->lo_backing_file; 423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 424 int ret; 425 426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 427 ret = -EOPNOTSUPP; 428 goto out; 429 } 430 431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 433 ret = -EIO; 434 out: 435 return ret; 436 } 437 438 static int lo_req_flush(struct loop_device *lo, struct request *rq) 439 { 440 struct file *file = lo->lo_backing_file; 441 int ret = vfs_fsync(file, 0); 442 if (unlikely(ret && ret != -EINVAL)) 443 ret = -EIO; 444 445 return ret; 446 } 447 448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes) 449 { 450 if (bytes < 0 || (cmd->rq->cmd_flags & REQ_WRITE)) 451 return; 452 453 if (unlikely(bytes < blk_rq_bytes(cmd->rq))) { 454 struct bio *bio = cmd->rq->bio; 455 456 bio_advance(bio, bytes); 457 zero_fill_bio(bio); 458 } 459 } 460 461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 462 { 463 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 464 struct request *rq = cmd->rq; 465 466 handle_partial_read(cmd, ret); 467 468 if (ret > 0) 469 ret = 0; 470 else if (ret < 0) 471 ret = -EIO; 472 473 blk_mq_complete_request(rq, ret); 474 } 475 476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 477 loff_t pos, bool rw) 478 { 479 struct iov_iter iter; 480 struct bio_vec *bvec; 481 struct bio *bio = cmd->rq->bio; 482 struct file *file = lo->lo_backing_file; 483 int ret; 484 485 /* nomerge for loop request queue */ 486 WARN_ON(cmd->rq->bio != cmd->rq->biotail); 487 488 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 489 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 490 bio_segments(bio), blk_rq_bytes(cmd->rq)); 491 492 cmd->iocb.ki_pos = pos; 493 cmd->iocb.ki_filp = file; 494 cmd->iocb.ki_complete = lo_rw_aio_complete; 495 cmd->iocb.ki_flags = IOCB_DIRECT; 496 497 if (rw == WRITE) 498 ret = file->f_op->write_iter(&cmd->iocb, &iter); 499 else 500 ret = file->f_op->read_iter(&cmd->iocb, &iter); 501 502 if (ret != -EIOCBQUEUED) 503 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 504 return 0; 505 } 506 507 508 static inline int lo_rw_simple(struct loop_device *lo, 509 struct request *rq, loff_t pos, bool rw) 510 { 511 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 512 513 if (cmd->use_aio) 514 return lo_rw_aio(lo, cmd, pos, rw); 515 516 /* 517 * lo_write_simple and lo_read_simple should have been covered 518 * by io submit style function like lo_rw_aio(), one blocker 519 * is that lo_read_simple() need to call flush_dcache_page after 520 * the page is written from kernel, and it isn't easy to handle 521 * this in io submit style function which submits all segments 522 * of the req at one time. And direct read IO doesn't need to 523 * run flush_dcache_page(). 524 */ 525 if (rw == WRITE) 526 return lo_write_simple(lo, rq, pos); 527 else 528 return lo_read_simple(lo, rq, pos); 529 } 530 531 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 532 { 533 loff_t pos; 534 int ret; 535 536 pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 537 538 if (rq->cmd_flags & REQ_WRITE) { 539 if (rq->cmd_flags & REQ_FLUSH) 540 ret = lo_req_flush(lo, rq); 541 else if (rq->cmd_flags & REQ_DISCARD) 542 ret = lo_discard(lo, rq, pos); 543 else if (lo->transfer) 544 ret = lo_write_transfer(lo, rq, pos); 545 else 546 ret = lo_rw_simple(lo, rq, pos, WRITE); 547 548 } else { 549 if (lo->transfer) 550 ret = lo_read_transfer(lo, rq, pos); 551 else 552 ret = lo_rw_simple(lo, rq, pos, READ); 553 } 554 555 return ret; 556 } 557 558 struct switch_request { 559 struct file *file; 560 struct completion wait; 561 }; 562 563 static inline void loop_update_dio(struct loop_device *lo) 564 { 565 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 566 lo->use_dio); 567 } 568 569 /* 570 * Do the actual switch; called from the BIO completion routine 571 */ 572 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 573 { 574 struct file *file = p->file; 575 struct file *old_file = lo->lo_backing_file; 576 struct address_space *mapping; 577 578 /* if no new file, only flush of queued bios requested */ 579 if (!file) 580 return; 581 582 mapping = file->f_mapping; 583 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 584 lo->lo_backing_file = file; 585 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 586 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 587 lo->old_gfp_mask = mapping_gfp_mask(mapping); 588 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 589 loop_update_dio(lo); 590 } 591 592 /* 593 * loop_switch performs the hard work of switching a backing store. 594 * First it needs to flush existing IO, it does this by sending a magic 595 * BIO down the pipe. The completion of this BIO does the actual switch. 596 */ 597 static int loop_switch(struct loop_device *lo, struct file *file) 598 { 599 struct switch_request w; 600 601 w.file = file; 602 603 /* freeze queue and wait for completion of scheduled requests */ 604 blk_mq_freeze_queue(lo->lo_queue); 605 606 /* do the switch action */ 607 do_loop_switch(lo, &w); 608 609 /* unfreeze */ 610 blk_mq_unfreeze_queue(lo->lo_queue); 611 612 return 0; 613 } 614 615 /* 616 * Helper to flush the IOs in loop, but keeping loop thread running 617 */ 618 static int loop_flush(struct loop_device *lo) 619 { 620 return loop_switch(lo, NULL); 621 } 622 623 static void loop_reread_partitions(struct loop_device *lo, 624 struct block_device *bdev) 625 { 626 int rc; 627 628 /* 629 * bd_mutex has been held already in release path, so don't 630 * acquire it if this function is called in such case. 631 * 632 * If the reread partition isn't from release path, lo_refcnt 633 * must be at least one and it can only become zero when the 634 * current holder is released. 635 */ 636 if (!atomic_read(&lo->lo_refcnt)) 637 rc = __blkdev_reread_part(bdev); 638 else 639 rc = blkdev_reread_part(bdev); 640 if (rc) 641 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 642 __func__, lo->lo_number, lo->lo_file_name, rc); 643 } 644 645 /* 646 * loop_change_fd switched the backing store of a loopback device to 647 * a new file. This is useful for operating system installers to free up 648 * the original file and in High Availability environments to switch to 649 * an alternative location for the content in case of server meltdown. 650 * This can only work if the loop device is used read-only, and if the 651 * new backing store is the same size and type as the old backing store. 652 */ 653 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 654 unsigned int arg) 655 { 656 struct file *file, *old_file; 657 struct inode *inode; 658 int error; 659 660 error = -ENXIO; 661 if (lo->lo_state != Lo_bound) 662 goto out; 663 664 /* the loop device has to be read-only */ 665 error = -EINVAL; 666 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 667 goto out; 668 669 error = -EBADF; 670 file = fget(arg); 671 if (!file) 672 goto out; 673 674 inode = file->f_mapping->host; 675 old_file = lo->lo_backing_file; 676 677 error = -EINVAL; 678 679 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 680 goto out_putf; 681 682 /* size of the new backing store needs to be the same */ 683 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 684 goto out_putf; 685 686 /* and ... switch */ 687 error = loop_switch(lo, file); 688 if (error) 689 goto out_putf; 690 691 fput(old_file); 692 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 693 loop_reread_partitions(lo, bdev); 694 return 0; 695 696 out_putf: 697 fput(file); 698 out: 699 return error; 700 } 701 702 static inline int is_loop_device(struct file *file) 703 { 704 struct inode *i = file->f_mapping->host; 705 706 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 707 } 708 709 /* loop sysfs attributes */ 710 711 static ssize_t loop_attr_show(struct device *dev, char *page, 712 ssize_t (*callback)(struct loop_device *, char *)) 713 { 714 struct gendisk *disk = dev_to_disk(dev); 715 struct loop_device *lo = disk->private_data; 716 717 return callback(lo, page); 718 } 719 720 #define LOOP_ATTR_RO(_name) \ 721 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 722 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 723 struct device_attribute *attr, char *b) \ 724 { \ 725 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 726 } \ 727 static struct device_attribute loop_attr_##_name = \ 728 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 729 730 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 731 { 732 ssize_t ret; 733 char *p = NULL; 734 735 spin_lock_irq(&lo->lo_lock); 736 if (lo->lo_backing_file) 737 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 738 spin_unlock_irq(&lo->lo_lock); 739 740 if (IS_ERR_OR_NULL(p)) 741 ret = PTR_ERR(p); 742 else { 743 ret = strlen(p); 744 memmove(buf, p, ret); 745 buf[ret++] = '\n'; 746 buf[ret] = 0; 747 } 748 749 return ret; 750 } 751 752 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 753 { 754 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 755 } 756 757 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 758 { 759 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 760 } 761 762 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 763 { 764 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 765 766 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 767 } 768 769 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 770 { 771 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 772 773 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 774 } 775 776 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 777 { 778 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 779 780 return sprintf(buf, "%s\n", dio ? "1" : "0"); 781 } 782 783 LOOP_ATTR_RO(backing_file); 784 LOOP_ATTR_RO(offset); 785 LOOP_ATTR_RO(sizelimit); 786 LOOP_ATTR_RO(autoclear); 787 LOOP_ATTR_RO(partscan); 788 LOOP_ATTR_RO(dio); 789 790 static struct attribute *loop_attrs[] = { 791 &loop_attr_backing_file.attr, 792 &loop_attr_offset.attr, 793 &loop_attr_sizelimit.attr, 794 &loop_attr_autoclear.attr, 795 &loop_attr_partscan.attr, 796 &loop_attr_dio.attr, 797 NULL, 798 }; 799 800 static struct attribute_group loop_attribute_group = { 801 .name = "loop", 802 .attrs= loop_attrs, 803 }; 804 805 static int loop_sysfs_init(struct loop_device *lo) 806 { 807 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 808 &loop_attribute_group); 809 } 810 811 static void loop_sysfs_exit(struct loop_device *lo) 812 { 813 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 814 &loop_attribute_group); 815 } 816 817 static void loop_config_discard(struct loop_device *lo) 818 { 819 struct file *file = lo->lo_backing_file; 820 struct inode *inode = file->f_mapping->host; 821 struct request_queue *q = lo->lo_queue; 822 823 /* 824 * We use punch hole to reclaim the free space used by the 825 * image a.k.a. discard. However we do not support discard if 826 * encryption is enabled, because it may give an attacker 827 * useful information. 828 */ 829 if ((!file->f_op->fallocate) || 830 lo->lo_encrypt_key_size) { 831 q->limits.discard_granularity = 0; 832 q->limits.discard_alignment = 0; 833 blk_queue_max_discard_sectors(q, 0); 834 q->limits.discard_zeroes_data = 0; 835 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 836 return; 837 } 838 839 q->limits.discard_granularity = inode->i_sb->s_blocksize; 840 q->limits.discard_alignment = 0; 841 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 842 q->limits.discard_zeroes_data = 1; 843 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 844 } 845 846 static void loop_unprepare_queue(struct loop_device *lo) 847 { 848 flush_kthread_worker(&lo->worker); 849 kthread_stop(lo->worker_task); 850 } 851 852 static int loop_prepare_queue(struct loop_device *lo) 853 { 854 init_kthread_worker(&lo->worker); 855 lo->worker_task = kthread_run(kthread_worker_fn, 856 &lo->worker, "loop%d", lo->lo_number); 857 if (IS_ERR(lo->worker_task)) 858 return -ENOMEM; 859 set_user_nice(lo->worker_task, MIN_NICE); 860 return 0; 861 } 862 863 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 864 struct block_device *bdev, unsigned int arg) 865 { 866 struct file *file, *f; 867 struct inode *inode; 868 struct address_space *mapping; 869 unsigned lo_blocksize; 870 int lo_flags = 0; 871 int error; 872 loff_t size; 873 874 /* This is safe, since we have a reference from open(). */ 875 __module_get(THIS_MODULE); 876 877 error = -EBADF; 878 file = fget(arg); 879 if (!file) 880 goto out; 881 882 error = -EBUSY; 883 if (lo->lo_state != Lo_unbound) 884 goto out_putf; 885 886 /* Avoid recursion */ 887 f = file; 888 while (is_loop_device(f)) { 889 struct loop_device *l; 890 891 if (f->f_mapping->host->i_bdev == bdev) 892 goto out_putf; 893 894 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 895 if (l->lo_state == Lo_unbound) { 896 error = -EINVAL; 897 goto out_putf; 898 } 899 f = l->lo_backing_file; 900 } 901 902 mapping = file->f_mapping; 903 inode = mapping->host; 904 905 error = -EINVAL; 906 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 907 goto out_putf; 908 909 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 910 !file->f_op->write_iter) 911 lo_flags |= LO_FLAGS_READ_ONLY; 912 913 lo_blocksize = S_ISBLK(inode->i_mode) ? 914 inode->i_bdev->bd_block_size : PAGE_SIZE; 915 916 error = -EFBIG; 917 size = get_loop_size(lo, file); 918 if ((loff_t)(sector_t)size != size) 919 goto out_putf; 920 error = loop_prepare_queue(lo); 921 if (error) 922 goto out_putf; 923 924 error = 0; 925 926 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 927 928 lo->use_dio = false; 929 lo->lo_blocksize = lo_blocksize; 930 lo->lo_device = bdev; 931 lo->lo_flags = lo_flags; 932 lo->lo_backing_file = file; 933 lo->transfer = NULL; 934 lo->ioctl = NULL; 935 lo->lo_sizelimit = 0; 936 lo->old_gfp_mask = mapping_gfp_mask(mapping); 937 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 938 939 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 940 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 941 942 loop_update_dio(lo); 943 set_capacity(lo->lo_disk, size); 944 bd_set_size(bdev, size << 9); 945 loop_sysfs_init(lo); 946 /* let user-space know about the new size */ 947 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 948 949 set_blocksize(bdev, lo_blocksize); 950 951 lo->lo_state = Lo_bound; 952 if (part_shift) 953 lo->lo_flags |= LO_FLAGS_PARTSCAN; 954 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 955 loop_reread_partitions(lo, bdev); 956 957 /* Grab the block_device to prevent its destruction after we 958 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 959 */ 960 bdgrab(bdev); 961 return 0; 962 963 out_putf: 964 fput(file); 965 out: 966 /* This is safe: open() is still holding a reference. */ 967 module_put(THIS_MODULE); 968 return error; 969 } 970 971 static int 972 loop_release_xfer(struct loop_device *lo) 973 { 974 int err = 0; 975 struct loop_func_table *xfer = lo->lo_encryption; 976 977 if (xfer) { 978 if (xfer->release) 979 err = xfer->release(lo); 980 lo->transfer = NULL; 981 lo->lo_encryption = NULL; 982 module_put(xfer->owner); 983 } 984 return err; 985 } 986 987 static int 988 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 989 const struct loop_info64 *i) 990 { 991 int err = 0; 992 993 if (xfer) { 994 struct module *owner = xfer->owner; 995 996 if (!try_module_get(owner)) 997 return -EINVAL; 998 if (xfer->init) 999 err = xfer->init(lo, i); 1000 if (err) 1001 module_put(owner); 1002 else 1003 lo->lo_encryption = xfer; 1004 } 1005 return err; 1006 } 1007 1008 static int loop_clr_fd(struct loop_device *lo) 1009 { 1010 struct file *filp = lo->lo_backing_file; 1011 gfp_t gfp = lo->old_gfp_mask; 1012 struct block_device *bdev = lo->lo_device; 1013 1014 if (lo->lo_state != Lo_bound) 1015 return -ENXIO; 1016 1017 /* 1018 * If we've explicitly asked to tear down the loop device, 1019 * and it has an elevated reference count, set it for auto-teardown when 1020 * the last reference goes away. This stops $!~#$@ udev from 1021 * preventing teardown because it decided that it needs to run blkid on 1022 * the loopback device whenever they appear. xfstests is notorious for 1023 * failing tests because blkid via udev races with a losetup 1024 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1025 * command to fail with EBUSY. 1026 */ 1027 if (atomic_read(&lo->lo_refcnt) > 1) { 1028 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1029 mutex_unlock(&lo->lo_ctl_mutex); 1030 return 0; 1031 } 1032 1033 if (filp == NULL) 1034 return -EINVAL; 1035 1036 /* freeze request queue during the transition */ 1037 blk_mq_freeze_queue(lo->lo_queue); 1038 1039 spin_lock_irq(&lo->lo_lock); 1040 lo->lo_state = Lo_rundown; 1041 lo->lo_backing_file = NULL; 1042 spin_unlock_irq(&lo->lo_lock); 1043 1044 loop_release_xfer(lo); 1045 lo->transfer = NULL; 1046 lo->ioctl = NULL; 1047 lo->lo_device = NULL; 1048 lo->lo_encryption = NULL; 1049 lo->lo_offset = 0; 1050 lo->lo_sizelimit = 0; 1051 lo->lo_encrypt_key_size = 0; 1052 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1053 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1054 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1055 if (bdev) { 1056 bdput(bdev); 1057 invalidate_bdev(bdev); 1058 } 1059 set_capacity(lo->lo_disk, 0); 1060 loop_sysfs_exit(lo); 1061 if (bdev) { 1062 bd_set_size(bdev, 0); 1063 /* let user-space know about this change */ 1064 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1065 } 1066 mapping_set_gfp_mask(filp->f_mapping, gfp); 1067 lo->lo_state = Lo_unbound; 1068 /* This is safe: open() is still holding a reference. */ 1069 module_put(THIS_MODULE); 1070 blk_mq_unfreeze_queue(lo->lo_queue); 1071 1072 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1073 loop_reread_partitions(lo, bdev); 1074 lo->lo_flags = 0; 1075 if (!part_shift) 1076 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1077 loop_unprepare_queue(lo); 1078 mutex_unlock(&lo->lo_ctl_mutex); 1079 /* 1080 * Need not hold lo_ctl_mutex to fput backing file. 1081 * Calling fput holding lo_ctl_mutex triggers a circular 1082 * lock dependency possibility warning as fput can take 1083 * bd_mutex which is usually taken before lo_ctl_mutex. 1084 */ 1085 fput(filp); 1086 return 0; 1087 } 1088 1089 static int 1090 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1091 { 1092 int err; 1093 struct loop_func_table *xfer; 1094 kuid_t uid = current_uid(); 1095 1096 if (lo->lo_encrypt_key_size && 1097 !uid_eq(lo->lo_key_owner, uid) && 1098 !capable(CAP_SYS_ADMIN)) 1099 return -EPERM; 1100 if (lo->lo_state != Lo_bound) 1101 return -ENXIO; 1102 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1103 return -EINVAL; 1104 1105 err = loop_release_xfer(lo); 1106 if (err) 1107 return err; 1108 1109 if (info->lo_encrypt_type) { 1110 unsigned int type = info->lo_encrypt_type; 1111 1112 if (type >= MAX_LO_CRYPT) 1113 return -EINVAL; 1114 xfer = xfer_funcs[type]; 1115 if (xfer == NULL) 1116 return -EINVAL; 1117 } else 1118 xfer = NULL; 1119 1120 err = loop_init_xfer(lo, xfer, info); 1121 if (err) 1122 return err; 1123 1124 if (lo->lo_offset != info->lo_offset || 1125 lo->lo_sizelimit != info->lo_sizelimit) 1126 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1127 return -EFBIG; 1128 1129 loop_config_discard(lo); 1130 1131 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1132 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1133 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1134 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1135 1136 if (!xfer) 1137 xfer = &none_funcs; 1138 lo->transfer = xfer->transfer; 1139 lo->ioctl = xfer->ioctl; 1140 1141 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1142 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1143 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1144 1145 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1146 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1147 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1148 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1149 loop_reread_partitions(lo, lo->lo_device); 1150 } 1151 1152 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1153 lo->lo_init[0] = info->lo_init[0]; 1154 lo->lo_init[1] = info->lo_init[1]; 1155 if (info->lo_encrypt_key_size) { 1156 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1157 info->lo_encrypt_key_size); 1158 lo->lo_key_owner = uid; 1159 } 1160 1161 /* update dio if lo_offset or transfer is changed */ 1162 __loop_update_dio(lo, lo->use_dio); 1163 1164 return 0; 1165 } 1166 1167 static int 1168 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1169 { 1170 struct file *file = lo->lo_backing_file; 1171 struct kstat stat; 1172 int error; 1173 1174 if (lo->lo_state != Lo_bound) 1175 return -ENXIO; 1176 error = vfs_getattr(&file->f_path, &stat); 1177 if (error) 1178 return error; 1179 memset(info, 0, sizeof(*info)); 1180 info->lo_number = lo->lo_number; 1181 info->lo_device = huge_encode_dev(stat.dev); 1182 info->lo_inode = stat.ino; 1183 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1184 info->lo_offset = lo->lo_offset; 1185 info->lo_sizelimit = lo->lo_sizelimit; 1186 info->lo_flags = lo->lo_flags; 1187 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1188 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1189 info->lo_encrypt_type = 1190 lo->lo_encryption ? lo->lo_encryption->number : 0; 1191 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1192 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1193 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1194 lo->lo_encrypt_key_size); 1195 } 1196 return 0; 1197 } 1198 1199 static void 1200 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1201 { 1202 memset(info64, 0, sizeof(*info64)); 1203 info64->lo_number = info->lo_number; 1204 info64->lo_device = info->lo_device; 1205 info64->lo_inode = info->lo_inode; 1206 info64->lo_rdevice = info->lo_rdevice; 1207 info64->lo_offset = info->lo_offset; 1208 info64->lo_sizelimit = 0; 1209 info64->lo_encrypt_type = info->lo_encrypt_type; 1210 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1211 info64->lo_flags = info->lo_flags; 1212 info64->lo_init[0] = info->lo_init[0]; 1213 info64->lo_init[1] = info->lo_init[1]; 1214 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1215 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1216 else 1217 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1218 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1219 } 1220 1221 static int 1222 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1223 { 1224 memset(info, 0, sizeof(*info)); 1225 info->lo_number = info64->lo_number; 1226 info->lo_device = info64->lo_device; 1227 info->lo_inode = info64->lo_inode; 1228 info->lo_rdevice = info64->lo_rdevice; 1229 info->lo_offset = info64->lo_offset; 1230 info->lo_encrypt_type = info64->lo_encrypt_type; 1231 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1232 info->lo_flags = info64->lo_flags; 1233 info->lo_init[0] = info64->lo_init[0]; 1234 info->lo_init[1] = info64->lo_init[1]; 1235 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1236 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1237 else 1238 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1239 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1240 1241 /* error in case values were truncated */ 1242 if (info->lo_device != info64->lo_device || 1243 info->lo_rdevice != info64->lo_rdevice || 1244 info->lo_inode != info64->lo_inode || 1245 info->lo_offset != info64->lo_offset) 1246 return -EOVERFLOW; 1247 1248 return 0; 1249 } 1250 1251 static int 1252 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1253 { 1254 struct loop_info info; 1255 struct loop_info64 info64; 1256 1257 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1258 return -EFAULT; 1259 loop_info64_from_old(&info, &info64); 1260 return loop_set_status(lo, &info64); 1261 } 1262 1263 static int 1264 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1265 { 1266 struct loop_info64 info64; 1267 1268 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1269 return -EFAULT; 1270 return loop_set_status(lo, &info64); 1271 } 1272 1273 static int 1274 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1275 struct loop_info info; 1276 struct loop_info64 info64; 1277 int err = 0; 1278 1279 if (!arg) 1280 err = -EINVAL; 1281 if (!err) 1282 err = loop_get_status(lo, &info64); 1283 if (!err) 1284 err = loop_info64_to_old(&info64, &info); 1285 if (!err && copy_to_user(arg, &info, sizeof(info))) 1286 err = -EFAULT; 1287 1288 return err; 1289 } 1290 1291 static int 1292 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1293 struct loop_info64 info64; 1294 int err = 0; 1295 1296 if (!arg) 1297 err = -EINVAL; 1298 if (!err) 1299 err = loop_get_status(lo, &info64); 1300 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1301 err = -EFAULT; 1302 1303 return err; 1304 } 1305 1306 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1307 { 1308 if (unlikely(lo->lo_state != Lo_bound)) 1309 return -ENXIO; 1310 1311 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1312 } 1313 1314 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1315 { 1316 int error = -ENXIO; 1317 if (lo->lo_state != Lo_bound) 1318 goto out; 1319 1320 __loop_update_dio(lo, !!arg); 1321 if (lo->use_dio == !!arg) 1322 return 0; 1323 error = -EINVAL; 1324 out: 1325 return error; 1326 } 1327 1328 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1329 unsigned int cmd, unsigned long arg) 1330 { 1331 struct loop_device *lo = bdev->bd_disk->private_data; 1332 int err; 1333 1334 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1335 switch (cmd) { 1336 case LOOP_SET_FD: 1337 err = loop_set_fd(lo, mode, bdev, arg); 1338 break; 1339 case LOOP_CHANGE_FD: 1340 err = loop_change_fd(lo, bdev, arg); 1341 break; 1342 case LOOP_CLR_FD: 1343 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1344 err = loop_clr_fd(lo); 1345 if (!err) 1346 goto out_unlocked; 1347 break; 1348 case LOOP_SET_STATUS: 1349 err = -EPERM; 1350 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1351 err = loop_set_status_old(lo, 1352 (struct loop_info __user *)arg); 1353 break; 1354 case LOOP_GET_STATUS: 1355 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1356 break; 1357 case LOOP_SET_STATUS64: 1358 err = -EPERM; 1359 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1360 err = loop_set_status64(lo, 1361 (struct loop_info64 __user *) arg); 1362 break; 1363 case LOOP_GET_STATUS64: 1364 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1365 break; 1366 case LOOP_SET_CAPACITY: 1367 err = -EPERM; 1368 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1369 err = loop_set_capacity(lo, bdev); 1370 break; 1371 case LOOP_SET_DIRECT_IO: 1372 err = -EPERM; 1373 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1374 err = loop_set_dio(lo, arg); 1375 break; 1376 default: 1377 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1378 } 1379 mutex_unlock(&lo->lo_ctl_mutex); 1380 1381 out_unlocked: 1382 return err; 1383 } 1384 1385 #ifdef CONFIG_COMPAT 1386 struct compat_loop_info { 1387 compat_int_t lo_number; /* ioctl r/o */ 1388 compat_dev_t lo_device; /* ioctl r/o */ 1389 compat_ulong_t lo_inode; /* ioctl r/o */ 1390 compat_dev_t lo_rdevice; /* ioctl r/o */ 1391 compat_int_t lo_offset; 1392 compat_int_t lo_encrypt_type; 1393 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1394 compat_int_t lo_flags; /* ioctl r/o */ 1395 char lo_name[LO_NAME_SIZE]; 1396 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1397 compat_ulong_t lo_init[2]; 1398 char reserved[4]; 1399 }; 1400 1401 /* 1402 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1403 * - noinlined to reduce stack space usage in main part of driver 1404 */ 1405 static noinline int 1406 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1407 struct loop_info64 *info64) 1408 { 1409 struct compat_loop_info info; 1410 1411 if (copy_from_user(&info, arg, sizeof(info))) 1412 return -EFAULT; 1413 1414 memset(info64, 0, sizeof(*info64)); 1415 info64->lo_number = info.lo_number; 1416 info64->lo_device = info.lo_device; 1417 info64->lo_inode = info.lo_inode; 1418 info64->lo_rdevice = info.lo_rdevice; 1419 info64->lo_offset = info.lo_offset; 1420 info64->lo_sizelimit = 0; 1421 info64->lo_encrypt_type = info.lo_encrypt_type; 1422 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1423 info64->lo_flags = info.lo_flags; 1424 info64->lo_init[0] = info.lo_init[0]; 1425 info64->lo_init[1] = info.lo_init[1]; 1426 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1427 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1428 else 1429 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1430 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1431 return 0; 1432 } 1433 1434 /* 1435 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1436 * - noinlined to reduce stack space usage in main part of driver 1437 */ 1438 static noinline int 1439 loop_info64_to_compat(const struct loop_info64 *info64, 1440 struct compat_loop_info __user *arg) 1441 { 1442 struct compat_loop_info info; 1443 1444 memset(&info, 0, sizeof(info)); 1445 info.lo_number = info64->lo_number; 1446 info.lo_device = info64->lo_device; 1447 info.lo_inode = info64->lo_inode; 1448 info.lo_rdevice = info64->lo_rdevice; 1449 info.lo_offset = info64->lo_offset; 1450 info.lo_encrypt_type = info64->lo_encrypt_type; 1451 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1452 info.lo_flags = info64->lo_flags; 1453 info.lo_init[0] = info64->lo_init[0]; 1454 info.lo_init[1] = info64->lo_init[1]; 1455 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1456 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1457 else 1458 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1459 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1460 1461 /* error in case values were truncated */ 1462 if (info.lo_device != info64->lo_device || 1463 info.lo_rdevice != info64->lo_rdevice || 1464 info.lo_inode != info64->lo_inode || 1465 info.lo_offset != info64->lo_offset || 1466 info.lo_init[0] != info64->lo_init[0] || 1467 info.lo_init[1] != info64->lo_init[1]) 1468 return -EOVERFLOW; 1469 1470 if (copy_to_user(arg, &info, sizeof(info))) 1471 return -EFAULT; 1472 return 0; 1473 } 1474 1475 static int 1476 loop_set_status_compat(struct loop_device *lo, 1477 const struct compat_loop_info __user *arg) 1478 { 1479 struct loop_info64 info64; 1480 int ret; 1481 1482 ret = loop_info64_from_compat(arg, &info64); 1483 if (ret < 0) 1484 return ret; 1485 return loop_set_status(lo, &info64); 1486 } 1487 1488 static int 1489 loop_get_status_compat(struct loop_device *lo, 1490 struct compat_loop_info __user *arg) 1491 { 1492 struct loop_info64 info64; 1493 int err = 0; 1494 1495 if (!arg) 1496 err = -EINVAL; 1497 if (!err) 1498 err = loop_get_status(lo, &info64); 1499 if (!err) 1500 err = loop_info64_to_compat(&info64, arg); 1501 return err; 1502 } 1503 1504 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1505 unsigned int cmd, unsigned long arg) 1506 { 1507 struct loop_device *lo = bdev->bd_disk->private_data; 1508 int err; 1509 1510 switch(cmd) { 1511 case LOOP_SET_STATUS: 1512 mutex_lock(&lo->lo_ctl_mutex); 1513 err = loop_set_status_compat( 1514 lo, (const struct compat_loop_info __user *) arg); 1515 mutex_unlock(&lo->lo_ctl_mutex); 1516 break; 1517 case LOOP_GET_STATUS: 1518 mutex_lock(&lo->lo_ctl_mutex); 1519 err = loop_get_status_compat( 1520 lo, (struct compat_loop_info __user *) arg); 1521 mutex_unlock(&lo->lo_ctl_mutex); 1522 break; 1523 case LOOP_SET_CAPACITY: 1524 case LOOP_CLR_FD: 1525 case LOOP_GET_STATUS64: 1526 case LOOP_SET_STATUS64: 1527 arg = (unsigned long) compat_ptr(arg); 1528 case LOOP_SET_FD: 1529 case LOOP_CHANGE_FD: 1530 err = lo_ioctl(bdev, mode, cmd, arg); 1531 break; 1532 default: 1533 err = -ENOIOCTLCMD; 1534 break; 1535 } 1536 return err; 1537 } 1538 #endif 1539 1540 static int lo_open(struct block_device *bdev, fmode_t mode) 1541 { 1542 struct loop_device *lo; 1543 int err = 0; 1544 1545 mutex_lock(&loop_index_mutex); 1546 lo = bdev->bd_disk->private_data; 1547 if (!lo) { 1548 err = -ENXIO; 1549 goto out; 1550 } 1551 1552 atomic_inc(&lo->lo_refcnt); 1553 out: 1554 mutex_unlock(&loop_index_mutex); 1555 return err; 1556 } 1557 1558 static void lo_release(struct gendisk *disk, fmode_t mode) 1559 { 1560 struct loop_device *lo = disk->private_data; 1561 int err; 1562 1563 if (atomic_dec_return(&lo->lo_refcnt)) 1564 return; 1565 1566 mutex_lock(&lo->lo_ctl_mutex); 1567 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1568 /* 1569 * In autoclear mode, stop the loop thread 1570 * and remove configuration after last close. 1571 */ 1572 err = loop_clr_fd(lo); 1573 if (!err) 1574 return; 1575 } else { 1576 /* 1577 * Otherwise keep thread (if running) and config, 1578 * but flush possible ongoing bios in thread. 1579 */ 1580 loop_flush(lo); 1581 } 1582 1583 mutex_unlock(&lo->lo_ctl_mutex); 1584 } 1585 1586 static const struct block_device_operations lo_fops = { 1587 .owner = THIS_MODULE, 1588 .open = lo_open, 1589 .release = lo_release, 1590 .ioctl = lo_ioctl, 1591 #ifdef CONFIG_COMPAT 1592 .compat_ioctl = lo_compat_ioctl, 1593 #endif 1594 }; 1595 1596 /* 1597 * And now the modules code and kernel interface. 1598 */ 1599 static int max_loop; 1600 module_param(max_loop, int, S_IRUGO); 1601 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1602 module_param(max_part, int, S_IRUGO); 1603 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1604 MODULE_LICENSE("GPL"); 1605 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1606 1607 int loop_register_transfer(struct loop_func_table *funcs) 1608 { 1609 unsigned int n = funcs->number; 1610 1611 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1612 return -EINVAL; 1613 xfer_funcs[n] = funcs; 1614 return 0; 1615 } 1616 1617 static int unregister_transfer_cb(int id, void *ptr, void *data) 1618 { 1619 struct loop_device *lo = ptr; 1620 struct loop_func_table *xfer = data; 1621 1622 mutex_lock(&lo->lo_ctl_mutex); 1623 if (lo->lo_encryption == xfer) 1624 loop_release_xfer(lo); 1625 mutex_unlock(&lo->lo_ctl_mutex); 1626 return 0; 1627 } 1628 1629 int loop_unregister_transfer(int number) 1630 { 1631 unsigned int n = number; 1632 struct loop_func_table *xfer; 1633 1634 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1635 return -EINVAL; 1636 1637 xfer_funcs[n] = NULL; 1638 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1639 return 0; 1640 } 1641 1642 EXPORT_SYMBOL(loop_register_transfer); 1643 EXPORT_SYMBOL(loop_unregister_transfer); 1644 1645 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1646 const struct blk_mq_queue_data *bd) 1647 { 1648 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); 1649 struct loop_device *lo = cmd->rq->q->queuedata; 1650 1651 blk_mq_start_request(bd->rq); 1652 1653 if (lo->lo_state != Lo_bound) 1654 return -EIO; 1655 1656 if (lo->use_dio && !(cmd->rq->cmd_flags & (REQ_FLUSH | 1657 REQ_DISCARD))) 1658 cmd->use_aio = true; 1659 else 1660 cmd->use_aio = false; 1661 1662 queue_kthread_work(&lo->worker, &cmd->work); 1663 1664 return BLK_MQ_RQ_QUEUE_OK; 1665 } 1666 1667 static void loop_handle_cmd(struct loop_cmd *cmd) 1668 { 1669 const bool write = cmd->rq->cmd_flags & REQ_WRITE; 1670 struct loop_device *lo = cmd->rq->q->queuedata; 1671 int ret = 0; 1672 1673 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1674 ret = -EIO; 1675 goto failed; 1676 } 1677 1678 ret = do_req_filebacked(lo, cmd->rq); 1679 failed: 1680 /* complete non-aio request */ 1681 if (!cmd->use_aio || ret) 1682 blk_mq_complete_request(cmd->rq, ret ? -EIO : 0); 1683 } 1684 1685 static void loop_queue_work(struct kthread_work *work) 1686 { 1687 struct loop_cmd *cmd = 1688 container_of(work, struct loop_cmd, work); 1689 1690 loop_handle_cmd(cmd); 1691 } 1692 1693 static int loop_init_request(void *data, struct request *rq, 1694 unsigned int hctx_idx, unsigned int request_idx, 1695 unsigned int numa_node) 1696 { 1697 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1698 1699 cmd->rq = rq; 1700 init_kthread_work(&cmd->work, loop_queue_work); 1701 1702 return 0; 1703 } 1704 1705 static struct blk_mq_ops loop_mq_ops = { 1706 .queue_rq = loop_queue_rq, 1707 .map_queue = blk_mq_map_queue, 1708 .init_request = loop_init_request, 1709 }; 1710 1711 static int loop_add(struct loop_device **l, int i) 1712 { 1713 struct loop_device *lo; 1714 struct gendisk *disk; 1715 int err; 1716 1717 err = -ENOMEM; 1718 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1719 if (!lo) 1720 goto out; 1721 1722 lo->lo_state = Lo_unbound; 1723 1724 /* allocate id, if @id >= 0, we're requesting that specific id */ 1725 if (i >= 0) { 1726 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1727 if (err == -ENOSPC) 1728 err = -EEXIST; 1729 } else { 1730 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1731 } 1732 if (err < 0) 1733 goto out_free_dev; 1734 i = err; 1735 1736 err = -ENOMEM; 1737 lo->tag_set.ops = &loop_mq_ops; 1738 lo->tag_set.nr_hw_queues = 1; 1739 lo->tag_set.queue_depth = 128; 1740 lo->tag_set.numa_node = NUMA_NO_NODE; 1741 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1742 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1743 lo->tag_set.driver_data = lo; 1744 1745 err = blk_mq_alloc_tag_set(&lo->tag_set); 1746 if (err) 1747 goto out_free_idr; 1748 1749 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1750 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1751 err = PTR_ERR(lo->lo_queue); 1752 goto out_cleanup_tags; 1753 } 1754 lo->lo_queue->queuedata = lo; 1755 1756 /* 1757 * It doesn't make sense to enable merge because the I/O 1758 * submitted to backing file is handled page by page. 1759 */ 1760 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1761 1762 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1763 if (!disk) 1764 goto out_free_queue; 1765 1766 /* 1767 * Disable partition scanning by default. The in-kernel partition 1768 * scanning can be requested individually per-device during its 1769 * setup. Userspace can always add and remove partitions from all 1770 * devices. The needed partition minors are allocated from the 1771 * extended minor space, the main loop device numbers will continue 1772 * to match the loop minors, regardless of the number of partitions 1773 * used. 1774 * 1775 * If max_part is given, partition scanning is globally enabled for 1776 * all loop devices. The minors for the main loop devices will be 1777 * multiples of max_part. 1778 * 1779 * Note: Global-for-all-devices, set-only-at-init, read-only module 1780 * parameteters like 'max_loop' and 'max_part' make things needlessly 1781 * complicated, are too static, inflexible and may surprise 1782 * userspace tools. Parameters like this in general should be avoided. 1783 */ 1784 if (!part_shift) 1785 disk->flags |= GENHD_FL_NO_PART_SCAN; 1786 disk->flags |= GENHD_FL_EXT_DEVT; 1787 mutex_init(&lo->lo_ctl_mutex); 1788 atomic_set(&lo->lo_refcnt, 0); 1789 lo->lo_number = i; 1790 spin_lock_init(&lo->lo_lock); 1791 disk->major = LOOP_MAJOR; 1792 disk->first_minor = i << part_shift; 1793 disk->fops = &lo_fops; 1794 disk->private_data = lo; 1795 disk->queue = lo->lo_queue; 1796 sprintf(disk->disk_name, "loop%d", i); 1797 add_disk(disk); 1798 *l = lo; 1799 return lo->lo_number; 1800 1801 out_free_queue: 1802 blk_cleanup_queue(lo->lo_queue); 1803 out_cleanup_tags: 1804 blk_mq_free_tag_set(&lo->tag_set); 1805 out_free_idr: 1806 idr_remove(&loop_index_idr, i); 1807 out_free_dev: 1808 kfree(lo); 1809 out: 1810 return err; 1811 } 1812 1813 static void loop_remove(struct loop_device *lo) 1814 { 1815 blk_cleanup_queue(lo->lo_queue); 1816 del_gendisk(lo->lo_disk); 1817 blk_mq_free_tag_set(&lo->tag_set); 1818 put_disk(lo->lo_disk); 1819 kfree(lo); 1820 } 1821 1822 static int find_free_cb(int id, void *ptr, void *data) 1823 { 1824 struct loop_device *lo = ptr; 1825 struct loop_device **l = data; 1826 1827 if (lo->lo_state == Lo_unbound) { 1828 *l = lo; 1829 return 1; 1830 } 1831 return 0; 1832 } 1833 1834 static int loop_lookup(struct loop_device **l, int i) 1835 { 1836 struct loop_device *lo; 1837 int ret = -ENODEV; 1838 1839 if (i < 0) { 1840 int err; 1841 1842 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1843 if (err == 1) { 1844 *l = lo; 1845 ret = lo->lo_number; 1846 } 1847 goto out; 1848 } 1849 1850 /* lookup and return a specific i */ 1851 lo = idr_find(&loop_index_idr, i); 1852 if (lo) { 1853 *l = lo; 1854 ret = lo->lo_number; 1855 } 1856 out: 1857 return ret; 1858 } 1859 1860 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1861 { 1862 struct loop_device *lo; 1863 struct kobject *kobj; 1864 int err; 1865 1866 mutex_lock(&loop_index_mutex); 1867 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1868 if (err < 0) 1869 err = loop_add(&lo, MINOR(dev) >> part_shift); 1870 if (err < 0) 1871 kobj = NULL; 1872 else 1873 kobj = get_disk(lo->lo_disk); 1874 mutex_unlock(&loop_index_mutex); 1875 1876 *part = 0; 1877 return kobj; 1878 } 1879 1880 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1881 unsigned long parm) 1882 { 1883 struct loop_device *lo; 1884 int ret = -ENOSYS; 1885 1886 mutex_lock(&loop_index_mutex); 1887 switch (cmd) { 1888 case LOOP_CTL_ADD: 1889 ret = loop_lookup(&lo, parm); 1890 if (ret >= 0) { 1891 ret = -EEXIST; 1892 break; 1893 } 1894 ret = loop_add(&lo, parm); 1895 break; 1896 case LOOP_CTL_REMOVE: 1897 ret = loop_lookup(&lo, parm); 1898 if (ret < 0) 1899 break; 1900 mutex_lock(&lo->lo_ctl_mutex); 1901 if (lo->lo_state != Lo_unbound) { 1902 ret = -EBUSY; 1903 mutex_unlock(&lo->lo_ctl_mutex); 1904 break; 1905 } 1906 if (atomic_read(&lo->lo_refcnt) > 0) { 1907 ret = -EBUSY; 1908 mutex_unlock(&lo->lo_ctl_mutex); 1909 break; 1910 } 1911 lo->lo_disk->private_data = NULL; 1912 mutex_unlock(&lo->lo_ctl_mutex); 1913 idr_remove(&loop_index_idr, lo->lo_number); 1914 loop_remove(lo); 1915 break; 1916 case LOOP_CTL_GET_FREE: 1917 ret = loop_lookup(&lo, -1); 1918 if (ret >= 0) 1919 break; 1920 ret = loop_add(&lo, -1); 1921 } 1922 mutex_unlock(&loop_index_mutex); 1923 1924 return ret; 1925 } 1926 1927 static const struct file_operations loop_ctl_fops = { 1928 .open = nonseekable_open, 1929 .unlocked_ioctl = loop_control_ioctl, 1930 .compat_ioctl = loop_control_ioctl, 1931 .owner = THIS_MODULE, 1932 .llseek = noop_llseek, 1933 }; 1934 1935 static struct miscdevice loop_misc = { 1936 .minor = LOOP_CTRL_MINOR, 1937 .name = "loop-control", 1938 .fops = &loop_ctl_fops, 1939 }; 1940 1941 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1942 MODULE_ALIAS("devname:loop-control"); 1943 1944 static int __init loop_init(void) 1945 { 1946 int i, nr; 1947 unsigned long range; 1948 struct loop_device *lo; 1949 int err; 1950 1951 err = misc_register(&loop_misc); 1952 if (err < 0) 1953 return err; 1954 1955 part_shift = 0; 1956 if (max_part > 0) { 1957 part_shift = fls(max_part); 1958 1959 /* 1960 * Adjust max_part according to part_shift as it is exported 1961 * to user space so that user can decide correct minor number 1962 * if [s]he want to create more devices. 1963 * 1964 * Note that -1 is required because partition 0 is reserved 1965 * for the whole disk. 1966 */ 1967 max_part = (1UL << part_shift) - 1; 1968 } 1969 1970 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1971 err = -EINVAL; 1972 goto misc_out; 1973 } 1974 1975 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1976 err = -EINVAL; 1977 goto misc_out; 1978 } 1979 1980 /* 1981 * If max_loop is specified, create that many devices upfront. 1982 * This also becomes a hard limit. If max_loop is not specified, 1983 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1984 * init time. Loop devices can be requested on-demand with the 1985 * /dev/loop-control interface, or be instantiated by accessing 1986 * a 'dead' device node. 1987 */ 1988 if (max_loop) { 1989 nr = max_loop; 1990 range = max_loop << part_shift; 1991 } else { 1992 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1993 range = 1UL << MINORBITS; 1994 } 1995 1996 if (register_blkdev(LOOP_MAJOR, "loop")) { 1997 err = -EIO; 1998 goto misc_out; 1999 } 2000 2001 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2002 THIS_MODULE, loop_probe, NULL, NULL); 2003 2004 /* pre-create number of devices given by config or max_loop */ 2005 mutex_lock(&loop_index_mutex); 2006 for (i = 0; i < nr; i++) 2007 loop_add(&lo, i); 2008 mutex_unlock(&loop_index_mutex); 2009 2010 printk(KERN_INFO "loop: module loaded\n"); 2011 return 0; 2012 2013 misc_out: 2014 misc_deregister(&loop_misc); 2015 return err; 2016 } 2017 2018 static int loop_exit_cb(int id, void *ptr, void *data) 2019 { 2020 struct loop_device *lo = ptr; 2021 2022 loop_remove(lo); 2023 return 0; 2024 } 2025 2026 static void __exit loop_exit(void) 2027 { 2028 unsigned long range; 2029 2030 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2031 2032 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2033 idr_destroy(&loop_index_idr); 2034 2035 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2036 unregister_blkdev(LOOP_MAJOR, "loop"); 2037 2038 misc_deregister(&loop_misc); 2039 } 2040 2041 module_init(loop_init); 2042 module_exit(loop_exit); 2043 2044 #ifndef MODULE 2045 static int __init max_loop_setup(char *str) 2046 { 2047 max_loop = simple_strtol(str, NULL, 0); 2048 return 1; 2049 } 2050 2051 __setup("max_loop=", max_loop_setup); 2052 #endif 2053