xref: /openbmc/linux/drivers/block/loop.c (revision 9cfc5c90)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane appplications should be PAGE_SIZE algined
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio)
217 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 	else
219 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 	blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222 
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 	sector_t x = (sector_t)size;
228 	struct block_device *bdev = lo->lo_device;
229 
230 	if (unlikely((loff_t)x != size))
231 		return -EFBIG;
232 	if (lo->lo_offset != offset)
233 		lo->lo_offset = offset;
234 	if (lo->lo_sizelimit != sizelimit)
235 		lo->lo_sizelimit = sizelimit;
236 	set_capacity(lo->lo_disk, x);
237 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 	/* let user-space know about the new size */
239 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 	return 0;
241 }
242 
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 	       struct page *rpage, unsigned roffs,
246 	       struct page *lpage, unsigned loffs,
247 	       int size, sector_t rblock)
248 {
249 	int ret;
250 
251 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 	if (likely(!ret))
253 		return 0;
254 
255 	printk_ratelimited(KERN_ERR
256 		"loop: Transfer error at byte offset %llu, length %i.\n",
257 		(unsigned long long)rblock << 9, size);
258 	return ret;
259 }
260 
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 	struct iov_iter i;
264 	ssize_t bw;
265 
266 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267 
268 	file_start_write(file);
269 	bw = vfs_iter_write(file, &i, ppos);
270 	file_end_write(file);
271 
272 	if (likely(bw ==  bvec->bv_len))
273 		return 0;
274 
275 	printk_ratelimited(KERN_ERR
276 		"loop: Write error at byte offset %llu, length %i.\n",
277 		(unsigned long long)*ppos, bvec->bv_len);
278 	if (bw >= 0)
279 		bw = -EIO;
280 	return bw;
281 }
282 
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 		loff_t pos)
285 {
286 	struct bio_vec bvec;
287 	struct req_iterator iter;
288 	int ret = 0;
289 
290 	rq_for_each_segment(bvec, rq, iter) {
291 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 		if (ret < 0)
293 			break;
294 		cond_resched();
295 	}
296 
297 	return ret;
298 }
299 
300 /*
301  * This is the slow, transforming version that needs to double buffer the
302  * data as it cannot do the transformations in place without having direct
303  * access to the destination pages of the backing file.
304  */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 		loff_t pos)
307 {
308 	struct bio_vec bvec, b;
309 	struct req_iterator iter;
310 	struct page *page;
311 	int ret = 0;
312 
313 	page = alloc_page(GFP_NOIO);
314 	if (unlikely(!page))
315 		return -ENOMEM;
316 
317 	rq_for_each_segment(bvec, rq, iter) {
318 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 			bvec.bv_offset, bvec.bv_len, pos >> 9);
320 		if (unlikely(ret))
321 			break;
322 
323 		b.bv_page = page;
324 		b.bv_offset = 0;
325 		b.bv_len = bvec.bv_len;
326 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 		if (ret < 0)
328 			break;
329 	}
330 
331 	__free_page(page);
332 	return ret;
333 }
334 
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 		loff_t pos)
337 {
338 	struct bio_vec bvec;
339 	struct req_iterator iter;
340 	struct iov_iter i;
341 	ssize_t len;
342 
343 	rq_for_each_segment(bvec, rq, iter) {
344 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 		if (len < 0)
347 			return len;
348 
349 		flush_dcache_page(bvec.bv_page);
350 
351 		if (len != bvec.bv_len) {
352 			struct bio *bio;
353 
354 			__rq_for_each_bio(bio, rq)
355 				zero_fill_bio(bio);
356 			break;
357 		}
358 		cond_resched();
359 	}
360 
361 	return 0;
362 }
363 
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 		loff_t pos)
366 {
367 	struct bio_vec bvec, b;
368 	struct req_iterator iter;
369 	struct iov_iter i;
370 	struct page *page;
371 	ssize_t len;
372 	int ret = 0;
373 
374 	page = alloc_page(GFP_NOIO);
375 	if (unlikely(!page))
376 		return -ENOMEM;
377 
378 	rq_for_each_segment(bvec, rq, iter) {
379 		loff_t offset = pos;
380 
381 		b.bv_page = page;
382 		b.bv_offset = 0;
383 		b.bv_len = bvec.bv_len;
384 
385 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 		if (len < 0) {
388 			ret = len;
389 			goto out_free_page;
390 		}
391 
392 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 			bvec.bv_offset, len, offset >> 9);
394 		if (ret)
395 			goto out_free_page;
396 
397 		flush_dcache_page(bvec.bv_page);
398 
399 		if (len != bvec.bv_len) {
400 			struct bio *bio;
401 
402 			__rq_for_each_bio(bio, rq)
403 				zero_fill_bio(bio);
404 			break;
405 		}
406 	}
407 
408 	ret = 0;
409 out_free_page:
410 	__free_page(page);
411 	return ret;
412 }
413 
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 	/*
417 	 * We use punch hole to reclaim the free space used by the
418 	 * image a.k.a. discard. However we do not support discard if
419 	 * encryption is enabled, because it may give an attacker
420 	 * useful information.
421 	 */
422 	struct file *file = lo->lo_backing_file;
423 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 	int ret;
425 
426 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 		ret = -EOPNOTSUPP;
428 		goto out;
429 	}
430 
431 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 		ret = -EIO;
434  out:
435 	return ret;
436 }
437 
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 	struct file *file = lo->lo_backing_file;
441 	int ret = vfs_fsync(file, 0);
442 	if (unlikely(ret && ret != -EINVAL))
443 		ret = -EIO;
444 
445 	return ret;
446 }
447 
448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
449 {
450 	if (bytes < 0 || (cmd->rq->cmd_flags & REQ_WRITE))
451 		return;
452 
453 	if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
454 		struct bio *bio = cmd->rq->bio;
455 
456 		bio_advance(bio, bytes);
457 		zero_fill_bio(bio);
458 	}
459 }
460 
461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
462 {
463 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
464 	struct request *rq = cmd->rq;
465 
466 	handle_partial_read(cmd, ret);
467 
468 	if (ret > 0)
469 		ret = 0;
470 	else if (ret < 0)
471 		ret = -EIO;
472 
473 	blk_mq_complete_request(rq, ret);
474 }
475 
476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
477 		     loff_t pos, bool rw)
478 {
479 	struct iov_iter iter;
480 	struct bio_vec *bvec;
481 	struct bio *bio = cmd->rq->bio;
482 	struct file *file = lo->lo_backing_file;
483 	int ret;
484 
485 	/* nomerge for loop request queue */
486 	WARN_ON(cmd->rq->bio != cmd->rq->biotail);
487 
488 	bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
489 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
490 		      bio_segments(bio), blk_rq_bytes(cmd->rq));
491 
492 	cmd->iocb.ki_pos = pos;
493 	cmd->iocb.ki_filp = file;
494 	cmd->iocb.ki_complete = lo_rw_aio_complete;
495 	cmd->iocb.ki_flags = IOCB_DIRECT;
496 
497 	if (rw == WRITE)
498 		ret = file->f_op->write_iter(&cmd->iocb, &iter);
499 	else
500 		ret = file->f_op->read_iter(&cmd->iocb, &iter);
501 
502 	if (ret != -EIOCBQUEUED)
503 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
504 	return 0;
505 }
506 
507 
508 static inline int lo_rw_simple(struct loop_device *lo,
509 		struct request *rq, loff_t pos, bool rw)
510 {
511 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
512 
513 	if (cmd->use_aio)
514 		return lo_rw_aio(lo, cmd, pos, rw);
515 
516 	/*
517 	 * lo_write_simple and lo_read_simple should have been covered
518 	 * by io submit style function like lo_rw_aio(), one blocker
519 	 * is that lo_read_simple() need to call flush_dcache_page after
520 	 * the page is written from kernel, and it isn't easy to handle
521 	 * this in io submit style function which submits all segments
522 	 * of the req at one time. And direct read IO doesn't need to
523 	 * run flush_dcache_page().
524 	 */
525 	if (rw == WRITE)
526 		return lo_write_simple(lo, rq, pos);
527 	else
528 		return lo_read_simple(lo, rq, pos);
529 }
530 
531 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
532 {
533 	loff_t pos;
534 	int ret;
535 
536 	pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
537 
538 	if (rq->cmd_flags & REQ_WRITE) {
539 		if (rq->cmd_flags & REQ_FLUSH)
540 			ret = lo_req_flush(lo, rq);
541 		else if (rq->cmd_flags & REQ_DISCARD)
542 			ret = lo_discard(lo, rq, pos);
543 		else if (lo->transfer)
544 			ret = lo_write_transfer(lo, rq, pos);
545 		else
546 			ret = lo_rw_simple(lo, rq, pos, WRITE);
547 
548 	} else {
549 		if (lo->transfer)
550 			ret = lo_read_transfer(lo, rq, pos);
551 		else
552 			ret = lo_rw_simple(lo, rq, pos, READ);
553 	}
554 
555 	return ret;
556 }
557 
558 struct switch_request {
559 	struct file *file;
560 	struct completion wait;
561 };
562 
563 static inline void loop_update_dio(struct loop_device *lo)
564 {
565 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
566 			lo->use_dio);
567 }
568 
569 /*
570  * Do the actual switch; called from the BIO completion routine
571  */
572 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
573 {
574 	struct file *file = p->file;
575 	struct file *old_file = lo->lo_backing_file;
576 	struct address_space *mapping;
577 
578 	/* if no new file, only flush of queued bios requested */
579 	if (!file)
580 		return;
581 
582 	mapping = file->f_mapping;
583 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
584 	lo->lo_backing_file = file;
585 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
586 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
587 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
588 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
589 	loop_update_dio(lo);
590 }
591 
592 /*
593  * loop_switch performs the hard work of switching a backing store.
594  * First it needs to flush existing IO, it does this by sending a magic
595  * BIO down the pipe. The completion of this BIO does the actual switch.
596  */
597 static int loop_switch(struct loop_device *lo, struct file *file)
598 {
599 	struct switch_request w;
600 
601 	w.file = file;
602 
603 	/* freeze queue and wait for completion of scheduled requests */
604 	blk_mq_freeze_queue(lo->lo_queue);
605 
606 	/* do the switch action */
607 	do_loop_switch(lo, &w);
608 
609 	/* unfreeze */
610 	blk_mq_unfreeze_queue(lo->lo_queue);
611 
612 	return 0;
613 }
614 
615 /*
616  * Helper to flush the IOs in loop, but keeping loop thread running
617  */
618 static int loop_flush(struct loop_device *lo)
619 {
620 	return loop_switch(lo, NULL);
621 }
622 
623 static void loop_reread_partitions(struct loop_device *lo,
624 				   struct block_device *bdev)
625 {
626 	int rc;
627 
628 	/*
629 	 * bd_mutex has been held already in release path, so don't
630 	 * acquire it if this function is called in such case.
631 	 *
632 	 * If the reread partition isn't from release path, lo_refcnt
633 	 * must be at least one and it can only become zero when the
634 	 * current holder is released.
635 	 */
636 	if (!atomic_read(&lo->lo_refcnt))
637 		rc = __blkdev_reread_part(bdev);
638 	else
639 		rc = blkdev_reread_part(bdev);
640 	if (rc)
641 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
642 			__func__, lo->lo_number, lo->lo_file_name, rc);
643 }
644 
645 /*
646  * loop_change_fd switched the backing store of a loopback device to
647  * a new file. This is useful for operating system installers to free up
648  * the original file and in High Availability environments to switch to
649  * an alternative location for the content in case of server meltdown.
650  * This can only work if the loop device is used read-only, and if the
651  * new backing store is the same size and type as the old backing store.
652  */
653 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
654 			  unsigned int arg)
655 {
656 	struct file	*file, *old_file;
657 	struct inode	*inode;
658 	int		error;
659 
660 	error = -ENXIO;
661 	if (lo->lo_state != Lo_bound)
662 		goto out;
663 
664 	/* the loop device has to be read-only */
665 	error = -EINVAL;
666 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
667 		goto out;
668 
669 	error = -EBADF;
670 	file = fget(arg);
671 	if (!file)
672 		goto out;
673 
674 	inode = file->f_mapping->host;
675 	old_file = lo->lo_backing_file;
676 
677 	error = -EINVAL;
678 
679 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
680 		goto out_putf;
681 
682 	/* size of the new backing store needs to be the same */
683 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
684 		goto out_putf;
685 
686 	/* and ... switch */
687 	error = loop_switch(lo, file);
688 	if (error)
689 		goto out_putf;
690 
691 	fput(old_file);
692 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
693 		loop_reread_partitions(lo, bdev);
694 	return 0;
695 
696  out_putf:
697 	fput(file);
698  out:
699 	return error;
700 }
701 
702 static inline int is_loop_device(struct file *file)
703 {
704 	struct inode *i = file->f_mapping->host;
705 
706 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
707 }
708 
709 /* loop sysfs attributes */
710 
711 static ssize_t loop_attr_show(struct device *dev, char *page,
712 			      ssize_t (*callback)(struct loop_device *, char *))
713 {
714 	struct gendisk *disk = dev_to_disk(dev);
715 	struct loop_device *lo = disk->private_data;
716 
717 	return callback(lo, page);
718 }
719 
720 #define LOOP_ATTR_RO(_name)						\
721 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
722 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
723 				struct device_attribute *attr, char *b)	\
724 {									\
725 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
726 }									\
727 static struct device_attribute loop_attr_##_name =			\
728 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
729 
730 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
731 {
732 	ssize_t ret;
733 	char *p = NULL;
734 
735 	spin_lock_irq(&lo->lo_lock);
736 	if (lo->lo_backing_file)
737 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
738 	spin_unlock_irq(&lo->lo_lock);
739 
740 	if (IS_ERR_OR_NULL(p))
741 		ret = PTR_ERR(p);
742 	else {
743 		ret = strlen(p);
744 		memmove(buf, p, ret);
745 		buf[ret++] = '\n';
746 		buf[ret] = 0;
747 	}
748 
749 	return ret;
750 }
751 
752 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
753 {
754 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
755 }
756 
757 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
758 {
759 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
760 }
761 
762 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
763 {
764 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
765 
766 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
767 }
768 
769 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
770 {
771 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
772 
773 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
774 }
775 
776 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
777 {
778 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
779 
780 	return sprintf(buf, "%s\n", dio ? "1" : "0");
781 }
782 
783 LOOP_ATTR_RO(backing_file);
784 LOOP_ATTR_RO(offset);
785 LOOP_ATTR_RO(sizelimit);
786 LOOP_ATTR_RO(autoclear);
787 LOOP_ATTR_RO(partscan);
788 LOOP_ATTR_RO(dio);
789 
790 static struct attribute *loop_attrs[] = {
791 	&loop_attr_backing_file.attr,
792 	&loop_attr_offset.attr,
793 	&loop_attr_sizelimit.attr,
794 	&loop_attr_autoclear.attr,
795 	&loop_attr_partscan.attr,
796 	&loop_attr_dio.attr,
797 	NULL,
798 };
799 
800 static struct attribute_group loop_attribute_group = {
801 	.name = "loop",
802 	.attrs= loop_attrs,
803 };
804 
805 static int loop_sysfs_init(struct loop_device *lo)
806 {
807 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
808 				  &loop_attribute_group);
809 }
810 
811 static void loop_sysfs_exit(struct loop_device *lo)
812 {
813 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
814 			   &loop_attribute_group);
815 }
816 
817 static void loop_config_discard(struct loop_device *lo)
818 {
819 	struct file *file = lo->lo_backing_file;
820 	struct inode *inode = file->f_mapping->host;
821 	struct request_queue *q = lo->lo_queue;
822 
823 	/*
824 	 * We use punch hole to reclaim the free space used by the
825 	 * image a.k.a. discard. However we do not support discard if
826 	 * encryption is enabled, because it may give an attacker
827 	 * useful information.
828 	 */
829 	if ((!file->f_op->fallocate) ||
830 	    lo->lo_encrypt_key_size) {
831 		q->limits.discard_granularity = 0;
832 		q->limits.discard_alignment = 0;
833 		blk_queue_max_discard_sectors(q, 0);
834 		q->limits.discard_zeroes_data = 0;
835 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
836 		return;
837 	}
838 
839 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
840 	q->limits.discard_alignment = 0;
841 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
842 	q->limits.discard_zeroes_data = 1;
843 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
844 }
845 
846 static void loop_unprepare_queue(struct loop_device *lo)
847 {
848 	flush_kthread_worker(&lo->worker);
849 	kthread_stop(lo->worker_task);
850 }
851 
852 static int loop_prepare_queue(struct loop_device *lo)
853 {
854 	init_kthread_worker(&lo->worker);
855 	lo->worker_task = kthread_run(kthread_worker_fn,
856 			&lo->worker, "loop%d", lo->lo_number);
857 	if (IS_ERR(lo->worker_task))
858 		return -ENOMEM;
859 	set_user_nice(lo->worker_task, MIN_NICE);
860 	return 0;
861 }
862 
863 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
864 		       struct block_device *bdev, unsigned int arg)
865 {
866 	struct file	*file, *f;
867 	struct inode	*inode;
868 	struct address_space *mapping;
869 	unsigned lo_blocksize;
870 	int		lo_flags = 0;
871 	int		error;
872 	loff_t		size;
873 
874 	/* This is safe, since we have a reference from open(). */
875 	__module_get(THIS_MODULE);
876 
877 	error = -EBADF;
878 	file = fget(arg);
879 	if (!file)
880 		goto out;
881 
882 	error = -EBUSY;
883 	if (lo->lo_state != Lo_unbound)
884 		goto out_putf;
885 
886 	/* Avoid recursion */
887 	f = file;
888 	while (is_loop_device(f)) {
889 		struct loop_device *l;
890 
891 		if (f->f_mapping->host->i_bdev == bdev)
892 			goto out_putf;
893 
894 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
895 		if (l->lo_state == Lo_unbound) {
896 			error = -EINVAL;
897 			goto out_putf;
898 		}
899 		f = l->lo_backing_file;
900 	}
901 
902 	mapping = file->f_mapping;
903 	inode = mapping->host;
904 
905 	error = -EINVAL;
906 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
907 		goto out_putf;
908 
909 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
910 	    !file->f_op->write_iter)
911 		lo_flags |= LO_FLAGS_READ_ONLY;
912 
913 	lo_blocksize = S_ISBLK(inode->i_mode) ?
914 		inode->i_bdev->bd_block_size : PAGE_SIZE;
915 
916 	error = -EFBIG;
917 	size = get_loop_size(lo, file);
918 	if ((loff_t)(sector_t)size != size)
919 		goto out_putf;
920 	error = loop_prepare_queue(lo);
921 	if (error)
922 		goto out_putf;
923 
924 	error = 0;
925 
926 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
927 
928 	lo->use_dio = false;
929 	lo->lo_blocksize = lo_blocksize;
930 	lo->lo_device = bdev;
931 	lo->lo_flags = lo_flags;
932 	lo->lo_backing_file = file;
933 	lo->transfer = NULL;
934 	lo->ioctl = NULL;
935 	lo->lo_sizelimit = 0;
936 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
937 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
938 
939 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
940 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
941 
942 	loop_update_dio(lo);
943 	set_capacity(lo->lo_disk, size);
944 	bd_set_size(bdev, size << 9);
945 	loop_sysfs_init(lo);
946 	/* let user-space know about the new size */
947 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
948 
949 	set_blocksize(bdev, lo_blocksize);
950 
951 	lo->lo_state = Lo_bound;
952 	if (part_shift)
953 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
954 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
955 		loop_reread_partitions(lo, bdev);
956 
957 	/* Grab the block_device to prevent its destruction after we
958 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
959 	 */
960 	bdgrab(bdev);
961 	return 0;
962 
963  out_putf:
964 	fput(file);
965  out:
966 	/* This is safe: open() is still holding a reference. */
967 	module_put(THIS_MODULE);
968 	return error;
969 }
970 
971 static int
972 loop_release_xfer(struct loop_device *lo)
973 {
974 	int err = 0;
975 	struct loop_func_table *xfer = lo->lo_encryption;
976 
977 	if (xfer) {
978 		if (xfer->release)
979 			err = xfer->release(lo);
980 		lo->transfer = NULL;
981 		lo->lo_encryption = NULL;
982 		module_put(xfer->owner);
983 	}
984 	return err;
985 }
986 
987 static int
988 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
989 	       const struct loop_info64 *i)
990 {
991 	int err = 0;
992 
993 	if (xfer) {
994 		struct module *owner = xfer->owner;
995 
996 		if (!try_module_get(owner))
997 			return -EINVAL;
998 		if (xfer->init)
999 			err = xfer->init(lo, i);
1000 		if (err)
1001 			module_put(owner);
1002 		else
1003 			lo->lo_encryption = xfer;
1004 	}
1005 	return err;
1006 }
1007 
1008 static int loop_clr_fd(struct loop_device *lo)
1009 {
1010 	struct file *filp = lo->lo_backing_file;
1011 	gfp_t gfp = lo->old_gfp_mask;
1012 	struct block_device *bdev = lo->lo_device;
1013 
1014 	if (lo->lo_state != Lo_bound)
1015 		return -ENXIO;
1016 
1017 	/*
1018 	 * If we've explicitly asked to tear down the loop device,
1019 	 * and it has an elevated reference count, set it for auto-teardown when
1020 	 * the last reference goes away. This stops $!~#$@ udev from
1021 	 * preventing teardown because it decided that it needs to run blkid on
1022 	 * the loopback device whenever they appear. xfstests is notorious for
1023 	 * failing tests because blkid via udev races with a losetup
1024 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1025 	 * command to fail with EBUSY.
1026 	 */
1027 	if (atomic_read(&lo->lo_refcnt) > 1) {
1028 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1029 		mutex_unlock(&lo->lo_ctl_mutex);
1030 		return 0;
1031 	}
1032 
1033 	if (filp == NULL)
1034 		return -EINVAL;
1035 
1036 	/* freeze request queue during the transition */
1037 	blk_mq_freeze_queue(lo->lo_queue);
1038 
1039 	spin_lock_irq(&lo->lo_lock);
1040 	lo->lo_state = Lo_rundown;
1041 	lo->lo_backing_file = NULL;
1042 	spin_unlock_irq(&lo->lo_lock);
1043 
1044 	loop_release_xfer(lo);
1045 	lo->transfer = NULL;
1046 	lo->ioctl = NULL;
1047 	lo->lo_device = NULL;
1048 	lo->lo_encryption = NULL;
1049 	lo->lo_offset = 0;
1050 	lo->lo_sizelimit = 0;
1051 	lo->lo_encrypt_key_size = 0;
1052 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1053 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1054 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1055 	if (bdev) {
1056 		bdput(bdev);
1057 		invalidate_bdev(bdev);
1058 	}
1059 	set_capacity(lo->lo_disk, 0);
1060 	loop_sysfs_exit(lo);
1061 	if (bdev) {
1062 		bd_set_size(bdev, 0);
1063 		/* let user-space know about this change */
1064 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1065 	}
1066 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1067 	lo->lo_state = Lo_unbound;
1068 	/* This is safe: open() is still holding a reference. */
1069 	module_put(THIS_MODULE);
1070 	blk_mq_unfreeze_queue(lo->lo_queue);
1071 
1072 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1073 		loop_reread_partitions(lo, bdev);
1074 	lo->lo_flags = 0;
1075 	if (!part_shift)
1076 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1077 	loop_unprepare_queue(lo);
1078 	mutex_unlock(&lo->lo_ctl_mutex);
1079 	/*
1080 	 * Need not hold lo_ctl_mutex to fput backing file.
1081 	 * Calling fput holding lo_ctl_mutex triggers a circular
1082 	 * lock dependency possibility warning as fput can take
1083 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1084 	 */
1085 	fput(filp);
1086 	return 0;
1087 }
1088 
1089 static int
1090 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1091 {
1092 	int err;
1093 	struct loop_func_table *xfer;
1094 	kuid_t uid = current_uid();
1095 
1096 	if (lo->lo_encrypt_key_size &&
1097 	    !uid_eq(lo->lo_key_owner, uid) &&
1098 	    !capable(CAP_SYS_ADMIN))
1099 		return -EPERM;
1100 	if (lo->lo_state != Lo_bound)
1101 		return -ENXIO;
1102 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1103 		return -EINVAL;
1104 
1105 	err = loop_release_xfer(lo);
1106 	if (err)
1107 		return err;
1108 
1109 	if (info->lo_encrypt_type) {
1110 		unsigned int type = info->lo_encrypt_type;
1111 
1112 		if (type >= MAX_LO_CRYPT)
1113 			return -EINVAL;
1114 		xfer = xfer_funcs[type];
1115 		if (xfer == NULL)
1116 			return -EINVAL;
1117 	} else
1118 		xfer = NULL;
1119 
1120 	err = loop_init_xfer(lo, xfer, info);
1121 	if (err)
1122 		return err;
1123 
1124 	if (lo->lo_offset != info->lo_offset ||
1125 	    lo->lo_sizelimit != info->lo_sizelimit)
1126 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1127 			return -EFBIG;
1128 
1129 	loop_config_discard(lo);
1130 
1131 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1132 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1133 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1134 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1135 
1136 	if (!xfer)
1137 		xfer = &none_funcs;
1138 	lo->transfer = xfer->transfer;
1139 	lo->ioctl = xfer->ioctl;
1140 
1141 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1142 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1143 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1144 
1145 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1146 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1147 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1148 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1149 		loop_reread_partitions(lo, lo->lo_device);
1150 	}
1151 
1152 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1153 	lo->lo_init[0] = info->lo_init[0];
1154 	lo->lo_init[1] = info->lo_init[1];
1155 	if (info->lo_encrypt_key_size) {
1156 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1157 		       info->lo_encrypt_key_size);
1158 		lo->lo_key_owner = uid;
1159 	}
1160 
1161 	/* update dio if lo_offset or transfer is changed */
1162 	__loop_update_dio(lo, lo->use_dio);
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1169 {
1170 	struct file *file = lo->lo_backing_file;
1171 	struct kstat stat;
1172 	int error;
1173 
1174 	if (lo->lo_state != Lo_bound)
1175 		return -ENXIO;
1176 	error = vfs_getattr(&file->f_path, &stat);
1177 	if (error)
1178 		return error;
1179 	memset(info, 0, sizeof(*info));
1180 	info->lo_number = lo->lo_number;
1181 	info->lo_device = huge_encode_dev(stat.dev);
1182 	info->lo_inode = stat.ino;
1183 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1184 	info->lo_offset = lo->lo_offset;
1185 	info->lo_sizelimit = lo->lo_sizelimit;
1186 	info->lo_flags = lo->lo_flags;
1187 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1188 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1189 	info->lo_encrypt_type =
1190 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1191 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1192 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1193 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1194 		       lo->lo_encrypt_key_size);
1195 	}
1196 	return 0;
1197 }
1198 
1199 static void
1200 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1201 {
1202 	memset(info64, 0, sizeof(*info64));
1203 	info64->lo_number = info->lo_number;
1204 	info64->lo_device = info->lo_device;
1205 	info64->lo_inode = info->lo_inode;
1206 	info64->lo_rdevice = info->lo_rdevice;
1207 	info64->lo_offset = info->lo_offset;
1208 	info64->lo_sizelimit = 0;
1209 	info64->lo_encrypt_type = info->lo_encrypt_type;
1210 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1211 	info64->lo_flags = info->lo_flags;
1212 	info64->lo_init[0] = info->lo_init[0];
1213 	info64->lo_init[1] = info->lo_init[1];
1214 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1215 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1216 	else
1217 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1218 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1219 }
1220 
1221 static int
1222 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1223 {
1224 	memset(info, 0, sizeof(*info));
1225 	info->lo_number = info64->lo_number;
1226 	info->lo_device = info64->lo_device;
1227 	info->lo_inode = info64->lo_inode;
1228 	info->lo_rdevice = info64->lo_rdevice;
1229 	info->lo_offset = info64->lo_offset;
1230 	info->lo_encrypt_type = info64->lo_encrypt_type;
1231 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1232 	info->lo_flags = info64->lo_flags;
1233 	info->lo_init[0] = info64->lo_init[0];
1234 	info->lo_init[1] = info64->lo_init[1];
1235 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1236 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1237 	else
1238 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1239 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1240 
1241 	/* error in case values were truncated */
1242 	if (info->lo_device != info64->lo_device ||
1243 	    info->lo_rdevice != info64->lo_rdevice ||
1244 	    info->lo_inode != info64->lo_inode ||
1245 	    info->lo_offset != info64->lo_offset)
1246 		return -EOVERFLOW;
1247 
1248 	return 0;
1249 }
1250 
1251 static int
1252 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1253 {
1254 	struct loop_info info;
1255 	struct loop_info64 info64;
1256 
1257 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1258 		return -EFAULT;
1259 	loop_info64_from_old(&info, &info64);
1260 	return loop_set_status(lo, &info64);
1261 }
1262 
1263 static int
1264 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1265 {
1266 	struct loop_info64 info64;
1267 
1268 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1269 		return -EFAULT;
1270 	return loop_set_status(lo, &info64);
1271 }
1272 
1273 static int
1274 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1275 	struct loop_info info;
1276 	struct loop_info64 info64;
1277 	int err = 0;
1278 
1279 	if (!arg)
1280 		err = -EINVAL;
1281 	if (!err)
1282 		err = loop_get_status(lo, &info64);
1283 	if (!err)
1284 		err = loop_info64_to_old(&info64, &info);
1285 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1286 		err = -EFAULT;
1287 
1288 	return err;
1289 }
1290 
1291 static int
1292 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1293 	struct loop_info64 info64;
1294 	int err = 0;
1295 
1296 	if (!arg)
1297 		err = -EINVAL;
1298 	if (!err)
1299 		err = loop_get_status(lo, &info64);
1300 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1301 		err = -EFAULT;
1302 
1303 	return err;
1304 }
1305 
1306 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1307 {
1308 	if (unlikely(lo->lo_state != Lo_bound))
1309 		return -ENXIO;
1310 
1311 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1312 }
1313 
1314 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1315 {
1316 	int error = -ENXIO;
1317 	if (lo->lo_state != Lo_bound)
1318 		goto out;
1319 
1320 	__loop_update_dio(lo, !!arg);
1321 	if (lo->use_dio == !!arg)
1322 		return 0;
1323 	error = -EINVAL;
1324  out:
1325 	return error;
1326 }
1327 
1328 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1329 	unsigned int cmd, unsigned long arg)
1330 {
1331 	struct loop_device *lo = bdev->bd_disk->private_data;
1332 	int err;
1333 
1334 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1335 	switch (cmd) {
1336 	case LOOP_SET_FD:
1337 		err = loop_set_fd(lo, mode, bdev, arg);
1338 		break;
1339 	case LOOP_CHANGE_FD:
1340 		err = loop_change_fd(lo, bdev, arg);
1341 		break;
1342 	case LOOP_CLR_FD:
1343 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1344 		err = loop_clr_fd(lo);
1345 		if (!err)
1346 			goto out_unlocked;
1347 		break;
1348 	case LOOP_SET_STATUS:
1349 		err = -EPERM;
1350 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1351 			err = loop_set_status_old(lo,
1352 					(struct loop_info __user *)arg);
1353 		break;
1354 	case LOOP_GET_STATUS:
1355 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1356 		break;
1357 	case LOOP_SET_STATUS64:
1358 		err = -EPERM;
1359 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1360 			err = loop_set_status64(lo,
1361 					(struct loop_info64 __user *) arg);
1362 		break;
1363 	case LOOP_GET_STATUS64:
1364 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1365 		break;
1366 	case LOOP_SET_CAPACITY:
1367 		err = -EPERM;
1368 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1369 			err = loop_set_capacity(lo, bdev);
1370 		break;
1371 	case LOOP_SET_DIRECT_IO:
1372 		err = -EPERM;
1373 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1374 			err = loop_set_dio(lo, arg);
1375 		break;
1376 	default:
1377 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1378 	}
1379 	mutex_unlock(&lo->lo_ctl_mutex);
1380 
1381 out_unlocked:
1382 	return err;
1383 }
1384 
1385 #ifdef CONFIG_COMPAT
1386 struct compat_loop_info {
1387 	compat_int_t	lo_number;      /* ioctl r/o */
1388 	compat_dev_t	lo_device;      /* ioctl r/o */
1389 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1390 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1391 	compat_int_t	lo_offset;
1392 	compat_int_t	lo_encrypt_type;
1393 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1394 	compat_int_t	lo_flags;       /* ioctl r/o */
1395 	char		lo_name[LO_NAME_SIZE];
1396 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1397 	compat_ulong_t	lo_init[2];
1398 	char		reserved[4];
1399 };
1400 
1401 /*
1402  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1403  * - noinlined to reduce stack space usage in main part of driver
1404  */
1405 static noinline int
1406 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1407 			struct loop_info64 *info64)
1408 {
1409 	struct compat_loop_info info;
1410 
1411 	if (copy_from_user(&info, arg, sizeof(info)))
1412 		return -EFAULT;
1413 
1414 	memset(info64, 0, sizeof(*info64));
1415 	info64->lo_number = info.lo_number;
1416 	info64->lo_device = info.lo_device;
1417 	info64->lo_inode = info.lo_inode;
1418 	info64->lo_rdevice = info.lo_rdevice;
1419 	info64->lo_offset = info.lo_offset;
1420 	info64->lo_sizelimit = 0;
1421 	info64->lo_encrypt_type = info.lo_encrypt_type;
1422 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1423 	info64->lo_flags = info.lo_flags;
1424 	info64->lo_init[0] = info.lo_init[0];
1425 	info64->lo_init[1] = info.lo_init[1];
1426 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1427 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1428 	else
1429 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1430 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1431 	return 0;
1432 }
1433 
1434 /*
1435  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1436  * - noinlined to reduce stack space usage in main part of driver
1437  */
1438 static noinline int
1439 loop_info64_to_compat(const struct loop_info64 *info64,
1440 		      struct compat_loop_info __user *arg)
1441 {
1442 	struct compat_loop_info info;
1443 
1444 	memset(&info, 0, sizeof(info));
1445 	info.lo_number = info64->lo_number;
1446 	info.lo_device = info64->lo_device;
1447 	info.lo_inode = info64->lo_inode;
1448 	info.lo_rdevice = info64->lo_rdevice;
1449 	info.lo_offset = info64->lo_offset;
1450 	info.lo_encrypt_type = info64->lo_encrypt_type;
1451 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1452 	info.lo_flags = info64->lo_flags;
1453 	info.lo_init[0] = info64->lo_init[0];
1454 	info.lo_init[1] = info64->lo_init[1];
1455 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1456 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1457 	else
1458 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1459 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1460 
1461 	/* error in case values were truncated */
1462 	if (info.lo_device != info64->lo_device ||
1463 	    info.lo_rdevice != info64->lo_rdevice ||
1464 	    info.lo_inode != info64->lo_inode ||
1465 	    info.lo_offset != info64->lo_offset ||
1466 	    info.lo_init[0] != info64->lo_init[0] ||
1467 	    info.lo_init[1] != info64->lo_init[1])
1468 		return -EOVERFLOW;
1469 
1470 	if (copy_to_user(arg, &info, sizeof(info)))
1471 		return -EFAULT;
1472 	return 0;
1473 }
1474 
1475 static int
1476 loop_set_status_compat(struct loop_device *lo,
1477 		       const struct compat_loop_info __user *arg)
1478 {
1479 	struct loop_info64 info64;
1480 	int ret;
1481 
1482 	ret = loop_info64_from_compat(arg, &info64);
1483 	if (ret < 0)
1484 		return ret;
1485 	return loop_set_status(lo, &info64);
1486 }
1487 
1488 static int
1489 loop_get_status_compat(struct loop_device *lo,
1490 		       struct compat_loop_info __user *arg)
1491 {
1492 	struct loop_info64 info64;
1493 	int err = 0;
1494 
1495 	if (!arg)
1496 		err = -EINVAL;
1497 	if (!err)
1498 		err = loop_get_status(lo, &info64);
1499 	if (!err)
1500 		err = loop_info64_to_compat(&info64, arg);
1501 	return err;
1502 }
1503 
1504 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1505 			   unsigned int cmd, unsigned long arg)
1506 {
1507 	struct loop_device *lo = bdev->bd_disk->private_data;
1508 	int err;
1509 
1510 	switch(cmd) {
1511 	case LOOP_SET_STATUS:
1512 		mutex_lock(&lo->lo_ctl_mutex);
1513 		err = loop_set_status_compat(
1514 			lo, (const struct compat_loop_info __user *) arg);
1515 		mutex_unlock(&lo->lo_ctl_mutex);
1516 		break;
1517 	case LOOP_GET_STATUS:
1518 		mutex_lock(&lo->lo_ctl_mutex);
1519 		err = loop_get_status_compat(
1520 			lo, (struct compat_loop_info __user *) arg);
1521 		mutex_unlock(&lo->lo_ctl_mutex);
1522 		break;
1523 	case LOOP_SET_CAPACITY:
1524 	case LOOP_CLR_FD:
1525 	case LOOP_GET_STATUS64:
1526 	case LOOP_SET_STATUS64:
1527 		arg = (unsigned long) compat_ptr(arg);
1528 	case LOOP_SET_FD:
1529 	case LOOP_CHANGE_FD:
1530 		err = lo_ioctl(bdev, mode, cmd, arg);
1531 		break;
1532 	default:
1533 		err = -ENOIOCTLCMD;
1534 		break;
1535 	}
1536 	return err;
1537 }
1538 #endif
1539 
1540 static int lo_open(struct block_device *bdev, fmode_t mode)
1541 {
1542 	struct loop_device *lo;
1543 	int err = 0;
1544 
1545 	mutex_lock(&loop_index_mutex);
1546 	lo = bdev->bd_disk->private_data;
1547 	if (!lo) {
1548 		err = -ENXIO;
1549 		goto out;
1550 	}
1551 
1552 	atomic_inc(&lo->lo_refcnt);
1553 out:
1554 	mutex_unlock(&loop_index_mutex);
1555 	return err;
1556 }
1557 
1558 static void lo_release(struct gendisk *disk, fmode_t mode)
1559 {
1560 	struct loop_device *lo = disk->private_data;
1561 	int err;
1562 
1563 	if (atomic_dec_return(&lo->lo_refcnt))
1564 		return;
1565 
1566 	mutex_lock(&lo->lo_ctl_mutex);
1567 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1568 		/*
1569 		 * In autoclear mode, stop the loop thread
1570 		 * and remove configuration after last close.
1571 		 */
1572 		err = loop_clr_fd(lo);
1573 		if (!err)
1574 			return;
1575 	} else {
1576 		/*
1577 		 * Otherwise keep thread (if running) and config,
1578 		 * but flush possible ongoing bios in thread.
1579 		 */
1580 		loop_flush(lo);
1581 	}
1582 
1583 	mutex_unlock(&lo->lo_ctl_mutex);
1584 }
1585 
1586 static const struct block_device_operations lo_fops = {
1587 	.owner =	THIS_MODULE,
1588 	.open =		lo_open,
1589 	.release =	lo_release,
1590 	.ioctl =	lo_ioctl,
1591 #ifdef CONFIG_COMPAT
1592 	.compat_ioctl =	lo_compat_ioctl,
1593 #endif
1594 };
1595 
1596 /*
1597  * And now the modules code and kernel interface.
1598  */
1599 static int max_loop;
1600 module_param(max_loop, int, S_IRUGO);
1601 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1602 module_param(max_part, int, S_IRUGO);
1603 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1604 MODULE_LICENSE("GPL");
1605 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1606 
1607 int loop_register_transfer(struct loop_func_table *funcs)
1608 {
1609 	unsigned int n = funcs->number;
1610 
1611 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1612 		return -EINVAL;
1613 	xfer_funcs[n] = funcs;
1614 	return 0;
1615 }
1616 
1617 static int unregister_transfer_cb(int id, void *ptr, void *data)
1618 {
1619 	struct loop_device *lo = ptr;
1620 	struct loop_func_table *xfer = data;
1621 
1622 	mutex_lock(&lo->lo_ctl_mutex);
1623 	if (lo->lo_encryption == xfer)
1624 		loop_release_xfer(lo);
1625 	mutex_unlock(&lo->lo_ctl_mutex);
1626 	return 0;
1627 }
1628 
1629 int loop_unregister_transfer(int number)
1630 {
1631 	unsigned int n = number;
1632 	struct loop_func_table *xfer;
1633 
1634 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1635 		return -EINVAL;
1636 
1637 	xfer_funcs[n] = NULL;
1638 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1639 	return 0;
1640 }
1641 
1642 EXPORT_SYMBOL(loop_register_transfer);
1643 EXPORT_SYMBOL(loop_unregister_transfer);
1644 
1645 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1646 		const struct blk_mq_queue_data *bd)
1647 {
1648 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1649 	struct loop_device *lo = cmd->rq->q->queuedata;
1650 
1651 	blk_mq_start_request(bd->rq);
1652 
1653 	if (lo->lo_state != Lo_bound)
1654 		return -EIO;
1655 
1656 	if (lo->use_dio && !(cmd->rq->cmd_flags & (REQ_FLUSH |
1657 					REQ_DISCARD)))
1658 		cmd->use_aio = true;
1659 	else
1660 		cmd->use_aio = false;
1661 
1662 	queue_kthread_work(&lo->worker, &cmd->work);
1663 
1664 	return BLK_MQ_RQ_QUEUE_OK;
1665 }
1666 
1667 static void loop_handle_cmd(struct loop_cmd *cmd)
1668 {
1669 	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1670 	struct loop_device *lo = cmd->rq->q->queuedata;
1671 	int ret = 0;
1672 
1673 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1674 		ret = -EIO;
1675 		goto failed;
1676 	}
1677 
1678 	ret = do_req_filebacked(lo, cmd->rq);
1679  failed:
1680 	/* complete non-aio request */
1681 	if (!cmd->use_aio || ret)
1682 		blk_mq_complete_request(cmd->rq, ret ? -EIO : 0);
1683 }
1684 
1685 static void loop_queue_work(struct kthread_work *work)
1686 {
1687 	struct loop_cmd *cmd =
1688 		container_of(work, struct loop_cmd, work);
1689 
1690 	loop_handle_cmd(cmd);
1691 }
1692 
1693 static int loop_init_request(void *data, struct request *rq,
1694 		unsigned int hctx_idx, unsigned int request_idx,
1695 		unsigned int numa_node)
1696 {
1697 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1698 
1699 	cmd->rq = rq;
1700 	init_kthread_work(&cmd->work, loop_queue_work);
1701 
1702 	return 0;
1703 }
1704 
1705 static struct blk_mq_ops loop_mq_ops = {
1706 	.queue_rq       = loop_queue_rq,
1707 	.map_queue      = blk_mq_map_queue,
1708 	.init_request	= loop_init_request,
1709 };
1710 
1711 static int loop_add(struct loop_device **l, int i)
1712 {
1713 	struct loop_device *lo;
1714 	struct gendisk *disk;
1715 	int err;
1716 
1717 	err = -ENOMEM;
1718 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1719 	if (!lo)
1720 		goto out;
1721 
1722 	lo->lo_state = Lo_unbound;
1723 
1724 	/* allocate id, if @id >= 0, we're requesting that specific id */
1725 	if (i >= 0) {
1726 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1727 		if (err == -ENOSPC)
1728 			err = -EEXIST;
1729 	} else {
1730 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1731 	}
1732 	if (err < 0)
1733 		goto out_free_dev;
1734 	i = err;
1735 
1736 	err = -ENOMEM;
1737 	lo->tag_set.ops = &loop_mq_ops;
1738 	lo->tag_set.nr_hw_queues = 1;
1739 	lo->tag_set.queue_depth = 128;
1740 	lo->tag_set.numa_node = NUMA_NO_NODE;
1741 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1742 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1743 	lo->tag_set.driver_data = lo;
1744 
1745 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1746 	if (err)
1747 		goto out_free_idr;
1748 
1749 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1750 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1751 		err = PTR_ERR(lo->lo_queue);
1752 		goto out_cleanup_tags;
1753 	}
1754 	lo->lo_queue->queuedata = lo;
1755 
1756 	/*
1757 	 * It doesn't make sense to enable merge because the I/O
1758 	 * submitted to backing file is handled page by page.
1759 	 */
1760 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1761 
1762 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1763 	if (!disk)
1764 		goto out_free_queue;
1765 
1766 	/*
1767 	 * Disable partition scanning by default. The in-kernel partition
1768 	 * scanning can be requested individually per-device during its
1769 	 * setup. Userspace can always add and remove partitions from all
1770 	 * devices. The needed partition minors are allocated from the
1771 	 * extended minor space, the main loop device numbers will continue
1772 	 * to match the loop minors, regardless of the number of partitions
1773 	 * used.
1774 	 *
1775 	 * If max_part is given, partition scanning is globally enabled for
1776 	 * all loop devices. The minors for the main loop devices will be
1777 	 * multiples of max_part.
1778 	 *
1779 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1780 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1781 	 * complicated, are too static, inflexible and may surprise
1782 	 * userspace tools. Parameters like this in general should be avoided.
1783 	 */
1784 	if (!part_shift)
1785 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1786 	disk->flags |= GENHD_FL_EXT_DEVT;
1787 	mutex_init(&lo->lo_ctl_mutex);
1788 	atomic_set(&lo->lo_refcnt, 0);
1789 	lo->lo_number		= i;
1790 	spin_lock_init(&lo->lo_lock);
1791 	disk->major		= LOOP_MAJOR;
1792 	disk->first_minor	= i << part_shift;
1793 	disk->fops		= &lo_fops;
1794 	disk->private_data	= lo;
1795 	disk->queue		= lo->lo_queue;
1796 	sprintf(disk->disk_name, "loop%d", i);
1797 	add_disk(disk);
1798 	*l = lo;
1799 	return lo->lo_number;
1800 
1801 out_free_queue:
1802 	blk_cleanup_queue(lo->lo_queue);
1803 out_cleanup_tags:
1804 	blk_mq_free_tag_set(&lo->tag_set);
1805 out_free_idr:
1806 	idr_remove(&loop_index_idr, i);
1807 out_free_dev:
1808 	kfree(lo);
1809 out:
1810 	return err;
1811 }
1812 
1813 static void loop_remove(struct loop_device *lo)
1814 {
1815 	blk_cleanup_queue(lo->lo_queue);
1816 	del_gendisk(lo->lo_disk);
1817 	blk_mq_free_tag_set(&lo->tag_set);
1818 	put_disk(lo->lo_disk);
1819 	kfree(lo);
1820 }
1821 
1822 static int find_free_cb(int id, void *ptr, void *data)
1823 {
1824 	struct loop_device *lo = ptr;
1825 	struct loop_device **l = data;
1826 
1827 	if (lo->lo_state == Lo_unbound) {
1828 		*l = lo;
1829 		return 1;
1830 	}
1831 	return 0;
1832 }
1833 
1834 static int loop_lookup(struct loop_device **l, int i)
1835 {
1836 	struct loop_device *lo;
1837 	int ret = -ENODEV;
1838 
1839 	if (i < 0) {
1840 		int err;
1841 
1842 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1843 		if (err == 1) {
1844 			*l = lo;
1845 			ret = lo->lo_number;
1846 		}
1847 		goto out;
1848 	}
1849 
1850 	/* lookup and return a specific i */
1851 	lo = idr_find(&loop_index_idr, i);
1852 	if (lo) {
1853 		*l = lo;
1854 		ret = lo->lo_number;
1855 	}
1856 out:
1857 	return ret;
1858 }
1859 
1860 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1861 {
1862 	struct loop_device *lo;
1863 	struct kobject *kobj;
1864 	int err;
1865 
1866 	mutex_lock(&loop_index_mutex);
1867 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1868 	if (err < 0)
1869 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1870 	if (err < 0)
1871 		kobj = NULL;
1872 	else
1873 		kobj = get_disk(lo->lo_disk);
1874 	mutex_unlock(&loop_index_mutex);
1875 
1876 	*part = 0;
1877 	return kobj;
1878 }
1879 
1880 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1881 			       unsigned long parm)
1882 {
1883 	struct loop_device *lo;
1884 	int ret = -ENOSYS;
1885 
1886 	mutex_lock(&loop_index_mutex);
1887 	switch (cmd) {
1888 	case LOOP_CTL_ADD:
1889 		ret = loop_lookup(&lo, parm);
1890 		if (ret >= 0) {
1891 			ret = -EEXIST;
1892 			break;
1893 		}
1894 		ret = loop_add(&lo, parm);
1895 		break;
1896 	case LOOP_CTL_REMOVE:
1897 		ret = loop_lookup(&lo, parm);
1898 		if (ret < 0)
1899 			break;
1900 		mutex_lock(&lo->lo_ctl_mutex);
1901 		if (lo->lo_state != Lo_unbound) {
1902 			ret = -EBUSY;
1903 			mutex_unlock(&lo->lo_ctl_mutex);
1904 			break;
1905 		}
1906 		if (atomic_read(&lo->lo_refcnt) > 0) {
1907 			ret = -EBUSY;
1908 			mutex_unlock(&lo->lo_ctl_mutex);
1909 			break;
1910 		}
1911 		lo->lo_disk->private_data = NULL;
1912 		mutex_unlock(&lo->lo_ctl_mutex);
1913 		idr_remove(&loop_index_idr, lo->lo_number);
1914 		loop_remove(lo);
1915 		break;
1916 	case LOOP_CTL_GET_FREE:
1917 		ret = loop_lookup(&lo, -1);
1918 		if (ret >= 0)
1919 			break;
1920 		ret = loop_add(&lo, -1);
1921 	}
1922 	mutex_unlock(&loop_index_mutex);
1923 
1924 	return ret;
1925 }
1926 
1927 static const struct file_operations loop_ctl_fops = {
1928 	.open		= nonseekable_open,
1929 	.unlocked_ioctl	= loop_control_ioctl,
1930 	.compat_ioctl	= loop_control_ioctl,
1931 	.owner		= THIS_MODULE,
1932 	.llseek		= noop_llseek,
1933 };
1934 
1935 static struct miscdevice loop_misc = {
1936 	.minor		= LOOP_CTRL_MINOR,
1937 	.name		= "loop-control",
1938 	.fops		= &loop_ctl_fops,
1939 };
1940 
1941 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1942 MODULE_ALIAS("devname:loop-control");
1943 
1944 static int __init loop_init(void)
1945 {
1946 	int i, nr;
1947 	unsigned long range;
1948 	struct loop_device *lo;
1949 	int err;
1950 
1951 	err = misc_register(&loop_misc);
1952 	if (err < 0)
1953 		return err;
1954 
1955 	part_shift = 0;
1956 	if (max_part > 0) {
1957 		part_shift = fls(max_part);
1958 
1959 		/*
1960 		 * Adjust max_part according to part_shift as it is exported
1961 		 * to user space so that user can decide correct minor number
1962 		 * if [s]he want to create more devices.
1963 		 *
1964 		 * Note that -1 is required because partition 0 is reserved
1965 		 * for the whole disk.
1966 		 */
1967 		max_part = (1UL << part_shift) - 1;
1968 	}
1969 
1970 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1971 		err = -EINVAL;
1972 		goto misc_out;
1973 	}
1974 
1975 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1976 		err = -EINVAL;
1977 		goto misc_out;
1978 	}
1979 
1980 	/*
1981 	 * If max_loop is specified, create that many devices upfront.
1982 	 * This also becomes a hard limit. If max_loop is not specified,
1983 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1984 	 * init time. Loop devices can be requested on-demand with the
1985 	 * /dev/loop-control interface, or be instantiated by accessing
1986 	 * a 'dead' device node.
1987 	 */
1988 	if (max_loop) {
1989 		nr = max_loop;
1990 		range = max_loop << part_shift;
1991 	} else {
1992 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1993 		range = 1UL << MINORBITS;
1994 	}
1995 
1996 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1997 		err = -EIO;
1998 		goto misc_out;
1999 	}
2000 
2001 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2002 				  THIS_MODULE, loop_probe, NULL, NULL);
2003 
2004 	/* pre-create number of devices given by config or max_loop */
2005 	mutex_lock(&loop_index_mutex);
2006 	for (i = 0; i < nr; i++)
2007 		loop_add(&lo, i);
2008 	mutex_unlock(&loop_index_mutex);
2009 
2010 	printk(KERN_INFO "loop: module loaded\n");
2011 	return 0;
2012 
2013 misc_out:
2014 	misc_deregister(&loop_misc);
2015 	return err;
2016 }
2017 
2018 static int loop_exit_cb(int id, void *ptr, void *data)
2019 {
2020 	struct loop_device *lo = ptr;
2021 
2022 	loop_remove(lo);
2023 	return 0;
2024 }
2025 
2026 static void __exit loop_exit(void)
2027 {
2028 	unsigned long range;
2029 
2030 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2031 
2032 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2033 	idr_destroy(&loop_index_idr);
2034 
2035 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2036 	unregister_blkdev(LOOP_MAJOR, "loop");
2037 
2038 	misc_deregister(&loop_misc);
2039 }
2040 
2041 module_init(loop_init);
2042 module_exit(loop_exit);
2043 
2044 #ifndef MODULE
2045 static int __init max_loop_setup(char *str)
2046 {
2047 	max_loop = simple_strtol(str, NULL, 0);
2048 	return 1;
2049 }
2050 
2051 __setup("max_loop=", max_loop_setup);
2052 #endif
2053