xref: /openbmc/linux/drivers/block/loop.c (revision 9659281c)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/pagemap.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 #include <linux/sched/mm.h>
82 
83 #include "loop.h"
84 
85 #include <linux/uaccess.h>
86 
87 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
88 
89 static DEFINE_IDR(loop_index_idr);
90 static DEFINE_MUTEX(loop_ctl_mutex);
91 static DEFINE_MUTEX(loop_validate_mutex);
92 
93 /**
94  * loop_global_lock_killable() - take locks for safe loop_validate_file() test
95  *
96  * @lo: struct loop_device
97  * @global: true if @lo is about to bind another "struct loop_device", false otherwise
98  *
99  * Returns 0 on success, -EINTR otherwise.
100  *
101  * Since loop_validate_file() traverses on other "struct loop_device" if
102  * is_loop_device() is true, we need a global lock for serializing concurrent
103  * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
104  */
105 static int loop_global_lock_killable(struct loop_device *lo, bool global)
106 {
107 	int err;
108 
109 	if (global) {
110 		err = mutex_lock_killable(&loop_validate_mutex);
111 		if (err)
112 			return err;
113 	}
114 	err = mutex_lock_killable(&lo->lo_mutex);
115 	if (err && global)
116 		mutex_unlock(&loop_validate_mutex);
117 	return err;
118 }
119 
120 /**
121  * loop_global_unlock() - release locks taken by loop_global_lock_killable()
122  *
123  * @lo: struct loop_device
124  * @global: true if @lo was about to bind another "struct loop_device", false otherwise
125  */
126 static void loop_global_unlock(struct loop_device *lo, bool global)
127 {
128 	mutex_unlock(&lo->lo_mutex);
129 	if (global)
130 		mutex_unlock(&loop_validate_mutex);
131 }
132 
133 static int max_part;
134 static int part_shift;
135 
136 static int transfer_xor(struct loop_device *lo, int cmd,
137 			struct page *raw_page, unsigned raw_off,
138 			struct page *loop_page, unsigned loop_off,
139 			int size, sector_t real_block)
140 {
141 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
142 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
143 	char *in, *out, *key;
144 	int i, keysize;
145 
146 	if (cmd == READ) {
147 		in = raw_buf;
148 		out = loop_buf;
149 	} else {
150 		in = loop_buf;
151 		out = raw_buf;
152 	}
153 
154 	key = lo->lo_encrypt_key;
155 	keysize = lo->lo_encrypt_key_size;
156 	for (i = 0; i < size; i++)
157 		*out++ = *in++ ^ key[(i & 511) % keysize];
158 
159 	kunmap_atomic(loop_buf);
160 	kunmap_atomic(raw_buf);
161 	cond_resched();
162 	return 0;
163 }
164 
165 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
166 {
167 	if (unlikely(info->lo_encrypt_key_size <= 0))
168 		return -EINVAL;
169 	return 0;
170 }
171 
172 static struct loop_func_table none_funcs = {
173 	.number = LO_CRYPT_NONE,
174 };
175 
176 static struct loop_func_table xor_funcs = {
177 	.number = LO_CRYPT_XOR,
178 	.transfer = transfer_xor,
179 	.init = xor_init
180 };
181 
182 /* xfer_funcs[0] is special - its release function is never called */
183 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
184 	&none_funcs,
185 	&xor_funcs
186 };
187 
188 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
189 {
190 	loff_t loopsize;
191 
192 	/* Compute loopsize in bytes */
193 	loopsize = i_size_read(file->f_mapping->host);
194 	if (offset > 0)
195 		loopsize -= offset;
196 	/* offset is beyond i_size, weird but possible */
197 	if (loopsize < 0)
198 		return 0;
199 
200 	if (sizelimit > 0 && sizelimit < loopsize)
201 		loopsize = sizelimit;
202 	/*
203 	 * Unfortunately, if we want to do I/O on the device,
204 	 * the number of 512-byte sectors has to fit into a sector_t.
205 	 */
206 	return loopsize >> 9;
207 }
208 
209 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
210 {
211 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
212 }
213 
214 static void __loop_update_dio(struct loop_device *lo, bool dio)
215 {
216 	struct file *file = lo->lo_backing_file;
217 	struct address_space *mapping = file->f_mapping;
218 	struct inode *inode = mapping->host;
219 	unsigned short sb_bsize = 0;
220 	unsigned dio_align = 0;
221 	bool use_dio;
222 
223 	if (inode->i_sb->s_bdev) {
224 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
225 		dio_align = sb_bsize - 1;
226 	}
227 
228 	/*
229 	 * We support direct I/O only if lo_offset is aligned with the
230 	 * logical I/O size of backing device, and the logical block
231 	 * size of loop is bigger than the backing device's and the loop
232 	 * needn't transform transfer.
233 	 *
234 	 * TODO: the above condition may be loosed in the future, and
235 	 * direct I/O may be switched runtime at that time because most
236 	 * of requests in sane applications should be PAGE_SIZE aligned
237 	 */
238 	if (dio) {
239 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
240 				!(lo->lo_offset & dio_align) &&
241 				mapping->a_ops->direct_IO &&
242 				!lo->transfer)
243 			use_dio = true;
244 		else
245 			use_dio = false;
246 	} else {
247 		use_dio = false;
248 	}
249 
250 	if (lo->use_dio == use_dio)
251 		return;
252 
253 	/* flush dirty pages before changing direct IO */
254 	vfs_fsync(file, 0);
255 
256 	/*
257 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
258 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
259 	 * will get updated by ioctl(LOOP_GET_STATUS)
260 	 */
261 	if (lo->lo_state == Lo_bound)
262 		blk_mq_freeze_queue(lo->lo_queue);
263 	lo->use_dio = use_dio;
264 	if (use_dio) {
265 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
266 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
267 	} else {
268 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
269 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
270 	}
271 	if (lo->lo_state == Lo_bound)
272 		blk_mq_unfreeze_queue(lo->lo_queue);
273 }
274 
275 /**
276  * loop_validate_block_size() - validates the passed in block size
277  * @bsize: size to validate
278  */
279 static int
280 loop_validate_block_size(unsigned short bsize)
281 {
282 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
283 		return -EINVAL;
284 
285 	return 0;
286 }
287 
288 /**
289  * loop_set_size() - sets device size and notifies userspace
290  * @lo: struct loop_device to set the size for
291  * @size: new size of the loop device
292  *
293  * Callers must validate that the size passed into this function fits into
294  * a sector_t, eg using loop_validate_size()
295  */
296 static void loop_set_size(struct loop_device *lo, loff_t size)
297 {
298 	if (!set_capacity_and_notify(lo->lo_disk, size))
299 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
300 }
301 
302 static inline int
303 lo_do_transfer(struct loop_device *lo, int cmd,
304 	       struct page *rpage, unsigned roffs,
305 	       struct page *lpage, unsigned loffs,
306 	       int size, sector_t rblock)
307 {
308 	int ret;
309 
310 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
311 	if (likely(!ret))
312 		return 0;
313 
314 	printk_ratelimited(KERN_ERR
315 		"loop: Transfer error at byte offset %llu, length %i.\n",
316 		(unsigned long long)rblock << 9, size);
317 	return ret;
318 }
319 
320 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
321 {
322 	struct iov_iter i;
323 	ssize_t bw;
324 
325 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
326 
327 	file_start_write(file);
328 	bw = vfs_iter_write(file, &i, ppos, 0);
329 	file_end_write(file);
330 
331 	if (likely(bw ==  bvec->bv_len))
332 		return 0;
333 
334 	printk_ratelimited(KERN_ERR
335 		"loop: Write error at byte offset %llu, length %i.\n",
336 		(unsigned long long)*ppos, bvec->bv_len);
337 	if (bw >= 0)
338 		bw = -EIO;
339 	return bw;
340 }
341 
342 static int lo_write_simple(struct loop_device *lo, struct request *rq,
343 		loff_t pos)
344 {
345 	struct bio_vec bvec;
346 	struct req_iterator iter;
347 	int ret = 0;
348 
349 	rq_for_each_segment(bvec, rq, iter) {
350 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
351 		if (ret < 0)
352 			break;
353 		cond_resched();
354 	}
355 
356 	return ret;
357 }
358 
359 /*
360  * This is the slow, transforming version that needs to double buffer the
361  * data as it cannot do the transformations in place without having direct
362  * access to the destination pages of the backing file.
363  */
364 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
365 		loff_t pos)
366 {
367 	struct bio_vec bvec, b;
368 	struct req_iterator iter;
369 	struct page *page;
370 	int ret = 0;
371 
372 	page = alloc_page(GFP_NOIO);
373 	if (unlikely(!page))
374 		return -ENOMEM;
375 
376 	rq_for_each_segment(bvec, rq, iter) {
377 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
378 			bvec.bv_offset, bvec.bv_len, pos >> 9);
379 		if (unlikely(ret))
380 			break;
381 
382 		b.bv_page = page;
383 		b.bv_offset = 0;
384 		b.bv_len = bvec.bv_len;
385 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
386 		if (ret < 0)
387 			break;
388 	}
389 
390 	__free_page(page);
391 	return ret;
392 }
393 
394 static int lo_read_simple(struct loop_device *lo, struct request *rq,
395 		loff_t pos)
396 {
397 	struct bio_vec bvec;
398 	struct req_iterator iter;
399 	struct iov_iter i;
400 	ssize_t len;
401 
402 	rq_for_each_segment(bvec, rq, iter) {
403 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
404 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
405 		if (len < 0)
406 			return len;
407 
408 		flush_dcache_page(bvec.bv_page);
409 
410 		if (len != bvec.bv_len) {
411 			struct bio *bio;
412 
413 			__rq_for_each_bio(bio, rq)
414 				zero_fill_bio(bio);
415 			break;
416 		}
417 		cond_resched();
418 	}
419 
420 	return 0;
421 }
422 
423 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
424 		loff_t pos)
425 {
426 	struct bio_vec bvec, b;
427 	struct req_iterator iter;
428 	struct iov_iter i;
429 	struct page *page;
430 	ssize_t len;
431 	int ret = 0;
432 
433 	page = alloc_page(GFP_NOIO);
434 	if (unlikely(!page))
435 		return -ENOMEM;
436 
437 	rq_for_each_segment(bvec, rq, iter) {
438 		loff_t offset = pos;
439 
440 		b.bv_page = page;
441 		b.bv_offset = 0;
442 		b.bv_len = bvec.bv_len;
443 
444 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
445 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
446 		if (len < 0) {
447 			ret = len;
448 			goto out_free_page;
449 		}
450 
451 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
452 			bvec.bv_offset, len, offset >> 9);
453 		if (ret)
454 			goto out_free_page;
455 
456 		flush_dcache_page(bvec.bv_page);
457 
458 		if (len != bvec.bv_len) {
459 			struct bio *bio;
460 
461 			__rq_for_each_bio(bio, rq)
462 				zero_fill_bio(bio);
463 			break;
464 		}
465 	}
466 
467 	ret = 0;
468 out_free_page:
469 	__free_page(page);
470 	return ret;
471 }
472 
473 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
474 			int mode)
475 {
476 	/*
477 	 * We use fallocate to manipulate the space mappings used by the image
478 	 * a.k.a. discard/zerorange. However we do not support this if
479 	 * encryption is enabled, because it may give an attacker useful
480 	 * information.
481 	 */
482 	struct file *file = lo->lo_backing_file;
483 	struct request_queue *q = lo->lo_queue;
484 	int ret;
485 
486 	mode |= FALLOC_FL_KEEP_SIZE;
487 
488 	if (!blk_queue_discard(q)) {
489 		ret = -EOPNOTSUPP;
490 		goto out;
491 	}
492 
493 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
494 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
495 		ret = -EIO;
496  out:
497 	return ret;
498 }
499 
500 static int lo_req_flush(struct loop_device *lo, struct request *rq)
501 {
502 	struct file *file = lo->lo_backing_file;
503 	int ret = vfs_fsync(file, 0);
504 	if (unlikely(ret && ret != -EINVAL))
505 		ret = -EIO;
506 
507 	return ret;
508 }
509 
510 static void lo_complete_rq(struct request *rq)
511 {
512 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
513 	blk_status_t ret = BLK_STS_OK;
514 
515 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
516 	    req_op(rq) != REQ_OP_READ) {
517 		if (cmd->ret < 0)
518 			ret = errno_to_blk_status(cmd->ret);
519 		goto end_io;
520 	}
521 
522 	/*
523 	 * Short READ - if we got some data, advance our request and
524 	 * retry it. If we got no data, end the rest with EIO.
525 	 */
526 	if (cmd->ret) {
527 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
528 		cmd->ret = 0;
529 		blk_mq_requeue_request(rq, true);
530 	} else {
531 		if (cmd->use_aio) {
532 			struct bio *bio = rq->bio;
533 
534 			while (bio) {
535 				zero_fill_bio(bio);
536 				bio = bio->bi_next;
537 			}
538 		}
539 		ret = BLK_STS_IOERR;
540 end_io:
541 		blk_mq_end_request(rq, ret);
542 	}
543 }
544 
545 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
546 {
547 	struct request *rq = blk_mq_rq_from_pdu(cmd);
548 
549 	if (!atomic_dec_and_test(&cmd->ref))
550 		return;
551 	kfree(cmd->bvec);
552 	cmd->bvec = NULL;
553 	if (likely(!blk_should_fake_timeout(rq->q)))
554 		blk_mq_complete_request(rq);
555 }
556 
557 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
558 {
559 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
560 
561 	cmd->ret = ret;
562 	lo_rw_aio_do_completion(cmd);
563 }
564 
565 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
566 		     loff_t pos, bool rw)
567 {
568 	struct iov_iter iter;
569 	struct req_iterator rq_iter;
570 	struct bio_vec *bvec;
571 	struct request *rq = blk_mq_rq_from_pdu(cmd);
572 	struct bio *bio = rq->bio;
573 	struct file *file = lo->lo_backing_file;
574 	struct bio_vec tmp;
575 	unsigned int offset;
576 	int nr_bvec = 0;
577 	int ret;
578 
579 	rq_for_each_bvec(tmp, rq, rq_iter)
580 		nr_bvec++;
581 
582 	if (rq->bio != rq->biotail) {
583 
584 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
585 				     GFP_NOIO);
586 		if (!bvec)
587 			return -EIO;
588 		cmd->bvec = bvec;
589 
590 		/*
591 		 * The bios of the request may be started from the middle of
592 		 * the 'bvec' because of bio splitting, so we can't directly
593 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
594 		 * API will take care of all details for us.
595 		 */
596 		rq_for_each_bvec(tmp, rq, rq_iter) {
597 			*bvec = tmp;
598 			bvec++;
599 		}
600 		bvec = cmd->bvec;
601 		offset = 0;
602 	} else {
603 		/*
604 		 * Same here, this bio may be started from the middle of the
605 		 * 'bvec' because of bio splitting, so offset from the bvec
606 		 * must be passed to iov iterator
607 		 */
608 		offset = bio->bi_iter.bi_bvec_done;
609 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
610 	}
611 	atomic_set(&cmd->ref, 2);
612 
613 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
614 	iter.iov_offset = offset;
615 
616 	cmd->iocb.ki_pos = pos;
617 	cmd->iocb.ki_filp = file;
618 	cmd->iocb.ki_complete = lo_rw_aio_complete;
619 	cmd->iocb.ki_flags = IOCB_DIRECT;
620 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
621 
622 	if (rw == WRITE)
623 		ret = call_write_iter(file, &cmd->iocb, &iter);
624 	else
625 		ret = call_read_iter(file, &cmd->iocb, &iter);
626 
627 	lo_rw_aio_do_completion(cmd);
628 
629 	if (ret != -EIOCBQUEUED)
630 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
631 	return 0;
632 }
633 
634 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
635 {
636 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
637 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
638 
639 	/*
640 	 * lo_write_simple and lo_read_simple should have been covered
641 	 * by io submit style function like lo_rw_aio(), one blocker
642 	 * is that lo_read_simple() need to call flush_dcache_page after
643 	 * the page is written from kernel, and it isn't easy to handle
644 	 * this in io submit style function which submits all segments
645 	 * of the req at one time. And direct read IO doesn't need to
646 	 * run flush_dcache_page().
647 	 */
648 	switch (req_op(rq)) {
649 	case REQ_OP_FLUSH:
650 		return lo_req_flush(lo, rq);
651 	case REQ_OP_WRITE_ZEROES:
652 		/*
653 		 * If the caller doesn't want deallocation, call zeroout to
654 		 * write zeroes the range.  Otherwise, punch them out.
655 		 */
656 		return lo_fallocate(lo, rq, pos,
657 			(rq->cmd_flags & REQ_NOUNMAP) ?
658 				FALLOC_FL_ZERO_RANGE :
659 				FALLOC_FL_PUNCH_HOLE);
660 	case REQ_OP_DISCARD:
661 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
662 	case REQ_OP_WRITE:
663 		if (lo->transfer)
664 			return lo_write_transfer(lo, rq, pos);
665 		else if (cmd->use_aio)
666 			return lo_rw_aio(lo, cmd, pos, WRITE);
667 		else
668 			return lo_write_simple(lo, rq, pos);
669 	case REQ_OP_READ:
670 		if (lo->transfer)
671 			return lo_read_transfer(lo, rq, pos);
672 		else if (cmd->use_aio)
673 			return lo_rw_aio(lo, cmd, pos, READ);
674 		else
675 			return lo_read_simple(lo, rq, pos);
676 	default:
677 		WARN_ON_ONCE(1);
678 		return -EIO;
679 	}
680 }
681 
682 static inline void loop_update_dio(struct loop_device *lo)
683 {
684 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
685 				lo->use_dio);
686 }
687 
688 static void loop_reread_partitions(struct loop_device *lo)
689 {
690 	int rc;
691 
692 	mutex_lock(&lo->lo_disk->open_mutex);
693 	rc = bdev_disk_changed(lo->lo_disk, false);
694 	mutex_unlock(&lo->lo_disk->open_mutex);
695 	if (rc)
696 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
697 			__func__, lo->lo_number, lo->lo_file_name, rc);
698 }
699 
700 static inline int is_loop_device(struct file *file)
701 {
702 	struct inode *i = file->f_mapping->host;
703 
704 	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
705 }
706 
707 static int loop_validate_file(struct file *file, struct block_device *bdev)
708 {
709 	struct inode	*inode = file->f_mapping->host;
710 	struct file	*f = file;
711 
712 	/* Avoid recursion */
713 	while (is_loop_device(f)) {
714 		struct loop_device *l;
715 
716 		lockdep_assert_held(&loop_validate_mutex);
717 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
718 			return -EBADF;
719 
720 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
721 		if (l->lo_state != Lo_bound)
722 			return -EINVAL;
723 		/* Order wrt setting lo->lo_backing_file in loop_configure(). */
724 		rmb();
725 		f = l->lo_backing_file;
726 	}
727 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
728 		return -EINVAL;
729 	return 0;
730 }
731 
732 /*
733  * loop_change_fd switched the backing store of a loopback device to
734  * a new file. This is useful for operating system installers to free up
735  * the original file and in High Availability environments to switch to
736  * an alternative location for the content in case of server meltdown.
737  * This can only work if the loop device is used read-only, and if the
738  * new backing store is the same size and type as the old backing store.
739  */
740 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
741 			  unsigned int arg)
742 {
743 	struct file *file = fget(arg);
744 	struct file *old_file;
745 	int error;
746 	bool partscan;
747 	bool is_loop;
748 
749 	if (!file)
750 		return -EBADF;
751 	is_loop = is_loop_device(file);
752 	error = loop_global_lock_killable(lo, is_loop);
753 	if (error)
754 		goto out_putf;
755 	error = -ENXIO;
756 	if (lo->lo_state != Lo_bound)
757 		goto out_err;
758 
759 	/* the loop device has to be read-only */
760 	error = -EINVAL;
761 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
762 		goto out_err;
763 
764 	error = loop_validate_file(file, bdev);
765 	if (error)
766 		goto out_err;
767 
768 	old_file = lo->lo_backing_file;
769 
770 	error = -EINVAL;
771 
772 	/* size of the new backing store needs to be the same */
773 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
774 		goto out_err;
775 
776 	/* and ... switch */
777 	blk_mq_freeze_queue(lo->lo_queue);
778 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
779 	lo->lo_backing_file = file;
780 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
781 	mapping_set_gfp_mask(file->f_mapping,
782 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
783 	loop_update_dio(lo);
784 	blk_mq_unfreeze_queue(lo->lo_queue);
785 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
786 	loop_global_unlock(lo, is_loop);
787 
788 	/*
789 	 * Flush loop_validate_file() before fput(), for l->lo_backing_file
790 	 * might be pointing at old_file which might be the last reference.
791 	 */
792 	if (!is_loop) {
793 		mutex_lock(&loop_validate_mutex);
794 		mutex_unlock(&loop_validate_mutex);
795 	}
796 	/*
797 	 * We must drop file reference outside of lo_mutex as dropping
798 	 * the file ref can take open_mutex which creates circular locking
799 	 * dependency.
800 	 */
801 	fput(old_file);
802 	if (partscan)
803 		loop_reread_partitions(lo);
804 	return 0;
805 
806 out_err:
807 	loop_global_unlock(lo, is_loop);
808 out_putf:
809 	fput(file);
810 	return error;
811 }
812 
813 /* loop sysfs attributes */
814 
815 static ssize_t loop_attr_show(struct device *dev, char *page,
816 			      ssize_t (*callback)(struct loop_device *, char *))
817 {
818 	struct gendisk *disk = dev_to_disk(dev);
819 	struct loop_device *lo = disk->private_data;
820 
821 	return callback(lo, page);
822 }
823 
824 #define LOOP_ATTR_RO(_name)						\
825 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
826 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
827 				struct device_attribute *attr, char *b)	\
828 {									\
829 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
830 }									\
831 static struct device_attribute loop_attr_##_name =			\
832 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
833 
834 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
835 {
836 	ssize_t ret;
837 	char *p = NULL;
838 
839 	spin_lock_irq(&lo->lo_lock);
840 	if (lo->lo_backing_file)
841 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
842 	spin_unlock_irq(&lo->lo_lock);
843 
844 	if (IS_ERR_OR_NULL(p))
845 		ret = PTR_ERR(p);
846 	else {
847 		ret = strlen(p);
848 		memmove(buf, p, ret);
849 		buf[ret++] = '\n';
850 		buf[ret] = 0;
851 	}
852 
853 	return ret;
854 }
855 
856 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
857 {
858 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
859 }
860 
861 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
862 {
863 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
864 }
865 
866 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
867 {
868 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
869 
870 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
871 }
872 
873 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
874 {
875 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
876 
877 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
878 }
879 
880 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
881 {
882 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
883 
884 	return sprintf(buf, "%s\n", dio ? "1" : "0");
885 }
886 
887 LOOP_ATTR_RO(backing_file);
888 LOOP_ATTR_RO(offset);
889 LOOP_ATTR_RO(sizelimit);
890 LOOP_ATTR_RO(autoclear);
891 LOOP_ATTR_RO(partscan);
892 LOOP_ATTR_RO(dio);
893 
894 static struct attribute *loop_attrs[] = {
895 	&loop_attr_backing_file.attr,
896 	&loop_attr_offset.attr,
897 	&loop_attr_sizelimit.attr,
898 	&loop_attr_autoclear.attr,
899 	&loop_attr_partscan.attr,
900 	&loop_attr_dio.attr,
901 	NULL,
902 };
903 
904 static struct attribute_group loop_attribute_group = {
905 	.name = "loop",
906 	.attrs= loop_attrs,
907 };
908 
909 static void loop_sysfs_init(struct loop_device *lo)
910 {
911 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
912 						&loop_attribute_group);
913 }
914 
915 static void loop_sysfs_exit(struct loop_device *lo)
916 {
917 	if (lo->sysfs_inited)
918 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
919 				   &loop_attribute_group);
920 }
921 
922 static void loop_config_discard(struct loop_device *lo)
923 {
924 	struct file *file = lo->lo_backing_file;
925 	struct inode *inode = file->f_mapping->host;
926 	struct request_queue *q = lo->lo_queue;
927 	u32 granularity, max_discard_sectors;
928 
929 	/*
930 	 * If the backing device is a block device, mirror its zeroing
931 	 * capability. Set the discard sectors to the block device's zeroing
932 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
933 	 * not blkdev_issue_discard(). This maintains consistent behavior with
934 	 * file-backed loop devices: discarded regions read back as zero.
935 	 */
936 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
937 		struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
938 
939 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
940 		granularity = backingq->limits.discard_granularity ?:
941 			queue_physical_block_size(backingq);
942 
943 	/*
944 	 * We use punch hole to reclaim the free space used by the
945 	 * image a.k.a. discard. However we do not support discard if
946 	 * encryption is enabled, because it may give an attacker
947 	 * useful information.
948 	 */
949 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
950 		max_discard_sectors = 0;
951 		granularity = 0;
952 
953 	} else {
954 		max_discard_sectors = UINT_MAX >> 9;
955 		granularity = inode->i_sb->s_blocksize;
956 	}
957 
958 	if (max_discard_sectors) {
959 		q->limits.discard_granularity = granularity;
960 		blk_queue_max_discard_sectors(q, max_discard_sectors);
961 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
962 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
963 	} else {
964 		q->limits.discard_granularity = 0;
965 		blk_queue_max_discard_sectors(q, 0);
966 		blk_queue_max_write_zeroes_sectors(q, 0);
967 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
968 	}
969 	q->limits.discard_alignment = 0;
970 }
971 
972 struct loop_worker {
973 	struct rb_node rb_node;
974 	struct work_struct work;
975 	struct list_head cmd_list;
976 	struct list_head idle_list;
977 	struct loop_device *lo;
978 	struct cgroup_subsys_state *blkcg_css;
979 	unsigned long last_ran_at;
980 };
981 
982 static void loop_workfn(struct work_struct *work);
983 static void loop_rootcg_workfn(struct work_struct *work);
984 static void loop_free_idle_workers(struct timer_list *timer);
985 
986 #ifdef CONFIG_BLK_CGROUP
987 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
988 {
989 	return !css || css == blkcg_root_css;
990 }
991 #else
992 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
993 {
994 	return !css;
995 }
996 #endif
997 
998 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
999 {
1000 	struct rb_node **node = &(lo->worker_tree.rb_node), *parent = NULL;
1001 	struct loop_worker *cur_worker, *worker = NULL;
1002 	struct work_struct *work;
1003 	struct list_head *cmd_list;
1004 
1005 	spin_lock_irq(&lo->lo_work_lock);
1006 
1007 	if (queue_on_root_worker(cmd->blkcg_css))
1008 		goto queue_work;
1009 
1010 	node = &lo->worker_tree.rb_node;
1011 
1012 	while (*node) {
1013 		parent = *node;
1014 		cur_worker = container_of(*node, struct loop_worker, rb_node);
1015 		if (cur_worker->blkcg_css == cmd->blkcg_css) {
1016 			worker = cur_worker;
1017 			break;
1018 		} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
1019 			node = &(*node)->rb_left;
1020 		} else {
1021 			node = &(*node)->rb_right;
1022 		}
1023 	}
1024 	if (worker)
1025 		goto queue_work;
1026 
1027 	worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
1028 	/*
1029 	 * In the event we cannot allocate a worker, just queue on the
1030 	 * rootcg worker and issue the I/O as the rootcg
1031 	 */
1032 	if (!worker) {
1033 		cmd->blkcg_css = NULL;
1034 		if (cmd->memcg_css)
1035 			css_put(cmd->memcg_css);
1036 		cmd->memcg_css = NULL;
1037 		goto queue_work;
1038 	}
1039 
1040 	worker->blkcg_css = cmd->blkcg_css;
1041 	css_get(worker->blkcg_css);
1042 	INIT_WORK(&worker->work, loop_workfn);
1043 	INIT_LIST_HEAD(&worker->cmd_list);
1044 	INIT_LIST_HEAD(&worker->idle_list);
1045 	worker->lo = lo;
1046 	rb_link_node(&worker->rb_node, parent, node);
1047 	rb_insert_color(&worker->rb_node, &lo->worker_tree);
1048 queue_work:
1049 	if (worker) {
1050 		/*
1051 		 * We need to remove from the idle list here while
1052 		 * holding the lock so that the idle timer doesn't
1053 		 * free the worker
1054 		 */
1055 		if (!list_empty(&worker->idle_list))
1056 			list_del_init(&worker->idle_list);
1057 		work = &worker->work;
1058 		cmd_list = &worker->cmd_list;
1059 	} else {
1060 		work = &lo->rootcg_work;
1061 		cmd_list = &lo->rootcg_cmd_list;
1062 	}
1063 	list_add_tail(&cmd->list_entry, cmd_list);
1064 	queue_work(lo->workqueue, work);
1065 	spin_unlock_irq(&lo->lo_work_lock);
1066 }
1067 
1068 static void loop_update_rotational(struct loop_device *lo)
1069 {
1070 	struct file *file = lo->lo_backing_file;
1071 	struct inode *file_inode = file->f_mapping->host;
1072 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
1073 	struct request_queue *q = lo->lo_queue;
1074 	bool nonrot = true;
1075 
1076 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
1077 	if (file_bdev)
1078 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
1079 
1080 	if (nonrot)
1081 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1082 	else
1083 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1084 }
1085 
1086 static int
1087 loop_release_xfer(struct loop_device *lo)
1088 {
1089 	int err = 0;
1090 	struct loop_func_table *xfer = lo->lo_encryption;
1091 
1092 	if (xfer) {
1093 		if (xfer->release)
1094 			err = xfer->release(lo);
1095 		lo->transfer = NULL;
1096 		lo->lo_encryption = NULL;
1097 		module_put(xfer->owner);
1098 	}
1099 	return err;
1100 }
1101 
1102 static int
1103 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1104 	       const struct loop_info64 *i)
1105 {
1106 	int err = 0;
1107 
1108 	if (xfer) {
1109 		struct module *owner = xfer->owner;
1110 
1111 		if (!try_module_get(owner))
1112 			return -EINVAL;
1113 		if (xfer->init)
1114 			err = xfer->init(lo, i);
1115 		if (err)
1116 			module_put(owner);
1117 		else
1118 			lo->lo_encryption = xfer;
1119 	}
1120 	return err;
1121 }
1122 
1123 /**
1124  * loop_set_status_from_info - configure device from loop_info
1125  * @lo: struct loop_device to configure
1126  * @info: struct loop_info64 to configure the device with
1127  *
1128  * Configures the loop device parameters according to the passed
1129  * in loop_info64 configuration.
1130  */
1131 static int
1132 loop_set_status_from_info(struct loop_device *lo,
1133 			  const struct loop_info64 *info)
1134 {
1135 	int err;
1136 	struct loop_func_table *xfer;
1137 	kuid_t uid = current_uid();
1138 
1139 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1140 		return -EINVAL;
1141 
1142 	err = loop_release_xfer(lo);
1143 	if (err)
1144 		return err;
1145 
1146 	if (info->lo_encrypt_type) {
1147 		unsigned int type = info->lo_encrypt_type;
1148 
1149 		if (type >= MAX_LO_CRYPT)
1150 			return -EINVAL;
1151 		xfer = xfer_funcs[type];
1152 		if (xfer == NULL)
1153 			return -EINVAL;
1154 	} else
1155 		xfer = NULL;
1156 
1157 	err = loop_init_xfer(lo, xfer, info);
1158 	if (err)
1159 		return err;
1160 
1161 	lo->lo_offset = info->lo_offset;
1162 	lo->lo_sizelimit = info->lo_sizelimit;
1163 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1164 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1165 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1166 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1167 
1168 	if (!xfer)
1169 		xfer = &none_funcs;
1170 	lo->transfer = xfer->transfer;
1171 	lo->ioctl = xfer->ioctl;
1172 
1173 	lo->lo_flags = info->lo_flags;
1174 
1175 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1176 	lo->lo_init[0] = info->lo_init[0];
1177 	lo->lo_init[1] = info->lo_init[1];
1178 	if (info->lo_encrypt_key_size) {
1179 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1180 		       info->lo_encrypt_key_size);
1181 		lo->lo_key_owner = uid;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static int loop_configure(struct loop_device *lo, fmode_t mode,
1188 			  struct block_device *bdev,
1189 			  const struct loop_config *config)
1190 {
1191 	struct file *file = fget(config->fd);
1192 	struct inode *inode;
1193 	struct address_space *mapping;
1194 	int error;
1195 	loff_t size;
1196 	bool partscan;
1197 	unsigned short bsize;
1198 	bool is_loop;
1199 
1200 	if (!file)
1201 		return -EBADF;
1202 	is_loop = is_loop_device(file);
1203 
1204 	/* This is safe, since we have a reference from open(). */
1205 	__module_get(THIS_MODULE);
1206 
1207 	/*
1208 	 * If we don't hold exclusive handle for the device, upgrade to it
1209 	 * here to avoid changing device under exclusive owner.
1210 	 */
1211 	if (!(mode & FMODE_EXCL)) {
1212 		error = bd_prepare_to_claim(bdev, loop_configure);
1213 		if (error)
1214 			goto out_putf;
1215 	}
1216 
1217 	error = loop_global_lock_killable(lo, is_loop);
1218 	if (error)
1219 		goto out_bdev;
1220 
1221 	error = -EBUSY;
1222 	if (lo->lo_state != Lo_unbound)
1223 		goto out_unlock;
1224 
1225 	error = loop_validate_file(file, bdev);
1226 	if (error)
1227 		goto out_unlock;
1228 
1229 	mapping = file->f_mapping;
1230 	inode = mapping->host;
1231 
1232 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1233 		error = -EINVAL;
1234 		goto out_unlock;
1235 	}
1236 
1237 	if (config->block_size) {
1238 		error = loop_validate_block_size(config->block_size);
1239 		if (error)
1240 			goto out_unlock;
1241 	}
1242 
1243 	error = loop_set_status_from_info(lo, &config->info);
1244 	if (error)
1245 		goto out_unlock;
1246 
1247 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1248 	    !file->f_op->write_iter)
1249 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1250 
1251 	lo->workqueue = alloc_workqueue("loop%d",
1252 					WQ_UNBOUND | WQ_FREEZABLE,
1253 					0,
1254 					lo->lo_number);
1255 	if (!lo->workqueue) {
1256 		error = -ENOMEM;
1257 		goto out_unlock;
1258 	}
1259 
1260 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1261 
1262 	INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
1263 	INIT_LIST_HEAD(&lo->rootcg_cmd_list);
1264 	INIT_LIST_HEAD(&lo->idle_worker_list);
1265 	lo->worker_tree = RB_ROOT;
1266 	timer_setup(&lo->timer, loop_free_idle_workers,
1267 		TIMER_DEFERRABLE);
1268 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1269 	lo->lo_device = bdev;
1270 	lo->lo_backing_file = file;
1271 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1272 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1273 
1274 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1275 		blk_queue_write_cache(lo->lo_queue, true, false);
1276 
1277 	if (config->block_size)
1278 		bsize = config->block_size;
1279 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1280 		/* In case of direct I/O, match underlying block size */
1281 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1282 	else
1283 		bsize = 512;
1284 
1285 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1286 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1287 	blk_queue_io_min(lo->lo_queue, bsize);
1288 
1289 	loop_config_discard(lo);
1290 	loop_update_rotational(lo);
1291 	loop_update_dio(lo);
1292 	loop_sysfs_init(lo);
1293 
1294 	size = get_loop_size(lo, file);
1295 	loop_set_size(lo, size);
1296 
1297 	/* Order wrt reading lo_state in loop_validate_file(). */
1298 	wmb();
1299 
1300 	lo->lo_state = Lo_bound;
1301 	if (part_shift)
1302 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1303 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1304 	if (partscan)
1305 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1306 
1307 	/* Grab the block_device to prevent its destruction after we
1308 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1309 	 */
1310 	bdgrab(bdev);
1311 	loop_global_unlock(lo, is_loop);
1312 	if (partscan)
1313 		loop_reread_partitions(lo);
1314 	if (!(mode & FMODE_EXCL))
1315 		bd_abort_claiming(bdev, loop_configure);
1316 	return 0;
1317 
1318 out_unlock:
1319 	loop_global_unlock(lo, is_loop);
1320 out_bdev:
1321 	if (!(mode & FMODE_EXCL))
1322 		bd_abort_claiming(bdev, loop_configure);
1323 out_putf:
1324 	fput(file);
1325 	/* This is safe: open() is still holding a reference. */
1326 	module_put(THIS_MODULE);
1327 	return error;
1328 }
1329 
1330 static int __loop_clr_fd(struct loop_device *lo, bool release)
1331 {
1332 	struct file *filp = NULL;
1333 	gfp_t gfp = lo->old_gfp_mask;
1334 	struct block_device *bdev = lo->lo_device;
1335 	int err = 0;
1336 	bool partscan = false;
1337 	int lo_number;
1338 	struct loop_worker *pos, *worker;
1339 
1340 	/*
1341 	 * Flush loop_configure() and loop_change_fd(). It is acceptable for
1342 	 * loop_validate_file() to succeed, for actual clear operation has not
1343 	 * started yet.
1344 	 */
1345 	mutex_lock(&loop_validate_mutex);
1346 	mutex_unlock(&loop_validate_mutex);
1347 	/*
1348 	 * loop_validate_file() now fails because l->lo_state != Lo_bound
1349 	 * became visible.
1350 	 */
1351 
1352 	mutex_lock(&lo->lo_mutex);
1353 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1354 		err = -ENXIO;
1355 		goto out_unlock;
1356 	}
1357 
1358 	filp = lo->lo_backing_file;
1359 	if (filp == NULL) {
1360 		err = -EINVAL;
1361 		goto out_unlock;
1362 	}
1363 
1364 	if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1365 		blk_queue_write_cache(lo->lo_queue, false, false);
1366 
1367 	/* freeze request queue during the transition */
1368 	blk_mq_freeze_queue(lo->lo_queue);
1369 
1370 	destroy_workqueue(lo->workqueue);
1371 	spin_lock_irq(&lo->lo_work_lock);
1372 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
1373 				idle_list) {
1374 		list_del(&worker->idle_list);
1375 		rb_erase(&worker->rb_node, &lo->worker_tree);
1376 		css_put(worker->blkcg_css);
1377 		kfree(worker);
1378 	}
1379 	spin_unlock_irq(&lo->lo_work_lock);
1380 	del_timer_sync(&lo->timer);
1381 
1382 	spin_lock_irq(&lo->lo_lock);
1383 	lo->lo_backing_file = NULL;
1384 	spin_unlock_irq(&lo->lo_lock);
1385 
1386 	loop_release_xfer(lo);
1387 	lo->transfer = NULL;
1388 	lo->ioctl = NULL;
1389 	lo->lo_device = NULL;
1390 	lo->lo_encryption = NULL;
1391 	lo->lo_offset = 0;
1392 	lo->lo_sizelimit = 0;
1393 	lo->lo_encrypt_key_size = 0;
1394 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1395 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1396 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1397 	blk_queue_logical_block_size(lo->lo_queue, 512);
1398 	blk_queue_physical_block_size(lo->lo_queue, 512);
1399 	blk_queue_io_min(lo->lo_queue, 512);
1400 	if (bdev) {
1401 		bdput(bdev);
1402 		invalidate_bdev(bdev);
1403 		bdev->bd_inode->i_mapping->wb_err = 0;
1404 	}
1405 	set_capacity(lo->lo_disk, 0);
1406 	loop_sysfs_exit(lo);
1407 	if (bdev) {
1408 		/* let user-space know about this change */
1409 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1410 	}
1411 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1412 	/* This is safe: open() is still holding a reference. */
1413 	module_put(THIS_MODULE);
1414 	blk_mq_unfreeze_queue(lo->lo_queue);
1415 
1416 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1417 	lo_number = lo->lo_number;
1418 out_unlock:
1419 	mutex_unlock(&lo->lo_mutex);
1420 	if (partscan) {
1421 		/*
1422 		 * open_mutex has been held already in release path, so don't
1423 		 * acquire it if this function is called in such case.
1424 		 *
1425 		 * If the reread partition isn't from release path, lo_refcnt
1426 		 * must be at least one and it can only become zero when the
1427 		 * current holder is released.
1428 		 */
1429 		if (!release)
1430 			mutex_lock(&lo->lo_disk->open_mutex);
1431 		err = bdev_disk_changed(lo->lo_disk, false);
1432 		if (!release)
1433 			mutex_unlock(&lo->lo_disk->open_mutex);
1434 		if (err)
1435 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1436 				__func__, lo_number, err);
1437 		/* Device is gone, no point in returning error */
1438 		err = 0;
1439 	}
1440 
1441 	/*
1442 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1443 	 * finished.
1444 	 *
1445 	 * There cannot be anybody else entering __loop_clr_fd() as
1446 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1447 	 * protects us from all the other places trying to change the 'lo'
1448 	 * device.
1449 	 */
1450 	mutex_lock(&lo->lo_mutex);
1451 	lo->lo_flags = 0;
1452 	if (!part_shift)
1453 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1454 	lo->lo_state = Lo_unbound;
1455 	mutex_unlock(&lo->lo_mutex);
1456 
1457 	/*
1458 	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1459 	 * lo_mutex triggers a circular lock dependency possibility warning as
1460 	 * fput can take open_mutex which is usually taken before lo_mutex.
1461 	 */
1462 	if (filp)
1463 		fput(filp);
1464 	return err;
1465 }
1466 
1467 static int loop_clr_fd(struct loop_device *lo)
1468 {
1469 	int err;
1470 
1471 	err = mutex_lock_killable(&lo->lo_mutex);
1472 	if (err)
1473 		return err;
1474 	if (lo->lo_state != Lo_bound) {
1475 		mutex_unlock(&lo->lo_mutex);
1476 		return -ENXIO;
1477 	}
1478 	/*
1479 	 * If we've explicitly asked to tear down the loop device,
1480 	 * and it has an elevated reference count, set it for auto-teardown when
1481 	 * the last reference goes away. This stops $!~#$@ udev from
1482 	 * preventing teardown because it decided that it needs to run blkid on
1483 	 * the loopback device whenever they appear. xfstests is notorious for
1484 	 * failing tests because blkid via udev races with a losetup
1485 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1486 	 * command to fail with EBUSY.
1487 	 */
1488 	if (atomic_read(&lo->lo_refcnt) > 1) {
1489 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1490 		mutex_unlock(&lo->lo_mutex);
1491 		return 0;
1492 	}
1493 	lo->lo_state = Lo_rundown;
1494 	mutex_unlock(&lo->lo_mutex);
1495 
1496 	return __loop_clr_fd(lo, false);
1497 }
1498 
1499 static int
1500 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1501 {
1502 	int err;
1503 	kuid_t uid = current_uid();
1504 	int prev_lo_flags;
1505 	bool partscan = false;
1506 	bool size_changed = false;
1507 
1508 	err = mutex_lock_killable(&lo->lo_mutex);
1509 	if (err)
1510 		return err;
1511 	if (lo->lo_encrypt_key_size &&
1512 	    !uid_eq(lo->lo_key_owner, uid) &&
1513 	    !capable(CAP_SYS_ADMIN)) {
1514 		err = -EPERM;
1515 		goto out_unlock;
1516 	}
1517 	if (lo->lo_state != Lo_bound) {
1518 		err = -ENXIO;
1519 		goto out_unlock;
1520 	}
1521 
1522 	if (lo->lo_offset != info->lo_offset ||
1523 	    lo->lo_sizelimit != info->lo_sizelimit) {
1524 		size_changed = true;
1525 		sync_blockdev(lo->lo_device);
1526 		invalidate_bdev(lo->lo_device);
1527 	}
1528 
1529 	/* I/O need to be drained during transfer transition */
1530 	blk_mq_freeze_queue(lo->lo_queue);
1531 
1532 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1533 		/* If any pages were dirtied after invalidate_bdev(), try again */
1534 		err = -EAGAIN;
1535 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1536 			__func__, lo->lo_number, lo->lo_file_name,
1537 			lo->lo_device->bd_inode->i_mapping->nrpages);
1538 		goto out_unfreeze;
1539 	}
1540 
1541 	prev_lo_flags = lo->lo_flags;
1542 
1543 	err = loop_set_status_from_info(lo, info);
1544 	if (err)
1545 		goto out_unfreeze;
1546 
1547 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1548 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1549 	/* For those flags, use the previous values instead */
1550 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1551 	/* For flags that can't be cleared, use previous values too */
1552 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1553 
1554 	if (size_changed) {
1555 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1556 					   lo->lo_backing_file);
1557 		loop_set_size(lo, new_size);
1558 	}
1559 
1560 	loop_config_discard(lo);
1561 
1562 	/* update dio if lo_offset or transfer is changed */
1563 	__loop_update_dio(lo, lo->use_dio);
1564 
1565 out_unfreeze:
1566 	blk_mq_unfreeze_queue(lo->lo_queue);
1567 
1568 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1569 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1570 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1571 		partscan = true;
1572 	}
1573 out_unlock:
1574 	mutex_unlock(&lo->lo_mutex);
1575 	if (partscan)
1576 		loop_reread_partitions(lo);
1577 
1578 	return err;
1579 }
1580 
1581 static int
1582 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1583 {
1584 	struct path path;
1585 	struct kstat stat;
1586 	int ret;
1587 
1588 	ret = mutex_lock_killable(&lo->lo_mutex);
1589 	if (ret)
1590 		return ret;
1591 	if (lo->lo_state != Lo_bound) {
1592 		mutex_unlock(&lo->lo_mutex);
1593 		return -ENXIO;
1594 	}
1595 
1596 	memset(info, 0, sizeof(*info));
1597 	info->lo_number = lo->lo_number;
1598 	info->lo_offset = lo->lo_offset;
1599 	info->lo_sizelimit = lo->lo_sizelimit;
1600 	info->lo_flags = lo->lo_flags;
1601 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1602 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1603 	info->lo_encrypt_type =
1604 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1605 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1606 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1607 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1608 		       lo->lo_encrypt_key_size);
1609 	}
1610 
1611 	/* Drop lo_mutex while we call into the filesystem. */
1612 	path = lo->lo_backing_file->f_path;
1613 	path_get(&path);
1614 	mutex_unlock(&lo->lo_mutex);
1615 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1616 	if (!ret) {
1617 		info->lo_device = huge_encode_dev(stat.dev);
1618 		info->lo_inode = stat.ino;
1619 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1620 	}
1621 	path_put(&path);
1622 	return ret;
1623 }
1624 
1625 static void
1626 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1627 {
1628 	memset(info64, 0, sizeof(*info64));
1629 	info64->lo_number = info->lo_number;
1630 	info64->lo_device = info->lo_device;
1631 	info64->lo_inode = info->lo_inode;
1632 	info64->lo_rdevice = info->lo_rdevice;
1633 	info64->lo_offset = info->lo_offset;
1634 	info64->lo_sizelimit = 0;
1635 	info64->lo_encrypt_type = info->lo_encrypt_type;
1636 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1637 	info64->lo_flags = info->lo_flags;
1638 	info64->lo_init[0] = info->lo_init[0];
1639 	info64->lo_init[1] = info->lo_init[1];
1640 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1641 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1642 	else
1643 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1644 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1645 }
1646 
1647 static int
1648 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1649 {
1650 	memset(info, 0, sizeof(*info));
1651 	info->lo_number = info64->lo_number;
1652 	info->lo_device = info64->lo_device;
1653 	info->lo_inode = info64->lo_inode;
1654 	info->lo_rdevice = info64->lo_rdevice;
1655 	info->lo_offset = info64->lo_offset;
1656 	info->lo_encrypt_type = info64->lo_encrypt_type;
1657 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1658 	info->lo_flags = info64->lo_flags;
1659 	info->lo_init[0] = info64->lo_init[0];
1660 	info->lo_init[1] = info64->lo_init[1];
1661 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1662 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1663 	else
1664 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1665 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1666 
1667 	/* error in case values were truncated */
1668 	if (info->lo_device != info64->lo_device ||
1669 	    info->lo_rdevice != info64->lo_rdevice ||
1670 	    info->lo_inode != info64->lo_inode ||
1671 	    info->lo_offset != info64->lo_offset)
1672 		return -EOVERFLOW;
1673 
1674 	return 0;
1675 }
1676 
1677 static int
1678 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1679 {
1680 	struct loop_info info;
1681 	struct loop_info64 info64;
1682 
1683 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1684 		return -EFAULT;
1685 	loop_info64_from_old(&info, &info64);
1686 	return loop_set_status(lo, &info64);
1687 }
1688 
1689 static int
1690 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1691 {
1692 	struct loop_info64 info64;
1693 
1694 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1695 		return -EFAULT;
1696 	return loop_set_status(lo, &info64);
1697 }
1698 
1699 static int
1700 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1701 	struct loop_info info;
1702 	struct loop_info64 info64;
1703 	int err;
1704 
1705 	if (!arg)
1706 		return -EINVAL;
1707 	err = loop_get_status(lo, &info64);
1708 	if (!err)
1709 		err = loop_info64_to_old(&info64, &info);
1710 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1711 		err = -EFAULT;
1712 
1713 	return err;
1714 }
1715 
1716 static int
1717 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1718 	struct loop_info64 info64;
1719 	int err;
1720 
1721 	if (!arg)
1722 		return -EINVAL;
1723 	err = loop_get_status(lo, &info64);
1724 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1725 		err = -EFAULT;
1726 
1727 	return err;
1728 }
1729 
1730 static int loop_set_capacity(struct loop_device *lo)
1731 {
1732 	loff_t size;
1733 
1734 	if (unlikely(lo->lo_state != Lo_bound))
1735 		return -ENXIO;
1736 
1737 	size = get_loop_size(lo, lo->lo_backing_file);
1738 	loop_set_size(lo, size);
1739 
1740 	return 0;
1741 }
1742 
1743 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1744 {
1745 	int error = -ENXIO;
1746 	if (lo->lo_state != Lo_bound)
1747 		goto out;
1748 
1749 	__loop_update_dio(lo, !!arg);
1750 	if (lo->use_dio == !!arg)
1751 		return 0;
1752 	error = -EINVAL;
1753  out:
1754 	return error;
1755 }
1756 
1757 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1758 {
1759 	int err = 0;
1760 
1761 	if (lo->lo_state != Lo_bound)
1762 		return -ENXIO;
1763 
1764 	err = loop_validate_block_size(arg);
1765 	if (err)
1766 		return err;
1767 
1768 	if (lo->lo_queue->limits.logical_block_size == arg)
1769 		return 0;
1770 
1771 	sync_blockdev(lo->lo_device);
1772 	invalidate_bdev(lo->lo_device);
1773 
1774 	blk_mq_freeze_queue(lo->lo_queue);
1775 
1776 	/* invalidate_bdev should have truncated all the pages */
1777 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1778 		err = -EAGAIN;
1779 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1780 			__func__, lo->lo_number, lo->lo_file_name,
1781 			lo->lo_device->bd_inode->i_mapping->nrpages);
1782 		goto out_unfreeze;
1783 	}
1784 
1785 	blk_queue_logical_block_size(lo->lo_queue, arg);
1786 	blk_queue_physical_block_size(lo->lo_queue, arg);
1787 	blk_queue_io_min(lo->lo_queue, arg);
1788 	loop_update_dio(lo);
1789 out_unfreeze:
1790 	blk_mq_unfreeze_queue(lo->lo_queue);
1791 
1792 	return err;
1793 }
1794 
1795 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1796 			   unsigned long arg)
1797 {
1798 	int err;
1799 
1800 	err = mutex_lock_killable(&lo->lo_mutex);
1801 	if (err)
1802 		return err;
1803 	switch (cmd) {
1804 	case LOOP_SET_CAPACITY:
1805 		err = loop_set_capacity(lo);
1806 		break;
1807 	case LOOP_SET_DIRECT_IO:
1808 		err = loop_set_dio(lo, arg);
1809 		break;
1810 	case LOOP_SET_BLOCK_SIZE:
1811 		err = loop_set_block_size(lo, arg);
1812 		break;
1813 	default:
1814 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1815 	}
1816 	mutex_unlock(&lo->lo_mutex);
1817 	return err;
1818 }
1819 
1820 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1821 	unsigned int cmd, unsigned long arg)
1822 {
1823 	struct loop_device *lo = bdev->bd_disk->private_data;
1824 	void __user *argp = (void __user *) arg;
1825 	int err;
1826 
1827 	switch (cmd) {
1828 	case LOOP_SET_FD: {
1829 		/*
1830 		 * Legacy case - pass in a zeroed out struct loop_config with
1831 		 * only the file descriptor set , which corresponds with the
1832 		 * default parameters we'd have used otherwise.
1833 		 */
1834 		struct loop_config config;
1835 
1836 		memset(&config, 0, sizeof(config));
1837 		config.fd = arg;
1838 
1839 		return loop_configure(lo, mode, bdev, &config);
1840 	}
1841 	case LOOP_CONFIGURE: {
1842 		struct loop_config config;
1843 
1844 		if (copy_from_user(&config, argp, sizeof(config)))
1845 			return -EFAULT;
1846 
1847 		return loop_configure(lo, mode, bdev, &config);
1848 	}
1849 	case LOOP_CHANGE_FD:
1850 		return loop_change_fd(lo, bdev, arg);
1851 	case LOOP_CLR_FD:
1852 		return loop_clr_fd(lo);
1853 	case LOOP_SET_STATUS:
1854 		err = -EPERM;
1855 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1856 			err = loop_set_status_old(lo, argp);
1857 		}
1858 		break;
1859 	case LOOP_GET_STATUS:
1860 		return loop_get_status_old(lo, argp);
1861 	case LOOP_SET_STATUS64:
1862 		err = -EPERM;
1863 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1864 			err = loop_set_status64(lo, argp);
1865 		}
1866 		break;
1867 	case LOOP_GET_STATUS64:
1868 		return loop_get_status64(lo, argp);
1869 	case LOOP_SET_CAPACITY:
1870 	case LOOP_SET_DIRECT_IO:
1871 	case LOOP_SET_BLOCK_SIZE:
1872 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1873 			return -EPERM;
1874 		fallthrough;
1875 	default:
1876 		err = lo_simple_ioctl(lo, cmd, arg);
1877 		break;
1878 	}
1879 
1880 	return err;
1881 }
1882 
1883 #ifdef CONFIG_COMPAT
1884 struct compat_loop_info {
1885 	compat_int_t	lo_number;      /* ioctl r/o */
1886 	compat_dev_t	lo_device;      /* ioctl r/o */
1887 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1888 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1889 	compat_int_t	lo_offset;
1890 	compat_int_t	lo_encrypt_type;
1891 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1892 	compat_int_t	lo_flags;       /* ioctl r/o */
1893 	char		lo_name[LO_NAME_SIZE];
1894 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1895 	compat_ulong_t	lo_init[2];
1896 	char		reserved[4];
1897 };
1898 
1899 /*
1900  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1901  * - noinlined to reduce stack space usage in main part of driver
1902  */
1903 static noinline int
1904 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1905 			struct loop_info64 *info64)
1906 {
1907 	struct compat_loop_info info;
1908 
1909 	if (copy_from_user(&info, arg, sizeof(info)))
1910 		return -EFAULT;
1911 
1912 	memset(info64, 0, sizeof(*info64));
1913 	info64->lo_number = info.lo_number;
1914 	info64->lo_device = info.lo_device;
1915 	info64->lo_inode = info.lo_inode;
1916 	info64->lo_rdevice = info.lo_rdevice;
1917 	info64->lo_offset = info.lo_offset;
1918 	info64->lo_sizelimit = 0;
1919 	info64->lo_encrypt_type = info.lo_encrypt_type;
1920 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1921 	info64->lo_flags = info.lo_flags;
1922 	info64->lo_init[0] = info.lo_init[0];
1923 	info64->lo_init[1] = info.lo_init[1];
1924 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1925 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1926 	else
1927 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1928 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1929 	return 0;
1930 }
1931 
1932 /*
1933  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1934  * - noinlined to reduce stack space usage in main part of driver
1935  */
1936 static noinline int
1937 loop_info64_to_compat(const struct loop_info64 *info64,
1938 		      struct compat_loop_info __user *arg)
1939 {
1940 	struct compat_loop_info info;
1941 
1942 	memset(&info, 0, sizeof(info));
1943 	info.lo_number = info64->lo_number;
1944 	info.lo_device = info64->lo_device;
1945 	info.lo_inode = info64->lo_inode;
1946 	info.lo_rdevice = info64->lo_rdevice;
1947 	info.lo_offset = info64->lo_offset;
1948 	info.lo_encrypt_type = info64->lo_encrypt_type;
1949 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1950 	info.lo_flags = info64->lo_flags;
1951 	info.lo_init[0] = info64->lo_init[0];
1952 	info.lo_init[1] = info64->lo_init[1];
1953 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1954 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1955 	else
1956 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1957 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1958 
1959 	/* error in case values were truncated */
1960 	if (info.lo_device != info64->lo_device ||
1961 	    info.lo_rdevice != info64->lo_rdevice ||
1962 	    info.lo_inode != info64->lo_inode ||
1963 	    info.lo_offset != info64->lo_offset ||
1964 	    info.lo_init[0] != info64->lo_init[0] ||
1965 	    info.lo_init[1] != info64->lo_init[1])
1966 		return -EOVERFLOW;
1967 
1968 	if (copy_to_user(arg, &info, sizeof(info)))
1969 		return -EFAULT;
1970 	return 0;
1971 }
1972 
1973 static int
1974 loop_set_status_compat(struct loop_device *lo,
1975 		       const struct compat_loop_info __user *arg)
1976 {
1977 	struct loop_info64 info64;
1978 	int ret;
1979 
1980 	ret = loop_info64_from_compat(arg, &info64);
1981 	if (ret < 0)
1982 		return ret;
1983 	return loop_set_status(lo, &info64);
1984 }
1985 
1986 static int
1987 loop_get_status_compat(struct loop_device *lo,
1988 		       struct compat_loop_info __user *arg)
1989 {
1990 	struct loop_info64 info64;
1991 	int err;
1992 
1993 	if (!arg)
1994 		return -EINVAL;
1995 	err = loop_get_status(lo, &info64);
1996 	if (!err)
1997 		err = loop_info64_to_compat(&info64, arg);
1998 	return err;
1999 }
2000 
2001 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
2002 			   unsigned int cmd, unsigned long arg)
2003 {
2004 	struct loop_device *lo = bdev->bd_disk->private_data;
2005 	int err;
2006 
2007 	switch(cmd) {
2008 	case LOOP_SET_STATUS:
2009 		err = loop_set_status_compat(lo,
2010 			     (const struct compat_loop_info __user *)arg);
2011 		break;
2012 	case LOOP_GET_STATUS:
2013 		err = loop_get_status_compat(lo,
2014 				     (struct compat_loop_info __user *)arg);
2015 		break;
2016 	case LOOP_SET_CAPACITY:
2017 	case LOOP_CLR_FD:
2018 	case LOOP_GET_STATUS64:
2019 	case LOOP_SET_STATUS64:
2020 	case LOOP_CONFIGURE:
2021 		arg = (unsigned long) compat_ptr(arg);
2022 		fallthrough;
2023 	case LOOP_SET_FD:
2024 	case LOOP_CHANGE_FD:
2025 	case LOOP_SET_BLOCK_SIZE:
2026 	case LOOP_SET_DIRECT_IO:
2027 		err = lo_ioctl(bdev, mode, cmd, arg);
2028 		break;
2029 	default:
2030 		err = -ENOIOCTLCMD;
2031 		break;
2032 	}
2033 	return err;
2034 }
2035 #endif
2036 
2037 static int lo_open(struct block_device *bdev, fmode_t mode)
2038 {
2039 	struct loop_device *lo = bdev->bd_disk->private_data;
2040 	int err;
2041 
2042 	err = mutex_lock_killable(&lo->lo_mutex);
2043 	if (err)
2044 		return err;
2045 	if (lo->lo_state == Lo_deleting)
2046 		err = -ENXIO;
2047 	else
2048 		atomic_inc(&lo->lo_refcnt);
2049 	mutex_unlock(&lo->lo_mutex);
2050 	return err;
2051 }
2052 
2053 static void lo_release(struct gendisk *disk, fmode_t mode)
2054 {
2055 	struct loop_device *lo = disk->private_data;
2056 
2057 	mutex_lock(&lo->lo_mutex);
2058 	if (atomic_dec_return(&lo->lo_refcnt))
2059 		goto out_unlock;
2060 
2061 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
2062 		if (lo->lo_state != Lo_bound)
2063 			goto out_unlock;
2064 		lo->lo_state = Lo_rundown;
2065 		mutex_unlock(&lo->lo_mutex);
2066 		/*
2067 		 * In autoclear mode, stop the loop thread
2068 		 * and remove configuration after last close.
2069 		 */
2070 		__loop_clr_fd(lo, true);
2071 		return;
2072 	} else if (lo->lo_state == Lo_bound) {
2073 		/*
2074 		 * Otherwise keep thread (if running) and config,
2075 		 * but flush possible ongoing bios in thread.
2076 		 */
2077 		blk_mq_freeze_queue(lo->lo_queue);
2078 		blk_mq_unfreeze_queue(lo->lo_queue);
2079 	}
2080 
2081 out_unlock:
2082 	mutex_unlock(&lo->lo_mutex);
2083 }
2084 
2085 static const struct block_device_operations lo_fops = {
2086 	.owner =	THIS_MODULE,
2087 	.open =		lo_open,
2088 	.release =	lo_release,
2089 	.ioctl =	lo_ioctl,
2090 #ifdef CONFIG_COMPAT
2091 	.compat_ioctl =	lo_compat_ioctl,
2092 #endif
2093 };
2094 
2095 /*
2096  * And now the modules code and kernel interface.
2097  */
2098 static int max_loop;
2099 module_param(max_loop, int, 0444);
2100 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
2101 module_param(max_part, int, 0444);
2102 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
2103 MODULE_LICENSE("GPL");
2104 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
2105 
2106 int loop_register_transfer(struct loop_func_table *funcs)
2107 {
2108 	unsigned int n = funcs->number;
2109 
2110 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
2111 		return -EINVAL;
2112 	xfer_funcs[n] = funcs;
2113 	return 0;
2114 }
2115 
2116 static int unregister_transfer_cb(int id, void *ptr, void *data)
2117 {
2118 	struct loop_device *lo = ptr;
2119 	struct loop_func_table *xfer = data;
2120 
2121 	mutex_lock(&lo->lo_mutex);
2122 	if (lo->lo_encryption == xfer)
2123 		loop_release_xfer(lo);
2124 	mutex_unlock(&lo->lo_mutex);
2125 	return 0;
2126 }
2127 
2128 int loop_unregister_transfer(int number)
2129 {
2130 	unsigned int n = number;
2131 	struct loop_func_table *xfer;
2132 
2133 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
2134 		return -EINVAL;
2135 
2136 	xfer_funcs[n] = NULL;
2137 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
2138 	return 0;
2139 }
2140 
2141 EXPORT_SYMBOL(loop_register_transfer);
2142 EXPORT_SYMBOL(loop_unregister_transfer);
2143 
2144 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
2145 		const struct blk_mq_queue_data *bd)
2146 {
2147 	struct request *rq = bd->rq;
2148 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2149 	struct loop_device *lo = rq->q->queuedata;
2150 
2151 	blk_mq_start_request(rq);
2152 
2153 	if (lo->lo_state != Lo_bound)
2154 		return BLK_STS_IOERR;
2155 
2156 	switch (req_op(rq)) {
2157 	case REQ_OP_FLUSH:
2158 	case REQ_OP_DISCARD:
2159 	case REQ_OP_WRITE_ZEROES:
2160 		cmd->use_aio = false;
2161 		break;
2162 	default:
2163 		cmd->use_aio = lo->use_dio;
2164 		break;
2165 	}
2166 
2167 	/* always use the first bio's css */
2168 	cmd->blkcg_css = NULL;
2169 	cmd->memcg_css = NULL;
2170 #ifdef CONFIG_BLK_CGROUP
2171 	if (rq->bio && rq->bio->bi_blkg) {
2172 		cmd->blkcg_css = &bio_blkcg(rq->bio)->css;
2173 #ifdef CONFIG_MEMCG
2174 		cmd->memcg_css =
2175 			cgroup_get_e_css(cmd->blkcg_css->cgroup,
2176 					&memory_cgrp_subsys);
2177 #endif
2178 	}
2179 #endif
2180 	loop_queue_work(lo, cmd);
2181 
2182 	return BLK_STS_OK;
2183 }
2184 
2185 static void loop_handle_cmd(struct loop_cmd *cmd)
2186 {
2187 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2188 	const bool write = op_is_write(req_op(rq));
2189 	struct loop_device *lo = rq->q->queuedata;
2190 	int ret = 0;
2191 	struct mem_cgroup *old_memcg = NULL;
2192 
2193 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2194 		ret = -EIO;
2195 		goto failed;
2196 	}
2197 
2198 	if (cmd->blkcg_css)
2199 		kthread_associate_blkcg(cmd->blkcg_css);
2200 	if (cmd->memcg_css)
2201 		old_memcg = set_active_memcg(
2202 			mem_cgroup_from_css(cmd->memcg_css));
2203 
2204 	ret = do_req_filebacked(lo, rq);
2205 
2206 	if (cmd->blkcg_css)
2207 		kthread_associate_blkcg(NULL);
2208 
2209 	if (cmd->memcg_css) {
2210 		set_active_memcg(old_memcg);
2211 		css_put(cmd->memcg_css);
2212 	}
2213  failed:
2214 	/* complete non-aio request */
2215 	if (!cmd->use_aio || ret) {
2216 		if (ret == -EOPNOTSUPP)
2217 			cmd->ret = ret;
2218 		else
2219 			cmd->ret = ret ? -EIO : 0;
2220 		if (likely(!blk_should_fake_timeout(rq->q)))
2221 			blk_mq_complete_request(rq);
2222 	}
2223 }
2224 
2225 static void loop_set_timer(struct loop_device *lo)
2226 {
2227 	timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
2228 }
2229 
2230 static void loop_process_work(struct loop_worker *worker,
2231 			struct list_head *cmd_list, struct loop_device *lo)
2232 {
2233 	int orig_flags = current->flags;
2234 	struct loop_cmd *cmd;
2235 
2236 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
2237 	spin_lock_irq(&lo->lo_work_lock);
2238 	while (!list_empty(cmd_list)) {
2239 		cmd = container_of(
2240 			cmd_list->next, struct loop_cmd, list_entry);
2241 		list_del(cmd_list->next);
2242 		spin_unlock_irq(&lo->lo_work_lock);
2243 
2244 		loop_handle_cmd(cmd);
2245 		cond_resched();
2246 
2247 		spin_lock_irq(&lo->lo_work_lock);
2248 	}
2249 
2250 	/*
2251 	 * We only add to the idle list if there are no pending cmds
2252 	 * *and* the worker will not run again which ensures that it
2253 	 * is safe to free any worker on the idle list
2254 	 */
2255 	if (worker && !work_pending(&worker->work)) {
2256 		worker->last_ran_at = jiffies;
2257 		list_add_tail(&worker->idle_list, &lo->idle_worker_list);
2258 		loop_set_timer(lo);
2259 	}
2260 	spin_unlock_irq(&lo->lo_work_lock);
2261 	current->flags = orig_flags;
2262 }
2263 
2264 static void loop_workfn(struct work_struct *work)
2265 {
2266 	struct loop_worker *worker =
2267 		container_of(work, struct loop_worker, work);
2268 	loop_process_work(worker, &worker->cmd_list, worker->lo);
2269 }
2270 
2271 static void loop_rootcg_workfn(struct work_struct *work)
2272 {
2273 	struct loop_device *lo =
2274 		container_of(work, struct loop_device, rootcg_work);
2275 	loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
2276 }
2277 
2278 static void loop_free_idle_workers(struct timer_list *timer)
2279 {
2280 	struct loop_device *lo = container_of(timer, struct loop_device, timer);
2281 	struct loop_worker *pos, *worker;
2282 
2283 	spin_lock_irq(&lo->lo_work_lock);
2284 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
2285 				idle_list) {
2286 		if (time_is_after_jiffies(worker->last_ran_at +
2287 						LOOP_IDLE_WORKER_TIMEOUT))
2288 			break;
2289 		list_del(&worker->idle_list);
2290 		rb_erase(&worker->rb_node, &lo->worker_tree);
2291 		css_put(worker->blkcg_css);
2292 		kfree(worker);
2293 	}
2294 	if (!list_empty(&lo->idle_worker_list))
2295 		loop_set_timer(lo);
2296 	spin_unlock_irq(&lo->lo_work_lock);
2297 }
2298 
2299 static const struct blk_mq_ops loop_mq_ops = {
2300 	.queue_rq       = loop_queue_rq,
2301 	.complete	= lo_complete_rq,
2302 };
2303 
2304 static int loop_add(int i)
2305 {
2306 	struct loop_device *lo;
2307 	struct gendisk *disk;
2308 	int err;
2309 
2310 	err = -ENOMEM;
2311 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2312 	if (!lo)
2313 		goto out;
2314 	lo->lo_state = Lo_unbound;
2315 
2316 	err = mutex_lock_killable(&loop_ctl_mutex);
2317 	if (err)
2318 		goto out_free_dev;
2319 
2320 	/* allocate id, if @id >= 0, we're requesting that specific id */
2321 	if (i >= 0) {
2322 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2323 		if (err == -ENOSPC)
2324 			err = -EEXIST;
2325 	} else {
2326 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2327 	}
2328 	if (err < 0)
2329 		goto out_unlock;
2330 	i = err;
2331 
2332 	err = -ENOMEM;
2333 	lo->tag_set.ops = &loop_mq_ops;
2334 	lo->tag_set.nr_hw_queues = 1;
2335 	lo->tag_set.queue_depth = 128;
2336 	lo->tag_set.numa_node = NUMA_NO_NODE;
2337 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2338 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2339 	lo->tag_set.driver_data = lo;
2340 
2341 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2342 	if (err)
2343 		goto out_free_idr;
2344 
2345 	disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2346 	if (IS_ERR(disk)) {
2347 		err = PTR_ERR(disk);
2348 		goto out_cleanup_tags;
2349 	}
2350 	lo->lo_queue = lo->lo_disk->queue;
2351 
2352 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2353 
2354 	/*
2355 	 * By default, we do buffer IO, so it doesn't make sense to enable
2356 	 * merge because the I/O submitted to backing file is handled page by
2357 	 * page. For directio mode, merge does help to dispatch bigger request
2358 	 * to underlayer disk. We will enable merge once directio is enabled.
2359 	 */
2360 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2361 
2362 	/*
2363 	 * Disable partition scanning by default. The in-kernel partition
2364 	 * scanning can be requested individually per-device during its
2365 	 * setup. Userspace can always add and remove partitions from all
2366 	 * devices. The needed partition minors are allocated from the
2367 	 * extended minor space, the main loop device numbers will continue
2368 	 * to match the loop minors, regardless of the number of partitions
2369 	 * used.
2370 	 *
2371 	 * If max_part is given, partition scanning is globally enabled for
2372 	 * all loop devices. The minors for the main loop devices will be
2373 	 * multiples of max_part.
2374 	 *
2375 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2376 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2377 	 * complicated, are too static, inflexible and may surprise
2378 	 * userspace tools. Parameters like this in general should be avoided.
2379 	 */
2380 	if (!part_shift)
2381 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2382 	disk->flags |= GENHD_FL_EXT_DEVT;
2383 	atomic_set(&lo->lo_refcnt, 0);
2384 	mutex_init(&lo->lo_mutex);
2385 	lo->lo_number		= i;
2386 	spin_lock_init(&lo->lo_lock);
2387 	spin_lock_init(&lo->lo_work_lock);
2388 	disk->major		= LOOP_MAJOR;
2389 	disk->first_minor	= i << part_shift;
2390 	disk->minors		= 1 << part_shift;
2391 	disk->fops		= &lo_fops;
2392 	disk->private_data	= lo;
2393 	disk->queue		= lo->lo_queue;
2394 	sprintf(disk->disk_name, "loop%d", i);
2395 	add_disk(disk);
2396 	mutex_unlock(&loop_ctl_mutex);
2397 	return i;
2398 
2399 out_cleanup_tags:
2400 	blk_mq_free_tag_set(&lo->tag_set);
2401 out_free_idr:
2402 	idr_remove(&loop_index_idr, i);
2403 out_unlock:
2404 	mutex_unlock(&loop_ctl_mutex);
2405 out_free_dev:
2406 	kfree(lo);
2407 out:
2408 	return err;
2409 }
2410 
2411 static void loop_remove(struct loop_device *lo)
2412 {
2413 	del_gendisk(lo->lo_disk);
2414 	blk_cleanup_disk(lo->lo_disk);
2415 	blk_mq_free_tag_set(&lo->tag_set);
2416 	mutex_destroy(&lo->lo_mutex);
2417 	kfree(lo);
2418 }
2419 
2420 static void loop_probe(dev_t dev)
2421 {
2422 	int idx = MINOR(dev) >> part_shift;
2423 
2424 	if (max_loop && idx >= max_loop)
2425 		return;
2426 	loop_add(idx);
2427 }
2428 
2429 static int loop_control_remove(int idx)
2430 {
2431 	struct loop_device *lo;
2432 	int ret;
2433 
2434 	if (idx < 0) {
2435 		pr_warn("deleting an unspecified loop device is not supported.\n");
2436 		return -EINVAL;
2437 	}
2438 
2439 	ret = mutex_lock_killable(&loop_ctl_mutex);
2440 	if (ret)
2441 		return ret;
2442 
2443 	lo = idr_find(&loop_index_idr, idx);
2444 	if (!lo) {
2445 		ret = -ENODEV;
2446 		goto out_unlock_ctrl;
2447 	}
2448 
2449 	ret = mutex_lock_killable(&lo->lo_mutex);
2450 	if (ret)
2451 		goto out_unlock_ctrl;
2452 	if (lo->lo_state != Lo_unbound ||
2453 	    atomic_read(&lo->lo_refcnt) > 0) {
2454 		mutex_unlock(&lo->lo_mutex);
2455 		ret = -EBUSY;
2456 		goto out_unlock_ctrl;
2457 	}
2458 	lo->lo_state = Lo_deleting;
2459 	mutex_unlock(&lo->lo_mutex);
2460 
2461 	idr_remove(&loop_index_idr, lo->lo_number);
2462 	loop_remove(lo);
2463 out_unlock_ctrl:
2464 	mutex_unlock(&loop_ctl_mutex);
2465 	return ret;
2466 }
2467 
2468 static int loop_control_get_free(int idx)
2469 {
2470 	struct loop_device *lo;
2471 	int id, ret;
2472 
2473 	ret = mutex_lock_killable(&loop_ctl_mutex);
2474 	if (ret)
2475 		return ret;
2476 	idr_for_each_entry(&loop_index_idr, lo, id) {
2477 		if (lo->lo_state == Lo_unbound)
2478 			goto found;
2479 	}
2480 	mutex_unlock(&loop_ctl_mutex);
2481 	return loop_add(-1);
2482 found:
2483 	mutex_unlock(&loop_ctl_mutex);
2484 	return id;
2485 }
2486 
2487 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2488 			       unsigned long parm)
2489 {
2490 	switch (cmd) {
2491 	case LOOP_CTL_ADD:
2492 		return loop_add(parm);
2493 	case LOOP_CTL_REMOVE:
2494 		return loop_control_remove(parm);
2495 	case LOOP_CTL_GET_FREE:
2496 		return loop_control_get_free(parm);
2497 	default:
2498 		return -ENOSYS;
2499 	}
2500 }
2501 
2502 static const struct file_operations loop_ctl_fops = {
2503 	.open		= nonseekable_open,
2504 	.unlocked_ioctl	= loop_control_ioctl,
2505 	.compat_ioctl	= loop_control_ioctl,
2506 	.owner		= THIS_MODULE,
2507 	.llseek		= noop_llseek,
2508 };
2509 
2510 static struct miscdevice loop_misc = {
2511 	.minor		= LOOP_CTRL_MINOR,
2512 	.name		= "loop-control",
2513 	.fops		= &loop_ctl_fops,
2514 };
2515 
2516 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2517 MODULE_ALIAS("devname:loop-control");
2518 
2519 static int __init loop_init(void)
2520 {
2521 	int i, nr;
2522 	int err;
2523 
2524 	part_shift = 0;
2525 	if (max_part > 0) {
2526 		part_shift = fls(max_part);
2527 
2528 		/*
2529 		 * Adjust max_part according to part_shift as it is exported
2530 		 * to user space so that user can decide correct minor number
2531 		 * if [s]he want to create more devices.
2532 		 *
2533 		 * Note that -1 is required because partition 0 is reserved
2534 		 * for the whole disk.
2535 		 */
2536 		max_part = (1UL << part_shift) - 1;
2537 	}
2538 
2539 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2540 		err = -EINVAL;
2541 		goto err_out;
2542 	}
2543 
2544 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2545 		err = -EINVAL;
2546 		goto err_out;
2547 	}
2548 
2549 	/*
2550 	 * If max_loop is specified, create that many devices upfront.
2551 	 * This also becomes a hard limit. If max_loop is not specified,
2552 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2553 	 * init time. Loop devices can be requested on-demand with the
2554 	 * /dev/loop-control interface, or be instantiated by accessing
2555 	 * a 'dead' device node.
2556 	 */
2557 	if (max_loop)
2558 		nr = max_loop;
2559 	else
2560 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2561 
2562 	err = misc_register(&loop_misc);
2563 	if (err < 0)
2564 		goto err_out;
2565 
2566 
2567 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2568 		err = -EIO;
2569 		goto misc_out;
2570 	}
2571 
2572 	/* pre-create number of devices given by config or max_loop */
2573 	for (i = 0; i < nr; i++)
2574 		loop_add(i);
2575 
2576 	printk(KERN_INFO "loop: module loaded\n");
2577 	return 0;
2578 
2579 misc_out:
2580 	misc_deregister(&loop_misc);
2581 err_out:
2582 	return err;
2583 }
2584 
2585 static void __exit loop_exit(void)
2586 {
2587 	struct loop_device *lo;
2588 	int id;
2589 
2590 	unregister_blkdev(LOOP_MAJOR, "loop");
2591 	misc_deregister(&loop_misc);
2592 
2593 	mutex_lock(&loop_ctl_mutex);
2594 	idr_for_each_entry(&loop_index_idr, lo, id)
2595 		loop_remove(lo);
2596 	mutex_unlock(&loop_ctl_mutex);
2597 
2598 	idr_destroy(&loop_index_idr);
2599 }
2600 
2601 module_init(loop_init);
2602 module_exit(loop_exit);
2603 
2604 #ifndef MODULE
2605 static int __init max_loop_setup(char *str)
2606 {
2607 	max_loop = simple_strtol(str, NULL, 0);
2608 	return 1;
2609 }
2610 
2611 __setup("max_loop=", max_loop_setup);
2612 #endif
2613