xref: /openbmc/linux/drivers/block/loop.c (revision 95298d63)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	if (lo->lo_state == Lo_bound)
218 		blk_mq_freeze_queue(lo->lo_queue);
219 	lo->use_dio = use_dio;
220 	if (use_dio) {
221 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 	} else {
224 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 	}
227 	if (lo->lo_state == Lo_bound)
228 		blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230 
231 /**
232  * loop_validate_block_size() - validates the passed in block size
233  * @bsize: size to validate
234  */
235 static int
236 loop_validate_block_size(unsigned short bsize)
237 {
238 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
239 		return -EINVAL;
240 
241 	return 0;
242 }
243 
244 /**
245  * loop_set_size() - sets device size and notifies userspace
246  * @lo: struct loop_device to set the size for
247  * @size: new size of the loop device
248  *
249  * Callers must validate that the size passed into this function fits into
250  * a sector_t, eg using loop_validate_size()
251  */
252 static void loop_set_size(struct loop_device *lo, loff_t size)
253 {
254 	struct block_device *bdev = lo->lo_device;
255 
256 	bd_set_size(bdev, size << SECTOR_SHIFT);
257 
258 	set_capacity_revalidate_and_notify(lo->lo_disk, size, false);
259 }
260 
261 static inline int
262 lo_do_transfer(struct loop_device *lo, int cmd,
263 	       struct page *rpage, unsigned roffs,
264 	       struct page *lpage, unsigned loffs,
265 	       int size, sector_t rblock)
266 {
267 	int ret;
268 
269 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
270 	if (likely(!ret))
271 		return 0;
272 
273 	printk_ratelimited(KERN_ERR
274 		"loop: Transfer error at byte offset %llu, length %i.\n",
275 		(unsigned long long)rblock << 9, size);
276 	return ret;
277 }
278 
279 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
280 {
281 	struct iov_iter i;
282 	ssize_t bw;
283 
284 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
285 
286 	file_start_write(file);
287 	bw = vfs_iter_write(file, &i, ppos, 0);
288 	file_end_write(file);
289 
290 	if (likely(bw ==  bvec->bv_len))
291 		return 0;
292 
293 	printk_ratelimited(KERN_ERR
294 		"loop: Write error at byte offset %llu, length %i.\n",
295 		(unsigned long long)*ppos, bvec->bv_len);
296 	if (bw >= 0)
297 		bw = -EIO;
298 	return bw;
299 }
300 
301 static int lo_write_simple(struct loop_device *lo, struct request *rq,
302 		loff_t pos)
303 {
304 	struct bio_vec bvec;
305 	struct req_iterator iter;
306 	int ret = 0;
307 
308 	rq_for_each_segment(bvec, rq, iter) {
309 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
310 		if (ret < 0)
311 			break;
312 		cond_resched();
313 	}
314 
315 	return ret;
316 }
317 
318 /*
319  * This is the slow, transforming version that needs to double buffer the
320  * data as it cannot do the transformations in place without having direct
321  * access to the destination pages of the backing file.
322  */
323 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
324 		loff_t pos)
325 {
326 	struct bio_vec bvec, b;
327 	struct req_iterator iter;
328 	struct page *page;
329 	int ret = 0;
330 
331 	page = alloc_page(GFP_NOIO);
332 	if (unlikely(!page))
333 		return -ENOMEM;
334 
335 	rq_for_each_segment(bvec, rq, iter) {
336 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
337 			bvec.bv_offset, bvec.bv_len, pos >> 9);
338 		if (unlikely(ret))
339 			break;
340 
341 		b.bv_page = page;
342 		b.bv_offset = 0;
343 		b.bv_len = bvec.bv_len;
344 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
345 		if (ret < 0)
346 			break;
347 	}
348 
349 	__free_page(page);
350 	return ret;
351 }
352 
353 static int lo_read_simple(struct loop_device *lo, struct request *rq,
354 		loff_t pos)
355 {
356 	struct bio_vec bvec;
357 	struct req_iterator iter;
358 	struct iov_iter i;
359 	ssize_t len;
360 
361 	rq_for_each_segment(bvec, rq, iter) {
362 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
363 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
364 		if (len < 0)
365 			return len;
366 
367 		flush_dcache_page(bvec.bv_page);
368 
369 		if (len != bvec.bv_len) {
370 			struct bio *bio;
371 
372 			__rq_for_each_bio(bio, rq)
373 				zero_fill_bio(bio);
374 			break;
375 		}
376 		cond_resched();
377 	}
378 
379 	return 0;
380 }
381 
382 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
383 		loff_t pos)
384 {
385 	struct bio_vec bvec, b;
386 	struct req_iterator iter;
387 	struct iov_iter i;
388 	struct page *page;
389 	ssize_t len;
390 	int ret = 0;
391 
392 	page = alloc_page(GFP_NOIO);
393 	if (unlikely(!page))
394 		return -ENOMEM;
395 
396 	rq_for_each_segment(bvec, rq, iter) {
397 		loff_t offset = pos;
398 
399 		b.bv_page = page;
400 		b.bv_offset = 0;
401 		b.bv_len = bvec.bv_len;
402 
403 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
404 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
405 		if (len < 0) {
406 			ret = len;
407 			goto out_free_page;
408 		}
409 
410 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
411 			bvec.bv_offset, len, offset >> 9);
412 		if (ret)
413 			goto out_free_page;
414 
415 		flush_dcache_page(bvec.bv_page);
416 
417 		if (len != bvec.bv_len) {
418 			struct bio *bio;
419 
420 			__rq_for_each_bio(bio, rq)
421 				zero_fill_bio(bio);
422 			break;
423 		}
424 	}
425 
426 	ret = 0;
427 out_free_page:
428 	__free_page(page);
429 	return ret;
430 }
431 
432 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
433 			int mode)
434 {
435 	/*
436 	 * We use fallocate to manipulate the space mappings used by the image
437 	 * a.k.a. discard/zerorange. However we do not support this if
438 	 * encryption is enabled, because it may give an attacker useful
439 	 * information.
440 	 */
441 	struct file *file = lo->lo_backing_file;
442 	struct request_queue *q = lo->lo_queue;
443 	int ret;
444 
445 	mode |= FALLOC_FL_KEEP_SIZE;
446 
447 	if (!blk_queue_discard(q)) {
448 		ret = -EOPNOTSUPP;
449 		goto out;
450 	}
451 
452 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
453 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
454 		ret = -EIO;
455  out:
456 	return ret;
457 }
458 
459 static int lo_req_flush(struct loop_device *lo, struct request *rq)
460 {
461 	struct file *file = lo->lo_backing_file;
462 	int ret = vfs_fsync(file, 0);
463 	if (unlikely(ret && ret != -EINVAL))
464 		ret = -EIO;
465 
466 	return ret;
467 }
468 
469 static void lo_complete_rq(struct request *rq)
470 {
471 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
472 	blk_status_t ret = BLK_STS_OK;
473 
474 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
475 	    req_op(rq) != REQ_OP_READ) {
476 		if (cmd->ret < 0)
477 			ret = errno_to_blk_status(cmd->ret);
478 		goto end_io;
479 	}
480 
481 	/*
482 	 * Short READ - if we got some data, advance our request and
483 	 * retry it. If we got no data, end the rest with EIO.
484 	 */
485 	if (cmd->ret) {
486 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
487 		cmd->ret = 0;
488 		blk_mq_requeue_request(rq, true);
489 	} else {
490 		if (cmd->use_aio) {
491 			struct bio *bio = rq->bio;
492 
493 			while (bio) {
494 				zero_fill_bio(bio);
495 				bio = bio->bi_next;
496 			}
497 		}
498 		ret = BLK_STS_IOERR;
499 end_io:
500 		blk_mq_end_request(rq, ret);
501 	}
502 }
503 
504 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
505 {
506 	struct request *rq = blk_mq_rq_from_pdu(cmd);
507 
508 	if (!atomic_dec_and_test(&cmd->ref))
509 		return;
510 	kfree(cmd->bvec);
511 	cmd->bvec = NULL;
512 	blk_mq_complete_request(rq);
513 }
514 
515 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
516 {
517 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
518 
519 	if (cmd->css)
520 		css_put(cmd->css);
521 	cmd->ret = ret;
522 	lo_rw_aio_do_completion(cmd);
523 }
524 
525 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
526 		     loff_t pos, bool rw)
527 {
528 	struct iov_iter iter;
529 	struct req_iterator rq_iter;
530 	struct bio_vec *bvec;
531 	struct request *rq = blk_mq_rq_from_pdu(cmd);
532 	struct bio *bio = rq->bio;
533 	struct file *file = lo->lo_backing_file;
534 	struct bio_vec tmp;
535 	unsigned int offset;
536 	int nr_bvec = 0;
537 	int ret;
538 
539 	rq_for_each_bvec(tmp, rq, rq_iter)
540 		nr_bvec++;
541 
542 	if (rq->bio != rq->biotail) {
543 
544 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
545 				     GFP_NOIO);
546 		if (!bvec)
547 			return -EIO;
548 		cmd->bvec = bvec;
549 
550 		/*
551 		 * The bios of the request may be started from the middle of
552 		 * the 'bvec' because of bio splitting, so we can't directly
553 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
554 		 * API will take care of all details for us.
555 		 */
556 		rq_for_each_bvec(tmp, rq, rq_iter) {
557 			*bvec = tmp;
558 			bvec++;
559 		}
560 		bvec = cmd->bvec;
561 		offset = 0;
562 	} else {
563 		/*
564 		 * Same here, this bio may be started from the middle of the
565 		 * 'bvec' because of bio splitting, so offset from the bvec
566 		 * must be passed to iov iterator
567 		 */
568 		offset = bio->bi_iter.bi_bvec_done;
569 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
570 	}
571 	atomic_set(&cmd->ref, 2);
572 
573 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
574 	iter.iov_offset = offset;
575 
576 	cmd->iocb.ki_pos = pos;
577 	cmd->iocb.ki_filp = file;
578 	cmd->iocb.ki_complete = lo_rw_aio_complete;
579 	cmd->iocb.ki_flags = IOCB_DIRECT;
580 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
581 	if (cmd->css)
582 		kthread_associate_blkcg(cmd->css);
583 
584 	if (rw == WRITE)
585 		ret = call_write_iter(file, &cmd->iocb, &iter);
586 	else
587 		ret = call_read_iter(file, &cmd->iocb, &iter);
588 
589 	lo_rw_aio_do_completion(cmd);
590 	kthread_associate_blkcg(NULL);
591 
592 	if (ret != -EIOCBQUEUED)
593 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
594 	return 0;
595 }
596 
597 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
598 {
599 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
600 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
601 
602 	/*
603 	 * lo_write_simple and lo_read_simple should have been covered
604 	 * by io submit style function like lo_rw_aio(), one blocker
605 	 * is that lo_read_simple() need to call flush_dcache_page after
606 	 * the page is written from kernel, and it isn't easy to handle
607 	 * this in io submit style function which submits all segments
608 	 * of the req at one time. And direct read IO doesn't need to
609 	 * run flush_dcache_page().
610 	 */
611 	switch (req_op(rq)) {
612 	case REQ_OP_FLUSH:
613 		return lo_req_flush(lo, rq);
614 	case REQ_OP_WRITE_ZEROES:
615 		/*
616 		 * If the caller doesn't want deallocation, call zeroout to
617 		 * write zeroes the range.  Otherwise, punch them out.
618 		 */
619 		return lo_fallocate(lo, rq, pos,
620 			(rq->cmd_flags & REQ_NOUNMAP) ?
621 				FALLOC_FL_ZERO_RANGE :
622 				FALLOC_FL_PUNCH_HOLE);
623 	case REQ_OP_DISCARD:
624 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
625 	case REQ_OP_WRITE:
626 		if (lo->transfer)
627 			return lo_write_transfer(lo, rq, pos);
628 		else if (cmd->use_aio)
629 			return lo_rw_aio(lo, cmd, pos, WRITE);
630 		else
631 			return lo_write_simple(lo, rq, pos);
632 	case REQ_OP_READ:
633 		if (lo->transfer)
634 			return lo_read_transfer(lo, rq, pos);
635 		else if (cmd->use_aio)
636 			return lo_rw_aio(lo, cmd, pos, READ);
637 		else
638 			return lo_read_simple(lo, rq, pos);
639 	default:
640 		WARN_ON_ONCE(1);
641 		return -EIO;
642 	}
643 }
644 
645 static inline void loop_update_dio(struct loop_device *lo)
646 {
647 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
648 				lo->use_dio);
649 }
650 
651 static void loop_reread_partitions(struct loop_device *lo,
652 				   struct block_device *bdev)
653 {
654 	int rc;
655 
656 	mutex_lock(&bdev->bd_mutex);
657 	rc = bdev_disk_changed(bdev, false);
658 	mutex_unlock(&bdev->bd_mutex);
659 	if (rc)
660 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
661 			__func__, lo->lo_number, lo->lo_file_name, rc);
662 }
663 
664 static inline int is_loop_device(struct file *file)
665 {
666 	struct inode *i = file->f_mapping->host;
667 
668 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
669 }
670 
671 static int loop_validate_file(struct file *file, struct block_device *bdev)
672 {
673 	struct inode	*inode = file->f_mapping->host;
674 	struct file	*f = file;
675 
676 	/* Avoid recursion */
677 	while (is_loop_device(f)) {
678 		struct loop_device *l;
679 
680 		if (f->f_mapping->host->i_bdev == bdev)
681 			return -EBADF;
682 
683 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
684 		if (l->lo_state != Lo_bound) {
685 			return -EINVAL;
686 		}
687 		f = l->lo_backing_file;
688 	}
689 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
690 		return -EINVAL;
691 	return 0;
692 }
693 
694 /*
695  * loop_change_fd switched the backing store of a loopback device to
696  * a new file. This is useful for operating system installers to free up
697  * the original file and in High Availability environments to switch to
698  * an alternative location for the content in case of server meltdown.
699  * This can only work if the loop device is used read-only, and if the
700  * new backing store is the same size and type as the old backing store.
701  */
702 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
703 			  unsigned int arg)
704 {
705 	struct file	*file = NULL, *old_file;
706 	int		error;
707 	bool		partscan;
708 
709 	error = mutex_lock_killable(&loop_ctl_mutex);
710 	if (error)
711 		return error;
712 	error = -ENXIO;
713 	if (lo->lo_state != Lo_bound)
714 		goto out_err;
715 
716 	/* the loop device has to be read-only */
717 	error = -EINVAL;
718 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
719 		goto out_err;
720 
721 	error = -EBADF;
722 	file = fget(arg);
723 	if (!file)
724 		goto out_err;
725 
726 	error = loop_validate_file(file, bdev);
727 	if (error)
728 		goto out_err;
729 
730 	old_file = lo->lo_backing_file;
731 
732 	error = -EINVAL;
733 
734 	/* size of the new backing store needs to be the same */
735 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
736 		goto out_err;
737 
738 	/* and ... switch */
739 	blk_mq_freeze_queue(lo->lo_queue);
740 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
741 	lo->lo_backing_file = file;
742 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
743 	mapping_set_gfp_mask(file->f_mapping,
744 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
745 	loop_update_dio(lo);
746 	blk_mq_unfreeze_queue(lo->lo_queue);
747 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
748 	mutex_unlock(&loop_ctl_mutex);
749 	/*
750 	 * We must drop file reference outside of loop_ctl_mutex as dropping
751 	 * the file ref can take bd_mutex which creates circular locking
752 	 * dependency.
753 	 */
754 	fput(old_file);
755 	if (partscan)
756 		loop_reread_partitions(lo, bdev);
757 	return 0;
758 
759 out_err:
760 	mutex_unlock(&loop_ctl_mutex);
761 	if (file)
762 		fput(file);
763 	return error;
764 }
765 
766 /* loop sysfs attributes */
767 
768 static ssize_t loop_attr_show(struct device *dev, char *page,
769 			      ssize_t (*callback)(struct loop_device *, char *))
770 {
771 	struct gendisk *disk = dev_to_disk(dev);
772 	struct loop_device *lo = disk->private_data;
773 
774 	return callback(lo, page);
775 }
776 
777 #define LOOP_ATTR_RO(_name)						\
778 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
779 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
780 				struct device_attribute *attr, char *b)	\
781 {									\
782 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
783 }									\
784 static struct device_attribute loop_attr_##_name =			\
785 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
786 
787 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
788 {
789 	ssize_t ret;
790 	char *p = NULL;
791 
792 	spin_lock_irq(&lo->lo_lock);
793 	if (lo->lo_backing_file)
794 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
795 	spin_unlock_irq(&lo->lo_lock);
796 
797 	if (IS_ERR_OR_NULL(p))
798 		ret = PTR_ERR(p);
799 	else {
800 		ret = strlen(p);
801 		memmove(buf, p, ret);
802 		buf[ret++] = '\n';
803 		buf[ret] = 0;
804 	}
805 
806 	return ret;
807 }
808 
809 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
810 {
811 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
812 }
813 
814 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
815 {
816 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
817 }
818 
819 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
820 {
821 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
822 
823 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
824 }
825 
826 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
827 {
828 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
829 
830 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
831 }
832 
833 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
834 {
835 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
836 
837 	return sprintf(buf, "%s\n", dio ? "1" : "0");
838 }
839 
840 LOOP_ATTR_RO(backing_file);
841 LOOP_ATTR_RO(offset);
842 LOOP_ATTR_RO(sizelimit);
843 LOOP_ATTR_RO(autoclear);
844 LOOP_ATTR_RO(partscan);
845 LOOP_ATTR_RO(dio);
846 
847 static struct attribute *loop_attrs[] = {
848 	&loop_attr_backing_file.attr,
849 	&loop_attr_offset.attr,
850 	&loop_attr_sizelimit.attr,
851 	&loop_attr_autoclear.attr,
852 	&loop_attr_partscan.attr,
853 	&loop_attr_dio.attr,
854 	NULL,
855 };
856 
857 static struct attribute_group loop_attribute_group = {
858 	.name = "loop",
859 	.attrs= loop_attrs,
860 };
861 
862 static void loop_sysfs_init(struct loop_device *lo)
863 {
864 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
865 						&loop_attribute_group);
866 }
867 
868 static void loop_sysfs_exit(struct loop_device *lo)
869 {
870 	if (lo->sysfs_inited)
871 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
872 				   &loop_attribute_group);
873 }
874 
875 static void loop_config_discard(struct loop_device *lo)
876 {
877 	struct file *file = lo->lo_backing_file;
878 	struct inode *inode = file->f_mapping->host;
879 	struct request_queue *q = lo->lo_queue;
880 
881 	/*
882 	 * If the backing device is a block device, mirror its zeroing
883 	 * capability. Set the discard sectors to the block device's zeroing
884 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
885 	 * not blkdev_issue_discard(). This maintains consistent behavior with
886 	 * file-backed loop devices: discarded regions read back as zero.
887 	 */
888 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
889 		struct request_queue *backingq;
890 
891 		backingq = bdev_get_queue(inode->i_bdev);
892 		blk_queue_max_discard_sectors(q,
893 			backingq->limits.max_write_zeroes_sectors);
894 
895 		blk_queue_max_write_zeroes_sectors(q,
896 			backingq->limits.max_write_zeroes_sectors);
897 
898 	/*
899 	 * We use punch hole to reclaim the free space used by the
900 	 * image a.k.a. discard. However we do not support discard if
901 	 * encryption is enabled, because it may give an attacker
902 	 * useful information.
903 	 */
904 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
905 		q->limits.discard_granularity = 0;
906 		q->limits.discard_alignment = 0;
907 		blk_queue_max_discard_sectors(q, 0);
908 		blk_queue_max_write_zeroes_sectors(q, 0);
909 
910 	} else {
911 		q->limits.discard_granularity = inode->i_sb->s_blocksize;
912 		q->limits.discard_alignment = 0;
913 
914 		blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
915 		blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
916 	}
917 
918 	if (q->limits.max_write_zeroes_sectors)
919 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
920 	else
921 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
922 }
923 
924 static void loop_unprepare_queue(struct loop_device *lo)
925 {
926 	kthread_flush_worker(&lo->worker);
927 	kthread_stop(lo->worker_task);
928 }
929 
930 static int loop_kthread_worker_fn(void *worker_ptr)
931 {
932 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
933 	return kthread_worker_fn(worker_ptr);
934 }
935 
936 static int loop_prepare_queue(struct loop_device *lo)
937 {
938 	kthread_init_worker(&lo->worker);
939 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
940 			&lo->worker, "loop%d", lo->lo_number);
941 	if (IS_ERR(lo->worker_task))
942 		return -ENOMEM;
943 	set_user_nice(lo->worker_task, MIN_NICE);
944 	return 0;
945 }
946 
947 static void loop_update_rotational(struct loop_device *lo)
948 {
949 	struct file *file = lo->lo_backing_file;
950 	struct inode *file_inode = file->f_mapping->host;
951 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
952 	struct request_queue *q = lo->lo_queue;
953 	bool nonrot = true;
954 
955 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
956 	if (file_bdev)
957 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
958 
959 	if (nonrot)
960 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
961 	else
962 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
963 }
964 
965 static int
966 loop_release_xfer(struct loop_device *lo)
967 {
968 	int err = 0;
969 	struct loop_func_table *xfer = lo->lo_encryption;
970 
971 	if (xfer) {
972 		if (xfer->release)
973 			err = xfer->release(lo);
974 		lo->transfer = NULL;
975 		lo->lo_encryption = NULL;
976 		module_put(xfer->owner);
977 	}
978 	return err;
979 }
980 
981 static int
982 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
983 	       const struct loop_info64 *i)
984 {
985 	int err = 0;
986 
987 	if (xfer) {
988 		struct module *owner = xfer->owner;
989 
990 		if (!try_module_get(owner))
991 			return -EINVAL;
992 		if (xfer->init)
993 			err = xfer->init(lo, i);
994 		if (err)
995 			module_put(owner);
996 		else
997 			lo->lo_encryption = xfer;
998 	}
999 	return err;
1000 }
1001 
1002 /**
1003  * loop_set_status_from_info - configure device from loop_info
1004  * @lo: struct loop_device to configure
1005  * @info: struct loop_info64 to configure the device with
1006  *
1007  * Configures the loop device parameters according to the passed
1008  * in loop_info64 configuration.
1009  */
1010 static int
1011 loop_set_status_from_info(struct loop_device *lo,
1012 			  const struct loop_info64 *info)
1013 {
1014 	int err;
1015 	struct loop_func_table *xfer;
1016 	kuid_t uid = current_uid();
1017 
1018 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1019 		return -EINVAL;
1020 
1021 	err = loop_release_xfer(lo);
1022 	if (err)
1023 		return err;
1024 
1025 	if (info->lo_encrypt_type) {
1026 		unsigned int type = info->lo_encrypt_type;
1027 
1028 		if (type >= MAX_LO_CRYPT)
1029 			return -EINVAL;
1030 		xfer = xfer_funcs[type];
1031 		if (xfer == NULL)
1032 			return -EINVAL;
1033 	} else
1034 		xfer = NULL;
1035 
1036 	err = loop_init_xfer(lo, xfer, info);
1037 	if (err)
1038 		return err;
1039 
1040 	lo->lo_offset = info->lo_offset;
1041 	lo->lo_sizelimit = info->lo_sizelimit;
1042 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1043 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1044 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1045 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1046 
1047 	if (!xfer)
1048 		xfer = &none_funcs;
1049 	lo->transfer = xfer->transfer;
1050 	lo->ioctl = xfer->ioctl;
1051 
1052 	lo->lo_flags = info->lo_flags;
1053 
1054 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1055 	lo->lo_init[0] = info->lo_init[0];
1056 	lo->lo_init[1] = info->lo_init[1];
1057 	if (info->lo_encrypt_key_size) {
1058 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1059 		       info->lo_encrypt_key_size);
1060 		lo->lo_key_owner = uid;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static int loop_configure(struct loop_device *lo, fmode_t mode,
1067 			  struct block_device *bdev,
1068 			  const struct loop_config *config)
1069 {
1070 	struct file	*file;
1071 	struct inode	*inode;
1072 	struct address_space *mapping;
1073 	struct block_device *claimed_bdev = NULL;
1074 	int		error;
1075 	loff_t		size;
1076 	bool		partscan;
1077 	unsigned short  bsize;
1078 
1079 	/* This is safe, since we have a reference from open(). */
1080 	__module_get(THIS_MODULE);
1081 
1082 	error = -EBADF;
1083 	file = fget(config->fd);
1084 	if (!file)
1085 		goto out;
1086 
1087 	/*
1088 	 * If we don't hold exclusive handle for the device, upgrade to it
1089 	 * here to avoid changing device under exclusive owner.
1090 	 */
1091 	if (!(mode & FMODE_EXCL)) {
1092 		claimed_bdev = bd_start_claiming(bdev, loop_configure);
1093 		if (IS_ERR(claimed_bdev)) {
1094 			error = PTR_ERR(claimed_bdev);
1095 			goto out_putf;
1096 		}
1097 	}
1098 
1099 	error = mutex_lock_killable(&loop_ctl_mutex);
1100 	if (error)
1101 		goto out_bdev;
1102 
1103 	error = -EBUSY;
1104 	if (lo->lo_state != Lo_unbound)
1105 		goto out_unlock;
1106 
1107 	error = loop_validate_file(file, bdev);
1108 	if (error)
1109 		goto out_unlock;
1110 
1111 	mapping = file->f_mapping;
1112 	inode = mapping->host;
1113 
1114 	size = get_loop_size(lo, file);
1115 
1116 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1117 		error = -EINVAL;
1118 		goto out_unlock;
1119 	}
1120 
1121 	if (config->block_size) {
1122 		error = loop_validate_block_size(config->block_size);
1123 		if (error)
1124 			goto out_unlock;
1125 	}
1126 
1127 	error = loop_set_status_from_info(lo, &config->info);
1128 	if (error)
1129 		goto out_unlock;
1130 
1131 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1132 	    !file->f_op->write_iter)
1133 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1134 
1135 	error = loop_prepare_queue(lo);
1136 	if (error)
1137 		goto out_unlock;
1138 
1139 	set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1140 
1141 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1142 	lo->lo_device = bdev;
1143 	lo->lo_backing_file = file;
1144 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1145 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1146 
1147 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1148 		blk_queue_write_cache(lo->lo_queue, true, false);
1149 
1150 	if (config->block_size)
1151 		bsize = config->block_size;
1152 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1153 		/* In case of direct I/O, match underlying block size */
1154 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1155 	else
1156 		bsize = 512;
1157 
1158 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1159 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1160 	blk_queue_io_min(lo->lo_queue, bsize);
1161 
1162 	loop_update_rotational(lo);
1163 	loop_update_dio(lo);
1164 	loop_sysfs_init(lo);
1165 	loop_set_size(lo, size);
1166 
1167 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1168 		      block_size(inode->i_bdev) : PAGE_SIZE);
1169 
1170 	lo->lo_state = Lo_bound;
1171 	if (part_shift)
1172 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1173 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1174 
1175 	/* Grab the block_device to prevent its destruction after we
1176 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1177 	 */
1178 	bdgrab(bdev);
1179 	mutex_unlock(&loop_ctl_mutex);
1180 	if (partscan)
1181 		loop_reread_partitions(lo, bdev);
1182 	if (claimed_bdev)
1183 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1184 	return 0;
1185 
1186 out_unlock:
1187 	mutex_unlock(&loop_ctl_mutex);
1188 out_bdev:
1189 	if (claimed_bdev)
1190 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1191 out_putf:
1192 	fput(file);
1193 out:
1194 	/* This is safe: open() is still holding a reference. */
1195 	module_put(THIS_MODULE);
1196 	return error;
1197 }
1198 
1199 static int __loop_clr_fd(struct loop_device *lo, bool release)
1200 {
1201 	struct file *filp = NULL;
1202 	gfp_t gfp = lo->old_gfp_mask;
1203 	struct block_device *bdev = lo->lo_device;
1204 	int err = 0;
1205 	bool partscan = false;
1206 	int lo_number;
1207 
1208 	mutex_lock(&loop_ctl_mutex);
1209 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1210 		err = -ENXIO;
1211 		goto out_unlock;
1212 	}
1213 
1214 	filp = lo->lo_backing_file;
1215 	if (filp == NULL) {
1216 		err = -EINVAL;
1217 		goto out_unlock;
1218 	}
1219 
1220 	/* freeze request queue during the transition */
1221 	blk_mq_freeze_queue(lo->lo_queue);
1222 
1223 	spin_lock_irq(&lo->lo_lock);
1224 	lo->lo_backing_file = NULL;
1225 	spin_unlock_irq(&lo->lo_lock);
1226 
1227 	loop_release_xfer(lo);
1228 	lo->transfer = NULL;
1229 	lo->ioctl = NULL;
1230 	lo->lo_device = NULL;
1231 	lo->lo_encryption = NULL;
1232 	lo->lo_offset = 0;
1233 	lo->lo_sizelimit = 0;
1234 	lo->lo_encrypt_key_size = 0;
1235 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1236 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1237 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1238 	blk_queue_logical_block_size(lo->lo_queue, 512);
1239 	blk_queue_physical_block_size(lo->lo_queue, 512);
1240 	blk_queue_io_min(lo->lo_queue, 512);
1241 	if (bdev) {
1242 		bdput(bdev);
1243 		invalidate_bdev(bdev);
1244 		bdev->bd_inode->i_mapping->wb_err = 0;
1245 	}
1246 	set_capacity(lo->lo_disk, 0);
1247 	loop_sysfs_exit(lo);
1248 	if (bdev) {
1249 		bd_set_size(bdev, 0);
1250 		/* let user-space know about this change */
1251 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1252 	}
1253 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1254 	/* This is safe: open() is still holding a reference. */
1255 	module_put(THIS_MODULE);
1256 	blk_mq_unfreeze_queue(lo->lo_queue);
1257 
1258 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1259 	lo_number = lo->lo_number;
1260 	loop_unprepare_queue(lo);
1261 out_unlock:
1262 	mutex_unlock(&loop_ctl_mutex);
1263 	if (partscan) {
1264 		/*
1265 		 * bd_mutex has been held already in release path, so don't
1266 		 * acquire it if this function is called in such case.
1267 		 *
1268 		 * If the reread partition isn't from release path, lo_refcnt
1269 		 * must be at least one and it can only become zero when the
1270 		 * current holder is released.
1271 		 */
1272 		if (!release)
1273 			mutex_lock(&bdev->bd_mutex);
1274 		err = bdev_disk_changed(bdev, false);
1275 		if (!release)
1276 			mutex_unlock(&bdev->bd_mutex);
1277 		if (err)
1278 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1279 				__func__, lo_number, err);
1280 		/* Device is gone, no point in returning error */
1281 		err = 0;
1282 	}
1283 
1284 	/*
1285 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1286 	 * finished.
1287 	 *
1288 	 * There cannot be anybody else entering __loop_clr_fd() as
1289 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1290 	 * protects us from all the other places trying to change the 'lo'
1291 	 * device.
1292 	 */
1293 	mutex_lock(&loop_ctl_mutex);
1294 	lo->lo_flags = 0;
1295 	if (!part_shift)
1296 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1297 	lo->lo_state = Lo_unbound;
1298 	mutex_unlock(&loop_ctl_mutex);
1299 
1300 	/*
1301 	 * Need not hold loop_ctl_mutex to fput backing file.
1302 	 * Calling fput holding loop_ctl_mutex triggers a circular
1303 	 * lock dependency possibility warning as fput can take
1304 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1305 	 */
1306 	if (filp)
1307 		fput(filp);
1308 	return err;
1309 }
1310 
1311 static int loop_clr_fd(struct loop_device *lo)
1312 {
1313 	int err;
1314 
1315 	err = mutex_lock_killable(&loop_ctl_mutex);
1316 	if (err)
1317 		return err;
1318 	if (lo->lo_state != Lo_bound) {
1319 		mutex_unlock(&loop_ctl_mutex);
1320 		return -ENXIO;
1321 	}
1322 	/*
1323 	 * If we've explicitly asked to tear down the loop device,
1324 	 * and it has an elevated reference count, set it for auto-teardown when
1325 	 * the last reference goes away. This stops $!~#$@ udev from
1326 	 * preventing teardown because it decided that it needs to run blkid on
1327 	 * the loopback device whenever they appear. xfstests is notorious for
1328 	 * failing tests because blkid via udev races with a losetup
1329 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1330 	 * command to fail with EBUSY.
1331 	 */
1332 	if (atomic_read(&lo->lo_refcnt) > 1) {
1333 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1334 		mutex_unlock(&loop_ctl_mutex);
1335 		return 0;
1336 	}
1337 	lo->lo_state = Lo_rundown;
1338 	mutex_unlock(&loop_ctl_mutex);
1339 
1340 	return __loop_clr_fd(lo, false);
1341 }
1342 
1343 static int
1344 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1345 {
1346 	int err;
1347 	struct block_device *bdev;
1348 	kuid_t uid = current_uid();
1349 	int prev_lo_flags;
1350 	bool partscan = false;
1351 	bool size_changed = false;
1352 
1353 	err = mutex_lock_killable(&loop_ctl_mutex);
1354 	if (err)
1355 		return err;
1356 	if (lo->lo_encrypt_key_size &&
1357 	    !uid_eq(lo->lo_key_owner, uid) &&
1358 	    !capable(CAP_SYS_ADMIN)) {
1359 		err = -EPERM;
1360 		goto out_unlock;
1361 	}
1362 	if (lo->lo_state != Lo_bound) {
1363 		err = -ENXIO;
1364 		goto out_unlock;
1365 	}
1366 
1367 	if (lo->lo_offset != info->lo_offset ||
1368 	    lo->lo_sizelimit != info->lo_sizelimit) {
1369 		size_changed = true;
1370 		sync_blockdev(lo->lo_device);
1371 		invalidate_bdev(lo->lo_device);
1372 	}
1373 
1374 	/* I/O need to be drained during transfer transition */
1375 	blk_mq_freeze_queue(lo->lo_queue);
1376 
1377 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1378 		/* If any pages were dirtied after invalidate_bdev(), try again */
1379 		err = -EAGAIN;
1380 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1381 			__func__, lo->lo_number, lo->lo_file_name,
1382 			lo->lo_device->bd_inode->i_mapping->nrpages);
1383 		goto out_unfreeze;
1384 	}
1385 
1386 	prev_lo_flags = lo->lo_flags;
1387 
1388 	err = loop_set_status_from_info(lo, info);
1389 	if (err)
1390 		goto out_unfreeze;
1391 
1392 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1393 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1394 	/* For those flags, use the previous values instead */
1395 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1396 	/* For flags that can't be cleared, use previous values too */
1397 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1398 
1399 	if (size_changed) {
1400 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1401 					   lo->lo_backing_file);
1402 		loop_set_size(lo, new_size);
1403 	}
1404 
1405 	loop_config_discard(lo);
1406 
1407 	/* update dio if lo_offset or transfer is changed */
1408 	__loop_update_dio(lo, lo->use_dio);
1409 
1410 out_unfreeze:
1411 	blk_mq_unfreeze_queue(lo->lo_queue);
1412 
1413 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1414 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1415 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1416 		bdev = lo->lo_device;
1417 		partscan = true;
1418 	}
1419 out_unlock:
1420 	mutex_unlock(&loop_ctl_mutex);
1421 	if (partscan)
1422 		loop_reread_partitions(lo, bdev);
1423 
1424 	return err;
1425 }
1426 
1427 static int
1428 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1429 {
1430 	struct path path;
1431 	struct kstat stat;
1432 	int ret;
1433 
1434 	ret = mutex_lock_killable(&loop_ctl_mutex);
1435 	if (ret)
1436 		return ret;
1437 	if (lo->lo_state != Lo_bound) {
1438 		mutex_unlock(&loop_ctl_mutex);
1439 		return -ENXIO;
1440 	}
1441 
1442 	memset(info, 0, sizeof(*info));
1443 	info->lo_number = lo->lo_number;
1444 	info->lo_offset = lo->lo_offset;
1445 	info->lo_sizelimit = lo->lo_sizelimit;
1446 	info->lo_flags = lo->lo_flags;
1447 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1448 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1449 	info->lo_encrypt_type =
1450 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1451 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1452 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1453 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1454 		       lo->lo_encrypt_key_size);
1455 	}
1456 
1457 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1458 	path = lo->lo_backing_file->f_path;
1459 	path_get(&path);
1460 	mutex_unlock(&loop_ctl_mutex);
1461 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1462 	if (!ret) {
1463 		info->lo_device = huge_encode_dev(stat.dev);
1464 		info->lo_inode = stat.ino;
1465 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1466 	}
1467 	path_put(&path);
1468 	return ret;
1469 }
1470 
1471 static void
1472 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1473 {
1474 	memset(info64, 0, sizeof(*info64));
1475 	info64->lo_number = info->lo_number;
1476 	info64->lo_device = info->lo_device;
1477 	info64->lo_inode = info->lo_inode;
1478 	info64->lo_rdevice = info->lo_rdevice;
1479 	info64->lo_offset = info->lo_offset;
1480 	info64->lo_sizelimit = 0;
1481 	info64->lo_encrypt_type = info->lo_encrypt_type;
1482 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1483 	info64->lo_flags = info->lo_flags;
1484 	info64->lo_init[0] = info->lo_init[0];
1485 	info64->lo_init[1] = info->lo_init[1];
1486 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1487 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1488 	else
1489 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1490 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1491 }
1492 
1493 static int
1494 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1495 {
1496 	memset(info, 0, sizeof(*info));
1497 	info->lo_number = info64->lo_number;
1498 	info->lo_device = info64->lo_device;
1499 	info->lo_inode = info64->lo_inode;
1500 	info->lo_rdevice = info64->lo_rdevice;
1501 	info->lo_offset = info64->lo_offset;
1502 	info->lo_encrypt_type = info64->lo_encrypt_type;
1503 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1504 	info->lo_flags = info64->lo_flags;
1505 	info->lo_init[0] = info64->lo_init[0];
1506 	info->lo_init[1] = info64->lo_init[1];
1507 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1508 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1509 	else
1510 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1511 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1512 
1513 	/* error in case values were truncated */
1514 	if (info->lo_device != info64->lo_device ||
1515 	    info->lo_rdevice != info64->lo_rdevice ||
1516 	    info->lo_inode != info64->lo_inode ||
1517 	    info->lo_offset != info64->lo_offset)
1518 		return -EOVERFLOW;
1519 
1520 	return 0;
1521 }
1522 
1523 static int
1524 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1525 {
1526 	struct loop_info info;
1527 	struct loop_info64 info64;
1528 
1529 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1530 		return -EFAULT;
1531 	loop_info64_from_old(&info, &info64);
1532 	return loop_set_status(lo, &info64);
1533 }
1534 
1535 static int
1536 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1537 {
1538 	struct loop_info64 info64;
1539 
1540 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1541 		return -EFAULT;
1542 	return loop_set_status(lo, &info64);
1543 }
1544 
1545 static int
1546 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1547 	struct loop_info info;
1548 	struct loop_info64 info64;
1549 	int err;
1550 
1551 	if (!arg)
1552 		return -EINVAL;
1553 	err = loop_get_status(lo, &info64);
1554 	if (!err)
1555 		err = loop_info64_to_old(&info64, &info);
1556 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1557 		err = -EFAULT;
1558 
1559 	return err;
1560 }
1561 
1562 static int
1563 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1564 	struct loop_info64 info64;
1565 	int err;
1566 
1567 	if (!arg)
1568 		return -EINVAL;
1569 	err = loop_get_status(lo, &info64);
1570 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1571 		err = -EFAULT;
1572 
1573 	return err;
1574 }
1575 
1576 static int loop_set_capacity(struct loop_device *lo)
1577 {
1578 	loff_t size;
1579 
1580 	if (unlikely(lo->lo_state != Lo_bound))
1581 		return -ENXIO;
1582 
1583 	size = get_loop_size(lo, lo->lo_backing_file);
1584 	loop_set_size(lo, size);
1585 
1586 	return 0;
1587 }
1588 
1589 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1590 {
1591 	int error = -ENXIO;
1592 	if (lo->lo_state != Lo_bound)
1593 		goto out;
1594 
1595 	__loop_update_dio(lo, !!arg);
1596 	if (lo->use_dio == !!arg)
1597 		return 0;
1598 	error = -EINVAL;
1599  out:
1600 	return error;
1601 }
1602 
1603 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1604 {
1605 	int err = 0;
1606 
1607 	if (lo->lo_state != Lo_bound)
1608 		return -ENXIO;
1609 
1610 	err = loop_validate_block_size(arg);
1611 	if (err)
1612 		return err;
1613 
1614 	if (lo->lo_queue->limits.logical_block_size == arg)
1615 		return 0;
1616 
1617 	sync_blockdev(lo->lo_device);
1618 	invalidate_bdev(lo->lo_device);
1619 
1620 	blk_mq_freeze_queue(lo->lo_queue);
1621 
1622 	/* invalidate_bdev should have truncated all the pages */
1623 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1624 		err = -EAGAIN;
1625 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1626 			__func__, lo->lo_number, lo->lo_file_name,
1627 			lo->lo_device->bd_inode->i_mapping->nrpages);
1628 		goto out_unfreeze;
1629 	}
1630 
1631 	blk_queue_logical_block_size(lo->lo_queue, arg);
1632 	blk_queue_physical_block_size(lo->lo_queue, arg);
1633 	blk_queue_io_min(lo->lo_queue, arg);
1634 	loop_update_dio(lo);
1635 out_unfreeze:
1636 	blk_mq_unfreeze_queue(lo->lo_queue);
1637 
1638 	return err;
1639 }
1640 
1641 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1642 			   unsigned long arg)
1643 {
1644 	int err;
1645 
1646 	err = mutex_lock_killable(&loop_ctl_mutex);
1647 	if (err)
1648 		return err;
1649 	switch (cmd) {
1650 	case LOOP_SET_CAPACITY:
1651 		err = loop_set_capacity(lo);
1652 		break;
1653 	case LOOP_SET_DIRECT_IO:
1654 		err = loop_set_dio(lo, arg);
1655 		break;
1656 	case LOOP_SET_BLOCK_SIZE:
1657 		err = loop_set_block_size(lo, arg);
1658 		break;
1659 	default:
1660 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1661 	}
1662 	mutex_unlock(&loop_ctl_mutex);
1663 	return err;
1664 }
1665 
1666 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1667 	unsigned int cmd, unsigned long arg)
1668 {
1669 	struct loop_device *lo = bdev->bd_disk->private_data;
1670 	void __user *argp = (void __user *) arg;
1671 	int err;
1672 
1673 	switch (cmd) {
1674 	case LOOP_SET_FD: {
1675 		/*
1676 		 * Legacy case - pass in a zeroed out struct loop_config with
1677 		 * only the file descriptor set , which corresponds with the
1678 		 * default parameters we'd have used otherwise.
1679 		 */
1680 		struct loop_config config;
1681 
1682 		memset(&config, 0, sizeof(config));
1683 		config.fd = arg;
1684 
1685 		return loop_configure(lo, mode, bdev, &config);
1686 	}
1687 	case LOOP_CONFIGURE: {
1688 		struct loop_config config;
1689 
1690 		if (copy_from_user(&config, argp, sizeof(config)))
1691 			return -EFAULT;
1692 
1693 		return loop_configure(lo, mode, bdev, &config);
1694 	}
1695 	case LOOP_CHANGE_FD:
1696 		return loop_change_fd(lo, bdev, arg);
1697 	case LOOP_CLR_FD:
1698 		return loop_clr_fd(lo);
1699 	case LOOP_SET_STATUS:
1700 		err = -EPERM;
1701 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1702 			err = loop_set_status_old(lo, argp);
1703 		}
1704 		break;
1705 	case LOOP_GET_STATUS:
1706 		return loop_get_status_old(lo, argp);
1707 	case LOOP_SET_STATUS64:
1708 		err = -EPERM;
1709 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1710 			err = loop_set_status64(lo, argp);
1711 		}
1712 		break;
1713 	case LOOP_GET_STATUS64:
1714 		return loop_get_status64(lo, argp);
1715 	case LOOP_SET_CAPACITY:
1716 	case LOOP_SET_DIRECT_IO:
1717 	case LOOP_SET_BLOCK_SIZE:
1718 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1719 			return -EPERM;
1720 		/* Fall through */
1721 	default:
1722 		err = lo_simple_ioctl(lo, cmd, arg);
1723 		break;
1724 	}
1725 
1726 	return err;
1727 }
1728 
1729 #ifdef CONFIG_COMPAT
1730 struct compat_loop_info {
1731 	compat_int_t	lo_number;      /* ioctl r/o */
1732 	compat_dev_t	lo_device;      /* ioctl r/o */
1733 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1734 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1735 	compat_int_t	lo_offset;
1736 	compat_int_t	lo_encrypt_type;
1737 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1738 	compat_int_t	lo_flags;       /* ioctl r/o */
1739 	char		lo_name[LO_NAME_SIZE];
1740 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1741 	compat_ulong_t	lo_init[2];
1742 	char		reserved[4];
1743 };
1744 
1745 /*
1746  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1747  * - noinlined to reduce stack space usage in main part of driver
1748  */
1749 static noinline int
1750 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1751 			struct loop_info64 *info64)
1752 {
1753 	struct compat_loop_info info;
1754 
1755 	if (copy_from_user(&info, arg, sizeof(info)))
1756 		return -EFAULT;
1757 
1758 	memset(info64, 0, sizeof(*info64));
1759 	info64->lo_number = info.lo_number;
1760 	info64->lo_device = info.lo_device;
1761 	info64->lo_inode = info.lo_inode;
1762 	info64->lo_rdevice = info.lo_rdevice;
1763 	info64->lo_offset = info.lo_offset;
1764 	info64->lo_sizelimit = 0;
1765 	info64->lo_encrypt_type = info.lo_encrypt_type;
1766 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1767 	info64->lo_flags = info.lo_flags;
1768 	info64->lo_init[0] = info.lo_init[0];
1769 	info64->lo_init[1] = info.lo_init[1];
1770 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1771 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1772 	else
1773 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1774 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1775 	return 0;
1776 }
1777 
1778 /*
1779  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1780  * - noinlined to reduce stack space usage in main part of driver
1781  */
1782 static noinline int
1783 loop_info64_to_compat(const struct loop_info64 *info64,
1784 		      struct compat_loop_info __user *arg)
1785 {
1786 	struct compat_loop_info info;
1787 
1788 	memset(&info, 0, sizeof(info));
1789 	info.lo_number = info64->lo_number;
1790 	info.lo_device = info64->lo_device;
1791 	info.lo_inode = info64->lo_inode;
1792 	info.lo_rdevice = info64->lo_rdevice;
1793 	info.lo_offset = info64->lo_offset;
1794 	info.lo_encrypt_type = info64->lo_encrypt_type;
1795 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1796 	info.lo_flags = info64->lo_flags;
1797 	info.lo_init[0] = info64->lo_init[0];
1798 	info.lo_init[1] = info64->lo_init[1];
1799 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1800 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1801 	else
1802 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1803 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1804 
1805 	/* error in case values were truncated */
1806 	if (info.lo_device != info64->lo_device ||
1807 	    info.lo_rdevice != info64->lo_rdevice ||
1808 	    info.lo_inode != info64->lo_inode ||
1809 	    info.lo_offset != info64->lo_offset ||
1810 	    info.lo_init[0] != info64->lo_init[0] ||
1811 	    info.lo_init[1] != info64->lo_init[1])
1812 		return -EOVERFLOW;
1813 
1814 	if (copy_to_user(arg, &info, sizeof(info)))
1815 		return -EFAULT;
1816 	return 0;
1817 }
1818 
1819 static int
1820 loop_set_status_compat(struct loop_device *lo,
1821 		       const struct compat_loop_info __user *arg)
1822 {
1823 	struct loop_info64 info64;
1824 	int ret;
1825 
1826 	ret = loop_info64_from_compat(arg, &info64);
1827 	if (ret < 0)
1828 		return ret;
1829 	return loop_set_status(lo, &info64);
1830 }
1831 
1832 static int
1833 loop_get_status_compat(struct loop_device *lo,
1834 		       struct compat_loop_info __user *arg)
1835 {
1836 	struct loop_info64 info64;
1837 	int err;
1838 
1839 	if (!arg)
1840 		return -EINVAL;
1841 	err = loop_get_status(lo, &info64);
1842 	if (!err)
1843 		err = loop_info64_to_compat(&info64, arg);
1844 	return err;
1845 }
1846 
1847 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1848 			   unsigned int cmd, unsigned long arg)
1849 {
1850 	struct loop_device *lo = bdev->bd_disk->private_data;
1851 	int err;
1852 
1853 	switch(cmd) {
1854 	case LOOP_SET_STATUS:
1855 		err = loop_set_status_compat(lo,
1856 			     (const struct compat_loop_info __user *)arg);
1857 		break;
1858 	case LOOP_GET_STATUS:
1859 		err = loop_get_status_compat(lo,
1860 				     (struct compat_loop_info __user *)arg);
1861 		break;
1862 	case LOOP_SET_CAPACITY:
1863 	case LOOP_CLR_FD:
1864 	case LOOP_GET_STATUS64:
1865 	case LOOP_SET_STATUS64:
1866 	case LOOP_CONFIGURE:
1867 		arg = (unsigned long) compat_ptr(arg);
1868 		/* fall through */
1869 	case LOOP_SET_FD:
1870 	case LOOP_CHANGE_FD:
1871 	case LOOP_SET_BLOCK_SIZE:
1872 	case LOOP_SET_DIRECT_IO:
1873 		err = lo_ioctl(bdev, mode, cmd, arg);
1874 		break;
1875 	default:
1876 		err = -ENOIOCTLCMD;
1877 		break;
1878 	}
1879 	return err;
1880 }
1881 #endif
1882 
1883 static int lo_open(struct block_device *bdev, fmode_t mode)
1884 {
1885 	struct loop_device *lo;
1886 	int err;
1887 
1888 	err = mutex_lock_killable(&loop_ctl_mutex);
1889 	if (err)
1890 		return err;
1891 	lo = bdev->bd_disk->private_data;
1892 	if (!lo) {
1893 		err = -ENXIO;
1894 		goto out;
1895 	}
1896 
1897 	atomic_inc(&lo->lo_refcnt);
1898 out:
1899 	mutex_unlock(&loop_ctl_mutex);
1900 	return err;
1901 }
1902 
1903 static void lo_release(struct gendisk *disk, fmode_t mode)
1904 {
1905 	struct loop_device *lo;
1906 
1907 	mutex_lock(&loop_ctl_mutex);
1908 	lo = disk->private_data;
1909 	if (atomic_dec_return(&lo->lo_refcnt))
1910 		goto out_unlock;
1911 
1912 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1913 		if (lo->lo_state != Lo_bound)
1914 			goto out_unlock;
1915 		lo->lo_state = Lo_rundown;
1916 		mutex_unlock(&loop_ctl_mutex);
1917 		/*
1918 		 * In autoclear mode, stop the loop thread
1919 		 * and remove configuration after last close.
1920 		 */
1921 		__loop_clr_fd(lo, true);
1922 		return;
1923 	} else if (lo->lo_state == Lo_bound) {
1924 		/*
1925 		 * Otherwise keep thread (if running) and config,
1926 		 * but flush possible ongoing bios in thread.
1927 		 */
1928 		blk_mq_freeze_queue(lo->lo_queue);
1929 		blk_mq_unfreeze_queue(lo->lo_queue);
1930 	}
1931 
1932 out_unlock:
1933 	mutex_unlock(&loop_ctl_mutex);
1934 }
1935 
1936 static const struct block_device_operations lo_fops = {
1937 	.owner =	THIS_MODULE,
1938 	.open =		lo_open,
1939 	.release =	lo_release,
1940 	.ioctl =	lo_ioctl,
1941 #ifdef CONFIG_COMPAT
1942 	.compat_ioctl =	lo_compat_ioctl,
1943 #endif
1944 };
1945 
1946 /*
1947  * And now the modules code and kernel interface.
1948  */
1949 static int max_loop;
1950 module_param(max_loop, int, 0444);
1951 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1952 module_param(max_part, int, 0444);
1953 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1954 MODULE_LICENSE("GPL");
1955 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1956 
1957 int loop_register_transfer(struct loop_func_table *funcs)
1958 {
1959 	unsigned int n = funcs->number;
1960 
1961 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1962 		return -EINVAL;
1963 	xfer_funcs[n] = funcs;
1964 	return 0;
1965 }
1966 
1967 static int unregister_transfer_cb(int id, void *ptr, void *data)
1968 {
1969 	struct loop_device *lo = ptr;
1970 	struct loop_func_table *xfer = data;
1971 
1972 	mutex_lock(&loop_ctl_mutex);
1973 	if (lo->lo_encryption == xfer)
1974 		loop_release_xfer(lo);
1975 	mutex_unlock(&loop_ctl_mutex);
1976 	return 0;
1977 }
1978 
1979 int loop_unregister_transfer(int number)
1980 {
1981 	unsigned int n = number;
1982 	struct loop_func_table *xfer;
1983 
1984 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1985 		return -EINVAL;
1986 
1987 	xfer_funcs[n] = NULL;
1988 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1989 	return 0;
1990 }
1991 
1992 EXPORT_SYMBOL(loop_register_transfer);
1993 EXPORT_SYMBOL(loop_unregister_transfer);
1994 
1995 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1996 		const struct blk_mq_queue_data *bd)
1997 {
1998 	struct request *rq = bd->rq;
1999 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2000 	struct loop_device *lo = rq->q->queuedata;
2001 
2002 	blk_mq_start_request(rq);
2003 
2004 	if (lo->lo_state != Lo_bound)
2005 		return BLK_STS_IOERR;
2006 
2007 	switch (req_op(rq)) {
2008 	case REQ_OP_FLUSH:
2009 	case REQ_OP_DISCARD:
2010 	case REQ_OP_WRITE_ZEROES:
2011 		cmd->use_aio = false;
2012 		break;
2013 	default:
2014 		cmd->use_aio = lo->use_dio;
2015 		break;
2016 	}
2017 
2018 	/* always use the first bio's css */
2019 #ifdef CONFIG_BLK_CGROUP
2020 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2021 		cmd->css = &bio_blkcg(rq->bio)->css;
2022 		css_get(cmd->css);
2023 	} else
2024 #endif
2025 		cmd->css = NULL;
2026 	kthread_queue_work(&lo->worker, &cmd->work);
2027 
2028 	return BLK_STS_OK;
2029 }
2030 
2031 static void loop_handle_cmd(struct loop_cmd *cmd)
2032 {
2033 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2034 	const bool write = op_is_write(req_op(rq));
2035 	struct loop_device *lo = rq->q->queuedata;
2036 	int ret = 0;
2037 
2038 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2039 		ret = -EIO;
2040 		goto failed;
2041 	}
2042 
2043 	ret = do_req_filebacked(lo, rq);
2044  failed:
2045 	/* complete non-aio request */
2046 	if (!cmd->use_aio || ret) {
2047 		if (ret == -EOPNOTSUPP)
2048 			cmd->ret = ret;
2049 		else
2050 			cmd->ret = ret ? -EIO : 0;
2051 		blk_mq_complete_request(rq);
2052 	}
2053 }
2054 
2055 static void loop_queue_work(struct kthread_work *work)
2056 {
2057 	struct loop_cmd *cmd =
2058 		container_of(work, struct loop_cmd, work);
2059 
2060 	loop_handle_cmd(cmd);
2061 }
2062 
2063 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2064 		unsigned int hctx_idx, unsigned int numa_node)
2065 {
2066 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2067 
2068 	kthread_init_work(&cmd->work, loop_queue_work);
2069 	return 0;
2070 }
2071 
2072 static const struct blk_mq_ops loop_mq_ops = {
2073 	.queue_rq       = loop_queue_rq,
2074 	.init_request	= loop_init_request,
2075 	.complete	= lo_complete_rq,
2076 };
2077 
2078 static int loop_add(struct loop_device **l, int i)
2079 {
2080 	struct loop_device *lo;
2081 	struct gendisk *disk;
2082 	int err;
2083 
2084 	err = -ENOMEM;
2085 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2086 	if (!lo)
2087 		goto out;
2088 
2089 	lo->lo_state = Lo_unbound;
2090 
2091 	/* allocate id, if @id >= 0, we're requesting that specific id */
2092 	if (i >= 0) {
2093 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2094 		if (err == -ENOSPC)
2095 			err = -EEXIST;
2096 	} else {
2097 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2098 	}
2099 	if (err < 0)
2100 		goto out_free_dev;
2101 	i = err;
2102 
2103 	err = -ENOMEM;
2104 	lo->tag_set.ops = &loop_mq_ops;
2105 	lo->tag_set.nr_hw_queues = 1;
2106 	lo->tag_set.queue_depth = 128;
2107 	lo->tag_set.numa_node = NUMA_NO_NODE;
2108 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2109 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2110 	lo->tag_set.driver_data = lo;
2111 
2112 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2113 	if (err)
2114 		goto out_free_idr;
2115 
2116 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2117 	if (IS_ERR(lo->lo_queue)) {
2118 		err = PTR_ERR(lo->lo_queue);
2119 		goto out_cleanup_tags;
2120 	}
2121 	lo->lo_queue->queuedata = lo;
2122 
2123 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2124 
2125 	/*
2126 	 * By default, we do buffer IO, so it doesn't make sense to enable
2127 	 * merge because the I/O submitted to backing file is handled page by
2128 	 * page. For directio mode, merge does help to dispatch bigger request
2129 	 * to underlayer disk. We will enable merge once directio is enabled.
2130 	 */
2131 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2132 
2133 	err = -ENOMEM;
2134 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2135 	if (!disk)
2136 		goto out_free_queue;
2137 
2138 	/*
2139 	 * Disable partition scanning by default. The in-kernel partition
2140 	 * scanning can be requested individually per-device during its
2141 	 * setup. Userspace can always add and remove partitions from all
2142 	 * devices. The needed partition minors are allocated from the
2143 	 * extended minor space, the main loop device numbers will continue
2144 	 * to match the loop minors, regardless of the number of partitions
2145 	 * used.
2146 	 *
2147 	 * If max_part is given, partition scanning is globally enabled for
2148 	 * all loop devices. The minors for the main loop devices will be
2149 	 * multiples of max_part.
2150 	 *
2151 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2152 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2153 	 * complicated, are too static, inflexible and may surprise
2154 	 * userspace tools. Parameters like this in general should be avoided.
2155 	 */
2156 	if (!part_shift)
2157 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2158 	disk->flags |= GENHD_FL_EXT_DEVT;
2159 	atomic_set(&lo->lo_refcnt, 0);
2160 	lo->lo_number		= i;
2161 	spin_lock_init(&lo->lo_lock);
2162 	disk->major		= LOOP_MAJOR;
2163 	disk->first_minor	= i << part_shift;
2164 	disk->fops		= &lo_fops;
2165 	disk->private_data	= lo;
2166 	disk->queue		= lo->lo_queue;
2167 	sprintf(disk->disk_name, "loop%d", i);
2168 	add_disk(disk);
2169 	*l = lo;
2170 	return lo->lo_number;
2171 
2172 out_free_queue:
2173 	blk_cleanup_queue(lo->lo_queue);
2174 out_cleanup_tags:
2175 	blk_mq_free_tag_set(&lo->tag_set);
2176 out_free_idr:
2177 	idr_remove(&loop_index_idr, i);
2178 out_free_dev:
2179 	kfree(lo);
2180 out:
2181 	return err;
2182 }
2183 
2184 static void loop_remove(struct loop_device *lo)
2185 {
2186 	del_gendisk(lo->lo_disk);
2187 	blk_cleanup_queue(lo->lo_queue);
2188 	blk_mq_free_tag_set(&lo->tag_set);
2189 	put_disk(lo->lo_disk);
2190 	kfree(lo);
2191 }
2192 
2193 static int find_free_cb(int id, void *ptr, void *data)
2194 {
2195 	struct loop_device *lo = ptr;
2196 	struct loop_device **l = data;
2197 
2198 	if (lo->lo_state == Lo_unbound) {
2199 		*l = lo;
2200 		return 1;
2201 	}
2202 	return 0;
2203 }
2204 
2205 static int loop_lookup(struct loop_device **l, int i)
2206 {
2207 	struct loop_device *lo;
2208 	int ret = -ENODEV;
2209 
2210 	if (i < 0) {
2211 		int err;
2212 
2213 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2214 		if (err == 1) {
2215 			*l = lo;
2216 			ret = lo->lo_number;
2217 		}
2218 		goto out;
2219 	}
2220 
2221 	/* lookup and return a specific i */
2222 	lo = idr_find(&loop_index_idr, i);
2223 	if (lo) {
2224 		*l = lo;
2225 		ret = lo->lo_number;
2226 	}
2227 out:
2228 	return ret;
2229 }
2230 
2231 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2232 {
2233 	struct loop_device *lo;
2234 	struct kobject *kobj;
2235 	int err;
2236 
2237 	mutex_lock(&loop_ctl_mutex);
2238 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2239 	if (err < 0)
2240 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2241 	if (err < 0)
2242 		kobj = NULL;
2243 	else
2244 		kobj = get_disk_and_module(lo->lo_disk);
2245 	mutex_unlock(&loop_ctl_mutex);
2246 
2247 	*part = 0;
2248 	return kobj;
2249 }
2250 
2251 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2252 			       unsigned long parm)
2253 {
2254 	struct loop_device *lo;
2255 	int ret;
2256 
2257 	ret = mutex_lock_killable(&loop_ctl_mutex);
2258 	if (ret)
2259 		return ret;
2260 
2261 	ret = -ENOSYS;
2262 	switch (cmd) {
2263 	case LOOP_CTL_ADD:
2264 		ret = loop_lookup(&lo, parm);
2265 		if (ret >= 0) {
2266 			ret = -EEXIST;
2267 			break;
2268 		}
2269 		ret = loop_add(&lo, parm);
2270 		break;
2271 	case LOOP_CTL_REMOVE:
2272 		ret = loop_lookup(&lo, parm);
2273 		if (ret < 0)
2274 			break;
2275 		if (lo->lo_state != Lo_unbound) {
2276 			ret = -EBUSY;
2277 			break;
2278 		}
2279 		if (atomic_read(&lo->lo_refcnt) > 0) {
2280 			ret = -EBUSY;
2281 			break;
2282 		}
2283 		lo->lo_disk->private_data = NULL;
2284 		idr_remove(&loop_index_idr, lo->lo_number);
2285 		loop_remove(lo);
2286 		break;
2287 	case LOOP_CTL_GET_FREE:
2288 		ret = loop_lookup(&lo, -1);
2289 		if (ret >= 0)
2290 			break;
2291 		ret = loop_add(&lo, -1);
2292 	}
2293 	mutex_unlock(&loop_ctl_mutex);
2294 
2295 	return ret;
2296 }
2297 
2298 static const struct file_operations loop_ctl_fops = {
2299 	.open		= nonseekable_open,
2300 	.unlocked_ioctl	= loop_control_ioctl,
2301 	.compat_ioctl	= loop_control_ioctl,
2302 	.owner		= THIS_MODULE,
2303 	.llseek		= noop_llseek,
2304 };
2305 
2306 static struct miscdevice loop_misc = {
2307 	.minor		= LOOP_CTRL_MINOR,
2308 	.name		= "loop-control",
2309 	.fops		= &loop_ctl_fops,
2310 };
2311 
2312 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2313 MODULE_ALIAS("devname:loop-control");
2314 
2315 static int __init loop_init(void)
2316 {
2317 	int i, nr;
2318 	unsigned long range;
2319 	struct loop_device *lo;
2320 	int err;
2321 
2322 	part_shift = 0;
2323 	if (max_part > 0) {
2324 		part_shift = fls(max_part);
2325 
2326 		/*
2327 		 * Adjust max_part according to part_shift as it is exported
2328 		 * to user space so that user can decide correct minor number
2329 		 * if [s]he want to create more devices.
2330 		 *
2331 		 * Note that -1 is required because partition 0 is reserved
2332 		 * for the whole disk.
2333 		 */
2334 		max_part = (1UL << part_shift) - 1;
2335 	}
2336 
2337 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2338 		err = -EINVAL;
2339 		goto err_out;
2340 	}
2341 
2342 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2343 		err = -EINVAL;
2344 		goto err_out;
2345 	}
2346 
2347 	/*
2348 	 * If max_loop is specified, create that many devices upfront.
2349 	 * This also becomes a hard limit. If max_loop is not specified,
2350 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2351 	 * init time. Loop devices can be requested on-demand with the
2352 	 * /dev/loop-control interface, or be instantiated by accessing
2353 	 * a 'dead' device node.
2354 	 */
2355 	if (max_loop) {
2356 		nr = max_loop;
2357 		range = max_loop << part_shift;
2358 	} else {
2359 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2360 		range = 1UL << MINORBITS;
2361 	}
2362 
2363 	err = misc_register(&loop_misc);
2364 	if (err < 0)
2365 		goto err_out;
2366 
2367 
2368 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2369 		err = -EIO;
2370 		goto misc_out;
2371 	}
2372 
2373 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2374 				  THIS_MODULE, loop_probe, NULL, NULL);
2375 
2376 	/* pre-create number of devices given by config or max_loop */
2377 	mutex_lock(&loop_ctl_mutex);
2378 	for (i = 0; i < nr; i++)
2379 		loop_add(&lo, i);
2380 	mutex_unlock(&loop_ctl_mutex);
2381 
2382 	printk(KERN_INFO "loop: module loaded\n");
2383 	return 0;
2384 
2385 misc_out:
2386 	misc_deregister(&loop_misc);
2387 err_out:
2388 	return err;
2389 }
2390 
2391 static int loop_exit_cb(int id, void *ptr, void *data)
2392 {
2393 	struct loop_device *lo = ptr;
2394 
2395 	loop_remove(lo);
2396 	return 0;
2397 }
2398 
2399 static void __exit loop_exit(void)
2400 {
2401 	unsigned long range;
2402 
2403 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2404 
2405 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2406 	idr_destroy(&loop_index_idr);
2407 
2408 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2409 	unregister_blkdev(LOOP_MAJOR, "loop");
2410 
2411 	misc_deregister(&loop_misc);
2412 }
2413 
2414 module_init(loop_init);
2415 module_exit(loop_exit);
2416 
2417 #ifndef MODULE
2418 static int __init max_loop_setup(char *str)
2419 {
2420 	max_loop = simple_strtol(str, NULL, 0);
2421 	return 1;
2422 }
2423 
2424 __setup("max_loop=", max_loop_setup);
2425 #endif
2426