1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include "loop.h" 80 81 #include <asm/uaccess.h> 82 83 static DEFINE_IDR(loop_index_idr); 84 static DEFINE_MUTEX(loop_index_mutex); 85 86 static int max_part; 87 static int part_shift; 88 89 static struct workqueue_struct *loop_wq; 90 91 static int transfer_xor(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 char *in, *out, *key; 99 int i, keysize; 100 101 if (cmd == READ) { 102 in = raw_buf; 103 out = loop_buf; 104 } else { 105 in = loop_buf; 106 out = raw_buf; 107 } 108 109 key = lo->lo_encrypt_key; 110 keysize = lo->lo_encrypt_key_size; 111 for (i = 0; i < size; i++) 112 *out++ = *in++ ^ key[(i & 511) % keysize]; 113 114 kunmap_atomic(loop_buf); 115 kunmap_atomic(raw_buf); 116 cond_resched(); 117 return 0; 118 } 119 120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 121 { 122 if (unlikely(info->lo_encrypt_key_size <= 0)) 123 return -EINVAL; 124 return 0; 125 } 126 127 static struct loop_func_table none_funcs = { 128 .number = LO_CRYPT_NONE, 129 }; 130 131 static struct loop_func_table xor_funcs = { 132 .number = LO_CRYPT_XOR, 133 .transfer = transfer_xor, 134 .init = xor_init 135 }; 136 137 /* xfer_funcs[0] is special - its release function is never called */ 138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 139 &none_funcs, 140 &xor_funcs 141 }; 142 143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 144 { 145 loff_t loopsize; 146 147 /* Compute loopsize in bytes */ 148 loopsize = i_size_read(file->f_mapping->host); 149 if (offset > 0) 150 loopsize -= offset; 151 /* offset is beyond i_size, weird but possible */ 152 if (loopsize < 0) 153 return 0; 154 155 if (sizelimit > 0 && sizelimit < loopsize) 156 loopsize = sizelimit; 157 /* 158 * Unfortunately, if we want to do I/O on the device, 159 * the number of 512-byte sectors has to fit into a sector_t. 160 */ 161 return loopsize >> 9; 162 } 163 164 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 165 { 166 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 167 } 168 169 static int 170 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 171 { 172 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 173 sector_t x = (sector_t)size; 174 struct block_device *bdev = lo->lo_device; 175 176 if (unlikely((loff_t)x != size)) 177 return -EFBIG; 178 if (lo->lo_offset != offset) 179 lo->lo_offset = offset; 180 if (lo->lo_sizelimit != sizelimit) 181 lo->lo_sizelimit = sizelimit; 182 set_capacity(lo->lo_disk, x); 183 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 184 /* let user-space know about the new size */ 185 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 186 return 0; 187 } 188 189 static inline int 190 lo_do_transfer(struct loop_device *lo, int cmd, 191 struct page *rpage, unsigned roffs, 192 struct page *lpage, unsigned loffs, 193 int size, sector_t rblock) 194 { 195 int ret; 196 197 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 198 if (likely(!ret)) 199 return 0; 200 201 printk_ratelimited(KERN_ERR 202 "loop: Transfer error at byte offset %llu, length %i.\n", 203 (unsigned long long)rblock << 9, size); 204 return ret; 205 } 206 207 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 208 { 209 struct iov_iter i; 210 ssize_t bw; 211 212 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len); 213 214 file_start_write(file); 215 bw = vfs_iter_write(file, &i, ppos); 216 file_end_write(file); 217 218 if (likely(bw == bvec->bv_len)) 219 return 0; 220 221 printk_ratelimited(KERN_ERR 222 "loop: Write error at byte offset %llu, length %i.\n", 223 (unsigned long long)*ppos, bvec->bv_len); 224 if (bw >= 0) 225 bw = -EIO; 226 return bw; 227 } 228 229 static int lo_write_simple(struct loop_device *lo, struct request *rq, 230 loff_t pos) 231 { 232 struct bio_vec bvec; 233 struct req_iterator iter; 234 int ret = 0; 235 236 rq_for_each_segment(bvec, rq, iter) { 237 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 238 if (ret < 0) 239 break; 240 cond_resched(); 241 } 242 243 return ret; 244 } 245 246 /* 247 * This is the slow, transforming version that needs to double buffer the 248 * data as it cannot do the transformations in place without having direct 249 * access to the destination pages of the backing file. 250 */ 251 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 252 loff_t pos) 253 { 254 struct bio_vec bvec, b; 255 struct req_iterator iter; 256 struct page *page; 257 int ret = 0; 258 259 page = alloc_page(GFP_NOIO); 260 if (unlikely(!page)) 261 return -ENOMEM; 262 263 rq_for_each_segment(bvec, rq, iter) { 264 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 265 bvec.bv_offset, bvec.bv_len, pos >> 9); 266 if (unlikely(ret)) 267 break; 268 269 b.bv_page = page; 270 b.bv_offset = 0; 271 b.bv_len = bvec.bv_len; 272 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 273 if (ret < 0) 274 break; 275 } 276 277 __free_page(page); 278 return ret; 279 } 280 281 static int lo_read_simple(struct loop_device *lo, struct request *rq, 282 loff_t pos) 283 { 284 struct bio_vec bvec; 285 struct req_iterator iter; 286 struct iov_iter i; 287 ssize_t len; 288 289 rq_for_each_segment(bvec, rq, iter) { 290 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 291 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 292 if (len < 0) 293 return len; 294 295 flush_dcache_page(bvec.bv_page); 296 297 if (len != bvec.bv_len) { 298 struct bio *bio; 299 300 __rq_for_each_bio(bio, rq) 301 zero_fill_bio(bio); 302 break; 303 } 304 cond_resched(); 305 } 306 307 return 0; 308 } 309 310 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 311 loff_t pos) 312 { 313 struct bio_vec bvec, b; 314 struct req_iterator iter; 315 struct iov_iter i; 316 struct page *page; 317 ssize_t len; 318 int ret = 0; 319 320 page = alloc_page(GFP_NOIO); 321 if (unlikely(!page)) 322 return -ENOMEM; 323 324 rq_for_each_segment(bvec, rq, iter) { 325 loff_t offset = pos; 326 327 b.bv_page = page; 328 b.bv_offset = 0; 329 b.bv_len = bvec.bv_len; 330 331 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 332 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 333 if (len < 0) { 334 ret = len; 335 goto out_free_page; 336 } 337 338 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 339 bvec.bv_offset, len, offset >> 9); 340 if (ret) 341 goto out_free_page; 342 343 flush_dcache_page(bvec.bv_page); 344 345 if (len != bvec.bv_len) { 346 struct bio *bio; 347 348 __rq_for_each_bio(bio, rq) 349 zero_fill_bio(bio); 350 break; 351 } 352 } 353 354 ret = 0; 355 out_free_page: 356 __free_page(page); 357 return ret; 358 } 359 360 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 361 { 362 /* 363 * We use punch hole to reclaim the free space used by the 364 * image a.k.a. discard. However we do not support discard if 365 * encryption is enabled, because it may give an attacker 366 * useful information. 367 */ 368 struct file *file = lo->lo_backing_file; 369 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 370 int ret; 371 372 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 373 ret = -EOPNOTSUPP; 374 goto out; 375 } 376 377 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 378 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 379 ret = -EIO; 380 out: 381 return ret; 382 } 383 384 static int lo_req_flush(struct loop_device *lo, struct request *rq) 385 { 386 struct file *file = lo->lo_backing_file; 387 int ret = vfs_fsync(file, 0); 388 if (unlikely(ret && ret != -EINVAL)) 389 ret = -EIO; 390 391 return ret; 392 } 393 394 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 395 { 396 loff_t pos; 397 int ret; 398 399 pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 400 401 if (rq->cmd_flags & REQ_WRITE) { 402 if (rq->cmd_flags & REQ_FLUSH) 403 ret = lo_req_flush(lo, rq); 404 else if (rq->cmd_flags & REQ_DISCARD) 405 ret = lo_discard(lo, rq, pos); 406 else if (lo->transfer) 407 ret = lo_write_transfer(lo, rq, pos); 408 else 409 ret = lo_write_simple(lo, rq, pos); 410 411 } else { 412 if (lo->transfer) 413 ret = lo_read_transfer(lo, rq, pos); 414 else 415 ret = lo_read_simple(lo, rq, pos); 416 } 417 418 return ret; 419 } 420 421 struct switch_request { 422 struct file *file; 423 struct completion wait; 424 }; 425 426 /* 427 * Do the actual switch; called from the BIO completion routine 428 */ 429 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 430 { 431 struct file *file = p->file; 432 struct file *old_file = lo->lo_backing_file; 433 struct address_space *mapping; 434 435 /* if no new file, only flush of queued bios requested */ 436 if (!file) 437 return; 438 439 mapping = file->f_mapping; 440 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 441 lo->lo_backing_file = file; 442 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 443 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 444 lo->old_gfp_mask = mapping_gfp_mask(mapping); 445 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 446 } 447 448 /* 449 * loop_switch performs the hard work of switching a backing store. 450 * First it needs to flush existing IO, it does this by sending a magic 451 * BIO down the pipe. The completion of this BIO does the actual switch. 452 */ 453 static int loop_switch(struct loop_device *lo, struct file *file) 454 { 455 struct switch_request w; 456 457 w.file = file; 458 459 /* freeze queue and wait for completion of scheduled requests */ 460 blk_mq_freeze_queue(lo->lo_queue); 461 462 /* do the switch action */ 463 do_loop_switch(lo, &w); 464 465 /* unfreeze */ 466 blk_mq_unfreeze_queue(lo->lo_queue); 467 468 return 0; 469 } 470 471 /* 472 * Helper to flush the IOs in loop, but keeping loop thread running 473 */ 474 static int loop_flush(struct loop_device *lo) 475 { 476 return loop_switch(lo, NULL); 477 } 478 479 /* 480 * loop_change_fd switched the backing store of a loopback device to 481 * a new file. This is useful for operating system installers to free up 482 * the original file and in High Availability environments to switch to 483 * an alternative location for the content in case of server meltdown. 484 * This can only work if the loop device is used read-only, and if the 485 * new backing store is the same size and type as the old backing store. 486 */ 487 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 488 unsigned int arg) 489 { 490 struct file *file, *old_file; 491 struct inode *inode; 492 int error; 493 494 error = -ENXIO; 495 if (lo->lo_state != Lo_bound) 496 goto out; 497 498 /* the loop device has to be read-only */ 499 error = -EINVAL; 500 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 501 goto out; 502 503 error = -EBADF; 504 file = fget(arg); 505 if (!file) 506 goto out; 507 508 inode = file->f_mapping->host; 509 old_file = lo->lo_backing_file; 510 511 error = -EINVAL; 512 513 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 514 goto out_putf; 515 516 /* size of the new backing store needs to be the same */ 517 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 518 goto out_putf; 519 520 /* and ... switch */ 521 error = loop_switch(lo, file); 522 if (error) 523 goto out_putf; 524 525 fput(old_file); 526 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 527 ioctl_by_bdev(bdev, BLKRRPART, 0); 528 return 0; 529 530 out_putf: 531 fput(file); 532 out: 533 return error; 534 } 535 536 static inline int is_loop_device(struct file *file) 537 { 538 struct inode *i = file->f_mapping->host; 539 540 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 541 } 542 543 /* loop sysfs attributes */ 544 545 static ssize_t loop_attr_show(struct device *dev, char *page, 546 ssize_t (*callback)(struct loop_device *, char *)) 547 { 548 struct gendisk *disk = dev_to_disk(dev); 549 struct loop_device *lo = disk->private_data; 550 551 return callback(lo, page); 552 } 553 554 #define LOOP_ATTR_RO(_name) \ 555 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 556 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 557 struct device_attribute *attr, char *b) \ 558 { \ 559 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 560 } \ 561 static struct device_attribute loop_attr_##_name = \ 562 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 563 564 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 565 { 566 ssize_t ret; 567 char *p = NULL; 568 569 spin_lock_irq(&lo->lo_lock); 570 if (lo->lo_backing_file) 571 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 572 spin_unlock_irq(&lo->lo_lock); 573 574 if (IS_ERR_OR_NULL(p)) 575 ret = PTR_ERR(p); 576 else { 577 ret = strlen(p); 578 memmove(buf, p, ret); 579 buf[ret++] = '\n'; 580 buf[ret] = 0; 581 } 582 583 return ret; 584 } 585 586 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 587 { 588 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 589 } 590 591 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 592 { 593 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 594 } 595 596 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 597 { 598 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 599 600 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 601 } 602 603 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 604 { 605 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 606 607 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 608 } 609 610 LOOP_ATTR_RO(backing_file); 611 LOOP_ATTR_RO(offset); 612 LOOP_ATTR_RO(sizelimit); 613 LOOP_ATTR_RO(autoclear); 614 LOOP_ATTR_RO(partscan); 615 616 static struct attribute *loop_attrs[] = { 617 &loop_attr_backing_file.attr, 618 &loop_attr_offset.attr, 619 &loop_attr_sizelimit.attr, 620 &loop_attr_autoclear.attr, 621 &loop_attr_partscan.attr, 622 NULL, 623 }; 624 625 static struct attribute_group loop_attribute_group = { 626 .name = "loop", 627 .attrs= loop_attrs, 628 }; 629 630 static int loop_sysfs_init(struct loop_device *lo) 631 { 632 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 633 &loop_attribute_group); 634 } 635 636 static void loop_sysfs_exit(struct loop_device *lo) 637 { 638 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 639 &loop_attribute_group); 640 } 641 642 static void loop_config_discard(struct loop_device *lo) 643 { 644 struct file *file = lo->lo_backing_file; 645 struct inode *inode = file->f_mapping->host; 646 struct request_queue *q = lo->lo_queue; 647 648 /* 649 * We use punch hole to reclaim the free space used by the 650 * image a.k.a. discard. However we do not support discard if 651 * encryption is enabled, because it may give an attacker 652 * useful information. 653 */ 654 if ((!file->f_op->fallocate) || 655 lo->lo_encrypt_key_size) { 656 q->limits.discard_granularity = 0; 657 q->limits.discard_alignment = 0; 658 q->limits.max_discard_sectors = 0; 659 q->limits.discard_zeroes_data = 0; 660 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 661 return; 662 } 663 664 q->limits.discard_granularity = inode->i_sb->s_blocksize; 665 q->limits.discard_alignment = 0; 666 q->limits.max_discard_sectors = UINT_MAX >> 9; 667 q->limits.discard_zeroes_data = 1; 668 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 669 } 670 671 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 672 struct block_device *bdev, unsigned int arg) 673 { 674 struct file *file, *f; 675 struct inode *inode; 676 struct address_space *mapping; 677 unsigned lo_blocksize; 678 int lo_flags = 0; 679 int error; 680 loff_t size; 681 682 /* This is safe, since we have a reference from open(). */ 683 __module_get(THIS_MODULE); 684 685 error = -EBADF; 686 file = fget(arg); 687 if (!file) 688 goto out; 689 690 error = -EBUSY; 691 if (lo->lo_state != Lo_unbound) 692 goto out_putf; 693 694 /* Avoid recursion */ 695 f = file; 696 while (is_loop_device(f)) { 697 struct loop_device *l; 698 699 if (f->f_mapping->host->i_bdev == bdev) 700 goto out_putf; 701 702 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 703 if (l->lo_state == Lo_unbound) { 704 error = -EINVAL; 705 goto out_putf; 706 } 707 f = l->lo_backing_file; 708 } 709 710 mapping = file->f_mapping; 711 inode = mapping->host; 712 713 error = -EINVAL; 714 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 715 goto out_putf; 716 717 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 718 !file->f_op->write_iter) 719 lo_flags |= LO_FLAGS_READ_ONLY; 720 721 lo_blocksize = S_ISBLK(inode->i_mode) ? 722 inode->i_bdev->bd_block_size : PAGE_SIZE; 723 724 error = -EFBIG; 725 size = get_loop_size(lo, file); 726 if ((loff_t)(sector_t)size != size) 727 goto out_putf; 728 729 error = 0; 730 731 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 732 733 lo->lo_blocksize = lo_blocksize; 734 lo->lo_device = bdev; 735 lo->lo_flags = lo_flags; 736 lo->lo_backing_file = file; 737 lo->transfer = NULL; 738 lo->ioctl = NULL; 739 lo->lo_sizelimit = 0; 740 lo->old_gfp_mask = mapping_gfp_mask(mapping); 741 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 742 743 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 744 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 745 746 set_capacity(lo->lo_disk, size); 747 bd_set_size(bdev, size << 9); 748 loop_sysfs_init(lo); 749 /* let user-space know about the new size */ 750 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 751 752 set_blocksize(bdev, lo_blocksize); 753 754 lo->lo_state = Lo_bound; 755 if (part_shift) 756 lo->lo_flags |= LO_FLAGS_PARTSCAN; 757 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 758 ioctl_by_bdev(bdev, BLKRRPART, 0); 759 760 /* Grab the block_device to prevent its destruction after we 761 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 762 */ 763 bdgrab(bdev); 764 return 0; 765 766 out_putf: 767 fput(file); 768 out: 769 /* This is safe: open() is still holding a reference. */ 770 module_put(THIS_MODULE); 771 return error; 772 } 773 774 static int 775 loop_release_xfer(struct loop_device *lo) 776 { 777 int err = 0; 778 struct loop_func_table *xfer = lo->lo_encryption; 779 780 if (xfer) { 781 if (xfer->release) 782 err = xfer->release(lo); 783 lo->transfer = NULL; 784 lo->lo_encryption = NULL; 785 module_put(xfer->owner); 786 } 787 return err; 788 } 789 790 static int 791 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 792 const struct loop_info64 *i) 793 { 794 int err = 0; 795 796 if (xfer) { 797 struct module *owner = xfer->owner; 798 799 if (!try_module_get(owner)) 800 return -EINVAL; 801 if (xfer->init) 802 err = xfer->init(lo, i); 803 if (err) 804 module_put(owner); 805 else 806 lo->lo_encryption = xfer; 807 } 808 return err; 809 } 810 811 static int loop_clr_fd(struct loop_device *lo) 812 { 813 struct file *filp = lo->lo_backing_file; 814 gfp_t gfp = lo->old_gfp_mask; 815 struct block_device *bdev = lo->lo_device; 816 817 if (lo->lo_state != Lo_bound) 818 return -ENXIO; 819 820 /* 821 * If we've explicitly asked to tear down the loop device, 822 * and it has an elevated reference count, set it for auto-teardown when 823 * the last reference goes away. This stops $!~#$@ udev from 824 * preventing teardown because it decided that it needs to run blkid on 825 * the loopback device whenever they appear. xfstests is notorious for 826 * failing tests because blkid via udev races with a losetup 827 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 828 * command to fail with EBUSY. 829 */ 830 if (lo->lo_refcnt > 1) { 831 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 832 mutex_unlock(&lo->lo_ctl_mutex); 833 return 0; 834 } 835 836 if (filp == NULL) 837 return -EINVAL; 838 839 spin_lock_irq(&lo->lo_lock); 840 lo->lo_state = Lo_rundown; 841 lo->lo_backing_file = NULL; 842 spin_unlock_irq(&lo->lo_lock); 843 844 loop_release_xfer(lo); 845 lo->transfer = NULL; 846 lo->ioctl = NULL; 847 lo->lo_device = NULL; 848 lo->lo_encryption = NULL; 849 lo->lo_offset = 0; 850 lo->lo_sizelimit = 0; 851 lo->lo_encrypt_key_size = 0; 852 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 853 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 854 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 855 if (bdev) { 856 bdput(bdev); 857 invalidate_bdev(bdev); 858 } 859 set_capacity(lo->lo_disk, 0); 860 loop_sysfs_exit(lo); 861 if (bdev) { 862 bd_set_size(bdev, 0); 863 /* let user-space know about this change */ 864 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 865 } 866 mapping_set_gfp_mask(filp->f_mapping, gfp); 867 lo->lo_state = Lo_unbound; 868 /* This is safe: open() is still holding a reference. */ 869 module_put(THIS_MODULE); 870 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 871 ioctl_by_bdev(bdev, BLKRRPART, 0); 872 lo->lo_flags = 0; 873 if (!part_shift) 874 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 875 mutex_unlock(&lo->lo_ctl_mutex); 876 /* 877 * Need not hold lo_ctl_mutex to fput backing file. 878 * Calling fput holding lo_ctl_mutex triggers a circular 879 * lock dependency possibility warning as fput can take 880 * bd_mutex which is usually taken before lo_ctl_mutex. 881 */ 882 fput(filp); 883 return 0; 884 } 885 886 static int 887 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 888 { 889 int err; 890 struct loop_func_table *xfer; 891 kuid_t uid = current_uid(); 892 893 if (lo->lo_encrypt_key_size && 894 !uid_eq(lo->lo_key_owner, uid) && 895 !capable(CAP_SYS_ADMIN)) 896 return -EPERM; 897 if (lo->lo_state != Lo_bound) 898 return -ENXIO; 899 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 900 return -EINVAL; 901 902 err = loop_release_xfer(lo); 903 if (err) 904 return err; 905 906 if (info->lo_encrypt_type) { 907 unsigned int type = info->lo_encrypt_type; 908 909 if (type >= MAX_LO_CRYPT) 910 return -EINVAL; 911 xfer = xfer_funcs[type]; 912 if (xfer == NULL) 913 return -EINVAL; 914 } else 915 xfer = NULL; 916 917 err = loop_init_xfer(lo, xfer, info); 918 if (err) 919 return err; 920 921 if (lo->lo_offset != info->lo_offset || 922 lo->lo_sizelimit != info->lo_sizelimit) 923 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 924 return -EFBIG; 925 926 loop_config_discard(lo); 927 928 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 929 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 930 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 931 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 932 933 if (!xfer) 934 xfer = &none_funcs; 935 lo->transfer = xfer->transfer; 936 lo->ioctl = xfer->ioctl; 937 938 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 939 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 940 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 941 942 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 943 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 944 lo->lo_flags |= LO_FLAGS_PARTSCAN; 945 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 946 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0); 947 } 948 949 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 950 lo->lo_init[0] = info->lo_init[0]; 951 lo->lo_init[1] = info->lo_init[1]; 952 if (info->lo_encrypt_key_size) { 953 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 954 info->lo_encrypt_key_size); 955 lo->lo_key_owner = uid; 956 } 957 958 return 0; 959 } 960 961 static int 962 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 963 { 964 struct file *file = lo->lo_backing_file; 965 struct kstat stat; 966 int error; 967 968 if (lo->lo_state != Lo_bound) 969 return -ENXIO; 970 error = vfs_getattr(&file->f_path, &stat); 971 if (error) 972 return error; 973 memset(info, 0, sizeof(*info)); 974 info->lo_number = lo->lo_number; 975 info->lo_device = huge_encode_dev(stat.dev); 976 info->lo_inode = stat.ino; 977 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 978 info->lo_offset = lo->lo_offset; 979 info->lo_sizelimit = lo->lo_sizelimit; 980 info->lo_flags = lo->lo_flags; 981 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 982 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 983 info->lo_encrypt_type = 984 lo->lo_encryption ? lo->lo_encryption->number : 0; 985 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 986 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 987 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 988 lo->lo_encrypt_key_size); 989 } 990 return 0; 991 } 992 993 static void 994 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 995 { 996 memset(info64, 0, sizeof(*info64)); 997 info64->lo_number = info->lo_number; 998 info64->lo_device = info->lo_device; 999 info64->lo_inode = info->lo_inode; 1000 info64->lo_rdevice = info->lo_rdevice; 1001 info64->lo_offset = info->lo_offset; 1002 info64->lo_sizelimit = 0; 1003 info64->lo_encrypt_type = info->lo_encrypt_type; 1004 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1005 info64->lo_flags = info->lo_flags; 1006 info64->lo_init[0] = info->lo_init[0]; 1007 info64->lo_init[1] = info->lo_init[1]; 1008 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1009 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1010 else 1011 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1012 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1013 } 1014 1015 static int 1016 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1017 { 1018 memset(info, 0, sizeof(*info)); 1019 info->lo_number = info64->lo_number; 1020 info->lo_device = info64->lo_device; 1021 info->lo_inode = info64->lo_inode; 1022 info->lo_rdevice = info64->lo_rdevice; 1023 info->lo_offset = info64->lo_offset; 1024 info->lo_encrypt_type = info64->lo_encrypt_type; 1025 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1026 info->lo_flags = info64->lo_flags; 1027 info->lo_init[0] = info64->lo_init[0]; 1028 info->lo_init[1] = info64->lo_init[1]; 1029 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1030 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1031 else 1032 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1033 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1034 1035 /* error in case values were truncated */ 1036 if (info->lo_device != info64->lo_device || 1037 info->lo_rdevice != info64->lo_rdevice || 1038 info->lo_inode != info64->lo_inode || 1039 info->lo_offset != info64->lo_offset) 1040 return -EOVERFLOW; 1041 1042 return 0; 1043 } 1044 1045 static int 1046 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1047 { 1048 struct loop_info info; 1049 struct loop_info64 info64; 1050 1051 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1052 return -EFAULT; 1053 loop_info64_from_old(&info, &info64); 1054 return loop_set_status(lo, &info64); 1055 } 1056 1057 static int 1058 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1059 { 1060 struct loop_info64 info64; 1061 1062 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1063 return -EFAULT; 1064 return loop_set_status(lo, &info64); 1065 } 1066 1067 static int 1068 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1069 struct loop_info info; 1070 struct loop_info64 info64; 1071 int err = 0; 1072 1073 if (!arg) 1074 err = -EINVAL; 1075 if (!err) 1076 err = loop_get_status(lo, &info64); 1077 if (!err) 1078 err = loop_info64_to_old(&info64, &info); 1079 if (!err && copy_to_user(arg, &info, sizeof(info))) 1080 err = -EFAULT; 1081 1082 return err; 1083 } 1084 1085 static int 1086 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1087 struct loop_info64 info64; 1088 int err = 0; 1089 1090 if (!arg) 1091 err = -EINVAL; 1092 if (!err) 1093 err = loop_get_status(lo, &info64); 1094 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1095 err = -EFAULT; 1096 1097 return err; 1098 } 1099 1100 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1101 { 1102 if (unlikely(lo->lo_state != Lo_bound)) 1103 return -ENXIO; 1104 1105 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1106 } 1107 1108 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1109 unsigned int cmd, unsigned long arg) 1110 { 1111 struct loop_device *lo = bdev->bd_disk->private_data; 1112 int err; 1113 1114 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1115 switch (cmd) { 1116 case LOOP_SET_FD: 1117 err = loop_set_fd(lo, mode, bdev, arg); 1118 break; 1119 case LOOP_CHANGE_FD: 1120 err = loop_change_fd(lo, bdev, arg); 1121 break; 1122 case LOOP_CLR_FD: 1123 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1124 err = loop_clr_fd(lo); 1125 if (!err) 1126 goto out_unlocked; 1127 break; 1128 case LOOP_SET_STATUS: 1129 err = -EPERM; 1130 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1131 err = loop_set_status_old(lo, 1132 (struct loop_info __user *)arg); 1133 break; 1134 case LOOP_GET_STATUS: 1135 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1136 break; 1137 case LOOP_SET_STATUS64: 1138 err = -EPERM; 1139 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1140 err = loop_set_status64(lo, 1141 (struct loop_info64 __user *) arg); 1142 break; 1143 case LOOP_GET_STATUS64: 1144 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1145 break; 1146 case LOOP_SET_CAPACITY: 1147 err = -EPERM; 1148 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1149 err = loop_set_capacity(lo, bdev); 1150 break; 1151 default: 1152 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1153 } 1154 mutex_unlock(&lo->lo_ctl_mutex); 1155 1156 out_unlocked: 1157 return err; 1158 } 1159 1160 #ifdef CONFIG_COMPAT 1161 struct compat_loop_info { 1162 compat_int_t lo_number; /* ioctl r/o */ 1163 compat_dev_t lo_device; /* ioctl r/o */ 1164 compat_ulong_t lo_inode; /* ioctl r/o */ 1165 compat_dev_t lo_rdevice; /* ioctl r/o */ 1166 compat_int_t lo_offset; 1167 compat_int_t lo_encrypt_type; 1168 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1169 compat_int_t lo_flags; /* ioctl r/o */ 1170 char lo_name[LO_NAME_SIZE]; 1171 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1172 compat_ulong_t lo_init[2]; 1173 char reserved[4]; 1174 }; 1175 1176 /* 1177 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1178 * - noinlined to reduce stack space usage in main part of driver 1179 */ 1180 static noinline int 1181 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1182 struct loop_info64 *info64) 1183 { 1184 struct compat_loop_info info; 1185 1186 if (copy_from_user(&info, arg, sizeof(info))) 1187 return -EFAULT; 1188 1189 memset(info64, 0, sizeof(*info64)); 1190 info64->lo_number = info.lo_number; 1191 info64->lo_device = info.lo_device; 1192 info64->lo_inode = info.lo_inode; 1193 info64->lo_rdevice = info.lo_rdevice; 1194 info64->lo_offset = info.lo_offset; 1195 info64->lo_sizelimit = 0; 1196 info64->lo_encrypt_type = info.lo_encrypt_type; 1197 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1198 info64->lo_flags = info.lo_flags; 1199 info64->lo_init[0] = info.lo_init[0]; 1200 info64->lo_init[1] = info.lo_init[1]; 1201 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1202 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1203 else 1204 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1205 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1206 return 0; 1207 } 1208 1209 /* 1210 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1211 * - noinlined to reduce stack space usage in main part of driver 1212 */ 1213 static noinline int 1214 loop_info64_to_compat(const struct loop_info64 *info64, 1215 struct compat_loop_info __user *arg) 1216 { 1217 struct compat_loop_info info; 1218 1219 memset(&info, 0, sizeof(info)); 1220 info.lo_number = info64->lo_number; 1221 info.lo_device = info64->lo_device; 1222 info.lo_inode = info64->lo_inode; 1223 info.lo_rdevice = info64->lo_rdevice; 1224 info.lo_offset = info64->lo_offset; 1225 info.lo_encrypt_type = info64->lo_encrypt_type; 1226 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1227 info.lo_flags = info64->lo_flags; 1228 info.lo_init[0] = info64->lo_init[0]; 1229 info.lo_init[1] = info64->lo_init[1]; 1230 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1231 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1232 else 1233 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1234 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1235 1236 /* error in case values were truncated */ 1237 if (info.lo_device != info64->lo_device || 1238 info.lo_rdevice != info64->lo_rdevice || 1239 info.lo_inode != info64->lo_inode || 1240 info.lo_offset != info64->lo_offset || 1241 info.lo_init[0] != info64->lo_init[0] || 1242 info.lo_init[1] != info64->lo_init[1]) 1243 return -EOVERFLOW; 1244 1245 if (copy_to_user(arg, &info, sizeof(info))) 1246 return -EFAULT; 1247 return 0; 1248 } 1249 1250 static int 1251 loop_set_status_compat(struct loop_device *lo, 1252 const struct compat_loop_info __user *arg) 1253 { 1254 struct loop_info64 info64; 1255 int ret; 1256 1257 ret = loop_info64_from_compat(arg, &info64); 1258 if (ret < 0) 1259 return ret; 1260 return loop_set_status(lo, &info64); 1261 } 1262 1263 static int 1264 loop_get_status_compat(struct loop_device *lo, 1265 struct compat_loop_info __user *arg) 1266 { 1267 struct loop_info64 info64; 1268 int err = 0; 1269 1270 if (!arg) 1271 err = -EINVAL; 1272 if (!err) 1273 err = loop_get_status(lo, &info64); 1274 if (!err) 1275 err = loop_info64_to_compat(&info64, arg); 1276 return err; 1277 } 1278 1279 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1280 unsigned int cmd, unsigned long arg) 1281 { 1282 struct loop_device *lo = bdev->bd_disk->private_data; 1283 int err; 1284 1285 switch(cmd) { 1286 case LOOP_SET_STATUS: 1287 mutex_lock(&lo->lo_ctl_mutex); 1288 err = loop_set_status_compat( 1289 lo, (const struct compat_loop_info __user *) arg); 1290 mutex_unlock(&lo->lo_ctl_mutex); 1291 break; 1292 case LOOP_GET_STATUS: 1293 mutex_lock(&lo->lo_ctl_mutex); 1294 err = loop_get_status_compat( 1295 lo, (struct compat_loop_info __user *) arg); 1296 mutex_unlock(&lo->lo_ctl_mutex); 1297 break; 1298 case LOOP_SET_CAPACITY: 1299 case LOOP_CLR_FD: 1300 case LOOP_GET_STATUS64: 1301 case LOOP_SET_STATUS64: 1302 arg = (unsigned long) compat_ptr(arg); 1303 case LOOP_SET_FD: 1304 case LOOP_CHANGE_FD: 1305 err = lo_ioctl(bdev, mode, cmd, arg); 1306 break; 1307 default: 1308 err = -ENOIOCTLCMD; 1309 break; 1310 } 1311 return err; 1312 } 1313 #endif 1314 1315 static int lo_open(struct block_device *bdev, fmode_t mode) 1316 { 1317 struct loop_device *lo; 1318 int err = 0; 1319 1320 mutex_lock(&loop_index_mutex); 1321 lo = bdev->bd_disk->private_data; 1322 if (!lo) { 1323 err = -ENXIO; 1324 goto out; 1325 } 1326 1327 mutex_lock(&lo->lo_ctl_mutex); 1328 lo->lo_refcnt++; 1329 mutex_unlock(&lo->lo_ctl_mutex); 1330 out: 1331 mutex_unlock(&loop_index_mutex); 1332 return err; 1333 } 1334 1335 static void lo_release(struct gendisk *disk, fmode_t mode) 1336 { 1337 struct loop_device *lo = disk->private_data; 1338 int err; 1339 1340 mutex_lock(&lo->lo_ctl_mutex); 1341 1342 if (--lo->lo_refcnt) 1343 goto out; 1344 1345 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1346 /* 1347 * In autoclear mode, stop the loop thread 1348 * and remove configuration after last close. 1349 */ 1350 err = loop_clr_fd(lo); 1351 if (!err) 1352 return; 1353 } else { 1354 /* 1355 * Otherwise keep thread (if running) and config, 1356 * but flush possible ongoing bios in thread. 1357 */ 1358 loop_flush(lo); 1359 } 1360 1361 out: 1362 mutex_unlock(&lo->lo_ctl_mutex); 1363 } 1364 1365 static const struct block_device_operations lo_fops = { 1366 .owner = THIS_MODULE, 1367 .open = lo_open, 1368 .release = lo_release, 1369 .ioctl = lo_ioctl, 1370 #ifdef CONFIG_COMPAT 1371 .compat_ioctl = lo_compat_ioctl, 1372 #endif 1373 }; 1374 1375 /* 1376 * And now the modules code and kernel interface. 1377 */ 1378 static int max_loop; 1379 module_param(max_loop, int, S_IRUGO); 1380 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1381 module_param(max_part, int, S_IRUGO); 1382 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1383 MODULE_LICENSE("GPL"); 1384 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1385 1386 int loop_register_transfer(struct loop_func_table *funcs) 1387 { 1388 unsigned int n = funcs->number; 1389 1390 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1391 return -EINVAL; 1392 xfer_funcs[n] = funcs; 1393 return 0; 1394 } 1395 1396 static int unregister_transfer_cb(int id, void *ptr, void *data) 1397 { 1398 struct loop_device *lo = ptr; 1399 struct loop_func_table *xfer = data; 1400 1401 mutex_lock(&lo->lo_ctl_mutex); 1402 if (lo->lo_encryption == xfer) 1403 loop_release_xfer(lo); 1404 mutex_unlock(&lo->lo_ctl_mutex); 1405 return 0; 1406 } 1407 1408 int loop_unregister_transfer(int number) 1409 { 1410 unsigned int n = number; 1411 struct loop_func_table *xfer; 1412 1413 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1414 return -EINVAL; 1415 1416 xfer_funcs[n] = NULL; 1417 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1418 return 0; 1419 } 1420 1421 EXPORT_SYMBOL(loop_register_transfer); 1422 EXPORT_SYMBOL(loop_unregister_transfer); 1423 1424 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1425 const struct blk_mq_queue_data *bd) 1426 { 1427 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); 1428 1429 blk_mq_start_request(bd->rq); 1430 1431 if (cmd->rq->cmd_flags & REQ_WRITE) { 1432 struct loop_device *lo = cmd->rq->q->queuedata; 1433 bool need_sched = true; 1434 1435 spin_lock_irq(&lo->lo_lock); 1436 if (lo->write_started) 1437 need_sched = false; 1438 else 1439 lo->write_started = true; 1440 list_add_tail(&cmd->list, &lo->write_cmd_head); 1441 spin_unlock_irq(&lo->lo_lock); 1442 1443 if (need_sched) 1444 queue_work(loop_wq, &lo->write_work); 1445 } else { 1446 queue_work(loop_wq, &cmd->read_work); 1447 } 1448 1449 return BLK_MQ_RQ_QUEUE_OK; 1450 } 1451 1452 static void loop_handle_cmd(struct loop_cmd *cmd) 1453 { 1454 const bool write = cmd->rq->cmd_flags & REQ_WRITE; 1455 struct loop_device *lo = cmd->rq->q->queuedata; 1456 int ret = -EIO; 1457 1458 if (lo->lo_state != Lo_bound) 1459 goto failed; 1460 1461 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) 1462 goto failed; 1463 1464 ret = do_req_filebacked(lo, cmd->rq); 1465 1466 failed: 1467 if (ret) 1468 cmd->rq->errors = -EIO; 1469 blk_mq_complete_request(cmd->rq); 1470 } 1471 1472 static void loop_queue_write_work(struct work_struct *work) 1473 { 1474 struct loop_device *lo = 1475 container_of(work, struct loop_device, write_work); 1476 LIST_HEAD(cmd_list); 1477 1478 spin_lock_irq(&lo->lo_lock); 1479 repeat: 1480 list_splice_init(&lo->write_cmd_head, &cmd_list); 1481 spin_unlock_irq(&lo->lo_lock); 1482 1483 while (!list_empty(&cmd_list)) { 1484 struct loop_cmd *cmd = list_first_entry(&cmd_list, 1485 struct loop_cmd, list); 1486 list_del_init(&cmd->list); 1487 loop_handle_cmd(cmd); 1488 } 1489 1490 spin_lock_irq(&lo->lo_lock); 1491 if (!list_empty(&lo->write_cmd_head)) 1492 goto repeat; 1493 lo->write_started = false; 1494 spin_unlock_irq(&lo->lo_lock); 1495 } 1496 1497 static void loop_queue_read_work(struct work_struct *work) 1498 { 1499 struct loop_cmd *cmd = 1500 container_of(work, struct loop_cmd, read_work); 1501 1502 loop_handle_cmd(cmd); 1503 } 1504 1505 static int loop_init_request(void *data, struct request *rq, 1506 unsigned int hctx_idx, unsigned int request_idx, 1507 unsigned int numa_node) 1508 { 1509 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1510 1511 cmd->rq = rq; 1512 INIT_WORK(&cmd->read_work, loop_queue_read_work); 1513 1514 return 0; 1515 } 1516 1517 static struct blk_mq_ops loop_mq_ops = { 1518 .queue_rq = loop_queue_rq, 1519 .map_queue = blk_mq_map_queue, 1520 .init_request = loop_init_request, 1521 }; 1522 1523 static int loop_add(struct loop_device **l, int i) 1524 { 1525 struct loop_device *lo; 1526 struct gendisk *disk; 1527 int err; 1528 1529 err = -ENOMEM; 1530 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1531 if (!lo) 1532 goto out; 1533 1534 lo->lo_state = Lo_unbound; 1535 1536 /* allocate id, if @id >= 0, we're requesting that specific id */ 1537 if (i >= 0) { 1538 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1539 if (err == -ENOSPC) 1540 err = -EEXIST; 1541 } else { 1542 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1543 } 1544 if (err < 0) 1545 goto out_free_dev; 1546 i = err; 1547 1548 err = -ENOMEM; 1549 lo->tag_set.ops = &loop_mq_ops; 1550 lo->tag_set.nr_hw_queues = 1; 1551 lo->tag_set.queue_depth = 128; 1552 lo->tag_set.numa_node = NUMA_NO_NODE; 1553 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1554 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1555 lo->tag_set.driver_data = lo; 1556 1557 err = blk_mq_alloc_tag_set(&lo->tag_set); 1558 if (err) 1559 goto out_free_idr; 1560 1561 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1562 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1563 err = PTR_ERR(lo->lo_queue); 1564 goto out_cleanup_tags; 1565 } 1566 lo->lo_queue->queuedata = lo; 1567 1568 INIT_LIST_HEAD(&lo->write_cmd_head); 1569 INIT_WORK(&lo->write_work, loop_queue_write_work); 1570 1571 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1572 if (!disk) 1573 goto out_free_queue; 1574 1575 /* 1576 * Disable partition scanning by default. The in-kernel partition 1577 * scanning can be requested individually per-device during its 1578 * setup. Userspace can always add and remove partitions from all 1579 * devices. The needed partition minors are allocated from the 1580 * extended minor space, the main loop device numbers will continue 1581 * to match the loop minors, regardless of the number of partitions 1582 * used. 1583 * 1584 * If max_part is given, partition scanning is globally enabled for 1585 * all loop devices. The minors for the main loop devices will be 1586 * multiples of max_part. 1587 * 1588 * Note: Global-for-all-devices, set-only-at-init, read-only module 1589 * parameteters like 'max_loop' and 'max_part' make things needlessly 1590 * complicated, are too static, inflexible and may surprise 1591 * userspace tools. Parameters like this in general should be avoided. 1592 */ 1593 if (!part_shift) 1594 disk->flags |= GENHD_FL_NO_PART_SCAN; 1595 disk->flags |= GENHD_FL_EXT_DEVT; 1596 mutex_init(&lo->lo_ctl_mutex); 1597 lo->lo_number = i; 1598 spin_lock_init(&lo->lo_lock); 1599 disk->major = LOOP_MAJOR; 1600 disk->first_minor = i << part_shift; 1601 disk->fops = &lo_fops; 1602 disk->private_data = lo; 1603 disk->queue = lo->lo_queue; 1604 sprintf(disk->disk_name, "loop%d", i); 1605 add_disk(disk); 1606 *l = lo; 1607 return lo->lo_number; 1608 1609 out_free_queue: 1610 blk_cleanup_queue(lo->lo_queue); 1611 out_cleanup_tags: 1612 blk_mq_free_tag_set(&lo->tag_set); 1613 out_free_idr: 1614 idr_remove(&loop_index_idr, i); 1615 out_free_dev: 1616 kfree(lo); 1617 out: 1618 return err; 1619 } 1620 1621 static void loop_remove(struct loop_device *lo) 1622 { 1623 del_gendisk(lo->lo_disk); 1624 blk_cleanup_queue(lo->lo_queue); 1625 blk_mq_free_tag_set(&lo->tag_set); 1626 put_disk(lo->lo_disk); 1627 kfree(lo); 1628 } 1629 1630 static int find_free_cb(int id, void *ptr, void *data) 1631 { 1632 struct loop_device *lo = ptr; 1633 struct loop_device **l = data; 1634 1635 if (lo->lo_state == Lo_unbound) { 1636 *l = lo; 1637 return 1; 1638 } 1639 return 0; 1640 } 1641 1642 static int loop_lookup(struct loop_device **l, int i) 1643 { 1644 struct loop_device *lo; 1645 int ret = -ENODEV; 1646 1647 if (i < 0) { 1648 int err; 1649 1650 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1651 if (err == 1) { 1652 *l = lo; 1653 ret = lo->lo_number; 1654 } 1655 goto out; 1656 } 1657 1658 /* lookup and return a specific i */ 1659 lo = idr_find(&loop_index_idr, i); 1660 if (lo) { 1661 *l = lo; 1662 ret = lo->lo_number; 1663 } 1664 out: 1665 return ret; 1666 } 1667 1668 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1669 { 1670 struct loop_device *lo; 1671 struct kobject *kobj; 1672 int err; 1673 1674 mutex_lock(&loop_index_mutex); 1675 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1676 if (err < 0) 1677 err = loop_add(&lo, MINOR(dev) >> part_shift); 1678 if (err < 0) 1679 kobj = NULL; 1680 else 1681 kobj = get_disk(lo->lo_disk); 1682 mutex_unlock(&loop_index_mutex); 1683 1684 *part = 0; 1685 return kobj; 1686 } 1687 1688 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1689 unsigned long parm) 1690 { 1691 struct loop_device *lo; 1692 int ret = -ENOSYS; 1693 1694 mutex_lock(&loop_index_mutex); 1695 switch (cmd) { 1696 case LOOP_CTL_ADD: 1697 ret = loop_lookup(&lo, parm); 1698 if (ret >= 0) { 1699 ret = -EEXIST; 1700 break; 1701 } 1702 ret = loop_add(&lo, parm); 1703 break; 1704 case LOOP_CTL_REMOVE: 1705 ret = loop_lookup(&lo, parm); 1706 if (ret < 0) 1707 break; 1708 mutex_lock(&lo->lo_ctl_mutex); 1709 if (lo->lo_state != Lo_unbound) { 1710 ret = -EBUSY; 1711 mutex_unlock(&lo->lo_ctl_mutex); 1712 break; 1713 } 1714 if (lo->lo_refcnt > 0) { 1715 ret = -EBUSY; 1716 mutex_unlock(&lo->lo_ctl_mutex); 1717 break; 1718 } 1719 lo->lo_disk->private_data = NULL; 1720 mutex_unlock(&lo->lo_ctl_mutex); 1721 idr_remove(&loop_index_idr, lo->lo_number); 1722 loop_remove(lo); 1723 break; 1724 case LOOP_CTL_GET_FREE: 1725 ret = loop_lookup(&lo, -1); 1726 if (ret >= 0) 1727 break; 1728 ret = loop_add(&lo, -1); 1729 } 1730 mutex_unlock(&loop_index_mutex); 1731 1732 return ret; 1733 } 1734 1735 static const struct file_operations loop_ctl_fops = { 1736 .open = nonseekable_open, 1737 .unlocked_ioctl = loop_control_ioctl, 1738 .compat_ioctl = loop_control_ioctl, 1739 .owner = THIS_MODULE, 1740 .llseek = noop_llseek, 1741 }; 1742 1743 static struct miscdevice loop_misc = { 1744 .minor = LOOP_CTRL_MINOR, 1745 .name = "loop-control", 1746 .fops = &loop_ctl_fops, 1747 }; 1748 1749 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1750 MODULE_ALIAS("devname:loop-control"); 1751 1752 static int __init loop_init(void) 1753 { 1754 int i, nr; 1755 unsigned long range; 1756 struct loop_device *lo; 1757 int err; 1758 1759 err = misc_register(&loop_misc); 1760 if (err < 0) 1761 return err; 1762 1763 part_shift = 0; 1764 if (max_part > 0) { 1765 part_shift = fls(max_part); 1766 1767 /* 1768 * Adjust max_part according to part_shift as it is exported 1769 * to user space so that user can decide correct minor number 1770 * if [s]he want to create more devices. 1771 * 1772 * Note that -1 is required because partition 0 is reserved 1773 * for the whole disk. 1774 */ 1775 max_part = (1UL << part_shift) - 1; 1776 } 1777 1778 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1779 err = -EINVAL; 1780 goto misc_out; 1781 } 1782 1783 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1784 err = -EINVAL; 1785 goto misc_out; 1786 } 1787 1788 /* 1789 * If max_loop is specified, create that many devices upfront. 1790 * This also becomes a hard limit. If max_loop is not specified, 1791 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1792 * init time. Loop devices can be requested on-demand with the 1793 * /dev/loop-control interface, or be instantiated by accessing 1794 * a 'dead' device node. 1795 */ 1796 if (max_loop) { 1797 nr = max_loop; 1798 range = max_loop << part_shift; 1799 } else { 1800 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1801 range = 1UL << MINORBITS; 1802 } 1803 1804 if (register_blkdev(LOOP_MAJOR, "loop")) { 1805 err = -EIO; 1806 goto misc_out; 1807 } 1808 1809 loop_wq = alloc_workqueue("kloopd", 1810 WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 0); 1811 if (!loop_wq) { 1812 err = -ENOMEM; 1813 goto misc_out; 1814 } 1815 1816 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1817 THIS_MODULE, loop_probe, NULL, NULL); 1818 1819 /* pre-create number of devices given by config or max_loop */ 1820 mutex_lock(&loop_index_mutex); 1821 for (i = 0; i < nr; i++) 1822 loop_add(&lo, i); 1823 mutex_unlock(&loop_index_mutex); 1824 1825 printk(KERN_INFO "loop: module loaded\n"); 1826 return 0; 1827 1828 misc_out: 1829 misc_deregister(&loop_misc); 1830 return err; 1831 } 1832 1833 static int loop_exit_cb(int id, void *ptr, void *data) 1834 { 1835 struct loop_device *lo = ptr; 1836 1837 loop_remove(lo); 1838 return 0; 1839 } 1840 1841 static void __exit loop_exit(void) 1842 { 1843 unsigned long range; 1844 1845 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 1846 1847 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 1848 idr_destroy(&loop_index_idr); 1849 1850 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1851 unregister_blkdev(LOOP_MAJOR, "loop"); 1852 1853 destroy_workqueue(loop_wq); 1854 1855 misc_deregister(&loop_misc); 1856 } 1857 1858 module_init(loop_init); 1859 module_exit(loop_exit); 1860 1861 #ifndef MODULE 1862 static int __init max_loop_setup(char *str) 1863 { 1864 max_loop = simple_strtol(str, NULL, 0); 1865 return 1; 1866 } 1867 1868 __setup("max_loop=", max_loop_setup); 1869 #endif 1870