1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 if (lo->lo_state == Lo_bound) 218 blk_mq_freeze_queue(lo->lo_queue); 219 lo->use_dio = use_dio; 220 if (use_dio) { 221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 222 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 223 } else { 224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 226 } 227 if (lo->lo_state == Lo_bound) 228 blk_mq_unfreeze_queue(lo->lo_queue); 229 } 230 231 /** 232 * loop_validate_block_size() - validates the passed in block size 233 * @bsize: size to validate 234 */ 235 static int 236 loop_validate_block_size(unsigned short bsize) 237 { 238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /** 245 * loop_set_size() - sets device size and notifies userspace 246 * @lo: struct loop_device to set the size for 247 * @size: new size of the loop device 248 * 249 * Callers must validate that the size passed into this function fits into 250 * a sector_t, eg using loop_validate_size() 251 */ 252 static void loop_set_size(struct loop_device *lo, loff_t size) 253 { 254 struct block_device *bdev = lo->lo_device; 255 256 bd_set_size(bdev, size << SECTOR_SHIFT); 257 258 set_capacity_revalidate_and_notify(lo->lo_disk, size, false); 259 } 260 261 static inline int 262 lo_do_transfer(struct loop_device *lo, int cmd, 263 struct page *rpage, unsigned roffs, 264 struct page *lpage, unsigned loffs, 265 int size, sector_t rblock) 266 { 267 int ret; 268 269 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 270 if (likely(!ret)) 271 return 0; 272 273 printk_ratelimited(KERN_ERR 274 "loop: Transfer error at byte offset %llu, length %i.\n", 275 (unsigned long long)rblock << 9, size); 276 return ret; 277 } 278 279 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 280 { 281 struct iov_iter i; 282 ssize_t bw; 283 284 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 285 286 file_start_write(file); 287 bw = vfs_iter_write(file, &i, ppos, 0); 288 file_end_write(file); 289 290 if (likely(bw == bvec->bv_len)) 291 return 0; 292 293 printk_ratelimited(KERN_ERR 294 "loop: Write error at byte offset %llu, length %i.\n", 295 (unsigned long long)*ppos, bvec->bv_len); 296 if (bw >= 0) 297 bw = -EIO; 298 return bw; 299 } 300 301 static int lo_write_simple(struct loop_device *lo, struct request *rq, 302 loff_t pos) 303 { 304 struct bio_vec bvec; 305 struct req_iterator iter; 306 int ret = 0; 307 308 rq_for_each_segment(bvec, rq, iter) { 309 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 310 if (ret < 0) 311 break; 312 cond_resched(); 313 } 314 315 return ret; 316 } 317 318 /* 319 * This is the slow, transforming version that needs to double buffer the 320 * data as it cannot do the transformations in place without having direct 321 * access to the destination pages of the backing file. 322 */ 323 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 324 loff_t pos) 325 { 326 struct bio_vec bvec, b; 327 struct req_iterator iter; 328 struct page *page; 329 int ret = 0; 330 331 page = alloc_page(GFP_NOIO); 332 if (unlikely(!page)) 333 return -ENOMEM; 334 335 rq_for_each_segment(bvec, rq, iter) { 336 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 337 bvec.bv_offset, bvec.bv_len, pos >> 9); 338 if (unlikely(ret)) 339 break; 340 341 b.bv_page = page; 342 b.bv_offset = 0; 343 b.bv_len = bvec.bv_len; 344 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 345 if (ret < 0) 346 break; 347 } 348 349 __free_page(page); 350 return ret; 351 } 352 353 static int lo_read_simple(struct loop_device *lo, struct request *rq, 354 loff_t pos) 355 { 356 struct bio_vec bvec; 357 struct req_iterator iter; 358 struct iov_iter i; 359 ssize_t len; 360 361 rq_for_each_segment(bvec, rq, iter) { 362 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 363 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 364 if (len < 0) 365 return len; 366 367 flush_dcache_page(bvec.bv_page); 368 369 if (len != bvec.bv_len) { 370 struct bio *bio; 371 372 __rq_for_each_bio(bio, rq) 373 zero_fill_bio(bio); 374 break; 375 } 376 cond_resched(); 377 } 378 379 return 0; 380 } 381 382 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 383 loff_t pos) 384 { 385 struct bio_vec bvec, b; 386 struct req_iterator iter; 387 struct iov_iter i; 388 struct page *page; 389 ssize_t len; 390 int ret = 0; 391 392 page = alloc_page(GFP_NOIO); 393 if (unlikely(!page)) 394 return -ENOMEM; 395 396 rq_for_each_segment(bvec, rq, iter) { 397 loff_t offset = pos; 398 399 b.bv_page = page; 400 b.bv_offset = 0; 401 b.bv_len = bvec.bv_len; 402 403 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 404 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 405 if (len < 0) { 406 ret = len; 407 goto out_free_page; 408 } 409 410 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 411 bvec.bv_offset, len, offset >> 9); 412 if (ret) 413 goto out_free_page; 414 415 flush_dcache_page(bvec.bv_page); 416 417 if (len != bvec.bv_len) { 418 struct bio *bio; 419 420 __rq_for_each_bio(bio, rq) 421 zero_fill_bio(bio); 422 break; 423 } 424 } 425 426 ret = 0; 427 out_free_page: 428 __free_page(page); 429 return ret; 430 } 431 432 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 433 int mode) 434 { 435 /* 436 * We use fallocate to manipulate the space mappings used by the image 437 * a.k.a. discard/zerorange. However we do not support this if 438 * encryption is enabled, because it may give an attacker useful 439 * information. 440 */ 441 struct file *file = lo->lo_backing_file; 442 struct request_queue *q = lo->lo_queue; 443 int ret; 444 445 mode |= FALLOC_FL_KEEP_SIZE; 446 447 if (!blk_queue_discard(q)) { 448 ret = -EOPNOTSUPP; 449 goto out; 450 } 451 452 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 453 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 454 ret = -EIO; 455 out: 456 return ret; 457 } 458 459 static int lo_req_flush(struct loop_device *lo, struct request *rq) 460 { 461 struct file *file = lo->lo_backing_file; 462 int ret = vfs_fsync(file, 0); 463 if (unlikely(ret && ret != -EINVAL)) 464 ret = -EIO; 465 466 return ret; 467 } 468 469 static void lo_complete_rq(struct request *rq) 470 { 471 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 472 blk_status_t ret = BLK_STS_OK; 473 474 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 475 req_op(rq) != REQ_OP_READ) { 476 if (cmd->ret < 0) 477 ret = errno_to_blk_status(cmd->ret); 478 goto end_io; 479 } 480 481 /* 482 * Short READ - if we got some data, advance our request and 483 * retry it. If we got no data, end the rest with EIO. 484 */ 485 if (cmd->ret) { 486 blk_update_request(rq, BLK_STS_OK, cmd->ret); 487 cmd->ret = 0; 488 blk_mq_requeue_request(rq, true); 489 } else { 490 if (cmd->use_aio) { 491 struct bio *bio = rq->bio; 492 493 while (bio) { 494 zero_fill_bio(bio); 495 bio = bio->bi_next; 496 } 497 } 498 ret = BLK_STS_IOERR; 499 end_io: 500 blk_mq_end_request(rq, ret); 501 } 502 } 503 504 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 505 { 506 struct request *rq = blk_mq_rq_from_pdu(cmd); 507 508 if (!atomic_dec_and_test(&cmd->ref)) 509 return; 510 kfree(cmd->bvec); 511 cmd->bvec = NULL; 512 if (likely(!blk_should_fake_timeout(rq->q))) 513 blk_mq_complete_request(rq); 514 } 515 516 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 517 { 518 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 519 520 if (cmd->css) 521 css_put(cmd->css); 522 cmd->ret = ret; 523 lo_rw_aio_do_completion(cmd); 524 } 525 526 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 527 loff_t pos, bool rw) 528 { 529 struct iov_iter iter; 530 struct req_iterator rq_iter; 531 struct bio_vec *bvec; 532 struct request *rq = blk_mq_rq_from_pdu(cmd); 533 struct bio *bio = rq->bio; 534 struct file *file = lo->lo_backing_file; 535 struct bio_vec tmp; 536 unsigned int offset; 537 int nr_bvec = 0; 538 int ret; 539 540 rq_for_each_bvec(tmp, rq, rq_iter) 541 nr_bvec++; 542 543 if (rq->bio != rq->biotail) { 544 545 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 546 GFP_NOIO); 547 if (!bvec) 548 return -EIO; 549 cmd->bvec = bvec; 550 551 /* 552 * The bios of the request may be started from the middle of 553 * the 'bvec' because of bio splitting, so we can't directly 554 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 555 * API will take care of all details for us. 556 */ 557 rq_for_each_bvec(tmp, rq, rq_iter) { 558 *bvec = tmp; 559 bvec++; 560 } 561 bvec = cmd->bvec; 562 offset = 0; 563 } else { 564 /* 565 * Same here, this bio may be started from the middle of the 566 * 'bvec' because of bio splitting, so offset from the bvec 567 * must be passed to iov iterator 568 */ 569 offset = bio->bi_iter.bi_bvec_done; 570 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 571 } 572 atomic_set(&cmd->ref, 2); 573 574 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 575 iter.iov_offset = offset; 576 577 cmd->iocb.ki_pos = pos; 578 cmd->iocb.ki_filp = file; 579 cmd->iocb.ki_complete = lo_rw_aio_complete; 580 cmd->iocb.ki_flags = IOCB_DIRECT; 581 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 582 if (cmd->css) 583 kthread_associate_blkcg(cmd->css); 584 585 if (rw == WRITE) 586 ret = call_write_iter(file, &cmd->iocb, &iter); 587 else 588 ret = call_read_iter(file, &cmd->iocb, &iter); 589 590 lo_rw_aio_do_completion(cmd); 591 kthread_associate_blkcg(NULL); 592 593 if (ret != -EIOCBQUEUED) 594 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 595 return 0; 596 } 597 598 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 599 { 600 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 601 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 602 603 /* 604 * lo_write_simple and lo_read_simple should have been covered 605 * by io submit style function like lo_rw_aio(), one blocker 606 * is that lo_read_simple() need to call flush_dcache_page after 607 * the page is written from kernel, and it isn't easy to handle 608 * this in io submit style function which submits all segments 609 * of the req at one time. And direct read IO doesn't need to 610 * run flush_dcache_page(). 611 */ 612 switch (req_op(rq)) { 613 case REQ_OP_FLUSH: 614 return lo_req_flush(lo, rq); 615 case REQ_OP_WRITE_ZEROES: 616 /* 617 * If the caller doesn't want deallocation, call zeroout to 618 * write zeroes the range. Otherwise, punch them out. 619 */ 620 return lo_fallocate(lo, rq, pos, 621 (rq->cmd_flags & REQ_NOUNMAP) ? 622 FALLOC_FL_ZERO_RANGE : 623 FALLOC_FL_PUNCH_HOLE); 624 case REQ_OP_DISCARD: 625 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 626 case REQ_OP_WRITE: 627 if (lo->transfer) 628 return lo_write_transfer(lo, rq, pos); 629 else if (cmd->use_aio) 630 return lo_rw_aio(lo, cmd, pos, WRITE); 631 else 632 return lo_write_simple(lo, rq, pos); 633 case REQ_OP_READ: 634 if (lo->transfer) 635 return lo_read_transfer(lo, rq, pos); 636 else if (cmd->use_aio) 637 return lo_rw_aio(lo, cmd, pos, READ); 638 else 639 return lo_read_simple(lo, rq, pos); 640 default: 641 WARN_ON_ONCE(1); 642 return -EIO; 643 } 644 } 645 646 static inline void loop_update_dio(struct loop_device *lo) 647 { 648 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 649 lo->use_dio); 650 } 651 652 static void loop_reread_partitions(struct loop_device *lo, 653 struct block_device *bdev) 654 { 655 int rc; 656 657 mutex_lock(&bdev->bd_mutex); 658 rc = bdev_disk_changed(bdev, false); 659 mutex_unlock(&bdev->bd_mutex); 660 if (rc) 661 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 662 __func__, lo->lo_number, lo->lo_file_name, rc); 663 } 664 665 static inline int is_loop_device(struct file *file) 666 { 667 struct inode *i = file->f_mapping->host; 668 669 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 670 } 671 672 static int loop_validate_file(struct file *file, struct block_device *bdev) 673 { 674 struct inode *inode = file->f_mapping->host; 675 struct file *f = file; 676 677 /* Avoid recursion */ 678 while (is_loop_device(f)) { 679 struct loop_device *l; 680 681 if (f->f_mapping->host->i_bdev == bdev) 682 return -EBADF; 683 684 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 685 if (l->lo_state != Lo_bound) { 686 return -EINVAL; 687 } 688 f = l->lo_backing_file; 689 } 690 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 691 return -EINVAL; 692 return 0; 693 } 694 695 /* 696 * loop_change_fd switched the backing store of a loopback device to 697 * a new file. This is useful for operating system installers to free up 698 * the original file and in High Availability environments to switch to 699 * an alternative location for the content in case of server meltdown. 700 * This can only work if the loop device is used read-only, and if the 701 * new backing store is the same size and type as the old backing store. 702 */ 703 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 704 unsigned int arg) 705 { 706 struct file *file = NULL, *old_file; 707 int error; 708 bool partscan; 709 710 error = mutex_lock_killable(&loop_ctl_mutex); 711 if (error) 712 return error; 713 error = -ENXIO; 714 if (lo->lo_state != Lo_bound) 715 goto out_err; 716 717 /* the loop device has to be read-only */ 718 error = -EINVAL; 719 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 720 goto out_err; 721 722 error = -EBADF; 723 file = fget(arg); 724 if (!file) 725 goto out_err; 726 727 error = loop_validate_file(file, bdev); 728 if (error) 729 goto out_err; 730 731 old_file = lo->lo_backing_file; 732 733 error = -EINVAL; 734 735 /* size of the new backing store needs to be the same */ 736 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 737 goto out_err; 738 739 /* and ... switch */ 740 blk_mq_freeze_queue(lo->lo_queue); 741 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 742 lo->lo_backing_file = file; 743 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 744 mapping_set_gfp_mask(file->f_mapping, 745 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 746 loop_update_dio(lo); 747 blk_mq_unfreeze_queue(lo->lo_queue); 748 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 749 mutex_unlock(&loop_ctl_mutex); 750 /* 751 * We must drop file reference outside of loop_ctl_mutex as dropping 752 * the file ref can take bd_mutex which creates circular locking 753 * dependency. 754 */ 755 fput(old_file); 756 if (partscan) 757 loop_reread_partitions(lo, bdev); 758 return 0; 759 760 out_err: 761 mutex_unlock(&loop_ctl_mutex); 762 if (file) 763 fput(file); 764 return error; 765 } 766 767 /* loop sysfs attributes */ 768 769 static ssize_t loop_attr_show(struct device *dev, char *page, 770 ssize_t (*callback)(struct loop_device *, char *)) 771 { 772 struct gendisk *disk = dev_to_disk(dev); 773 struct loop_device *lo = disk->private_data; 774 775 return callback(lo, page); 776 } 777 778 #define LOOP_ATTR_RO(_name) \ 779 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 780 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 781 struct device_attribute *attr, char *b) \ 782 { \ 783 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 784 } \ 785 static struct device_attribute loop_attr_##_name = \ 786 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 787 788 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 789 { 790 ssize_t ret; 791 char *p = NULL; 792 793 spin_lock_irq(&lo->lo_lock); 794 if (lo->lo_backing_file) 795 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 796 spin_unlock_irq(&lo->lo_lock); 797 798 if (IS_ERR_OR_NULL(p)) 799 ret = PTR_ERR(p); 800 else { 801 ret = strlen(p); 802 memmove(buf, p, ret); 803 buf[ret++] = '\n'; 804 buf[ret] = 0; 805 } 806 807 return ret; 808 } 809 810 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 811 { 812 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 813 } 814 815 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 816 { 817 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 818 } 819 820 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 821 { 822 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 823 824 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 825 } 826 827 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 828 { 829 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 830 831 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 832 } 833 834 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 835 { 836 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 837 838 return sprintf(buf, "%s\n", dio ? "1" : "0"); 839 } 840 841 LOOP_ATTR_RO(backing_file); 842 LOOP_ATTR_RO(offset); 843 LOOP_ATTR_RO(sizelimit); 844 LOOP_ATTR_RO(autoclear); 845 LOOP_ATTR_RO(partscan); 846 LOOP_ATTR_RO(dio); 847 848 static struct attribute *loop_attrs[] = { 849 &loop_attr_backing_file.attr, 850 &loop_attr_offset.attr, 851 &loop_attr_sizelimit.attr, 852 &loop_attr_autoclear.attr, 853 &loop_attr_partscan.attr, 854 &loop_attr_dio.attr, 855 NULL, 856 }; 857 858 static struct attribute_group loop_attribute_group = { 859 .name = "loop", 860 .attrs= loop_attrs, 861 }; 862 863 static void loop_sysfs_init(struct loop_device *lo) 864 { 865 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 866 &loop_attribute_group); 867 } 868 869 static void loop_sysfs_exit(struct loop_device *lo) 870 { 871 if (lo->sysfs_inited) 872 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 873 &loop_attribute_group); 874 } 875 876 static void loop_config_discard(struct loop_device *lo) 877 { 878 struct file *file = lo->lo_backing_file; 879 struct inode *inode = file->f_mapping->host; 880 struct request_queue *q = lo->lo_queue; 881 882 /* 883 * If the backing device is a block device, mirror its zeroing 884 * capability. Set the discard sectors to the block device's zeroing 885 * capabilities because loop discards result in blkdev_issue_zeroout(), 886 * not blkdev_issue_discard(). This maintains consistent behavior with 887 * file-backed loop devices: discarded regions read back as zero. 888 */ 889 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 890 struct request_queue *backingq; 891 892 backingq = bdev_get_queue(inode->i_bdev); 893 blk_queue_max_discard_sectors(q, 894 backingq->limits.max_write_zeroes_sectors); 895 896 blk_queue_max_write_zeroes_sectors(q, 897 backingq->limits.max_write_zeroes_sectors); 898 899 /* 900 * We use punch hole to reclaim the free space used by the 901 * image a.k.a. discard. However we do not support discard if 902 * encryption is enabled, because it may give an attacker 903 * useful information. 904 */ 905 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 906 q->limits.discard_granularity = 0; 907 q->limits.discard_alignment = 0; 908 blk_queue_max_discard_sectors(q, 0); 909 blk_queue_max_write_zeroes_sectors(q, 0); 910 911 } else { 912 q->limits.discard_granularity = inode->i_sb->s_blocksize; 913 q->limits.discard_alignment = 0; 914 915 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 916 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 917 } 918 919 if (q->limits.max_write_zeroes_sectors) 920 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 921 else 922 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 923 } 924 925 static void loop_unprepare_queue(struct loop_device *lo) 926 { 927 kthread_flush_worker(&lo->worker); 928 kthread_stop(lo->worker_task); 929 } 930 931 static int loop_kthread_worker_fn(void *worker_ptr) 932 { 933 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 934 return kthread_worker_fn(worker_ptr); 935 } 936 937 static int loop_prepare_queue(struct loop_device *lo) 938 { 939 kthread_init_worker(&lo->worker); 940 lo->worker_task = kthread_run(loop_kthread_worker_fn, 941 &lo->worker, "loop%d", lo->lo_number); 942 if (IS_ERR(lo->worker_task)) 943 return -ENOMEM; 944 set_user_nice(lo->worker_task, MIN_NICE); 945 return 0; 946 } 947 948 static void loop_update_rotational(struct loop_device *lo) 949 { 950 struct file *file = lo->lo_backing_file; 951 struct inode *file_inode = file->f_mapping->host; 952 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 953 struct request_queue *q = lo->lo_queue; 954 bool nonrot = true; 955 956 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 957 if (file_bdev) 958 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 959 960 if (nonrot) 961 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 962 else 963 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 964 } 965 966 static int 967 loop_release_xfer(struct loop_device *lo) 968 { 969 int err = 0; 970 struct loop_func_table *xfer = lo->lo_encryption; 971 972 if (xfer) { 973 if (xfer->release) 974 err = xfer->release(lo); 975 lo->transfer = NULL; 976 lo->lo_encryption = NULL; 977 module_put(xfer->owner); 978 } 979 return err; 980 } 981 982 static int 983 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 984 const struct loop_info64 *i) 985 { 986 int err = 0; 987 988 if (xfer) { 989 struct module *owner = xfer->owner; 990 991 if (!try_module_get(owner)) 992 return -EINVAL; 993 if (xfer->init) 994 err = xfer->init(lo, i); 995 if (err) 996 module_put(owner); 997 else 998 lo->lo_encryption = xfer; 999 } 1000 return err; 1001 } 1002 1003 /** 1004 * loop_set_status_from_info - configure device from loop_info 1005 * @lo: struct loop_device to configure 1006 * @info: struct loop_info64 to configure the device with 1007 * 1008 * Configures the loop device parameters according to the passed 1009 * in loop_info64 configuration. 1010 */ 1011 static int 1012 loop_set_status_from_info(struct loop_device *lo, 1013 const struct loop_info64 *info) 1014 { 1015 int err; 1016 struct loop_func_table *xfer; 1017 kuid_t uid = current_uid(); 1018 1019 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1020 return -EINVAL; 1021 1022 err = loop_release_xfer(lo); 1023 if (err) 1024 return err; 1025 1026 if (info->lo_encrypt_type) { 1027 unsigned int type = info->lo_encrypt_type; 1028 1029 if (type >= MAX_LO_CRYPT) 1030 return -EINVAL; 1031 xfer = xfer_funcs[type]; 1032 if (xfer == NULL) 1033 return -EINVAL; 1034 } else 1035 xfer = NULL; 1036 1037 err = loop_init_xfer(lo, xfer, info); 1038 if (err) 1039 return err; 1040 1041 lo->lo_offset = info->lo_offset; 1042 lo->lo_sizelimit = info->lo_sizelimit; 1043 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1044 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1045 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1046 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1047 1048 if (!xfer) 1049 xfer = &none_funcs; 1050 lo->transfer = xfer->transfer; 1051 lo->ioctl = xfer->ioctl; 1052 1053 lo->lo_flags = info->lo_flags; 1054 1055 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1056 lo->lo_init[0] = info->lo_init[0]; 1057 lo->lo_init[1] = info->lo_init[1]; 1058 if (info->lo_encrypt_key_size) { 1059 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1060 info->lo_encrypt_key_size); 1061 lo->lo_key_owner = uid; 1062 } 1063 1064 return 0; 1065 } 1066 1067 static int loop_configure(struct loop_device *lo, fmode_t mode, 1068 struct block_device *bdev, 1069 const struct loop_config *config) 1070 { 1071 struct file *file; 1072 struct inode *inode; 1073 struct address_space *mapping; 1074 struct block_device *claimed_bdev = NULL; 1075 int error; 1076 loff_t size; 1077 bool partscan; 1078 unsigned short bsize; 1079 1080 /* This is safe, since we have a reference from open(). */ 1081 __module_get(THIS_MODULE); 1082 1083 error = -EBADF; 1084 file = fget(config->fd); 1085 if (!file) 1086 goto out; 1087 1088 /* 1089 * If we don't hold exclusive handle for the device, upgrade to it 1090 * here to avoid changing device under exclusive owner. 1091 */ 1092 if (!(mode & FMODE_EXCL)) { 1093 claimed_bdev = bdev->bd_contains; 1094 error = bd_prepare_to_claim(bdev, claimed_bdev, loop_configure); 1095 if (error) 1096 goto out_putf; 1097 } 1098 1099 error = mutex_lock_killable(&loop_ctl_mutex); 1100 if (error) 1101 goto out_bdev; 1102 1103 error = -EBUSY; 1104 if (lo->lo_state != Lo_unbound) 1105 goto out_unlock; 1106 1107 error = loop_validate_file(file, bdev); 1108 if (error) 1109 goto out_unlock; 1110 1111 mapping = file->f_mapping; 1112 inode = mapping->host; 1113 1114 size = get_loop_size(lo, file); 1115 1116 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1117 error = -EINVAL; 1118 goto out_unlock; 1119 } 1120 1121 if (config->block_size) { 1122 error = loop_validate_block_size(config->block_size); 1123 if (error) 1124 goto out_unlock; 1125 } 1126 1127 error = loop_set_status_from_info(lo, &config->info); 1128 if (error) 1129 goto out_unlock; 1130 1131 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1132 !file->f_op->write_iter) 1133 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1134 1135 error = loop_prepare_queue(lo); 1136 if (error) 1137 goto out_unlock; 1138 1139 set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1140 1141 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1142 lo->lo_device = bdev; 1143 lo->lo_backing_file = file; 1144 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1145 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1146 1147 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1148 blk_queue_write_cache(lo->lo_queue, true, false); 1149 1150 if (config->block_size) 1151 bsize = config->block_size; 1152 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1153 /* In case of direct I/O, match underlying block size */ 1154 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1155 else 1156 bsize = 512; 1157 1158 blk_queue_logical_block_size(lo->lo_queue, bsize); 1159 blk_queue_physical_block_size(lo->lo_queue, bsize); 1160 blk_queue_io_min(lo->lo_queue, bsize); 1161 1162 loop_update_rotational(lo); 1163 loop_update_dio(lo); 1164 loop_sysfs_init(lo); 1165 loop_set_size(lo, size); 1166 1167 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1168 block_size(inode->i_bdev) : PAGE_SIZE); 1169 1170 lo->lo_state = Lo_bound; 1171 if (part_shift) 1172 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1173 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1174 if (partscan) 1175 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1176 1177 /* Grab the block_device to prevent its destruction after we 1178 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1179 */ 1180 bdgrab(bdev); 1181 mutex_unlock(&loop_ctl_mutex); 1182 if (partscan) 1183 loop_reread_partitions(lo, bdev); 1184 if (claimed_bdev) 1185 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1186 return 0; 1187 1188 out_unlock: 1189 mutex_unlock(&loop_ctl_mutex); 1190 out_bdev: 1191 if (claimed_bdev) 1192 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1193 out_putf: 1194 fput(file); 1195 out: 1196 /* This is safe: open() is still holding a reference. */ 1197 module_put(THIS_MODULE); 1198 return error; 1199 } 1200 1201 static int __loop_clr_fd(struct loop_device *lo, bool release) 1202 { 1203 struct file *filp = NULL; 1204 gfp_t gfp = lo->old_gfp_mask; 1205 struct block_device *bdev = lo->lo_device; 1206 int err = 0; 1207 bool partscan = false; 1208 int lo_number; 1209 1210 mutex_lock(&loop_ctl_mutex); 1211 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1212 err = -ENXIO; 1213 goto out_unlock; 1214 } 1215 1216 filp = lo->lo_backing_file; 1217 if (filp == NULL) { 1218 err = -EINVAL; 1219 goto out_unlock; 1220 } 1221 1222 /* freeze request queue during the transition */ 1223 blk_mq_freeze_queue(lo->lo_queue); 1224 1225 spin_lock_irq(&lo->lo_lock); 1226 lo->lo_backing_file = NULL; 1227 spin_unlock_irq(&lo->lo_lock); 1228 1229 loop_release_xfer(lo); 1230 lo->transfer = NULL; 1231 lo->ioctl = NULL; 1232 lo->lo_device = NULL; 1233 lo->lo_encryption = NULL; 1234 lo->lo_offset = 0; 1235 lo->lo_sizelimit = 0; 1236 lo->lo_encrypt_key_size = 0; 1237 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1238 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1239 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1240 blk_queue_logical_block_size(lo->lo_queue, 512); 1241 blk_queue_physical_block_size(lo->lo_queue, 512); 1242 blk_queue_io_min(lo->lo_queue, 512); 1243 if (bdev) { 1244 bdput(bdev); 1245 invalidate_bdev(bdev); 1246 bdev->bd_inode->i_mapping->wb_err = 0; 1247 } 1248 set_capacity(lo->lo_disk, 0); 1249 loop_sysfs_exit(lo); 1250 if (bdev) { 1251 bd_set_size(bdev, 0); 1252 /* let user-space know about this change */ 1253 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1254 } 1255 mapping_set_gfp_mask(filp->f_mapping, gfp); 1256 /* This is safe: open() is still holding a reference. */ 1257 module_put(THIS_MODULE); 1258 blk_mq_unfreeze_queue(lo->lo_queue); 1259 1260 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1261 lo_number = lo->lo_number; 1262 loop_unprepare_queue(lo); 1263 out_unlock: 1264 mutex_unlock(&loop_ctl_mutex); 1265 if (partscan) { 1266 /* 1267 * bd_mutex has been held already in release path, so don't 1268 * acquire it if this function is called in such case. 1269 * 1270 * If the reread partition isn't from release path, lo_refcnt 1271 * must be at least one and it can only become zero when the 1272 * current holder is released. 1273 */ 1274 if (!release) 1275 mutex_lock(&bdev->bd_mutex); 1276 err = bdev_disk_changed(bdev, false); 1277 if (!release) 1278 mutex_unlock(&bdev->bd_mutex); 1279 if (err) 1280 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1281 __func__, lo_number, err); 1282 /* Device is gone, no point in returning error */ 1283 err = 0; 1284 } 1285 1286 /* 1287 * lo->lo_state is set to Lo_unbound here after above partscan has 1288 * finished. 1289 * 1290 * There cannot be anybody else entering __loop_clr_fd() as 1291 * lo->lo_backing_file is already cleared and Lo_rundown state 1292 * protects us from all the other places trying to change the 'lo' 1293 * device. 1294 */ 1295 mutex_lock(&loop_ctl_mutex); 1296 lo->lo_flags = 0; 1297 if (!part_shift) 1298 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1299 lo->lo_state = Lo_unbound; 1300 mutex_unlock(&loop_ctl_mutex); 1301 1302 /* 1303 * Need not hold loop_ctl_mutex to fput backing file. 1304 * Calling fput holding loop_ctl_mutex triggers a circular 1305 * lock dependency possibility warning as fput can take 1306 * bd_mutex which is usually taken before loop_ctl_mutex. 1307 */ 1308 if (filp) 1309 fput(filp); 1310 return err; 1311 } 1312 1313 static int loop_clr_fd(struct loop_device *lo) 1314 { 1315 int err; 1316 1317 err = mutex_lock_killable(&loop_ctl_mutex); 1318 if (err) 1319 return err; 1320 if (lo->lo_state != Lo_bound) { 1321 mutex_unlock(&loop_ctl_mutex); 1322 return -ENXIO; 1323 } 1324 /* 1325 * If we've explicitly asked to tear down the loop device, 1326 * and it has an elevated reference count, set it for auto-teardown when 1327 * the last reference goes away. This stops $!~#$@ udev from 1328 * preventing teardown because it decided that it needs to run blkid on 1329 * the loopback device whenever they appear. xfstests is notorious for 1330 * failing tests because blkid via udev races with a losetup 1331 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1332 * command to fail with EBUSY. 1333 */ 1334 if (atomic_read(&lo->lo_refcnt) > 1) { 1335 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1336 mutex_unlock(&loop_ctl_mutex); 1337 return 0; 1338 } 1339 lo->lo_state = Lo_rundown; 1340 mutex_unlock(&loop_ctl_mutex); 1341 1342 return __loop_clr_fd(lo, false); 1343 } 1344 1345 static int 1346 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1347 { 1348 int err; 1349 struct block_device *bdev; 1350 kuid_t uid = current_uid(); 1351 int prev_lo_flags; 1352 bool partscan = false; 1353 bool size_changed = false; 1354 1355 err = mutex_lock_killable(&loop_ctl_mutex); 1356 if (err) 1357 return err; 1358 if (lo->lo_encrypt_key_size && 1359 !uid_eq(lo->lo_key_owner, uid) && 1360 !capable(CAP_SYS_ADMIN)) { 1361 err = -EPERM; 1362 goto out_unlock; 1363 } 1364 if (lo->lo_state != Lo_bound) { 1365 err = -ENXIO; 1366 goto out_unlock; 1367 } 1368 1369 if (lo->lo_offset != info->lo_offset || 1370 lo->lo_sizelimit != info->lo_sizelimit) { 1371 size_changed = true; 1372 sync_blockdev(lo->lo_device); 1373 invalidate_bdev(lo->lo_device); 1374 } 1375 1376 /* I/O need to be drained during transfer transition */ 1377 blk_mq_freeze_queue(lo->lo_queue); 1378 1379 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1380 /* If any pages were dirtied after invalidate_bdev(), try again */ 1381 err = -EAGAIN; 1382 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1383 __func__, lo->lo_number, lo->lo_file_name, 1384 lo->lo_device->bd_inode->i_mapping->nrpages); 1385 goto out_unfreeze; 1386 } 1387 1388 prev_lo_flags = lo->lo_flags; 1389 1390 err = loop_set_status_from_info(lo, info); 1391 if (err) 1392 goto out_unfreeze; 1393 1394 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1395 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1396 /* For those flags, use the previous values instead */ 1397 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1398 /* For flags that can't be cleared, use previous values too */ 1399 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1400 1401 if (size_changed) { 1402 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1403 lo->lo_backing_file); 1404 loop_set_size(lo, new_size); 1405 } 1406 1407 loop_config_discard(lo); 1408 1409 /* update dio if lo_offset or transfer is changed */ 1410 __loop_update_dio(lo, lo->use_dio); 1411 1412 out_unfreeze: 1413 blk_mq_unfreeze_queue(lo->lo_queue); 1414 1415 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1416 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1417 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1418 bdev = lo->lo_device; 1419 partscan = true; 1420 } 1421 out_unlock: 1422 mutex_unlock(&loop_ctl_mutex); 1423 if (partscan) 1424 loop_reread_partitions(lo, bdev); 1425 1426 return err; 1427 } 1428 1429 static int 1430 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1431 { 1432 struct path path; 1433 struct kstat stat; 1434 int ret; 1435 1436 ret = mutex_lock_killable(&loop_ctl_mutex); 1437 if (ret) 1438 return ret; 1439 if (lo->lo_state != Lo_bound) { 1440 mutex_unlock(&loop_ctl_mutex); 1441 return -ENXIO; 1442 } 1443 1444 memset(info, 0, sizeof(*info)); 1445 info->lo_number = lo->lo_number; 1446 info->lo_offset = lo->lo_offset; 1447 info->lo_sizelimit = lo->lo_sizelimit; 1448 info->lo_flags = lo->lo_flags; 1449 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1450 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1451 info->lo_encrypt_type = 1452 lo->lo_encryption ? lo->lo_encryption->number : 0; 1453 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1454 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1455 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1456 lo->lo_encrypt_key_size); 1457 } 1458 1459 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1460 path = lo->lo_backing_file->f_path; 1461 path_get(&path); 1462 mutex_unlock(&loop_ctl_mutex); 1463 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1464 if (!ret) { 1465 info->lo_device = huge_encode_dev(stat.dev); 1466 info->lo_inode = stat.ino; 1467 info->lo_rdevice = huge_encode_dev(stat.rdev); 1468 } 1469 path_put(&path); 1470 return ret; 1471 } 1472 1473 static void 1474 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1475 { 1476 memset(info64, 0, sizeof(*info64)); 1477 info64->lo_number = info->lo_number; 1478 info64->lo_device = info->lo_device; 1479 info64->lo_inode = info->lo_inode; 1480 info64->lo_rdevice = info->lo_rdevice; 1481 info64->lo_offset = info->lo_offset; 1482 info64->lo_sizelimit = 0; 1483 info64->lo_encrypt_type = info->lo_encrypt_type; 1484 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1485 info64->lo_flags = info->lo_flags; 1486 info64->lo_init[0] = info->lo_init[0]; 1487 info64->lo_init[1] = info->lo_init[1]; 1488 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1489 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1490 else 1491 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1492 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1493 } 1494 1495 static int 1496 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1497 { 1498 memset(info, 0, sizeof(*info)); 1499 info->lo_number = info64->lo_number; 1500 info->lo_device = info64->lo_device; 1501 info->lo_inode = info64->lo_inode; 1502 info->lo_rdevice = info64->lo_rdevice; 1503 info->lo_offset = info64->lo_offset; 1504 info->lo_encrypt_type = info64->lo_encrypt_type; 1505 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1506 info->lo_flags = info64->lo_flags; 1507 info->lo_init[0] = info64->lo_init[0]; 1508 info->lo_init[1] = info64->lo_init[1]; 1509 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1510 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1511 else 1512 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1513 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1514 1515 /* error in case values were truncated */ 1516 if (info->lo_device != info64->lo_device || 1517 info->lo_rdevice != info64->lo_rdevice || 1518 info->lo_inode != info64->lo_inode || 1519 info->lo_offset != info64->lo_offset) 1520 return -EOVERFLOW; 1521 1522 return 0; 1523 } 1524 1525 static int 1526 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1527 { 1528 struct loop_info info; 1529 struct loop_info64 info64; 1530 1531 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1532 return -EFAULT; 1533 loop_info64_from_old(&info, &info64); 1534 return loop_set_status(lo, &info64); 1535 } 1536 1537 static int 1538 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1539 { 1540 struct loop_info64 info64; 1541 1542 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1543 return -EFAULT; 1544 return loop_set_status(lo, &info64); 1545 } 1546 1547 static int 1548 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1549 struct loop_info info; 1550 struct loop_info64 info64; 1551 int err; 1552 1553 if (!arg) 1554 return -EINVAL; 1555 err = loop_get_status(lo, &info64); 1556 if (!err) 1557 err = loop_info64_to_old(&info64, &info); 1558 if (!err && copy_to_user(arg, &info, sizeof(info))) 1559 err = -EFAULT; 1560 1561 return err; 1562 } 1563 1564 static int 1565 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1566 struct loop_info64 info64; 1567 int err; 1568 1569 if (!arg) 1570 return -EINVAL; 1571 err = loop_get_status(lo, &info64); 1572 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1573 err = -EFAULT; 1574 1575 return err; 1576 } 1577 1578 static int loop_set_capacity(struct loop_device *lo) 1579 { 1580 loff_t size; 1581 1582 if (unlikely(lo->lo_state != Lo_bound)) 1583 return -ENXIO; 1584 1585 size = get_loop_size(lo, lo->lo_backing_file); 1586 loop_set_size(lo, size); 1587 1588 return 0; 1589 } 1590 1591 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1592 { 1593 int error = -ENXIO; 1594 if (lo->lo_state != Lo_bound) 1595 goto out; 1596 1597 __loop_update_dio(lo, !!arg); 1598 if (lo->use_dio == !!arg) 1599 return 0; 1600 error = -EINVAL; 1601 out: 1602 return error; 1603 } 1604 1605 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1606 { 1607 int err = 0; 1608 1609 if (lo->lo_state != Lo_bound) 1610 return -ENXIO; 1611 1612 err = loop_validate_block_size(arg); 1613 if (err) 1614 return err; 1615 1616 if (lo->lo_queue->limits.logical_block_size == arg) 1617 return 0; 1618 1619 sync_blockdev(lo->lo_device); 1620 invalidate_bdev(lo->lo_device); 1621 1622 blk_mq_freeze_queue(lo->lo_queue); 1623 1624 /* invalidate_bdev should have truncated all the pages */ 1625 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1626 err = -EAGAIN; 1627 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1628 __func__, lo->lo_number, lo->lo_file_name, 1629 lo->lo_device->bd_inode->i_mapping->nrpages); 1630 goto out_unfreeze; 1631 } 1632 1633 blk_queue_logical_block_size(lo->lo_queue, arg); 1634 blk_queue_physical_block_size(lo->lo_queue, arg); 1635 blk_queue_io_min(lo->lo_queue, arg); 1636 loop_update_dio(lo); 1637 out_unfreeze: 1638 blk_mq_unfreeze_queue(lo->lo_queue); 1639 1640 return err; 1641 } 1642 1643 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1644 unsigned long arg) 1645 { 1646 int err; 1647 1648 err = mutex_lock_killable(&loop_ctl_mutex); 1649 if (err) 1650 return err; 1651 switch (cmd) { 1652 case LOOP_SET_CAPACITY: 1653 err = loop_set_capacity(lo); 1654 break; 1655 case LOOP_SET_DIRECT_IO: 1656 err = loop_set_dio(lo, arg); 1657 break; 1658 case LOOP_SET_BLOCK_SIZE: 1659 err = loop_set_block_size(lo, arg); 1660 break; 1661 default: 1662 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1663 } 1664 mutex_unlock(&loop_ctl_mutex); 1665 return err; 1666 } 1667 1668 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1669 unsigned int cmd, unsigned long arg) 1670 { 1671 struct loop_device *lo = bdev->bd_disk->private_data; 1672 void __user *argp = (void __user *) arg; 1673 int err; 1674 1675 switch (cmd) { 1676 case LOOP_SET_FD: { 1677 /* 1678 * Legacy case - pass in a zeroed out struct loop_config with 1679 * only the file descriptor set , which corresponds with the 1680 * default parameters we'd have used otherwise. 1681 */ 1682 struct loop_config config; 1683 1684 memset(&config, 0, sizeof(config)); 1685 config.fd = arg; 1686 1687 return loop_configure(lo, mode, bdev, &config); 1688 } 1689 case LOOP_CONFIGURE: { 1690 struct loop_config config; 1691 1692 if (copy_from_user(&config, argp, sizeof(config))) 1693 return -EFAULT; 1694 1695 return loop_configure(lo, mode, bdev, &config); 1696 } 1697 case LOOP_CHANGE_FD: 1698 return loop_change_fd(lo, bdev, arg); 1699 case LOOP_CLR_FD: 1700 return loop_clr_fd(lo); 1701 case LOOP_SET_STATUS: 1702 err = -EPERM; 1703 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1704 err = loop_set_status_old(lo, argp); 1705 } 1706 break; 1707 case LOOP_GET_STATUS: 1708 return loop_get_status_old(lo, argp); 1709 case LOOP_SET_STATUS64: 1710 err = -EPERM; 1711 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1712 err = loop_set_status64(lo, argp); 1713 } 1714 break; 1715 case LOOP_GET_STATUS64: 1716 return loop_get_status64(lo, argp); 1717 case LOOP_SET_CAPACITY: 1718 case LOOP_SET_DIRECT_IO: 1719 case LOOP_SET_BLOCK_SIZE: 1720 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1721 return -EPERM; 1722 /* Fall through */ 1723 default: 1724 err = lo_simple_ioctl(lo, cmd, arg); 1725 break; 1726 } 1727 1728 return err; 1729 } 1730 1731 #ifdef CONFIG_COMPAT 1732 struct compat_loop_info { 1733 compat_int_t lo_number; /* ioctl r/o */ 1734 compat_dev_t lo_device; /* ioctl r/o */ 1735 compat_ulong_t lo_inode; /* ioctl r/o */ 1736 compat_dev_t lo_rdevice; /* ioctl r/o */ 1737 compat_int_t lo_offset; 1738 compat_int_t lo_encrypt_type; 1739 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1740 compat_int_t lo_flags; /* ioctl r/o */ 1741 char lo_name[LO_NAME_SIZE]; 1742 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1743 compat_ulong_t lo_init[2]; 1744 char reserved[4]; 1745 }; 1746 1747 /* 1748 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1749 * - noinlined to reduce stack space usage in main part of driver 1750 */ 1751 static noinline int 1752 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1753 struct loop_info64 *info64) 1754 { 1755 struct compat_loop_info info; 1756 1757 if (copy_from_user(&info, arg, sizeof(info))) 1758 return -EFAULT; 1759 1760 memset(info64, 0, sizeof(*info64)); 1761 info64->lo_number = info.lo_number; 1762 info64->lo_device = info.lo_device; 1763 info64->lo_inode = info.lo_inode; 1764 info64->lo_rdevice = info.lo_rdevice; 1765 info64->lo_offset = info.lo_offset; 1766 info64->lo_sizelimit = 0; 1767 info64->lo_encrypt_type = info.lo_encrypt_type; 1768 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1769 info64->lo_flags = info.lo_flags; 1770 info64->lo_init[0] = info.lo_init[0]; 1771 info64->lo_init[1] = info.lo_init[1]; 1772 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1773 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1774 else 1775 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1776 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1777 return 0; 1778 } 1779 1780 /* 1781 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1782 * - noinlined to reduce stack space usage in main part of driver 1783 */ 1784 static noinline int 1785 loop_info64_to_compat(const struct loop_info64 *info64, 1786 struct compat_loop_info __user *arg) 1787 { 1788 struct compat_loop_info info; 1789 1790 memset(&info, 0, sizeof(info)); 1791 info.lo_number = info64->lo_number; 1792 info.lo_device = info64->lo_device; 1793 info.lo_inode = info64->lo_inode; 1794 info.lo_rdevice = info64->lo_rdevice; 1795 info.lo_offset = info64->lo_offset; 1796 info.lo_encrypt_type = info64->lo_encrypt_type; 1797 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1798 info.lo_flags = info64->lo_flags; 1799 info.lo_init[0] = info64->lo_init[0]; 1800 info.lo_init[1] = info64->lo_init[1]; 1801 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1802 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1803 else 1804 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1805 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1806 1807 /* error in case values were truncated */ 1808 if (info.lo_device != info64->lo_device || 1809 info.lo_rdevice != info64->lo_rdevice || 1810 info.lo_inode != info64->lo_inode || 1811 info.lo_offset != info64->lo_offset || 1812 info.lo_init[0] != info64->lo_init[0] || 1813 info.lo_init[1] != info64->lo_init[1]) 1814 return -EOVERFLOW; 1815 1816 if (copy_to_user(arg, &info, sizeof(info))) 1817 return -EFAULT; 1818 return 0; 1819 } 1820 1821 static int 1822 loop_set_status_compat(struct loop_device *lo, 1823 const struct compat_loop_info __user *arg) 1824 { 1825 struct loop_info64 info64; 1826 int ret; 1827 1828 ret = loop_info64_from_compat(arg, &info64); 1829 if (ret < 0) 1830 return ret; 1831 return loop_set_status(lo, &info64); 1832 } 1833 1834 static int 1835 loop_get_status_compat(struct loop_device *lo, 1836 struct compat_loop_info __user *arg) 1837 { 1838 struct loop_info64 info64; 1839 int err; 1840 1841 if (!arg) 1842 return -EINVAL; 1843 err = loop_get_status(lo, &info64); 1844 if (!err) 1845 err = loop_info64_to_compat(&info64, arg); 1846 return err; 1847 } 1848 1849 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1850 unsigned int cmd, unsigned long arg) 1851 { 1852 struct loop_device *lo = bdev->bd_disk->private_data; 1853 int err; 1854 1855 switch(cmd) { 1856 case LOOP_SET_STATUS: 1857 err = loop_set_status_compat(lo, 1858 (const struct compat_loop_info __user *)arg); 1859 break; 1860 case LOOP_GET_STATUS: 1861 err = loop_get_status_compat(lo, 1862 (struct compat_loop_info __user *)arg); 1863 break; 1864 case LOOP_SET_CAPACITY: 1865 case LOOP_CLR_FD: 1866 case LOOP_GET_STATUS64: 1867 case LOOP_SET_STATUS64: 1868 case LOOP_CONFIGURE: 1869 arg = (unsigned long) compat_ptr(arg); 1870 /* fall through */ 1871 case LOOP_SET_FD: 1872 case LOOP_CHANGE_FD: 1873 case LOOP_SET_BLOCK_SIZE: 1874 case LOOP_SET_DIRECT_IO: 1875 err = lo_ioctl(bdev, mode, cmd, arg); 1876 break; 1877 default: 1878 err = -ENOIOCTLCMD; 1879 break; 1880 } 1881 return err; 1882 } 1883 #endif 1884 1885 static int lo_open(struct block_device *bdev, fmode_t mode) 1886 { 1887 struct loop_device *lo; 1888 int err; 1889 1890 err = mutex_lock_killable(&loop_ctl_mutex); 1891 if (err) 1892 return err; 1893 lo = bdev->bd_disk->private_data; 1894 if (!lo) { 1895 err = -ENXIO; 1896 goto out; 1897 } 1898 1899 atomic_inc(&lo->lo_refcnt); 1900 out: 1901 mutex_unlock(&loop_ctl_mutex); 1902 return err; 1903 } 1904 1905 static void lo_release(struct gendisk *disk, fmode_t mode) 1906 { 1907 struct loop_device *lo; 1908 1909 mutex_lock(&loop_ctl_mutex); 1910 lo = disk->private_data; 1911 if (atomic_dec_return(&lo->lo_refcnt)) 1912 goto out_unlock; 1913 1914 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1915 if (lo->lo_state != Lo_bound) 1916 goto out_unlock; 1917 lo->lo_state = Lo_rundown; 1918 mutex_unlock(&loop_ctl_mutex); 1919 /* 1920 * In autoclear mode, stop the loop thread 1921 * and remove configuration after last close. 1922 */ 1923 __loop_clr_fd(lo, true); 1924 return; 1925 } else if (lo->lo_state == Lo_bound) { 1926 /* 1927 * Otherwise keep thread (if running) and config, 1928 * but flush possible ongoing bios in thread. 1929 */ 1930 blk_mq_freeze_queue(lo->lo_queue); 1931 blk_mq_unfreeze_queue(lo->lo_queue); 1932 } 1933 1934 out_unlock: 1935 mutex_unlock(&loop_ctl_mutex); 1936 } 1937 1938 static const struct block_device_operations lo_fops = { 1939 .owner = THIS_MODULE, 1940 .open = lo_open, 1941 .release = lo_release, 1942 .ioctl = lo_ioctl, 1943 #ifdef CONFIG_COMPAT 1944 .compat_ioctl = lo_compat_ioctl, 1945 #endif 1946 }; 1947 1948 /* 1949 * And now the modules code and kernel interface. 1950 */ 1951 static int max_loop; 1952 module_param(max_loop, int, 0444); 1953 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1954 module_param(max_part, int, 0444); 1955 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1956 MODULE_LICENSE("GPL"); 1957 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1958 1959 int loop_register_transfer(struct loop_func_table *funcs) 1960 { 1961 unsigned int n = funcs->number; 1962 1963 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1964 return -EINVAL; 1965 xfer_funcs[n] = funcs; 1966 return 0; 1967 } 1968 1969 static int unregister_transfer_cb(int id, void *ptr, void *data) 1970 { 1971 struct loop_device *lo = ptr; 1972 struct loop_func_table *xfer = data; 1973 1974 mutex_lock(&loop_ctl_mutex); 1975 if (lo->lo_encryption == xfer) 1976 loop_release_xfer(lo); 1977 mutex_unlock(&loop_ctl_mutex); 1978 return 0; 1979 } 1980 1981 int loop_unregister_transfer(int number) 1982 { 1983 unsigned int n = number; 1984 struct loop_func_table *xfer; 1985 1986 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1987 return -EINVAL; 1988 1989 xfer_funcs[n] = NULL; 1990 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1991 return 0; 1992 } 1993 1994 EXPORT_SYMBOL(loop_register_transfer); 1995 EXPORT_SYMBOL(loop_unregister_transfer); 1996 1997 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1998 const struct blk_mq_queue_data *bd) 1999 { 2000 struct request *rq = bd->rq; 2001 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2002 struct loop_device *lo = rq->q->queuedata; 2003 2004 blk_mq_start_request(rq); 2005 2006 if (lo->lo_state != Lo_bound) 2007 return BLK_STS_IOERR; 2008 2009 switch (req_op(rq)) { 2010 case REQ_OP_FLUSH: 2011 case REQ_OP_DISCARD: 2012 case REQ_OP_WRITE_ZEROES: 2013 cmd->use_aio = false; 2014 break; 2015 default: 2016 cmd->use_aio = lo->use_dio; 2017 break; 2018 } 2019 2020 /* always use the first bio's css */ 2021 #ifdef CONFIG_BLK_CGROUP 2022 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 2023 cmd->css = &bio_blkcg(rq->bio)->css; 2024 css_get(cmd->css); 2025 } else 2026 #endif 2027 cmd->css = NULL; 2028 kthread_queue_work(&lo->worker, &cmd->work); 2029 2030 return BLK_STS_OK; 2031 } 2032 2033 static void loop_handle_cmd(struct loop_cmd *cmd) 2034 { 2035 struct request *rq = blk_mq_rq_from_pdu(cmd); 2036 const bool write = op_is_write(req_op(rq)); 2037 struct loop_device *lo = rq->q->queuedata; 2038 int ret = 0; 2039 2040 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 2041 ret = -EIO; 2042 goto failed; 2043 } 2044 2045 ret = do_req_filebacked(lo, rq); 2046 failed: 2047 /* complete non-aio request */ 2048 if (!cmd->use_aio || ret) { 2049 if (ret == -EOPNOTSUPP) 2050 cmd->ret = ret; 2051 else 2052 cmd->ret = ret ? -EIO : 0; 2053 if (likely(!blk_should_fake_timeout(rq->q))) 2054 blk_mq_complete_request(rq); 2055 } 2056 } 2057 2058 static void loop_queue_work(struct kthread_work *work) 2059 { 2060 struct loop_cmd *cmd = 2061 container_of(work, struct loop_cmd, work); 2062 2063 loop_handle_cmd(cmd); 2064 } 2065 2066 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 2067 unsigned int hctx_idx, unsigned int numa_node) 2068 { 2069 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2070 2071 kthread_init_work(&cmd->work, loop_queue_work); 2072 return 0; 2073 } 2074 2075 static const struct blk_mq_ops loop_mq_ops = { 2076 .queue_rq = loop_queue_rq, 2077 .init_request = loop_init_request, 2078 .complete = lo_complete_rq, 2079 }; 2080 2081 static int loop_add(struct loop_device **l, int i) 2082 { 2083 struct loop_device *lo; 2084 struct gendisk *disk; 2085 int err; 2086 2087 err = -ENOMEM; 2088 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2089 if (!lo) 2090 goto out; 2091 2092 lo->lo_state = Lo_unbound; 2093 2094 /* allocate id, if @id >= 0, we're requesting that specific id */ 2095 if (i >= 0) { 2096 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2097 if (err == -ENOSPC) 2098 err = -EEXIST; 2099 } else { 2100 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2101 } 2102 if (err < 0) 2103 goto out_free_dev; 2104 i = err; 2105 2106 err = -ENOMEM; 2107 lo->tag_set.ops = &loop_mq_ops; 2108 lo->tag_set.nr_hw_queues = 1; 2109 lo->tag_set.queue_depth = 128; 2110 lo->tag_set.numa_node = NUMA_NO_NODE; 2111 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2112 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING; 2113 lo->tag_set.driver_data = lo; 2114 2115 err = blk_mq_alloc_tag_set(&lo->tag_set); 2116 if (err) 2117 goto out_free_idr; 2118 2119 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2120 if (IS_ERR(lo->lo_queue)) { 2121 err = PTR_ERR(lo->lo_queue); 2122 goto out_cleanup_tags; 2123 } 2124 lo->lo_queue->queuedata = lo; 2125 2126 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2127 2128 /* 2129 * By default, we do buffer IO, so it doesn't make sense to enable 2130 * merge because the I/O submitted to backing file is handled page by 2131 * page. For directio mode, merge does help to dispatch bigger request 2132 * to underlayer disk. We will enable merge once directio is enabled. 2133 */ 2134 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2135 2136 err = -ENOMEM; 2137 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2138 if (!disk) 2139 goto out_free_queue; 2140 2141 /* 2142 * Disable partition scanning by default. The in-kernel partition 2143 * scanning can be requested individually per-device during its 2144 * setup. Userspace can always add and remove partitions from all 2145 * devices. The needed partition minors are allocated from the 2146 * extended minor space, the main loop device numbers will continue 2147 * to match the loop minors, regardless of the number of partitions 2148 * used. 2149 * 2150 * If max_part is given, partition scanning is globally enabled for 2151 * all loop devices. The minors for the main loop devices will be 2152 * multiples of max_part. 2153 * 2154 * Note: Global-for-all-devices, set-only-at-init, read-only module 2155 * parameteters like 'max_loop' and 'max_part' make things needlessly 2156 * complicated, are too static, inflexible and may surprise 2157 * userspace tools. Parameters like this in general should be avoided. 2158 */ 2159 if (!part_shift) 2160 disk->flags |= GENHD_FL_NO_PART_SCAN; 2161 disk->flags |= GENHD_FL_EXT_DEVT; 2162 atomic_set(&lo->lo_refcnt, 0); 2163 lo->lo_number = i; 2164 spin_lock_init(&lo->lo_lock); 2165 disk->major = LOOP_MAJOR; 2166 disk->first_minor = i << part_shift; 2167 disk->fops = &lo_fops; 2168 disk->private_data = lo; 2169 disk->queue = lo->lo_queue; 2170 sprintf(disk->disk_name, "loop%d", i); 2171 add_disk(disk); 2172 *l = lo; 2173 return lo->lo_number; 2174 2175 out_free_queue: 2176 blk_cleanup_queue(lo->lo_queue); 2177 out_cleanup_tags: 2178 blk_mq_free_tag_set(&lo->tag_set); 2179 out_free_idr: 2180 idr_remove(&loop_index_idr, i); 2181 out_free_dev: 2182 kfree(lo); 2183 out: 2184 return err; 2185 } 2186 2187 static void loop_remove(struct loop_device *lo) 2188 { 2189 del_gendisk(lo->lo_disk); 2190 blk_cleanup_queue(lo->lo_queue); 2191 blk_mq_free_tag_set(&lo->tag_set); 2192 put_disk(lo->lo_disk); 2193 kfree(lo); 2194 } 2195 2196 static int find_free_cb(int id, void *ptr, void *data) 2197 { 2198 struct loop_device *lo = ptr; 2199 struct loop_device **l = data; 2200 2201 if (lo->lo_state == Lo_unbound) { 2202 *l = lo; 2203 return 1; 2204 } 2205 return 0; 2206 } 2207 2208 static int loop_lookup(struct loop_device **l, int i) 2209 { 2210 struct loop_device *lo; 2211 int ret = -ENODEV; 2212 2213 if (i < 0) { 2214 int err; 2215 2216 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2217 if (err == 1) { 2218 *l = lo; 2219 ret = lo->lo_number; 2220 } 2221 goto out; 2222 } 2223 2224 /* lookup and return a specific i */ 2225 lo = idr_find(&loop_index_idr, i); 2226 if (lo) { 2227 *l = lo; 2228 ret = lo->lo_number; 2229 } 2230 out: 2231 return ret; 2232 } 2233 2234 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2235 { 2236 struct loop_device *lo; 2237 struct kobject *kobj; 2238 int err; 2239 2240 mutex_lock(&loop_ctl_mutex); 2241 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2242 if (err < 0) 2243 err = loop_add(&lo, MINOR(dev) >> part_shift); 2244 if (err < 0) 2245 kobj = NULL; 2246 else 2247 kobj = get_disk_and_module(lo->lo_disk); 2248 mutex_unlock(&loop_ctl_mutex); 2249 2250 *part = 0; 2251 return kobj; 2252 } 2253 2254 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2255 unsigned long parm) 2256 { 2257 struct loop_device *lo; 2258 int ret; 2259 2260 ret = mutex_lock_killable(&loop_ctl_mutex); 2261 if (ret) 2262 return ret; 2263 2264 ret = -ENOSYS; 2265 switch (cmd) { 2266 case LOOP_CTL_ADD: 2267 ret = loop_lookup(&lo, parm); 2268 if (ret >= 0) { 2269 ret = -EEXIST; 2270 break; 2271 } 2272 ret = loop_add(&lo, parm); 2273 break; 2274 case LOOP_CTL_REMOVE: 2275 ret = loop_lookup(&lo, parm); 2276 if (ret < 0) 2277 break; 2278 if (lo->lo_state != Lo_unbound) { 2279 ret = -EBUSY; 2280 break; 2281 } 2282 if (atomic_read(&lo->lo_refcnt) > 0) { 2283 ret = -EBUSY; 2284 break; 2285 } 2286 lo->lo_disk->private_data = NULL; 2287 idr_remove(&loop_index_idr, lo->lo_number); 2288 loop_remove(lo); 2289 break; 2290 case LOOP_CTL_GET_FREE: 2291 ret = loop_lookup(&lo, -1); 2292 if (ret >= 0) 2293 break; 2294 ret = loop_add(&lo, -1); 2295 } 2296 mutex_unlock(&loop_ctl_mutex); 2297 2298 return ret; 2299 } 2300 2301 static const struct file_operations loop_ctl_fops = { 2302 .open = nonseekable_open, 2303 .unlocked_ioctl = loop_control_ioctl, 2304 .compat_ioctl = loop_control_ioctl, 2305 .owner = THIS_MODULE, 2306 .llseek = noop_llseek, 2307 }; 2308 2309 static struct miscdevice loop_misc = { 2310 .minor = LOOP_CTRL_MINOR, 2311 .name = "loop-control", 2312 .fops = &loop_ctl_fops, 2313 }; 2314 2315 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2316 MODULE_ALIAS("devname:loop-control"); 2317 2318 static int __init loop_init(void) 2319 { 2320 int i, nr; 2321 unsigned long range; 2322 struct loop_device *lo; 2323 int err; 2324 2325 part_shift = 0; 2326 if (max_part > 0) { 2327 part_shift = fls(max_part); 2328 2329 /* 2330 * Adjust max_part according to part_shift as it is exported 2331 * to user space so that user can decide correct minor number 2332 * if [s]he want to create more devices. 2333 * 2334 * Note that -1 is required because partition 0 is reserved 2335 * for the whole disk. 2336 */ 2337 max_part = (1UL << part_shift) - 1; 2338 } 2339 2340 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2341 err = -EINVAL; 2342 goto err_out; 2343 } 2344 2345 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2346 err = -EINVAL; 2347 goto err_out; 2348 } 2349 2350 /* 2351 * If max_loop is specified, create that many devices upfront. 2352 * This also becomes a hard limit. If max_loop is not specified, 2353 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2354 * init time. Loop devices can be requested on-demand with the 2355 * /dev/loop-control interface, or be instantiated by accessing 2356 * a 'dead' device node. 2357 */ 2358 if (max_loop) { 2359 nr = max_loop; 2360 range = max_loop << part_shift; 2361 } else { 2362 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2363 range = 1UL << MINORBITS; 2364 } 2365 2366 err = misc_register(&loop_misc); 2367 if (err < 0) 2368 goto err_out; 2369 2370 2371 if (register_blkdev(LOOP_MAJOR, "loop")) { 2372 err = -EIO; 2373 goto misc_out; 2374 } 2375 2376 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2377 THIS_MODULE, loop_probe, NULL, NULL); 2378 2379 /* pre-create number of devices given by config or max_loop */ 2380 mutex_lock(&loop_ctl_mutex); 2381 for (i = 0; i < nr; i++) 2382 loop_add(&lo, i); 2383 mutex_unlock(&loop_ctl_mutex); 2384 2385 printk(KERN_INFO "loop: module loaded\n"); 2386 return 0; 2387 2388 misc_out: 2389 misc_deregister(&loop_misc); 2390 err_out: 2391 return err; 2392 } 2393 2394 static int loop_exit_cb(int id, void *ptr, void *data) 2395 { 2396 struct loop_device *lo = ptr; 2397 2398 loop_remove(lo); 2399 return 0; 2400 } 2401 2402 static void __exit loop_exit(void) 2403 { 2404 unsigned long range; 2405 2406 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2407 2408 mutex_lock(&loop_ctl_mutex); 2409 2410 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2411 idr_destroy(&loop_index_idr); 2412 2413 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2414 unregister_blkdev(LOOP_MAJOR, "loop"); 2415 2416 misc_deregister(&loop_misc); 2417 2418 mutex_unlock(&loop_ctl_mutex); 2419 } 2420 2421 module_init(loop_init); 2422 module_exit(loop_exit); 2423 2424 #ifndef MODULE 2425 static int __init max_loop_setup(char *str) 2426 { 2427 max_loop = simple_strtol(str, NULL, 0); 2428 return 1; 2429 } 2430 2431 __setup("max_loop=", max_loop_setup); 2432 #endif 2433