xref: /openbmc/linux/drivers/block/loop.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/smp_lock.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/loop.h>
68 #include <linux/compat.h>
69 #include <linux/suspend.h>
70 #include <linux/freezer.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 #include <linux/splice.h>
78 
79 #include <asm/uaccess.h>
80 
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
83 
84 static int max_part;
85 static int part_shift;
86 
87 /*
88  * Transfer functions
89  */
90 static int transfer_none(struct loop_device *lo, int cmd,
91 			 struct page *raw_page, unsigned raw_off,
92 			 struct page *loop_page, unsigned loop_off,
93 			 int size, sector_t real_block)
94 {
95 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97 
98 	if (cmd == READ)
99 		memcpy(loop_buf, raw_buf, size);
100 	else
101 		memcpy(raw_buf, loop_buf, size);
102 
103 	kunmap_atomic(raw_buf, KM_USER0);
104 	kunmap_atomic(loop_buf, KM_USER1);
105 	cond_resched();
106 	return 0;
107 }
108 
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 			struct page *raw_page, unsigned raw_off,
111 			struct page *loop_page, unsigned loop_off,
112 			int size, sector_t real_block)
113 {
114 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 	char *in, *out, *key;
117 	int i, keysize;
118 
119 	if (cmd == READ) {
120 		in = raw_buf;
121 		out = loop_buf;
122 	} else {
123 		in = loop_buf;
124 		out = raw_buf;
125 	}
126 
127 	key = lo->lo_encrypt_key;
128 	keysize = lo->lo_encrypt_key_size;
129 	for (i = 0; i < size; i++)
130 		*out++ = *in++ ^ key[(i & 511) % keysize];
131 
132 	kunmap_atomic(raw_buf, KM_USER0);
133 	kunmap_atomic(loop_buf, KM_USER1);
134 	cond_resched();
135 	return 0;
136 }
137 
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 {
140 	if (unlikely(info->lo_encrypt_key_size <= 0))
141 		return -EINVAL;
142 	return 0;
143 }
144 
145 static struct loop_func_table none_funcs = {
146 	.number = LO_CRYPT_NONE,
147 	.transfer = transfer_none,
148 };
149 
150 static struct loop_func_table xor_funcs = {
151 	.number = LO_CRYPT_XOR,
152 	.transfer = transfer_xor,
153 	.init = xor_init
154 };
155 
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 	&none_funcs,
159 	&xor_funcs
160 };
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	loff_t size, offset, loopsize;
165 
166 	/* Compute loopsize in bytes */
167 	size = i_size_read(file->f_mapping->host);
168 	offset = lo->lo_offset;
169 	loopsize = size - offset;
170 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 		loopsize = lo->lo_sizelimit;
172 
173 	/*
174 	 * Unfortunately, if we want to do I/O on the device,
175 	 * the number of 512-byte sectors has to fit into a sector_t.
176 	 */
177 	return loopsize >> 9;
178 }
179 
180 static int
181 figure_loop_size(struct loop_device *lo)
182 {
183 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 	sector_t x = (sector_t)size;
185 
186 	if (unlikely((loff_t)x != size))
187 		return -EFBIG;
188 
189 	set_capacity(lo->lo_disk, x);
190 	return 0;
191 }
192 
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 	       struct page *rpage, unsigned roffs,
196 	       struct page *lpage, unsigned loffs,
197 	       int size, sector_t rblock)
198 {
199 	if (unlikely(!lo->transfer))
200 		return 0;
201 
202 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
203 }
204 
205 /**
206  * do_lo_send_aops - helper for writing data to a loop device
207  *
208  * This is the fast version for backing filesystems which implement the address
209  * space operations write_begin and write_end.
210  */
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 		loff_t pos, struct page *unused)
213 {
214 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 	struct address_space *mapping = file->f_mapping;
216 	pgoff_t index;
217 	unsigned offset, bv_offs;
218 	int len, ret;
219 
220 	mutex_lock(&mapping->host->i_mutex);
221 	index = pos >> PAGE_CACHE_SHIFT;
222 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 	bv_offs = bvec->bv_offset;
224 	len = bvec->bv_len;
225 	while (len > 0) {
226 		sector_t IV;
227 		unsigned size, copied;
228 		int transfer_result;
229 		struct page *page;
230 		void *fsdata;
231 
232 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 		size = PAGE_CACHE_SIZE - offset;
234 		if (size > len)
235 			size = len;
236 
237 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 							&page, &fsdata);
239 		if (ret)
240 			goto fail;
241 
242 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
243 				bvec->bv_page, bv_offs, size, IV);
244 		copied = size;
245 		if (unlikely(transfer_result))
246 			copied = 0;
247 
248 		ret = pagecache_write_end(file, mapping, pos, size, copied,
249 							page, fsdata);
250 		if (ret < 0 || ret != copied)
251 			goto fail;
252 
253 		if (unlikely(transfer_result))
254 			goto fail;
255 
256 		bv_offs += copied;
257 		len -= copied;
258 		offset = 0;
259 		index++;
260 		pos += copied;
261 	}
262 	ret = 0;
263 out:
264 	mutex_unlock(&mapping->host->i_mutex);
265 	return ret;
266 fail:
267 	ret = -1;
268 	goto out;
269 }
270 
271 /**
272  * __do_lo_send_write - helper for writing data to a loop device
273  *
274  * This helper just factors out common code between do_lo_send_direct_write()
275  * and do_lo_send_write().
276  */
277 static int __do_lo_send_write(struct file *file,
278 		u8 *buf, const int len, loff_t pos)
279 {
280 	ssize_t bw;
281 	mm_segment_t old_fs = get_fs();
282 
283 	set_fs(get_ds());
284 	bw = file->f_op->write(file, buf, len, &pos);
285 	set_fs(old_fs);
286 	if (likely(bw == len))
287 		return 0;
288 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
289 			(unsigned long long)pos, len);
290 	if (bw >= 0)
291 		bw = -EIO;
292 	return bw;
293 }
294 
295 /**
296  * do_lo_send_direct_write - helper for writing data to a loop device
297  *
298  * This is the fast, non-transforming version for backing filesystems which do
299  * not implement the address space operations write_begin and write_end.
300  * It uses the write file operation which should be present on all writeable
301  * filesystems.
302  */
303 static int do_lo_send_direct_write(struct loop_device *lo,
304 		struct bio_vec *bvec, loff_t pos, struct page *page)
305 {
306 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
307 			kmap(bvec->bv_page) + bvec->bv_offset,
308 			bvec->bv_len, pos);
309 	kunmap(bvec->bv_page);
310 	cond_resched();
311 	return bw;
312 }
313 
314 /**
315  * do_lo_send_write - helper for writing data to a loop device
316  *
317  * This is the slow, transforming version for filesystems which do not
318  * implement the address space operations write_begin and write_end.  It
319  * uses the write file operation which should be present on all writeable
320  * filesystems.
321  *
322  * Using fops->write is slower than using aops->{prepare,commit}_write in the
323  * transforming case because we need to double buffer the data as we cannot do
324  * the transformations in place as we do not have direct access to the
325  * destination pages of the backing file.
326  */
327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
328 		loff_t pos, struct page *page)
329 {
330 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
331 			bvec->bv_offset, bvec->bv_len, pos >> 9);
332 	if (likely(!ret))
333 		return __do_lo_send_write(lo->lo_backing_file,
334 				page_address(page), bvec->bv_len,
335 				pos);
336 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
337 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
338 	if (ret > 0)
339 		ret = -EIO;
340 	return ret;
341 }
342 
343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
344 {
345 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
346 			struct page *page);
347 	struct bio_vec *bvec;
348 	struct page *page = NULL;
349 	int i, ret = 0;
350 
351 	do_lo_send = do_lo_send_aops;
352 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
353 		do_lo_send = do_lo_send_direct_write;
354 		if (lo->transfer != transfer_none) {
355 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
356 			if (unlikely(!page))
357 				goto fail;
358 			kmap(page);
359 			do_lo_send = do_lo_send_write;
360 		}
361 	}
362 	bio_for_each_segment(bvec, bio, i) {
363 		ret = do_lo_send(lo, bvec, pos, page);
364 		if (ret < 0)
365 			break;
366 		pos += bvec->bv_len;
367 	}
368 	if (page) {
369 		kunmap(page);
370 		__free_page(page);
371 	}
372 out:
373 	return ret;
374 fail:
375 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
376 	ret = -ENOMEM;
377 	goto out;
378 }
379 
380 struct lo_read_data {
381 	struct loop_device *lo;
382 	struct page *page;
383 	unsigned offset;
384 	int bsize;
385 };
386 
387 static int
388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
389 		struct splice_desc *sd)
390 {
391 	struct lo_read_data *p = sd->u.data;
392 	struct loop_device *lo = p->lo;
393 	struct page *page = buf->page;
394 	sector_t IV;
395 	size_t size;
396 	int ret;
397 
398 	ret = buf->ops->confirm(pipe, buf);
399 	if (unlikely(ret))
400 		return ret;
401 
402 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
403 							(buf->offset >> 9);
404 	size = sd->len;
405 	if (size > p->bsize)
406 		size = p->bsize;
407 
408 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
409 		printk(KERN_ERR "loop: transfer error block %ld\n",
410 		       page->index);
411 		size = -EINVAL;
412 	}
413 
414 	flush_dcache_page(p->page);
415 
416 	if (size > 0)
417 		p->offset += size;
418 
419 	return size;
420 }
421 
422 static int
423 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
424 {
425 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
426 }
427 
428 static int
429 do_lo_receive(struct loop_device *lo,
430 	      struct bio_vec *bvec, int bsize, loff_t pos)
431 {
432 	struct lo_read_data cookie;
433 	struct splice_desc sd;
434 	struct file *file;
435 	long retval;
436 
437 	cookie.lo = lo;
438 	cookie.page = bvec->bv_page;
439 	cookie.offset = bvec->bv_offset;
440 	cookie.bsize = bsize;
441 
442 	sd.len = 0;
443 	sd.total_len = bvec->bv_len;
444 	sd.flags = 0;
445 	sd.pos = pos;
446 	sd.u.data = &cookie;
447 
448 	file = lo->lo_backing_file;
449 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
450 
451 	if (retval < 0)
452 		return retval;
453 
454 	return 0;
455 }
456 
457 static int
458 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
459 {
460 	struct bio_vec *bvec;
461 	int i, ret = 0;
462 
463 	bio_for_each_segment(bvec, bio, i) {
464 		ret = do_lo_receive(lo, bvec, bsize, pos);
465 		if (ret < 0)
466 			break;
467 		pos += bvec->bv_len;
468 	}
469 	return ret;
470 }
471 
472 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
473 {
474 	loff_t pos;
475 	int ret;
476 
477 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
478 	if (bio_rw(bio) == WRITE)
479 		ret = lo_send(lo, bio, pos);
480 	else
481 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
482 	return ret;
483 }
484 
485 /*
486  * Add bio to back of pending list
487  */
488 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
489 {
490 	if (lo->lo_biotail) {
491 		lo->lo_biotail->bi_next = bio;
492 		lo->lo_biotail = bio;
493 	} else
494 		lo->lo_bio = lo->lo_biotail = bio;
495 }
496 
497 /*
498  * Grab first pending buffer
499  */
500 static struct bio *loop_get_bio(struct loop_device *lo)
501 {
502 	struct bio *bio;
503 
504 	if ((bio = lo->lo_bio)) {
505 		if (bio == lo->lo_biotail)
506 			lo->lo_biotail = NULL;
507 		lo->lo_bio = bio->bi_next;
508 		bio->bi_next = NULL;
509 	}
510 
511 	return bio;
512 }
513 
514 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
515 {
516 	struct loop_device *lo = q->queuedata;
517 	int rw = bio_rw(old_bio);
518 
519 	if (rw == READA)
520 		rw = READ;
521 
522 	BUG_ON(!lo || (rw != READ && rw != WRITE));
523 
524 	spin_lock_irq(&lo->lo_lock);
525 	if (lo->lo_state != Lo_bound)
526 		goto out;
527 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
528 		goto out;
529 	loop_add_bio(lo, old_bio);
530 	wake_up(&lo->lo_event);
531 	spin_unlock_irq(&lo->lo_lock);
532 	return 0;
533 
534 out:
535 	spin_unlock_irq(&lo->lo_lock);
536 	bio_io_error(old_bio);
537 	return 0;
538 }
539 
540 /*
541  * kick off io on the underlying address space
542  */
543 static void loop_unplug(struct request_queue *q)
544 {
545 	struct loop_device *lo = q->queuedata;
546 
547 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
548 	blk_run_address_space(lo->lo_backing_file->f_mapping);
549 }
550 
551 struct switch_request {
552 	struct file *file;
553 	struct completion wait;
554 };
555 
556 static void do_loop_switch(struct loop_device *, struct switch_request *);
557 
558 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
559 {
560 	if (unlikely(!bio->bi_bdev)) {
561 		do_loop_switch(lo, bio->bi_private);
562 		bio_put(bio);
563 	} else {
564 		int ret = do_bio_filebacked(lo, bio);
565 		bio_endio(bio, ret);
566 	}
567 }
568 
569 /*
570  * worker thread that handles reads/writes to file backed loop devices,
571  * to avoid blocking in our make_request_fn. it also does loop decrypting
572  * on reads for block backed loop, as that is too heavy to do from
573  * b_end_io context where irqs may be disabled.
574  *
575  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
576  * calling kthread_stop().  Therefore once kthread_should_stop() is
577  * true, make_request will not place any more requests.  Therefore
578  * once kthread_should_stop() is true and lo_bio is NULL, we are
579  * done with the loop.
580  */
581 static int loop_thread(void *data)
582 {
583 	struct loop_device *lo = data;
584 	struct bio *bio;
585 
586 	set_user_nice(current, -20);
587 
588 	while (!kthread_should_stop() || lo->lo_bio) {
589 
590 		wait_event_interruptible(lo->lo_event,
591 				lo->lo_bio || kthread_should_stop());
592 
593 		if (!lo->lo_bio)
594 			continue;
595 		spin_lock_irq(&lo->lo_lock);
596 		bio = loop_get_bio(lo);
597 		spin_unlock_irq(&lo->lo_lock);
598 
599 		BUG_ON(!bio);
600 		loop_handle_bio(lo, bio);
601 	}
602 
603 	return 0;
604 }
605 
606 /*
607  * loop_switch performs the hard work of switching a backing store.
608  * First it needs to flush existing IO, it does this by sending a magic
609  * BIO down the pipe. The completion of this BIO does the actual switch.
610  */
611 static int loop_switch(struct loop_device *lo, struct file *file)
612 {
613 	struct switch_request w;
614 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
615 	if (!bio)
616 		return -ENOMEM;
617 	init_completion(&w.wait);
618 	w.file = file;
619 	bio->bi_private = &w;
620 	bio->bi_bdev = NULL;
621 	loop_make_request(lo->lo_queue, bio);
622 	wait_for_completion(&w.wait);
623 	return 0;
624 }
625 
626 /*
627  * Do the actual switch; called from the BIO completion routine
628  */
629 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
630 {
631 	struct file *file = p->file;
632 	struct file *old_file = lo->lo_backing_file;
633 	struct address_space *mapping = file->f_mapping;
634 
635 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
636 	lo->lo_backing_file = file;
637 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
638 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
639 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
640 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
641 	complete(&p->wait);
642 }
643 
644 
645 /*
646  * loop_change_fd switched the backing store of a loopback device to
647  * a new file. This is useful for operating system installers to free up
648  * the original file and in High Availability environments to switch to
649  * an alternative location for the content in case of server meltdown.
650  * This can only work if the loop device is used read-only, and if the
651  * new backing store is the same size and type as the old backing store.
652  */
653 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
654 			  unsigned int arg)
655 {
656 	struct file	*file, *old_file;
657 	struct inode	*inode;
658 	int		error;
659 
660 	error = -ENXIO;
661 	if (lo->lo_state != Lo_bound)
662 		goto out;
663 
664 	/* the loop device has to be read-only */
665 	error = -EINVAL;
666 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
667 		goto out;
668 
669 	error = -EBADF;
670 	file = fget(arg);
671 	if (!file)
672 		goto out;
673 
674 	inode = file->f_mapping->host;
675 	old_file = lo->lo_backing_file;
676 
677 	error = -EINVAL;
678 
679 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
680 		goto out_putf;
681 
682 	/* new backing store needs to support loop (eg splice_read) */
683 	if (!inode->i_fop->splice_read)
684 		goto out_putf;
685 
686 	/* size of the new backing store needs to be the same */
687 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
688 		goto out_putf;
689 
690 	/* and ... switch */
691 	error = loop_switch(lo, file);
692 	if (error)
693 		goto out_putf;
694 
695 	fput(old_file);
696 	if (max_part > 0)
697 		ioctl_by_bdev(bdev, BLKRRPART, 0);
698 	return 0;
699 
700  out_putf:
701 	fput(file);
702  out:
703 	return error;
704 }
705 
706 static inline int is_loop_device(struct file *file)
707 {
708 	struct inode *i = file->f_mapping->host;
709 
710 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
711 }
712 
713 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
714 		       struct block_device *bdev, unsigned int arg)
715 {
716 	struct file	*file, *f;
717 	struct inode	*inode;
718 	struct address_space *mapping;
719 	unsigned lo_blocksize;
720 	int		lo_flags = 0;
721 	int		error;
722 	loff_t		size;
723 
724 	/* This is safe, since we have a reference from open(). */
725 	__module_get(THIS_MODULE);
726 
727 	error = -EBADF;
728 	file = fget(arg);
729 	if (!file)
730 		goto out;
731 
732 	error = -EBUSY;
733 	if (lo->lo_state != Lo_unbound)
734 		goto out_putf;
735 
736 	/* Avoid recursion */
737 	f = file;
738 	while (is_loop_device(f)) {
739 		struct loop_device *l;
740 
741 		if (f->f_mapping->host->i_bdev == bdev)
742 			goto out_putf;
743 
744 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
745 		if (l->lo_state == Lo_unbound) {
746 			error = -EINVAL;
747 			goto out_putf;
748 		}
749 		f = l->lo_backing_file;
750 	}
751 
752 	mapping = file->f_mapping;
753 	inode = mapping->host;
754 
755 	if (!(file->f_mode & FMODE_WRITE))
756 		lo_flags |= LO_FLAGS_READ_ONLY;
757 
758 	error = -EINVAL;
759 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
760 		const struct address_space_operations *aops = mapping->a_ops;
761 		/*
762 		 * If we can't read - sorry. If we only can't write - well,
763 		 * it's going to be read-only.
764 		 */
765 		if (!file->f_op->splice_read)
766 			goto out_putf;
767 		if (aops->write_begin)
768 			lo_flags |= LO_FLAGS_USE_AOPS;
769 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
770 			lo_flags |= LO_FLAGS_READ_ONLY;
771 
772 		lo_blocksize = S_ISBLK(inode->i_mode) ?
773 			inode->i_bdev->bd_block_size : PAGE_SIZE;
774 
775 		error = 0;
776 	} else {
777 		goto out_putf;
778 	}
779 
780 	size = get_loop_size(lo, file);
781 
782 	if ((loff_t)(sector_t)size != size) {
783 		error = -EFBIG;
784 		goto out_putf;
785 	}
786 
787 	if (!(mode & FMODE_WRITE))
788 		lo_flags |= LO_FLAGS_READ_ONLY;
789 
790 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
791 
792 	lo->lo_blocksize = lo_blocksize;
793 	lo->lo_device = bdev;
794 	lo->lo_flags = lo_flags;
795 	lo->lo_backing_file = file;
796 	lo->transfer = transfer_none;
797 	lo->ioctl = NULL;
798 	lo->lo_sizelimit = 0;
799 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
800 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
801 
802 	lo->lo_bio = lo->lo_biotail = NULL;
803 
804 	/*
805 	 * set queue make_request_fn, and add limits based on lower level
806 	 * device
807 	 */
808 	blk_queue_make_request(lo->lo_queue, loop_make_request);
809 	lo->lo_queue->queuedata = lo;
810 	lo->lo_queue->unplug_fn = loop_unplug;
811 
812 	set_capacity(lo->lo_disk, size);
813 	bd_set_size(bdev, size << 9);
814 
815 	set_blocksize(bdev, lo_blocksize);
816 
817 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
818 						lo->lo_number);
819 	if (IS_ERR(lo->lo_thread)) {
820 		error = PTR_ERR(lo->lo_thread);
821 		goto out_clr;
822 	}
823 	lo->lo_state = Lo_bound;
824 	wake_up_process(lo->lo_thread);
825 	if (max_part > 0)
826 		ioctl_by_bdev(bdev, BLKRRPART, 0);
827 	return 0;
828 
829 out_clr:
830 	lo->lo_thread = NULL;
831 	lo->lo_device = NULL;
832 	lo->lo_backing_file = NULL;
833 	lo->lo_flags = 0;
834 	set_capacity(lo->lo_disk, 0);
835 	invalidate_bdev(bdev);
836 	bd_set_size(bdev, 0);
837 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
838 	lo->lo_state = Lo_unbound;
839  out_putf:
840 	fput(file);
841  out:
842 	/* This is safe: open() is still holding a reference. */
843 	module_put(THIS_MODULE);
844 	return error;
845 }
846 
847 static int
848 loop_release_xfer(struct loop_device *lo)
849 {
850 	int err = 0;
851 	struct loop_func_table *xfer = lo->lo_encryption;
852 
853 	if (xfer) {
854 		if (xfer->release)
855 			err = xfer->release(lo);
856 		lo->transfer = NULL;
857 		lo->lo_encryption = NULL;
858 		module_put(xfer->owner);
859 	}
860 	return err;
861 }
862 
863 static int
864 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
865 	       const struct loop_info64 *i)
866 {
867 	int err = 0;
868 
869 	if (xfer) {
870 		struct module *owner = xfer->owner;
871 
872 		if (!try_module_get(owner))
873 			return -EINVAL;
874 		if (xfer->init)
875 			err = xfer->init(lo, i);
876 		if (err)
877 			module_put(owner);
878 		else
879 			lo->lo_encryption = xfer;
880 	}
881 	return err;
882 }
883 
884 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
885 {
886 	struct file *filp = lo->lo_backing_file;
887 	gfp_t gfp = lo->old_gfp_mask;
888 
889 	if (lo->lo_state != Lo_bound)
890 		return -ENXIO;
891 
892 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
893 		return -EBUSY;
894 
895 	if (filp == NULL)
896 		return -EINVAL;
897 
898 	spin_lock_irq(&lo->lo_lock);
899 	lo->lo_state = Lo_rundown;
900 	spin_unlock_irq(&lo->lo_lock);
901 
902 	kthread_stop(lo->lo_thread);
903 
904 	lo->lo_backing_file = NULL;
905 
906 	loop_release_xfer(lo);
907 	lo->transfer = NULL;
908 	lo->ioctl = NULL;
909 	lo->lo_device = NULL;
910 	lo->lo_encryption = NULL;
911 	lo->lo_offset = 0;
912 	lo->lo_sizelimit = 0;
913 	lo->lo_encrypt_key_size = 0;
914 	lo->lo_flags = 0;
915 	lo->lo_thread = NULL;
916 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
917 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
918 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
919 	if (bdev)
920 		invalidate_bdev(bdev);
921 	set_capacity(lo->lo_disk, 0);
922 	if (bdev)
923 		bd_set_size(bdev, 0);
924 	mapping_set_gfp_mask(filp->f_mapping, gfp);
925 	lo->lo_state = Lo_unbound;
926 	fput(filp);
927 	/* This is safe: open() is still holding a reference. */
928 	module_put(THIS_MODULE);
929 	if (max_part > 0)
930 		ioctl_by_bdev(bdev, BLKRRPART, 0);
931 	return 0;
932 }
933 
934 static int
935 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
936 {
937 	int err;
938 	struct loop_func_table *xfer;
939 
940 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
941 	    !capable(CAP_SYS_ADMIN))
942 		return -EPERM;
943 	if (lo->lo_state != Lo_bound)
944 		return -ENXIO;
945 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
946 		return -EINVAL;
947 
948 	err = loop_release_xfer(lo);
949 	if (err)
950 		return err;
951 
952 	if (info->lo_encrypt_type) {
953 		unsigned int type = info->lo_encrypt_type;
954 
955 		if (type >= MAX_LO_CRYPT)
956 			return -EINVAL;
957 		xfer = xfer_funcs[type];
958 		if (xfer == NULL)
959 			return -EINVAL;
960 	} else
961 		xfer = NULL;
962 
963 	err = loop_init_xfer(lo, xfer, info);
964 	if (err)
965 		return err;
966 
967 	if (lo->lo_offset != info->lo_offset ||
968 	    lo->lo_sizelimit != info->lo_sizelimit) {
969 		lo->lo_offset = info->lo_offset;
970 		lo->lo_sizelimit = info->lo_sizelimit;
971 		if (figure_loop_size(lo))
972 			return -EFBIG;
973 	}
974 
975 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
976 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
977 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
978 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
979 
980 	if (!xfer)
981 		xfer = &none_funcs;
982 	lo->transfer = xfer->transfer;
983 	lo->ioctl = xfer->ioctl;
984 
985 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
986 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
987 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
988 
989 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
990 	lo->lo_init[0] = info->lo_init[0];
991 	lo->lo_init[1] = info->lo_init[1];
992 	if (info->lo_encrypt_key_size) {
993 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
994 		       info->lo_encrypt_key_size);
995 		lo->lo_key_owner = current->uid;
996 	}
997 
998 	return 0;
999 }
1000 
1001 static int
1002 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1003 {
1004 	struct file *file = lo->lo_backing_file;
1005 	struct kstat stat;
1006 	int error;
1007 
1008 	if (lo->lo_state != Lo_bound)
1009 		return -ENXIO;
1010 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1011 	if (error)
1012 		return error;
1013 	memset(info, 0, sizeof(*info));
1014 	info->lo_number = lo->lo_number;
1015 	info->lo_device = huge_encode_dev(stat.dev);
1016 	info->lo_inode = stat.ino;
1017 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1018 	info->lo_offset = lo->lo_offset;
1019 	info->lo_sizelimit = lo->lo_sizelimit;
1020 	info->lo_flags = lo->lo_flags;
1021 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1022 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1023 	info->lo_encrypt_type =
1024 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1025 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1026 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1027 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1028 		       lo->lo_encrypt_key_size);
1029 	}
1030 	return 0;
1031 }
1032 
1033 static void
1034 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1035 {
1036 	memset(info64, 0, sizeof(*info64));
1037 	info64->lo_number = info->lo_number;
1038 	info64->lo_device = info->lo_device;
1039 	info64->lo_inode = info->lo_inode;
1040 	info64->lo_rdevice = info->lo_rdevice;
1041 	info64->lo_offset = info->lo_offset;
1042 	info64->lo_sizelimit = 0;
1043 	info64->lo_encrypt_type = info->lo_encrypt_type;
1044 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1045 	info64->lo_flags = info->lo_flags;
1046 	info64->lo_init[0] = info->lo_init[0];
1047 	info64->lo_init[1] = info->lo_init[1];
1048 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1049 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1050 	else
1051 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1052 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1053 }
1054 
1055 static int
1056 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1057 {
1058 	memset(info, 0, sizeof(*info));
1059 	info->lo_number = info64->lo_number;
1060 	info->lo_device = info64->lo_device;
1061 	info->lo_inode = info64->lo_inode;
1062 	info->lo_rdevice = info64->lo_rdevice;
1063 	info->lo_offset = info64->lo_offset;
1064 	info->lo_encrypt_type = info64->lo_encrypt_type;
1065 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1066 	info->lo_flags = info64->lo_flags;
1067 	info->lo_init[0] = info64->lo_init[0];
1068 	info->lo_init[1] = info64->lo_init[1];
1069 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1070 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1071 	else
1072 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1073 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1074 
1075 	/* error in case values were truncated */
1076 	if (info->lo_device != info64->lo_device ||
1077 	    info->lo_rdevice != info64->lo_rdevice ||
1078 	    info->lo_inode != info64->lo_inode ||
1079 	    info->lo_offset != info64->lo_offset)
1080 		return -EOVERFLOW;
1081 
1082 	return 0;
1083 }
1084 
1085 static int
1086 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1087 {
1088 	struct loop_info info;
1089 	struct loop_info64 info64;
1090 
1091 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1092 		return -EFAULT;
1093 	loop_info64_from_old(&info, &info64);
1094 	return loop_set_status(lo, &info64);
1095 }
1096 
1097 static int
1098 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1099 {
1100 	struct loop_info64 info64;
1101 
1102 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1103 		return -EFAULT;
1104 	return loop_set_status(lo, &info64);
1105 }
1106 
1107 static int
1108 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1109 	struct loop_info info;
1110 	struct loop_info64 info64;
1111 	int err = 0;
1112 
1113 	if (!arg)
1114 		err = -EINVAL;
1115 	if (!err)
1116 		err = loop_get_status(lo, &info64);
1117 	if (!err)
1118 		err = loop_info64_to_old(&info64, &info);
1119 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1120 		err = -EFAULT;
1121 
1122 	return err;
1123 }
1124 
1125 static int
1126 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1127 	struct loop_info64 info64;
1128 	int err = 0;
1129 
1130 	if (!arg)
1131 		err = -EINVAL;
1132 	if (!err)
1133 		err = loop_get_status(lo, &info64);
1134 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1135 		err = -EFAULT;
1136 
1137 	return err;
1138 }
1139 
1140 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1141 	unsigned int cmd, unsigned long arg)
1142 {
1143 	struct loop_device *lo = bdev->bd_disk->private_data;
1144 	int err;
1145 
1146 	mutex_lock(&lo->lo_ctl_mutex);
1147 	switch (cmd) {
1148 	case LOOP_SET_FD:
1149 		err = loop_set_fd(lo, mode, bdev, arg);
1150 		break;
1151 	case LOOP_CHANGE_FD:
1152 		err = loop_change_fd(lo, bdev, arg);
1153 		break;
1154 	case LOOP_CLR_FD:
1155 		err = loop_clr_fd(lo, bdev);
1156 		break;
1157 	case LOOP_SET_STATUS:
1158 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1159 		break;
1160 	case LOOP_GET_STATUS:
1161 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1162 		break;
1163 	case LOOP_SET_STATUS64:
1164 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1165 		break;
1166 	case LOOP_GET_STATUS64:
1167 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1168 		break;
1169 	default:
1170 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1171 	}
1172 	mutex_unlock(&lo->lo_ctl_mutex);
1173 	return err;
1174 }
1175 
1176 #ifdef CONFIG_COMPAT
1177 struct compat_loop_info {
1178 	compat_int_t	lo_number;      /* ioctl r/o */
1179 	compat_dev_t	lo_device;      /* ioctl r/o */
1180 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1181 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1182 	compat_int_t	lo_offset;
1183 	compat_int_t	lo_encrypt_type;
1184 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1185 	compat_int_t	lo_flags;       /* ioctl r/o */
1186 	char		lo_name[LO_NAME_SIZE];
1187 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1188 	compat_ulong_t	lo_init[2];
1189 	char		reserved[4];
1190 };
1191 
1192 /*
1193  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1194  * - noinlined to reduce stack space usage in main part of driver
1195  */
1196 static noinline int
1197 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1198 			struct loop_info64 *info64)
1199 {
1200 	struct compat_loop_info info;
1201 
1202 	if (copy_from_user(&info, arg, sizeof(info)))
1203 		return -EFAULT;
1204 
1205 	memset(info64, 0, sizeof(*info64));
1206 	info64->lo_number = info.lo_number;
1207 	info64->lo_device = info.lo_device;
1208 	info64->lo_inode = info.lo_inode;
1209 	info64->lo_rdevice = info.lo_rdevice;
1210 	info64->lo_offset = info.lo_offset;
1211 	info64->lo_sizelimit = 0;
1212 	info64->lo_encrypt_type = info.lo_encrypt_type;
1213 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1214 	info64->lo_flags = info.lo_flags;
1215 	info64->lo_init[0] = info.lo_init[0];
1216 	info64->lo_init[1] = info.lo_init[1];
1217 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1218 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1219 	else
1220 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1221 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1227  * - noinlined to reduce stack space usage in main part of driver
1228  */
1229 static noinline int
1230 loop_info64_to_compat(const struct loop_info64 *info64,
1231 		      struct compat_loop_info __user *arg)
1232 {
1233 	struct compat_loop_info info;
1234 
1235 	memset(&info, 0, sizeof(info));
1236 	info.lo_number = info64->lo_number;
1237 	info.lo_device = info64->lo_device;
1238 	info.lo_inode = info64->lo_inode;
1239 	info.lo_rdevice = info64->lo_rdevice;
1240 	info.lo_offset = info64->lo_offset;
1241 	info.lo_encrypt_type = info64->lo_encrypt_type;
1242 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1243 	info.lo_flags = info64->lo_flags;
1244 	info.lo_init[0] = info64->lo_init[0];
1245 	info.lo_init[1] = info64->lo_init[1];
1246 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1247 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1248 	else
1249 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1250 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1251 
1252 	/* error in case values were truncated */
1253 	if (info.lo_device != info64->lo_device ||
1254 	    info.lo_rdevice != info64->lo_rdevice ||
1255 	    info.lo_inode != info64->lo_inode ||
1256 	    info.lo_offset != info64->lo_offset ||
1257 	    info.lo_init[0] != info64->lo_init[0] ||
1258 	    info.lo_init[1] != info64->lo_init[1])
1259 		return -EOVERFLOW;
1260 
1261 	if (copy_to_user(arg, &info, sizeof(info)))
1262 		return -EFAULT;
1263 	return 0;
1264 }
1265 
1266 static int
1267 loop_set_status_compat(struct loop_device *lo,
1268 		       const struct compat_loop_info __user *arg)
1269 {
1270 	struct loop_info64 info64;
1271 	int ret;
1272 
1273 	ret = loop_info64_from_compat(arg, &info64);
1274 	if (ret < 0)
1275 		return ret;
1276 	return loop_set_status(lo, &info64);
1277 }
1278 
1279 static int
1280 loop_get_status_compat(struct loop_device *lo,
1281 		       struct compat_loop_info __user *arg)
1282 {
1283 	struct loop_info64 info64;
1284 	int err = 0;
1285 
1286 	if (!arg)
1287 		err = -EINVAL;
1288 	if (!err)
1289 		err = loop_get_status(lo, &info64);
1290 	if (!err)
1291 		err = loop_info64_to_compat(&info64, arg);
1292 	return err;
1293 }
1294 
1295 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1296 			   unsigned int cmd, unsigned long arg)
1297 {
1298 	struct loop_device *lo = bdev->bd_disk->private_data;
1299 	int err;
1300 
1301 	switch(cmd) {
1302 	case LOOP_SET_STATUS:
1303 		mutex_lock(&lo->lo_ctl_mutex);
1304 		err = loop_set_status_compat(
1305 			lo, (const struct compat_loop_info __user *) arg);
1306 		mutex_unlock(&lo->lo_ctl_mutex);
1307 		break;
1308 	case LOOP_GET_STATUS:
1309 		mutex_lock(&lo->lo_ctl_mutex);
1310 		err = loop_get_status_compat(
1311 			lo, (struct compat_loop_info __user *) arg);
1312 		mutex_unlock(&lo->lo_ctl_mutex);
1313 		break;
1314 	case LOOP_CLR_FD:
1315 	case LOOP_GET_STATUS64:
1316 	case LOOP_SET_STATUS64:
1317 		arg = (unsigned long) compat_ptr(arg);
1318 	case LOOP_SET_FD:
1319 	case LOOP_CHANGE_FD:
1320 		err = lo_ioctl(bdev, mode, cmd, arg);
1321 		break;
1322 	default:
1323 		err = -ENOIOCTLCMD;
1324 		break;
1325 	}
1326 	return err;
1327 }
1328 #endif
1329 
1330 static int lo_open(struct block_device *bdev, fmode_t mode)
1331 {
1332 	struct loop_device *lo = bdev->bd_disk->private_data;
1333 
1334 	mutex_lock(&lo->lo_ctl_mutex);
1335 	lo->lo_refcnt++;
1336 	mutex_unlock(&lo->lo_ctl_mutex);
1337 
1338 	return 0;
1339 }
1340 
1341 static int lo_release(struct gendisk *disk, fmode_t mode)
1342 {
1343 	struct loop_device *lo = disk->private_data;
1344 
1345 	mutex_lock(&lo->lo_ctl_mutex);
1346 	--lo->lo_refcnt;
1347 
1348 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt)
1349 		loop_clr_fd(lo, NULL);
1350 
1351 	mutex_unlock(&lo->lo_ctl_mutex);
1352 
1353 	return 0;
1354 }
1355 
1356 static struct block_device_operations lo_fops = {
1357 	.owner =	THIS_MODULE,
1358 	.open =		lo_open,
1359 	.release =	lo_release,
1360 	.ioctl =	lo_ioctl,
1361 #ifdef CONFIG_COMPAT
1362 	.compat_ioctl =	lo_compat_ioctl,
1363 #endif
1364 };
1365 
1366 /*
1367  * And now the modules code and kernel interface.
1368  */
1369 static int max_loop;
1370 module_param(max_loop, int, 0);
1371 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1372 module_param(max_part, int, 0);
1373 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1374 MODULE_LICENSE("GPL");
1375 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1376 
1377 int loop_register_transfer(struct loop_func_table *funcs)
1378 {
1379 	unsigned int n = funcs->number;
1380 
1381 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1382 		return -EINVAL;
1383 	xfer_funcs[n] = funcs;
1384 	return 0;
1385 }
1386 
1387 int loop_unregister_transfer(int number)
1388 {
1389 	unsigned int n = number;
1390 	struct loop_device *lo;
1391 	struct loop_func_table *xfer;
1392 
1393 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1394 		return -EINVAL;
1395 
1396 	xfer_funcs[n] = NULL;
1397 
1398 	list_for_each_entry(lo, &loop_devices, lo_list) {
1399 		mutex_lock(&lo->lo_ctl_mutex);
1400 
1401 		if (lo->lo_encryption == xfer)
1402 			loop_release_xfer(lo);
1403 
1404 		mutex_unlock(&lo->lo_ctl_mutex);
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 EXPORT_SYMBOL(loop_register_transfer);
1411 EXPORT_SYMBOL(loop_unregister_transfer);
1412 
1413 static struct loop_device *loop_alloc(int i)
1414 {
1415 	struct loop_device *lo;
1416 	struct gendisk *disk;
1417 
1418 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1419 	if (!lo)
1420 		goto out;
1421 
1422 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1423 	if (!lo->lo_queue)
1424 		goto out_free_dev;
1425 
1426 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1427 	if (!disk)
1428 		goto out_free_queue;
1429 
1430 	mutex_init(&lo->lo_ctl_mutex);
1431 	lo->lo_number		= i;
1432 	lo->lo_thread		= NULL;
1433 	init_waitqueue_head(&lo->lo_event);
1434 	spin_lock_init(&lo->lo_lock);
1435 	disk->major		= LOOP_MAJOR;
1436 	disk->first_minor	= i << part_shift;
1437 	disk->fops		= &lo_fops;
1438 	disk->private_data	= lo;
1439 	disk->queue		= lo->lo_queue;
1440 	sprintf(disk->disk_name, "loop%d", i);
1441 	return lo;
1442 
1443 out_free_queue:
1444 	blk_cleanup_queue(lo->lo_queue);
1445 out_free_dev:
1446 	kfree(lo);
1447 out:
1448 	return NULL;
1449 }
1450 
1451 static void loop_free(struct loop_device *lo)
1452 {
1453 	blk_cleanup_queue(lo->lo_queue);
1454 	put_disk(lo->lo_disk);
1455 	list_del(&lo->lo_list);
1456 	kfree(lo);
1457 }
1458 
1459 static struct loop_device *loop_init_one(int i)
1460 {
1461 	struct loop_device *lo;
1462 
1463 	list_for_each_entry(lo, &loop_devices, lo_list) {
1464 		if (lo->lo_number == i)
1465 			return lo;
1466 	}
1467 
1468 	lo = loop_alloc(i);
1469 	if (lo) {
1470 		add_disk(lo->lo_disk);
1471 		list_add_tail(&lo->lo_list, &loop_devices);
1472 	}
1473 	return lo;
1474 }
1475 
1476 static void loop_del_one(struct loop_device *lo)
1477 {
1478 	del_gendisk(lo->lo_disk);
1479 	loop_free(lo);
1480 }
1481 
1482 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1483 {
1484 	struct loop_device *lo;
1485 	struct kobject *kobj;
1486 
1487 	mutex_lock(&loop_devices_mutex);
1488 	lo = loop_init_one(dev & MINORMASK);
1489 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1490 	mutex_unlock(&loop_devices_mutex);
1491 
1492 	*part = 0;
1493 	return kobj;
1494 }
1495 
1496 static int __init loop_init(void)
1497 {
1498 	int i, nr;
1499 	unsigned long range;
1500 	struct loop_device *lo, *next;
1501 
1502 	/*
1503 	 * loop module now has a feature to instantiate underlying device
1504 	 * structure on-demand, provided that there is an access dev node.
1505 	 * However, this will not work well with user space tool that doesn't
1506 	 * know about such "feature".  In order to not break any existing
1507 	 * tool, we do the following:
1508 	 *
1509 	 * (1) if max_loop is specified, create that many upfront, and this
1510 	 *     also becomes a hard limit.
1511 	 * (2) if max_loop is not specified, create 8 loop device on module
1512 	 *     load, user can further extend loop device by create dev node
1513 	 *     themselves and have kernel automatically instantiate actual
1514 	 *     device on-demand.
1515 	 */
1516 
1517 	part_shift = 0;
1518 	if (max_part > 0)
1519 		part_shift = fls(max_part);
1520 
1521 	if (max_loop > 1UL << (MINORBITS - part_shift))
1522 		return -EINVAL;
1523 
1524 	if (max_loop) {
1525 		nr = max_loop;
1526 		range = max_loop;
1527 	} else {
1528 		nr = 8;
1529 		range = 1UL << (MINORBITS - part_shift);
1530 	}
1531 
1532 	if (register_blkdev(LOOP_MAJOR, "loop"))
1533 		return -EIO;
1534 
1535 	for (i = 0; i < nr; i++) {
1536 		lo = loop_alloc(i);
1537 		if (!lo)
1538 			goto Enomem;
1539 		list_add_tail(&lo->lo_list, &loop_devices);
1540 	}
1541 
1542 	/* point of no return */
1543 
1544 	list_for_each_entry(lo, &loop_devices, lo_list)
1545 		add_disk(lo->lo_disk);
1546 
1547 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1548 				  THIS_MODULE, loop_probe, NULL, NULL);
1549 
1550 	printk(KERN_INFO "loop: module loaded\n");
1551 	return 0;
1552 
1553 Enomem:
1554 	printk(KERN_INFO "loop: out of memory\n");
1555 
1556 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1557 		loop_free(lo);
1558 
1559 	unregister_blkdev(LOOP_MAJOR, "loop");
1560 	return -ENOMEM;
1561 }
1562 
1563 static void __exit loop_exit(void)
1564 {
1565 	unsigned long range;
1566 	struct loop_device *lo, *next;
1567 
1568 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1569 
1570 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1571 		loop_del_one(lo);
1572 
1573 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1574 	unregister_blkdev(LOOP_MAJOR, "loop");
1575 }
1576 
1577 module_init(loop_init);
1578 module_exit(loop_exit);
1579 
1580 #ifndef MODULE
1581 static int __init max_loop_setup(char *str)
1582 {
1583 	max_loop = simple_strtol(str, NULL, 0);
1584 	return 1;
1585 }
1586 
1587 __setup("max_loop=", max_loop_setup);
1588 #endif
1589