1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/smp_lock.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/loop.h> 68 #include <linux/compat.h> 69 #include <linux/suspend.h> 70 #include <linux/freezer.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/gfp.h> 76 #include <linux/kthread.h> 77 #include <linux/splice.h> 78 79 #include <asm/uaccess.h> 80 81 static LIST_HEAD(loop_devices); 82 static DEFINE_MUTEX(loop_devices_mutex); 83 84 static int max_part; 85 static int part_shift; 86 87 /* 88 * Transfer functions 89 */ 90 static int transfer_none(struct loop_device *lo, int cmd, 91 struct page *raw_page, unsigned raw_off, 92 struct page *loop_page, unsigned loop_off, 93 int size, sector_t real_block) 94 { 95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 97 98 if (cmd == READ) 99 memcpy(loop_buf, raw_buf, size); 100 else 101 memcpy(raw_buf, loop_buf, size); 102 103 kunmap_atomic(raw_buf, KM_USER0); 104 kunmap_atomic(loop_buf, KM_USER1); 105 cond_resched(); 106 return 0; 107 } 108 109 static int transfer_xor(struct loop_device *lo, int cmd, 110 struct page *raw_page, unsigned raw_off, 111 struct page *loop_page, unsigned loop_off, 112 int size, sector_t real_block) 113 { 114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 116 char *in, *out, *key; 117 int i, keysize; 118 119 if (cmd == READ) { 120 in = raw_buf; 121 out = loop_buf; 122 } else { 123 in = loop_buf; 124 out = raw_buf; 125 } 126 127 key = lo->lo_encrypt_key; 128 keysize = lo->lo_encrypt_key_size; 129 for (i = 0; i < size; i++) 130 *out++ = *in++ ^ key[(i & 511) % keysize]; 131 132 kunmap_atomic(raw_buf, KM_USER0); 133 kunmap_atomic(loop_buf, KM_USER1); 134 cond_resched(); 135 return 0; 136 } 137 138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 139 { 140 if (unlikely(info->lo_encrypt_key_size <= 0)) 141 return -EINVAL; 142 return 0; 143 } 144 145 static struct loop_func_table none_funcs = { 146 .number = LO_CRYPT_NONE, 147 .transfer = transfer_none, 148 }; 149 150 static struct loop_func_table xor_funcs = { 151 .number = LO_CRYPT_XOR, 152 .transfer = transfer_xor, 153 .init = xor_init 154 }; 155 156 /* xfer_funcs[0] is special - its release function is never called */ 157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 158 &none_funcs, 159 &xor_funcs 160 }; 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 loff_t size, offset, loopsize; 165 166 /* Compute loopsize in bytes */ 167 size = i_size_read(file->f_mapping->host); 168 offset = lo->lo_offset; 169 loopsize = size - offset; 170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 171 loopsize = lo->lo_sizelimit; 172 173 /* 174 * Unfortunately, if we want to do I/O on the device, 175 * the number of 512-byte sectors has to fit into a sector_t. 176 */ 177 return loopsize >> 9; 178 } 179 180 static int 181 figure_loop_size(struct loop_device *lo) 182 { 183 loff_t size = get_loop_size(lo, lo->lo_backing_file); 184 sector_t x = (sector_t)size; 185 186 if (unlikely((loff_t)x != size)) 187 return -EFBIG; 188 189 set_capacity(lo->lo_disk, x); 190 return 0; 191 } 192 193 static inline int 194 lo_do_transfer(struct loop_device *lo, int cmd, 195 struct page *rpage, unsigned roffs, 196 struct page *lpage, unsigned loffs, 197 int size, sector_t rblock) 198 { 199 if (unlikely(!lo->transfer)) 200 return 0; 201 202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 203 } 204 205 /** 206 * do_lo_send_aops - helper for writing data to a loop device 207 * 208 * This is the fast version for backing filesystems which implement the address 209 * space operations write_begin and write_end. 210 */ 211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 212 loff_t pos, struct page *unused) 213 { 214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 215 struct address_space *mapping = file->f_mapping; 216 pgoff_t index; 217 unsigned offset, bv_offs; 218 int len, ret; 219 220 mutex_lock(&mapping->host->i_mutex); 221 index = pos >> PAGE_CACHE_SHIFT; 222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 223 bv_offs = bvec->bv_offset; 224 len = bvec->bv_len; 225 while (len > 0) { 226 sector_t IV; 227 unsigned size, copied; 228 int transfer_result; 229 struct page *page; 230 void *fsdata; 231 232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 233 size = PAGE_CACHE_SIZE - offset; 234 if (size > len) 235 size = len; 236 237 ret = pagecache_write_begin(file, mapping, pos, size, 0, 238 &page, &fsdata); 239 if (ret) 240 goto fail; 241 242 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 243 bvec->bv_page, bv_offs, size, IV); 244 copied = size; 245 if (unlikely(transfer_result)) 246 copied = 0; 247 248 ret = pagecache_write_end(file, mapping, pos, size, copied, 249 page, fsdata); 250 if (ret < 0 || ret != copied) 251 goto fail; 252 253 if (unlikely(transfer_result)) 254 goto fail; 255 256 bv_offs += copied; 257 len -= copied; 258 offset = 0; 259 index++; 260 pos += copied; 261 } 262 ret = 0; 263 out: 264 mutex_unlock(&mapping->host->i_mutex); 265 return ret; 266 fail: 267 ret = -1; 268 goto out; 269 } 270 271 /** 272 * __do_lo_send_write - helper for writing data to a loop device 273 * 274 * This helper just factors out common code between do_lo_send_direct_write() 275 * and do_lo_send_write(). 276 */ 277 static int __do_lo_send_write(struct file *file, 278 u8 *buf, const int len, loff_t pos) 279 { 280 ssize_t bw; 281 mm_segment_t old_fs = get_fs(); 282 283 set_fs(get_ds()); 284 bw = file->f_op->write(file, buf, len, &pos); 285 set_fs(old_fs); 286 if (likely(bw == len)) 287 return 0; 288 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 289 (unsigned long long)pos, len); 290 if (bw >= 0) 291 bw = -EIO; 292 return bw; 293 } 294 295 /** 296 * do_lo_send_direct_write - helper for writing data to a loop device 297 * 298 * This is the fast, non-transforming version for backing filesystems which do 299 * not implement the address space operations write_begin and write_end. 300 * It uses the write file operation which should be present on all writeable 301 * filesystems. 302 */ 303 static int do_lo_send_direct_write(struct loop_device *lo, 304 struct bio_vec *bvec, loff_t pos, struct page *page) 305 { 306 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 307 kmap(bvec->bv_page) + bvec->bv_offset, 308 bvec->bv_len, pos); 309 kunmap(bvec->bv_page); 310 cond_resched(); 311 return bw; 312 } 313 314 /** 315 * do_lo_send_write - helper for writing data to a loop device 316 * 317 * This is the slow, transforming version for filesystems which do not 318 * implement the address space operations write_begin and write_end. It 319 * uses the write file operation which should be present on all writeable 320 * filesystems. 321 * 322 * Using fops->write is slower than using aops->{prepare,commit}_write in the 323 * transforming case because we need to double buffer the data as we cannot do 324 * the transformations in place as we do not have direct access to the 325 * destination pages of the backing file. 326 */ 327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 328 loff_t pos, struct page *page) 329 { 330 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 331 bvec->bv_offset, bvec->bv_len, pos >> 9); 332 if (likely(!ret)) 333 return __do_lo_send_write(lo->lo_backing_file, 334 page_address(page), bvec->bv_len, 335 pos); 336 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 337 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 338 if (ret > 0) 339 ret = -EIO; 340 return ret; 341 } 342 343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 344 { 345 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 346 struct page *page); 347 struct bio_vec *bvec; 348 struct page *page = NULL; 349 int i, ret = 0; 350 351 do_lo_send = do_lo_send_aops; 352 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 353 do_lo_send = do_lo_send_direct_write; 354 if (lo->transfer != transfer_none) { 355 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 356 if (unlikely(!page)) 357 goto fail; 358 kmap(page); 359 do_lo_send = do_lo_send_write; 360 } 361 } 362 bio_for_each_segment(bvec, bio, i) { 363 ret = do_lo_send(lo, bvec, pos, page); 364 if (ret < 0) 365 break; 366 pos += bvec->bv_len; 367 } 368 if (page) { 369 kunmap(page); 370 __free_page(page); 371 } 372 out: 373 return ret; 374 fail: 375 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 376 ret = -ENOMEM; 377 goto out; 378 } 379 380 struct lo_read_data { 381 struct loop_device *lo; 382 struct page *page; 383 unsigned offset; 384 int bsize; 385 }; 386 387 static int 388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 389 struct splice_desc *sd) 390 { 391 struct lo_read_data *p = sd->u.data; 392 struct loop_device *lo = p->lo; 393 struct page *page = buf->page; 394 sector_t IV; 395 size_t size; 396 int ret; 397 398 ret = buf->ops->confirm(pipe, buf); 399 if (unlikely(ret)) 400 return ret; 401 402 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 403 (buf->offset >> 9); 404 size = sd->len; 405 if (size > p->bsize) 406 size = p->bsize; 407 408 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 409 printk(KERN_ERR "loop: transfer error block %ld\n", 410 page->index); 411 size = -EINVAL; 412 } 413 414 flush_dcache_page(p->page); 415 416 if (size > 0) 417 p->offset += size; 418 419 return size; 420 } 421 422 static int 423 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 424 { 425 return __splice_from_pipe(pipe, sd, lo_splice_actor); 426 } 427 428 static int 429 do_lo_receive(struct loop_device *lo, 430 struct bio_vec *bvec, int bsize, loff_t pos) 431 { 432 struct lo_read_data cookie; 433 struct splice_desc sd; 434 struct file *file; 435 long retval; 436 437 cookie.lo = lo; 438 cookie.page = bvec->bv_page; 439 cookie.offset = bvec->bv_offset; 440 cookie.bsize = bsize; 441 442 sd.len = 0; 443 sd.total_len = bvec->bv_len; 444 sd.flags = 0; 445 sd.pos = pos; 446 sd.u.data = &cookie; 447 448 file = lo->lo_backing_file; 449 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 450 451 if (retval < 0) 452 return retval; 453 454 return 0; 455 } 456 457 static int 458 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 459 { 460 struct bio_vec *bvec; 461 int i, ret = 0; 462 463 bio_for_each_segment(bvec, bio, i) { 464 ret = do_lo_receive(lo, bvec, bsize, pos); 465 if (ret < 0) 466 break; 467 pos += bvec->bv_len; 468 } 469 return ret; 470 } 471 472 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 473 { 474 loff_t pos; 475 int ret; 476 477 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 478 if (bio_rw(bio) == WRITE) 479 ret = lo_send(lo, bio, pos); 480 else 481 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 482 return ret; 483 } 484 485 /* 486 * Add bio to back of pending list 487 */ 488 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 489 { 490 if (lo->lo_biotail) { 491 lo->lo_biotail->bi_next = bio; 492 lo->lo_biotail = bio; 493 } else 494 lo->lo_bio = lo->lo_biotail = bio; 495 } 496 497 /* 498 * Grab first pending buffer 499 */ 500 static struct bio *loop_get_bio(struct loop_device *lo) 501 { 502 struct bio *bio; 503 504 if ((bio = lo->lo_bio)) { 505 if (bio == lo->lo_biotail) 506 lo->lo_biotail = NULL; 507 lo->lo_bio = bio->bi_next; 508 bio->bi_next = NULL; 509 } 510 511 return bio; 512 } 513 514 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 515 { 516 struct loop_device *lo = q->queuedata; 517 int rw = bio_rw(old_bio); 518 519 if (rw == READA) 520 rw = READ; 521 522 BUG_ON(!lo || (rw != READ && rw != WRITE)); 523 524 spin_lock_irq(&lo->lo_lock); 525 if (lo->lo_state != Lo_bound) 526 goto out; 527 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 528 goto out; 529 loop_add_bio(lo, old_bio); 530 wake_up(&lo->lo_event); 531 spin_unlock_irq(&lo->lo_lock); 532 return 0; 533 534 out: 535 spin_unlock_irq(&lo->lo_lock); 536 bio_io_error(old_bio); 537 return 0; 538 } 539 540 /* 541 * kick off io on the underlying address space 542 */ 543 static void loop_unplug(struct request_queue *q) 544 { 545 struct loop_device *lo = q->queuedata; 546 547 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 548 blk_run_address_space(lo->lo_backing_file->f_mapping); 549 } 550 551 struct switch_request { 552 struct file *file; 553 struct completion wait; 554 }; 555 556 static void do_loop_switch(struct loop_device *, struct switch_request *); 557 558 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 559 { 560 if (unlikely(!bio->bi_bdev)) { 561 do_loop_switch(lo, bio->bi_private); 562 bio_put(bio); 563 } else { 564 int ret = do_bio_filebacked(lo, bio); 565 bio_endio(bio, ret); 566 } 567 } 568 569 /* 570 * worker thread that handles reads/writes to file backed loop devices, 571 * to avoid blocking in our make_request_fn. it also does loop decrypting 572 * on reads for block backed loop, as that is too heavy to do from 573 * b_end_io context where irqs may be disabled. 574 * 575 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 576 * calling kthread_stop(). Therefore once kthread_should_stop() is 577 * true, make_request will not place any more requests. Therefore 578 * once kthread_should_stop() is true and lo_bio is NULL, we are 579 * done with the loop. 580 */ 581 static int loop_thread(void *data) 582 { 583 struct loop_device *lo = data; 584 struct bio *bio; 585 586 set_user_nice(current, -20); 587 588 while (!kthread_should_stop() || lo->lo_bio) { 589 590 wait_event_interruptible(lo->lo_event, 591 lo->lo_bio || kthread_should_stop()); 592 593 if (!lo->lo_bio) 594 continue; 595 spin_lock_irq(&lo->lo_lock); 596 bio = loop_get_bio(lo); 597 spin_unlock_irq(&lo->lo_lock); 598 599 BUG_ON(!bio); 600 loop_handle_bio(lo, bio); 601 } 602 603 return 0; 604 } 605 606 /* 607 * loop_switch performs the hard work of switching a backing store. 608 * First it needs to flush existing IO, it does this by sending a magic 609 * BIO down the pipe. The completion of this BIO does the actual switch. 610 */ 611 static int loop_switch(struct loop_device *lo, struct file *file) 612 { 613 struct switch_request w; 614 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 615 if (!bio) 616 return -ENOMEM; 617 init_completion(&w.wait); 618 w.file = file; 619 bio->bi_private = &w; 620 bio->bi_bdev = NULL; 621 loop_make_request(lo->lo_queue, bio); 622 wait_for_completion(&w.wait); 623 return 0; 624 } 625 626 /* 627 * Do the actual switch; called from the BIO completion routine 628 */ 629 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 630 { 631 struct file *file = p->file; 632 struct file *old_file = lo->lo_backing_file; 633 struct address_space *mapping = file->f_mapping; 634 635 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 636 lo->lo_backing_file = file; 637 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 638 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 639 lo->old_gfp_mask = mapping_gfp_mask(mapping); 640 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 641 complete(&p->wait); 642 } 643 644 645 /* 646 * loop_change_fd switched the backing store of a loopback device to 647 * a new file. This is useful for operating system installers to free up 648 * the original file and in High Availability environments to switch to 649 * an alternative location for the content in case of server meltdown. 650 * This can only work if the loop device is used read-only, and if the 651 * new backing store is the same size and type as the old backing store. 652 */ 653 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 654 unsigned int arg) 655 { 656 struct file *file, *old_file; 657 struct inode *inode; 658 int error; 659 660 error = -ENXIO; 661 if (lo->lo_state != Lo_bound) 662 goto out; 663 664 /* the loop device has to be read-only */ 665 error = -EINVAL; 666 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 667 goto out; 668 669 error = -EBADF; 670 file = fget(arg); 671 if (!file) 672 goto out; 673 674 inode = file->f_mapping->host; 675 old_file = lo->lo_backing_file; 676 677 error = -EINVAL; 678 679 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 680 goto out_putf; 681 682 /* new backing store needs to support loop (eg splice_read) */ 683 if (!inode->i_fop->splice_read) 684 goto out_putf; 685 686 /* size of the new backing store needs to be the same */ 687 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 688 goto out_putf; 689 690 /* and ... switch */ 691 error = loop_switch(lo, file); 692 if (error) 693 goto out_putf; 694 695 fput(old_file); 696 if (max_part > 0) 697 ioctl_by_bdev(bdev, BLKRRPART, 0); 698 return 0; 699 700 out_putf: 701 fput(file); 702 out: 703 return error; 704 } 705 706 static inline int is_loop_device(struct file *file) 707 { 708 struct inode *i = file->f_mapping->host; 709 710 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 711 } 712 713 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 714 struct block_device *bdev, unsigned int arg) 715 { 716 struct file *file, *f; 717 struct inode *inode; 718 struct address_space *mapping; 719 unsigned lo_blocksize; 720 int lo_flags = 0; 721 int error; 722 loff_t size; 723 724 /* This is safe, since we have a reference from open(). */ 725 __module_get(THIS_MODULE); 726 727 error = -EBADF; 728 file = fget(arg); 729 if (!file) 730 goto out; 731 732 error = -EBUSY; 733 if (lo->lo_state != Lo_unbound) 734 goto out_putf; 735 736 /* Avoid recursion */ 737 f = file; 738 while (is_loop_device(f)) { 739 struct loop_device *l; 740 741 if (f->f_mapping->host->i_bdev == bdev) 742 goto out_putf; 743 744 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 745 if (l->lo_state == Lo_unbound) { 746 error = -EINVAL; 747 goto out_putf; 748 } 749 f = l->lo_backing_file; 750 } 751 752 mapping = file->f_mapping; 753 inode = mapping->host; 754 755 if (!(file->f_mode & FMODE_WRITE)) 756 lo_flags |= LO_FLAGS_READ_ONLY; 757 758 error = -EINVAL; 759 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 760 const struct address_space_operations *aops = mapping->a_ops; 761 /* 762 * If we can't read - sorry. If we only can't write - well, 763 * it's going to be read-only. 764 */ 765 if (!file->f_op->splice_read) 766 goto out_putf; 767 if (aops->write_begin) 768 lo_flags |= LO_FLAGS_USE_AOPS; 769 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 770 lo_flags |= LO_FLAGS_READ_ONLY; 771 772 lo_blocksize = S_ISBLK(inode->i_mode) ? 773 inode->i_bdev->bd_block_size : PAGE_SIZE; 774 775 error = 0; 776 } else { 777 goto out_putf; 778 } 779 780 size = get_loop_size(lo, file); 781 782 if ((loff_t)(sector_t)size != size) { 783 error = -EFBIG; 784 goto out_putf; 785 } 786 787 if (!(mode & FMODE_WRITE)) 788 lo_flags |= LO_FLAGS_READ_ONLY; 789 790 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 791 792 lo->lo_blocksize = lo_blocksize; 793 lo->lo_device = bdev; 794 lo->lo_flags = lo_flags; 795 lo->lo_backing_file = file; 796 lo->transfer = transfer_none; 797 lo->ioctl = NULL; 798 lo->lo_sizelimit = 0; 799 lo->old_gfp_mask = mapping_gfp_mask(mapping); 800 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 801 802 lo->lo_bio = lo->lo_biotail = NULL; 803 804 /* 805 * set queue make_request_fn, and add limits based on lower level 806 * device 807 */ 808 blk_queue_make_request(lo->lo_queue, loop_make_request); 809 lo->lo_queue->queuedata = lo; 810 lo->lo_queue->unplug_fn = loop_unplug; 811 812 set_capacity(lo->lo_disk, size); 813 bd_set_size(bdev, size << 9); 814 815 set_blocksize(bdev, lo_blocksize); 816 817 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 818 lo->lo_number); 819 if (IS_ERR(lo->lo_thread)) { 820 error = PTR_ERR(lo->lo_thread); 821 goto out_clr; 822 } 823 lo->lo_state = Lo_bound; 824 wake_up_process(lo->lo_thread); 825 if (max_part > 0) 826 ioctl_by_bdev(bdev, BLKRRPART, 0); 827 return 0; 828 829 out_clr: 830 lo->lo_thread = NULL; 831 lo->lo_device = NULL; 832 lo->lo_backing_file = NULL; 833 lo->lo_flags = 0; 834 set_capacity(lo->lo_disk, 0); 835 invalidate_bdev(bdev); 836 bd_set_size(bdev, 0); 837 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 838 lo->lo_state = Lo_unbound; 839 out_putf: 840 fput(file); 841 out: 842 /* This is safe: open() is still holding a reference. */ 843 module_put(THIS_MODULE); 844 return error; 845 } 846 847 static int 848 loop_release_xfer(struct loop_device *lo) 849 { 850 int err = 0; 851 struct loop_func_table *xfer = lo->lo_encryption; 852 853 if (xfer) { 854 if (xfer->release) 855 err = xfer->release(lo); 856 lo->transfer = NULL; 857 lo->lo_encryption = NULL; 858 module_put(xfer->owner); 859 } 860 return err; 861 } 862 863 static int 864 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 865 const struct loop_info64 *i) 866 { 867 int err = 0; 868 869 if (xfer) { 870 struct module *owner = xfer->owner; 871 872 if (!try_module_get(owner)) 873 return -EINVAL; 874 if (xfer->init) 875 err = xfer->init(lo, i); 876 if (err) 877 module_put(owner); 878 else 879 lo->lo_encryption = xfer; 880 } 881 return err; 882 } 883 884 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 885 { 886 struct file *filp = lo->lo_backing_file; 887 gfp_t gfp = lo->old_gfp_mask; 888 889 if (lo->lo_state != Lo_bound) 890 return -ENXIO; 891 892 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 893 return -EBUSY; 894 895 if (filp == NULL) 896 return -EINVAL; 897 898 spin_lock_irq(&lo->lo_lock); 899 lo->lo_state = Lo_rundown; 900 spin_unlock_irq(&lo->lo_lock); 901 902 kthread_stop(lo->lo_thread); 903 904 lo->lo_backing_file = NULL; 905 906 loop_release_xfer(lo); 907 lo->transfer = NULL; 908 lo->ioctl = NULL; 909 lo->lo_device = NULL; 910 lo->lo_encryption = NULL; 911 lo->lo_offset = 0; 912 lo->lo_sizelimit = 0; 913 lo->lo_encrypt_key_size = 0; 914 lo->lo_flags = 0; 915 lo->lo_thread = NULL; 916 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 917 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 918 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 919 if (bdev) 920 invalidate_bdev(bdev); 921 set_capacity(lo->lo_disk, 0); 922 if (bdev) 923 bd_set_size(bdev, 0); 924 mapping_set_gfp_mask(filp->f_mapping, gfp); 925 lo->lo_state = Lo_unbound; 926 fput(filp); 927 /* This is safe: open() is still holding a reference. */ 928 module_put(THIS_MODULE); 929 if (max_part > 0) 930 ioctl_by_bdev(bdev, BLKRRPART, 0); 931 return 0; 932 } 933 934 static int 935 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 936 { 937 int err; 938 struct loop_func_table *xfer; 939 940 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && 941 !capable(CAP_SYS_ADMIN)) 942 return -EPERM; 943 if (lo->lo_state != Lo_bound) 944 return -ENXIO; 945 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 946 return -EINVAL; 947 948 err = loop_release_xfer(lo); 949 if (err) 950 return err; 951 952 if (info->lo_encrypt_type) { 953 unsigned int type = info->lo_encrypt_type; 954 955 if (type >= MAX_LO_CRYPT) 956 return -EINVAL; 957 xfer = xfer_funcs[type]; 958 if (xfer == NULL) 959 return -EINVAL; 960 } else 961 xfer = NULL; 962 963 err = loop_init_xfer(lo, xfer, info); 964 if (err) 965 return err; 966 967 if (lo->lo_offset != info->lo_offset || 968 lo->lo_sizelimit != info->lo_sizelimit) { 969 lo->lo_offset = info->lo_offset; 970 lo->lo_sizelimit = info->lo_sizelimit; 971 if (figure_loop_size(lo)) 972 return -EFBIG; 973 } 974 975 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 976 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 977 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 978 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 979 980 if (!xfer) 981 xfer = &none_funcs; 982 lo->transfer = xfer->transfer; 983 lo->ioctl = xfer->ioctl; 984 985 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 986 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 987 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 988 989 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 990 lo->lo_init[0] = info->lo_init[0]; 991 lo->lo_init[1] = info->lo_init[1]; 992 if (info->lo_encrypt_key_size) { 993 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 994 info->lo_encrypt_key_size); 995 lo->lo_key_owner = current->uid; 996 } 997 998 return 0; 999 } 1000 1001 static int 1002 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1003 { 1004 struct file *file = lo->lo_backing_file; 1005 struct kstat stat; 1006 int error; 1007 1008 if (lo->lo_state != Lo_bound) 1009 return -ENXIO; 1010 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1011 if (error) 1012 return error; 1013 memset(info, 0, sizeof(*info)); 1014 info->lo_number = lo->lo_number; 1015 info->lo_device = huge_encode_dev(stat.dev); 1016 info->lo_inode = stat.ino; 1017 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1018 info->lo_offset = lo->lo_offset; 1019 info->lo_sizelimit = lo->lo_sizelimit; 1020 info->lo_flags = lo->lo_flags; 1021 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1022 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1023 info->lo_encrypt_type = 1024 lo->lo_encryption ? lo->lo_encryption->number : 0; 1025 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1026 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1027 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1028 lo->lo_encrypt_key_size); 1029 } 1030 return 0; 1031 } 1032 1033 static void 1034 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1035 { 1036 memset(info64, 0, sizeof(*info64)); 1037 info64->lo_number = info->lo_number; 1038 info64->lo_device = info->lo_device; 1039 info64->lo_inode = info->lo_inode; 1040 info64->lo_rdevice = info->lo_rdevice; 1041 info64->lo_offset = info->lo_offset; 1042 info64->lo_sizelimit = 0; 1043 info64->lo_encrypt_type = info->lo_encrypt_type; 1044 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1045 info64->lo_flags = info->lo_flags; 1046 info64->lo_init[0] = info->lo_init[0]; 1047 info64->lo_init[1] = info->lo_init[1]; 1048 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1049 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1050 else 1051 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1052 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1053 } 1054 1055 static int 1056 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1057 { 1058 memset(info, 0, sizeof(*info)); 1059 info->lo_number = info64->lo_number; 1060 info->lo_device = info64->lo_device; 1061 info->lo_inode = info64->lo_inode; 1062 info->lo_rdevice = info64->lo_rdevice; 1063 info->lo_offset = info64->lo_offset; 1064 info->lo_encrypt_type = info64->lo_encrypt_type; 1065 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1066 info->lo_flags = info64->lo_flags; 1067 info->lo_init[0] = info64->lo_init[0]; 1068 info->lo_init[1] = info64->lo_init[1]; 1069 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1070 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1071 else 1072 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1073 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1074 1075 /* error in case values were truncated */ 1076 if (info->lo_device != info64->lo_device || 1077 info->lo_rdevice != info64->lo_rdevice || 1078 info->lo_inode != info64->lo_inode || 1079 info->lo_offset != info64->lo_offset) 1080 return -EOVERFLOW; 1081 1082 return 0; 1083 } 1084 1085 static int 1086 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1087 { 1088 struct loop_info info; 1089 struct loop_info64 info64; 1090 1091 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1092 return -EFAULT; 1093 loop_info64_from_old(&info, &info64); 1094 return loop_set_status(lo, &info64); 1095 } 1096 1097 static int 1098 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1099 { 1100 struct loop_info64 info64; 1101 1102 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1103 return -EFAULT; 1104 return loop_set_status(lo, &info64); 1105 } 1106 1107 static int 1108 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1109 struct loop_info info; 1110 struct loop_info64 info64; 1111 int err = 0; 1112 1113 if (!arg) 1114 err = -EINVAL; 1115 if (!err) 1116 err = loop_get_status(lo, &info64); 1117 if (!err) 1118 err = loop_info64_to_old(&info64, &info); 1119 if (!err && copy_to_user(arg, &info, sizeof(info))) 1120 err = -EFAULT; 1121 1122 return err; 1123 } 1124 1125 static int 1126 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1127 struct loop_info64 info64; 1128 int err = 0; 1129 1130 if (!arg) 1131 err = -EINVAL; 1132 if (!err) 1133 err = loop_get_status(lo, &info64); 1134 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1135 err = -EFAULT; 1136 1137 return err; 1138 } 1139 1140 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1141 unsigned int cmd, unsigned long arg) 1142 { 1143 struct loop_device *lo = bdev->bd_disk->private_data; 1144 int err; 1145 1146 mutex_lock(&lo->lo_ctl_mutex); 1147 switch (cmd) { 1148 case LOOP_SET_FD: 1149 err = loop_set_fd(lo, mode, bdev, arg); 1150 break; 1151 case LOOP_CHANGE_FD: 1152 err = loop_change_fd(lo, bdev, arg); 1153 break; 1154 case LOOP_CLR_FD: 1155 err = loop_clr_fd(lo, bdev); 1156 break; 1157 case LOOP_SET_STATUS: 1158 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1159 break; 1160 case LOOP_GET_STATUS: 1161 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1162 break; 1163 case LOOP_SET_STATUS64: 1164 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1165 break; 1166 case LOOP_GET_STATUS64: 1167 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1168 break; 1169 default: 1170 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1171 } 1172 mutex_unlock(&lo->lo_ctl_mutex); 1173 return err; 1174 } 1175 1176 #ifdef CONFIG_COMPAT 1177 struct compat_loop_info { 1178 compat_int_t lo_number; /* ioctl r/o */ 1179 compat_dev_t lo_device; /* ioctl r/o */ 1180 compat_ulong_t lo_inode; /* ioctl r/o */ 1181 compat_dev_t lo_rdevice; /* ioctl r/o */ 1182 compat_int_t lo_offset; 1183 compat_int_t lo_encrypt_type; 1184 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1185 compat_int_t lo_flags; /* ioctl r/o */ 1186 char lo_name[LO_NAME_SIZE]; 1187 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1188 compat_ulong_t lo_init[2]; 1189 char reserved[4]; 1190 }; 1191 1192 /* 1193 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1194 * - noinlined to reduce stack space usage in main part of driver 1195 */ 1196 static noinline int 1197 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1198 struct loop_info64 *info64) 1199 { 1200 struct compat_loop_info info; 1201 1202 if (copy_from_user(&info, arg, sizeof(info))) 1203 return -EFAULT; 1204 1205 memset(info64, 0, sizeof(*info64)); 1206 info64->lo_number = info.lo_number; 1207 info64->lo_device = info.lo_device; 1208 info64->lo_inode = info.lo_inode; 1209 info64->lo_rdevice = info.lo_rdevice; 1210 info64->lo_offset = info.lo_offset; 1211 info64->lo_sizelimit = 0; 1212 info64->lo_encrypt_type = info.lo_encrypt_type; 1213 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1214 info64->lo_flags = info.lo_flags; 1215 info64->lo_init[0] = info.lo_init[0]; 1216 info64->lo_init[1] = info.lo_init[1]; 1217 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1218 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1219 else 1220 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1221 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1222 return 0; 1223 } 1224 1225 /* 1226 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1227 * - noinlined to reduce stack space usage in main part of driver 1228 */ 1229 static noinline int 1230 loop_info64_to_compat(const struct loop_info64 *info64, 1231 struct compat_loop_info __user *arg) 1232 { 1233 struct compat_loop_info info; 1234 1235 memset(&info, 0, sizeof(info)); 1236 info.lo_number = info64->lo_number; 1237 info.lo_device = info64->lo_device; 1238 info.lo_inode = info64->lo_inode; 1239 info.lo_rdevice = info64->lo_rdevice; 1240 info.lo_offset = info64->lo_offset; 1241 info.lo_encrypt_type = info64->lo_encrypt_type; 1242 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1243 info.lo_flags = info64->lo_flags; 1244 info.lo_init[0] = info64->lo_init[0]; 1245 info.lo_init[1] = info64->lo_init[1]; 1246 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1247 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1248 else 1249 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1250 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1251 1252 /* error in case values were truncated */ 1253 if (info.lo_device != info64->lo_device || 1254 info.lo_rdevice != info64->lo_rdevice || 1255 info.lo_inode != info64->lo_inode || 1256 info.lo_offset != info64->lo_offset || 1257 info.lo_init[0] != info64->lo_init[0] || 1258 info.lo_init[1] != info64->lo_init[1]) 1259 return -EOVERFLOW; 1260 1261 if (copy_to_user(arg, &info, sizeof(info))) 1262 return -EFAULT; 1263 return 0; 1264 } 1265 1266 static int 1267 loop_set_status_compat(struct loop_device *lo, 1268 const struct compat_loop_info __user *arg) 1269 { 1270 struct loop_info64 info64; 1271 int ret; 1272 1273 ret = loop_info64_from_compat(arg, &info64); 1274 if (ret < 0) 1275 return ret; 1276 return loop_set_status(lo, &info64); 1277 } 1278 1279 static int 1280 loop_get_status_compat(struct loop_device *lo, 1281 struct compat_loop_info __user *arg) 1282 { 1283 struct loop_info64 info64; 1284 int err = 0; 1285 1286 if (!arg) 1287 err = -EINVAL; 1288 if (!err) 1289 err = loop_get_status(lo, &info64); 1290 if (!err) 1291 err = loop_info64_to_compat(&info64, arg); 1292 return err; 1293 } 1294 1295 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1296 unsigned int cmd, unsigned long arg) 1297 { 1298 struct loop_device *lo = bdev->bd_disk->private_data; 1299 int err; 1300 1301 switch(cmd) { 1302 case LOOP_SET_STATUS: 1303 mutex_lock(&lo->lo_ctl_mutex); 1304 err = loop_set_status_compat( 1305 lo, (const struct compat_loop_info __user *) arg); 1306 mutex_unlock(&lo->lo_ctl_mutex); 1307 break; 1308 case LOOP_GET_STATUS: 1309 mutex_lock(&lo->lo_ctl_mutex); 1310 err = loop_get_status_compat( 1311 lo, (struct compat_loop_info __user *) arg); 1312 mutex_unlock(&lo->lo_ctl_mutex); 1313 break; 1314 case LOOP_CLR_FD: 1315 case LOOP_GET_STATUS64: 1316 case LOOP_SET_STATUS64: 1317 arg = (unsigned long) compat_ptr(arg); 1318 case LOOP_SET_FD: 1319 case LOOP_CHANGE_FD: 1320 err = lo_ioctl(bdev, mode, cmd, arg); 1321 break; 1322 default: 1323 err = -ENOIOCTLCMD; 1324 break; 1325 } 1326 return err; 1327 } 1328 #endif 1329 1330 static int lo_open(struct block_device *bdev, fmode_t mode) 1331 { 1332 struct loop_device *lo = bdev->bd_disk->private_data; 1333 1334 mutex_lock(&lo->lo_ctl_mutex); 1335 lo->lo_refcnt++; 1336 mutex_unlock(&lo->lo_ctl_mutex); 1337 1338 return 0; 1339 } 1340 1341 static int lo_release(struct gendisk *disk, fmode_t mode) 1342 { 1343 struct loop_device *lo = disk->private_data; 1344 1345 mutex_lock(&lo->lo_ctl_mutex); 1346 --lo->lo_refcnt; 1347 1348 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt) 1349 loop_clr_fd(lo, NULL); 1350 1351 mutex_unlock(&lo->lo_ctl_mutex); 1352 1353 return 0; 1354 } 1355 1356 static struct block_device_operations lo_fops = { 1357 .owner = THIS_MODULE, 1358 .open = lo_open, 1359 .release = lo_release, 1360 .ioctl = lo_ioctl, 1361 #ifdef CONFIG_COMPAT 1362 .compat_ioctl = lo_compat_ioctl, 1363 #endif 1364 }; 1365 1366 /* 1367 * And now the modules code and kernel interface. 1368 */ 1369 static int max_loop; 1370 module_param(max_loop, int, 0); 1371 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1372 module_param(max_part, int, 0); 1373 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1374 MODULE_LICENSE("GPL"); 1375 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1376 1377 int loop_register_transfer(struct loop_func_table *funcs) 1378 { 1379 unsigned int n = funcs->number; 1380 1381 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1382 return -EINVAL; 1383 xfer_funcs[n] = funcs; 1384 return 0; 1385 } 1386 1387 int loop_unregister_transfer(int number) 1388 { 1389 unsigned int n = number; 1390 struct loop_device *lo; 1391 struct loop_func_table *xfer; 1392 1393 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1394 return -EINVAL; 1395 1396 xfer_funcs[n] = NULL; 1397 1398 list_for_each_entry(lo, &loop_devices, lo_list) { 1399 mutex_lock(&lo->lo_ctl_mutex); 1400 1401 if (lo->lo_encryption == xfer) 1402 loop_release_xfer(lo); 1403 1404 mutex_unlock(&lo->lo_ctl_mutex); 1405 } 1406 1407 return 0; 1408 } 1409 1410 EXPORT_SYMBOL(loop_register_transfer); 1411 EXPORT_SYMBOL(loop_unregister_transfer); 1412 1413 static struct loop_device *loop_alloc(int i) 1414 { 1415 struct loop_device *lo; 1416 struct gendisk *disk; 1417 1418 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1419 if (!lo) 1420 goto out; 1421 1422 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1423 if (!lo->lo_queue) 1424 goto out_free_dev; 1425 1426 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1427 if (!disk) 1428 goto out_free_queue; 1429 1430 mutex_init(&lo->lo_ctl_mutex); 1431 lo->lo_number = i; 1432 lo->lo_thread = NULL; 1433 init_waitqueue_head(&lo->lo_event); 1434 spin_lock_init(&lo->lo_lock); 1435 disk->major = LOOP_MAJOR; 1436 disk->first_minor = i << part_shift; 1437 disk->fops = &lo_fops; 1438 disk->private_data = lo; 1439 disk->queue = lo->lo_queue; 1440 sprintf(disk->disk_name, "loop%d", i); 1441 return lo; 1442 1443 out_free_queue: 1444 blk_cleanup_queue(lo->lo_queue); 1445 out_free_dev: 1446 kfree(lo); 1447 out: 1448 return NULL; 1449 } 1450 1451 static void loop_free(struct loop_device *lo) 1452 { 1453 blk_cleanup_queue(lo->lo_queue); 1454 put_disk(lo->lo_disk); 1455 list_del(&lo->lo_list); 1456 kfree(lo); 1457 } 1458 1459 static struct loop_device *loop_init_one(int i) 1460 { 1461 struct loop_device *lo; 1462 1463 list_for_each_entry(lo, &loop_devices, lo_list) { 1464 if (lo->lo_number == i) 1465 return lo; 1466 } 1467 1468 lo = loop_alloc(i); 1469 if (lo) { 1470 add_disk(lo->lo_disk); 1471 list_add_tail(&lo->lo_list, &loop_devices); 1472 } 1473 return lo; 1474 } 1475 1476 static void loop_del_one(struct loop_device *lo) 1477 { 1478 del_gendisk(lo->lo_disk); 1479 loop_free(lo); 1480 } 1481 1482 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1483 { 1484 struct loop_device *lo; 1485 struct kobject *kobj; 1486 1487 mutex_lock(&loop_devices_mutex); 1488 lo = loop_init_one(dev & MINORMASK); 1489 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1490 mutex_unlock(&loop_devices_mutex); 1491 1492 *part = 0; 1493 return kobj; 1494 } 1495 1496 static int __init loop_init(void) 1497 { 1498 int i, nr; 1499 unsigned long range; 1500 struct loop_device *lo, *next; 1501 1502 /* 1503 * loop module now has a feature to instantiate underlying device 1504 * structure on-demand, provided that there is an access dev node. 1505 * However, this will not work well with user space tool that doesn't 1506 * know about such "feature". In order to not break any existing 1507 * tool, we do the following: 1508 * 1509 * (1) if max_loop is specified, create that many upfront, and this 1510 * also becomes a hard limit. 1511 * (2) if max_loop is not specified, create 8 loop device on module 1512 * load, user can further extend loop device by create dev node 1513 * themselves and have kernel automatically instantiate actual 1514 * device on-demand. 1515 */ 1516 1517 part_shift = 0; 1518 if (max_part > 0) 1519 part_shift = fls(max_part); 1520 1521 if (max_loop > 1UL << (MINORBITS - part_shift)) 1522 return -EINVAL; 1523 1524 if (max_loop) { 1525 nr = max_loop; 1526 range = max_loop; 1527 } else { 1528 nr = 8; 1529 range = 1UL << (MINORBITS - part_shift); 1530 } 1531 1532 if (register_blkdev(LOOP_MAJOR, "loop")) 1533 return -EIO; 1534 1535 for (i = 0; i < nr; i++) { 1536 lo = loop_alloc(i); 1537 if (!lo) 1538 goto Enomem; 1539 list_add_tail(&lo->lo_list, &loop_devices); 1540 } 1541 1542 /* point of no return */ 1543 1544 list_for_each_entry(lo, &loop_devices, lo_list) 1545 add_disk(lo->lo_disk); 1546 1547 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1548 THIS_MODULE, loop_probe, NULL, NULL); 1549 1550 printk(KERN_INFO "loop: module loaded\n"); 1551 return 0; 1552 1553 Enomem: 1554 printk(KERN_INFO "loop: out of memory\n"); 1555 1556 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1557 loop_free(lo); 1558 1559 unregister_blkdev(LOOP_MAJOR, "loop"); 1560 return -ENOMEM; 1561 } 1562 1563 static void __exit loop_exit(void) 1564 { 1565 unsigned long range; 1566 struct loop_device *lo, *next; 1567 1568 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1569 1570 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1571 loop_del_one(lo); 1572 1573 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1574 unregister_blkdev(LOOP_MAJOR, "loop"); 1575 } 1576 1577 module_init(loop_init); 1578 module_exit(loop_exit); 1579 1580 #ifndef MODULE 1581 static int __init max_loop_setup(char *str) 1582 { 1583 max_loop = simple_strtol(str, NULL, 0); 1584 return 1; 1585 } 1586 1587 __setup("max_loop=", max_loop_setup); 1588 #endif 1589