1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file * lo_backing_file; 58 struct block_device *lo_device; 59 60 gfp_t old_gfp_mask; 61 62 spinlock_t lo_lock; 63 int lo_state; 64 spinlock_t lo_work_lock; 65 struct workqueue_struct *workqueue; 66 struct work_struct rootcg_work; 67 struct list_head rootcg_cmd_list; 68 struct list_head idle_worker_list; 69 struct rb_root worker_tree; 70 struct timer_list timer; 71 bool use_dio; 72 bool sysfs_inited; 73 74 struct request_queue *lo_queue; 75 struct blk_mq_tag_set tag_set; 76 struct gendisk *lo_disk; 77 struct mutex lo_mutex; 78 bool idr_visible; 79 }; 80 81 struct loop_cmd { 82 struct list_head list_entry; 83 bool use_aio; /* use AIO interface to handle I/O */ 84 atomic_t ref; /* only for aio */ 85 long ret; 86 struct kiocb iocb; 87 struct bio_vec *bvec; 88 struct cgroup_subsys_state *blkcg_css; 89 struct cgroup_subsys_state *memcg_css; 90 }; 91 92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 93 #define LOOP_DEFAULT_HW_Q_DEPTH (128) 94 95 static DEFINE_IDR(loop_index_idr); 96 static DEFINE_MUTEX(loop_ctl_mutex); 97 static DEFINE_MUTEX(loop_validate_mutex); 98 99 /** 100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 101 * 102 * @lo: struct loop_device 103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 104 * 105 * Returns 0 on success, -EINTR otherwise. 106 * 107 * Since loop_validate_file() traverses on other "struct loop_device" if 108 * is_loop_device() is true, we need a global lock for serializing concurrent 109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 110 */ 111 static int loop_global_lock_killable(struct loop_device *lo, bool global) 112 { 113 int err; 114 115 if (global) { 116 err = mutex_lock_killable(&loop_validate_mutex); 117 if (err) 118 return err; 119 } 120 err = mutex_lock_killable(&lo->lo_mutex); 121 if (err && global) 122 mutex_unlock(&loop_validate_mutex); 123 return err; 124 } 125 126 /** 127 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 128 * 129 * @lo: struct loop_device 130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 131 */ 132 static void loop_global_unlock(struct loop_device *lo, bool global) 133 { 134 mutex_unlock(&lo->lo_mutex); 135 if (global) 136 mutex_unlock(&loop_validate_mutex); 137 } 138 139 static int max_part; 140 static int part_shift; 141 142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 143 { 144 loff_t loopsize; 145 146 /* Compute loopsize in bytes */ 147 loopsize = i_size_read(file->f_mapping->host); 148 if (offset > 0) 149 loopsize -= offset; 150 /* offset is beyond i_size, weird but possible */ 151 if (loopsize < 0) 152 return 0; 153 154 if (sizelimit > 0 && sizelimit < loopsize) 155 loopsize = sizelimit; 156 /* 157 * Unfortunately, if we want to do I/O on the device, 158 * the number of 512-byte sectors has to fit into a sector_t. 159 */ 160 return loopsize >> 9; 161 } 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 166 } 167 168 static void __loop_update_dio(struct loop_device *lo, bool dio) 169 { 170 struct file *file = lo->lo_backing_file; 171 struct address_space *mapping = file->f_mapping; 172 struct inode *inode = mapping->host; 173 unsigned short sb_bsize = 0; 174 unsigned dio_align = 0; 175 bool use_dio; 176 177 if (inode->i_sb->s_bdev) { 178 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 179 dio_align = sb_bsize - 1; 180 } 181 182 /* 183 * We support direct I/O only if lo_offset is aligned with the 184 * logical I/O size of backing device, and the logical block 185 * size of loop is bigger than the backing device's. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane applications should be PAGE_SIZE aligned 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 (file->f_mode & FMODE_CAN_ODIRECT)) 195 use_dio = true; 196 else 197 use_dio = false; 198 } else { 199 use_dio = false; 200 } 201 202 if (lo->use_dio == use_dio) 203 return; 204 205 /* flush dirty pages before changing direct IO */ 206 vfs_fsync(file, 0); 207 208 /* 209 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 210 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 211 * will get updated by ioctl(LOOP_GET_STATUS) 212 */ 213 if (lo->lo_state == Lo_bound) 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) { 217 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 218 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 219 } else { 220 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 221 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 222 } 223 if (lo->lo_state == Lo_bound) 224 blk_mq_unfreeze_queue(lo->lo_queue); 225 } 226 227 /** 228 * loop_set_size() - sets device size and notifies userspace 229 * @lo: struct loop_device to set the size for 230 * @size: new size of the loop device 231 * 232 * Callers must validate that the size passed into this function fits into 233 * a sector_t, eg using loop_validate_size() 234 */ 235 static void loop_set_size(struct loop_device *lo, loff_t size) 236 { 237 if (!set_capacity_and_notify(lo->lo_disk, size)) 238 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 239 } 240 241 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 242 { 243 struct iov_iter i; 244 ssize_t bw; 245 246 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 247 248 file_start_write(file); 249 bw = vfs_iter_write(file, &i, ppos, 0); 250 file_end_write(file); 251 252 if (likely(bw == bvec->bv_len)) 253 return 0; 254 255 printk_ratelimited(KERN_ERR 256 "loop: Write error at byte offset %llu, length %i.\n", 257 (unsigned long long)*ppos, bvec->bv_len); 258 if (bw >= 0) 259 bw = -EIO; 260 return bw; 261 } 262 263 static int lo_write_simple(struct loop_device *lo, struct request *rq, 264 loff_t pos) 265 { 266 struct bio_vec bvec; 267 struct req_iterator iter; 268 int ret = 0; 269 270 rq_for_each_segment(bvec, rq, iter) { 271 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 272 if (ret < 0) 273 break; 274 cond_resched(); 275 } 276 277 return ret; 278 } 279 280 static int lo_read_simple(struct loop_device *lo, struct request *rq, 281 loff_t pos) 282 { 283 struct bio_vec bvec; 284 struct req_iterator iter; 285 struct iov_iter i; 286 ssize_t len; 287 288 rq_for_each_segment(bvec, rq, iter) { 289 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 290 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 291 if (len < 0) 292 return len; 293 294 flush_dcache_page(bvec.bv_page); 295 296 if (len != bvec.bv_len) { 297 struct bio *bio; 298 299 __rq_for_each_bio(bio, rq) 300 zero_fill_bio(bio); 301 break; 302 } 303 cond_resched(); 304 } 305 306 return 0; 307 } 308 309 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 310 int mode) 311 { 312 /* 313 * We use fallocate to manipulate the space mappings used by the image 314 * a.k.a. discard/zerorange. 315 */ 316 struct file *file = lo->lo_backing_file; 317 int ret; 318 319 mode |= FALLOC_FL_KEEP_SIZE; 320 321 if (!bdev_max_discard_sectors(lo->lo_device)) 322 return -EOPNOTSUPP; 323 324 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 325 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 326 return -EIO; 327 return ret; 328 } 329 330 static int lo_req_flush(struct loop_device *lo, struct request *rq) 331 { 332 int ret = vfs_fsync(lo->lo_backing_file, 0); 333 if (unlikely(ret && ret != -EINVAL)) 334 ret = -EIO; 335 336 return ret; 337 } 338 339 static void lo_complete_rq(struct request *rq) 340 { 341 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 342 blk_status_t ret = BLK_STS_OK; 343 344 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 345 req_op(rq) != REQ_OP_READ) { 346 if (cmd->ret < 0) 347 ret = errno_to_blk_status(cmd->ret); 348 goto end_io; 349 } 350 351 /* 352 * Short READ - if we got some data, advance our request and 353 * retry it. If we got no data, end the rest with EIO. 354 */ 355 if (cmd->ret) { 356 blk_update_request(rq, BLK_STS_OK, cmd->ret); 357 cmd->ret = 0; 358 blk_mq_requeue_request(rq, true); 359 } else { 360 if (cmd->use_aio) { 361 struct bio *bio = rq->bio; 362 363 while (bio) { 364 zero_fill_bio(bio); 365 bio = bio->bi_next; 366 } 367 } 368 ret = BLK_STS_IOERR; 369 end_io: 370 blk_mq_end_request(rq, ret); 371 } 372 } 373 374 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 375 { 376 struct request *rq = blk_mq_rq_from_pdu(cmd); 377 378 if (!atomic_dec_and_test(&cmd->ref)) 379 return; 380 kfree(cmd->bvec); 381 cmd->bvec = NULL; 382 if (likely(!blk_should_fake_timeout(rq->q))) 383 blk_mq_complete_request(rq); 384 } 385 386 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 387 { 388 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 389 390 cmd->ret = ret; 391 lo_rw_aio_do_completion(cmd); 392 } 393 394 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 395 loff_t pos, bool rw) 396 { 397 struct iov_iter iter; 398 struct req_iterator rq_iter; 399 struct bio_vec *bvec; 400 struct request *rq = blk_mq_rq_from_pdu(cmd); 401 struct bio *bio = rq->bio; 402 struct file *file = lo->lo_backing_file; 403 struct bio_vec tmp; 404 unsigned int offset; 405 int nr_bvec = 0; 406 int ret; 407 408 rq_for_each_bvec(tmp, rq, rq_iter) 409 nr_bvec++; 410 411 if (rq->bio != rq->biotail) { 412 413 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 414 GFP_NOIO); 415 if (!bvec) 416 return -EIO; 417 cmd->bvec = bvec; 418 419 /* 420 * The bios of the request may be started from the middle of 421 * the 'bvec' because of bio splitting, so we can't directly 422 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 423 * API will take care of all details for us. 424 */ 425 rq_for_each_bvec(tmp, rq, rq_iter) { 426 *bvec = tmp; 427 bvec++; 428 } 429 bvec = cmd->bvec; 430 offset = 0; 431 } else { 432 /* 433 * Same here, this bio may be started from the middle of the 434 * 'bvec' because of bio splitting, so offset from the bvec 435 * must be passed to iov iterator 436 */ 437 offset = bio->bi_iter.bi_bvec_done; 438 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 439 } 440 atomic_set(&cmd->ref, 2); 441 442 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 443 iter.iov_offset = offset; 444 445 cmd->iocb.ki_pos = pos; 446 cmd->iocb.ki_filp = file; 447 cmd->iocb.ki_complete = lo_rw_aio_complete; 448 cmd->iocb.ki_flags = IOCB_DIRECT; 449 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 450 451 if (rw == WRITE) 452 ret = call_write_iter(file, &cmd->iocb, &iter); 453 else 454 ret = call_read_iter(file, &cmd->iocb, &iter); 455 456 lo_rw_aio_do_completion(cmd); 457 458 if (ret != -EIOCBQUEUED) 459 lo_rw_aio_complete(&cmd->iocb, ret); 460 return 0; 461 } 462 463 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 464 { 465 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 466 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 467 468 /* 469 * lo_write_simple and lo_read_simple should have been covered 470 * by io submit style function like lo_rw_aio(), one blocker 471 * is that lo_read_simple() need to call flush_dcache_page after 472 * the page is written from kernel, and it isn't easy to handle 473 * this in io submit style function which submits all segments 474 * of the req at one time. And direct read IO doesn't need to 475 * run flush_dcache_page(). 476 */ 477 switch (req_op(rq)) { 478 case REQ_OP_FLUSH: 479 return lo_req_flush(lo, rq); 480 case REQ_OP_WRITE_ZEROES: 481 /* 482 * If the caller doesn't want deallocation, call zeroout to 483 * write zeroes the range. Otherwise, punch them out. 484 */ 485 return lo_fallocate(lo, rq, pos, 486 (rq->cmd_flags & REQ_NOUNMAP) ? 487 FALLOC_FL_ZERO_RANGE : 488 FALLOC_FL_PUNCH_HOLE); 489 case REQ_OP_DISCARD: 490 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 491 case REQ_OP_WRITE: 492 if (cmd->use_aio) 493 return lo_rw_aio(lo, cmd, pos, WRITE); 494 else 495 return lo_write_simple(lo, rq, pos); 496 case REQ_OP_READ: 497 if (cmd->use_aio) 498 return lo_rw_aio(lo, cmd, pos, READ); 499 else 500 return lo_read_simple(lo, rq, pos); 501 default: 502 WARN_ON_ONCE(1); 503 return -EIO; 504 } 505 } 506 507 static inline void loop_update_dio(struct loop_device *lo) 508 { 509 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 510 lo->use_dio); 511 } 512 513 static void loop_reread_partitions(struct loop_device *lo) 514 { 515 int rc; 516 517 mutex_lock(&lo->lo_disk->open_mutex); 518 rc = bdev_disk_changed(lo->lo_disk, false); 519 mutex_unlock(&lo->lo_disk->open_mutex); 520 if (rc) 521 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 522 __func__, lo->lo_number, lo->lo_file_name, rc); 523 } 524 525 static inline int is_loop_device(struct file *file) 526 { 527 struct inode *i = file->f_mapping->host; 528 529 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 530 } 531 532 static int loop_validate_file(struct file *file, struct block_device *bdev) 533 { 534 struct inode *inode = file->f_mapping->host; 535 struct file *f = file; 536 537 /* Avoid recursion */ 538 while (is_loop_device(f)) { 539 struct loop_device *l; 540 541 lockdep_assert_held(&loop_validate_mutex); 542 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 543 return -EBADF; 544 545 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 546 if (l->lo_state != Lo_bound) 547 return -EINVAL; 548 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 549 rmb(); 550 f = l->lo_backing_file; 551 } 552 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 553 return -EINVAL; 554 return 0; 555 } 556 557 /* 558 * loop_change_fd switched the backing store of a loopback device to 559 * a new file. This is useful for operating system installers to free up 560 * the original file and in High Availability environments to switch to 561 * an alternative location for the content in case of server meltdown. 562 * This can only work if the loop device is used read-only, and if the 563 * new backing store is the same size and type as the old backing store. 564 */ 565 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 566 unsigned int arg) 567 { 568 struct file *file = fget(arg); 569 struct file *old_file; 570 int error; 571 bool partscan; 572 bool is_loop; 573 574 if (!file) 575 return -EBADF; 576 577 /* suppress uevents while reconfiguring the device */ 578 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 579 580 is_loop = is_loop_device(file); 581 error = loop_global_lock_killable(lo, is_loop); 582 if (error) 583 goto out_putf; 584 error = -ENXIO; 585 if (lo->lo_state != Lo_bound) 586 goto out_err; 587 588 /* the loop device has to be read-only */ 589 error = -EINVAL; 590 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 591 goto out_err; 592 593 error = loop_validate_file(file, bdev); 594 if (error) 595 goto out_err; 596 597 old_file = lo->lo_backing_file; 598 599 error = -EINVAL; 600 601 /* size of the new backing store needs to be the same */ 602 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 603 goto out_err; 604 605 /* and ... switch */ 606 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 607 blk_mq_freeze_queue(lo->lo_queue); 608 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 609 lo->lo_backing_file = file; 610 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 611 mapping_set_gfp_mask(file->f_mapping, 612 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 613 loop_update_dio(lo); 614 blk_mq_unfreeze_queue(lo->lo_queue); 615 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 616 loop_global_unlock(lo, is_loop); 617 618 /* 619 * Flush loop_validate_file() before fput(), for l->lo_backing_file 620 * might be pointing at old_file which might be the last reference. 621 */ 622 if (!is_loop) { 623 mutex_lock(&loop_validate_mutex); 624 mutex_unlock(&loop_validate_mutex); 625 } 626 /* 627 * We must drop file reference outside of lo_mutex as dropping 628 * the file ref can take open_mutex which creates circular locking 629 * dependency. 630 */ 631 fput(old_file); 632 if (partscan) 633 loop_reread_partitions(lo); 634 635 error = 0; 636 done: 637 /* enable and uncork uevent now that we are done */ 638 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 639 return error; 640 641 out_err: 642 loop_global_unlock(lo, is_loop); 643 out_putf: 644 fput(file); 645 goto done; 646 } 647 648 /* loop sysfs attributes */ 649 650 static ssize_t loop_attr_show(struct device *dev, char *page, 651 ssize_t (*callback)(struct loop_device *, char *)) 652 { 653 struct gendisk *disk = dev_to_disk(dev); 654 struct loop_device *lo = disk->private_data; 655 656 return callback(lo, page); 657 } 658 659 #define LOOP_ATTR_RO(_name) \ 660 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 661 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 662 struct device_attribute *attr, char *b) \ 663 { \ 664 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 665 } \ 666 static struct device_attribute loop_attr_##_name = \ 667 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 668 669 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 670 { 671 ssize_t ret; 672 char *p = NULL; 673 674 spin_lock_irq(&lo->lo_lock); 675 if (lo->lo_backing_file) 676 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 677 spin_unlock_irq(&lo->lo_lock); 678 679 if (IS_ERR_OR_NULL(p)) 680 ret = PTR_ERR(p); 681 else { 682 ret = strlen(p); 683 memmove(buf, p, ret); 684 buf[ret++] = '\n'; 685 buf[ret] = 0; 686 } 687 688 return ret; 689 } 690 691 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 692 { 693 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 694 } 695 696 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 697 { 698 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 699 } 700 701 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 702 { 703 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 704 705 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 706 } 707 708 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 709 { 710 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 711 712 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 713 } 714 715 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 716 { 717 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 718 719 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 720 } 721 722 LOOP_ATTR_RO(backing_file); 723 LOOP_ATTR_RO(offset); 724 LOOP_ATTR_RO(sizelimit); 725 LOOP_ATTR_RO(autoclear); 726 LOOP_ATTR_RO(partscan); 727 LOOP_ATTR_RO(dio); 728 729 static struct attribute *loop_attrs[] = { 730 &loop_attr_backing_file.attr, 731 &loop_attr_offset.attr, 732 &loop_attr_sizelimit.attr, 733 &loop_attr_autoclear.attr, 734 &loop_attr_partscan.attr, 735 &loop_attr_dio.attr, 736 NULL, 737 }; 738 739 static struct attribute_group loop_attribute_group = { 740 .name = "loop", 741 .attrs= loop_attrs, 742 }; 743 744 static void loop_sysfs_init(struct loop_device *lo) 745 { 746 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 747 &loop_attribute_group); 748 } 749 750 static void loop_sysfs_exit(struct loop_device *lo) 751 { 752 if (lo->sysfs_inited) 753 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 754 &loop_attribute_group); 755 } 756 757 static void loop_config_discard(struct loop_device *lo) 758 { 759 struct file *file = lo->lo_backing_file; 760 struct inode *inode = file->f_mapping->host; 761 struct request_queue *q = lo->lo_queue; 762 u32 granularity, max_discard_sectors; 763 764 /* 765 * If the backing device is a block device, mirror its zeroing 766 * capability. Set the discard sectors to the block device's zeroing 767 * capabilities because loop discards result in blkdev_issue_zeroout(), 768 * not blkdev_issue_discard(). This maintains consistent behavior with 769 * file-backed loop devices: discarded regions read back as zero. 770 */ 771 if (S_ISBLK(inode->i_mode)) { 772 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 773 774 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 775 granularity = bdev_discard_granularity(I_BDEV(inode)) ?: 776 queue_physical_block_size(backingq); 777 778 /* 779 * We use punch hole to reclaim the free space used by the 780 * image a.k.a. discard. 781 */ 782 } else if (!file->f_op->fallocate) { 783 max_discard_sectors = 0; 784 granularity = 0; 785 786 } else { 787 struct kstatfs sbuf; 788 789 max_discard_sectors = UINT_MAX >> 9; 790 if (!vfs_statfs(&file->f_path, &sbuf)) 791 granularity = sbuf.f_bsize; 792 else 793 max_discard_sectors = 0; 794 } 795 796 if (max_discard_sectors) { 797 q->limits.discard_granularity = granularity; 798 blk_queue_max_discard_sectors(q, max_discard_sectors); 799 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 800 } else { 801 q->limits.discard_granularity = 0; 802 blk_queue_max_discard_sectors(q, 0); 803 blk_queue_max_write_zeroes_sectors(q, 0); 804 } 805 } 806 807 struct loop_worker { 808 struct rb_node rb_node; 809 struct work_struct work; 810 struct list_head cmd_list; 811 struct list_head idle_list; 812 struct loop_device *lo; 813 struct cgroup_subsys_state *blkcg_css; 814 unsigned long last_ran_at; 815 }; 816 817 static void loop_workfn(struct work_struct *work); 818 819 #ifdef CONFIG_BLK_CGROUP 820 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 821 { 822 return !css || css == blkcg_root_css; 823 } 824 #else 825 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 826 { 827 return !css; 828 } 829 #endif 830 831 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 832 { 833 struct rb_node **node, *parent = NULL; 834 struct loop_worker *cur_worker, *worker = NULL; 835 struct work_struct *work; 836 struct list_head *cmd_list; 837 838 spin_lock_irq(&lo->lo_work_lock); 839 840 if (queue_on_root_worker(cmd->blkcg_css)) 841 goto queue_work; 842 843 node = &lo->worker_tree.rb_node; 844 845 while (*node) { 846 parent = *node; 847 cur_worker = container_of(*node, struct loop_worker, rb_node); 848 if (cur_worker->blkcg_css == cmd->blkcg_css) { 849 worker = cur_worker; 850 break; 851 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 852 node = &(*node)->rb_left; 853 } else { 854 node = &(*node)->rb_right; 855 } 856 } 857 if (worker) 858 goto queue_work; 859 860 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 861 /* 862 * In the event we cannot allocate a worker, just queue on the 863 * rootcg worker and issue the I/O as the rootcg 864 */ 865 if (!worker) { 866 cmd->blkcg_css = NULL; 867 if (cmd->memcg_css) 868 css_put(cmd->memcg_css); 869 cmd->memcg_css = NULL; 870 goto queue_work; 871 } 872 873 worker->blkcg_css = cmd->blkcg_css; 874 css_get(worker->blkcg_css); 875 INIT_WORK(&worker->work, loop_workfn); 876 INIT_LIST_HEAD(&worker->cmd_list); 877 INIT_LIST_HEAD(&worker->idle_list); 878 worker->lo = lo; 879 rb_link_node(&worker->rb_node, parent, node); 880 rb_insert_color(&worker->rb_node, &lo->worker_tree); 881 queue_work: 882 if (worker) { 883 /* 884 * We need to remove from the idle list here while 885 * holding the lock so that the idle timer doesn't 886 * free the worker 887 */ 888 if (!list_empty(&worker->idle_list)) 889 list_del_init(&worker->idle_list); 890 work = &worker->work; 891 cmd_list = &worker->cmd_list; 892 } else { 893 work = &lo->rootcg_work; 894 cmd_list = &lo->rootcg_cmd_list; 895 } 896 list_add_tail(&cmd->list_entry, cmd_list); 897 queue_work(lo->workqueue, work); 898 spin_unlock_irq(&lo->lo_work_lock); 899 } 900 901 static void loop_set_timer(struct loop_device *lo) 902 { 903 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 904 } 905 906 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 907 { 908 struct loop_worker *pos, *worker; 909 910 spin_lock_irq(&lo->lo_work_lock); 911 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 912 idle_list) { 913 if (!delete_all && 914 time_is_after_jiffies(worker->last_ran_at + 915 LOOP_IDLE_WORKER_TIMEOUT)) 916 break; 917 list_del(&worker->idle_list); 918 rb_erase(&worker->rb_node, &lo->worker_tree); 919 css_put(worker->blkcg_css); 920 kfree(worker); 921 } 922 if (!list_empty(&lo->idle_worker_list)) 923 loop_set_timer(lo); 924 spin_unlock_irq(&lo->lo_work_lock); 925 } 926 927 static void loop_free_idle_workers_timer(struct timer_list *timer) 928 { 929 struct loop_device *lo = container_of(timer, struct loop_device, timer); 930 931 return loop_free_idle_workers(lo, false); 932 } 933 934 static void loop_update_rotational(struct loop_device *lo) 935 { 936 struct file *file = lo->lo_backing_file; 937 struct inode *file_inode = file->f_mapping->host; 938 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 939 struct request_queue *q = lo->lo_queue; 940 bool nonrot = true; 941 942 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 943 if (file_bdev) 944 nonrot = bdev_nonrot(file_bdev); 945 946 if (nonrot) 947 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 948 else 949 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 950 } 951 952 /** 953 * loop_set_status_from_info - configure device from loop_info 954 * @lo: struct loop_device to configure 955 * @info: struct loop_info64 to configure the device with 956 * 957 * Configures the loop device parameters according to the passed 958 * in loop_info64 configuration. 959 */ 960 static int 961 loop_set_status_from_info(struct loop_device *lo, 962 const struct loop_info64 *info) 963 { 964 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 965 return -EINVAL; 966 967 switch (info->lo_encrypt_type) { 968 case LO_CRYPT_NONE: 969 break; 970 case LO_CRYPT_XOR: 971 pr_warn("support for the xor transformation has been removed.\n"); 972 return -EINVAL; 973 case LO_CRYPT_CRYPTOAPI: 974 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 975 return -EINVAL; 976 default: 977 return -EINVAL; 978 } 979 980 lo->lo_offset = info->lo_offset; 981 lo->lo_sizelimit = info->lo_sizelimit; 982 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 983 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 984 lo->lo_flags = info->lo_flags; 985 return 0; 986 } 987 988 static int loop_configure(struct loop_device *lo, fmode_t mode, 989 struct block_device *bdev, 990 const struct loop_config *config) 991 { 992 struct file *file = fget(config->fd); 993 struct inode *inode; 994 struct address_space *mapping; 995 int error; 996 loff_t size; 997 bool partscan; 998 unsigned short bsize; 999 bool is_loop; 1000 1001 if (!file) 1002 return -EBADF; 1003 is_loop = is_loop_device(file); 1004 1005 /* This is safe, since we have a reference from open(). */ 1006 __module_get(THIS_MODULE); 1007 1008 /* suppress uevents while reconfiguring the device */ 1009 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1010 1011 /* 1012 * If we don't hold exclusive handle for the device, upgrade to it 1013 * here to avoid changing device under exclusive owner. 1014 */ 1015 if (!(mode & FMODE_EXCL)) { 1016 error = bd_prepare_to_claim(bdev, loop_configure); 1017 if (error) 1018 goto out_putf; 1019 } 1020 1021 error = loop_global_lock_killable(lo, is_loop); 1022 if (error) 1023 goto out_bdev; 1024 1025 error = -EBUSY; 1026 if (lo->lo_state != Lo_unbound) 1027 goto out_unlock; 1028 1029 error = loop_validate_file(file, bdev); 1030 if (error) 1031 goto out_unlock; 1032 1033 mapping = file->f_mapping; 1034 inode = mapping->host; 1035 1036 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1037 error = -EINVAL; 1038 goto out_unlock; 1039 } 1040 1041 if (config->block_size) { 1042 error = blk_validate_block_size(config->block_size); 1043 if (error) 1044 goto out_unlock; 1045 } 1046 1047 error = loop_set_status_from_info(lo, &config->info); 1048 if (error) 1049 goto out_unlock; 1050 1051 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1052 !file->f_op->write_iter) 1053 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1054 1055 if (!lo->workqueue) { 1056 lo->workqueue = alloc_workqueue("loop%d", 1057 WQ_UNBOUND | WQ_FREEZABLE, 1058 0, lo->lo_number); 1059 if (!lo->workqueue) { 1060 error = -ENOMEM; 1061 goto out_unlock; 1062 } 1063 } 1064 1065 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1066 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1067 1068 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1069 lo->lo_device = bdev; 1070 lo->lo_backing_file = file; 1071 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1072 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1073 1074 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1075 blk_queue_write_cache(lo->lo_queue, true, false); 1076 1077 if (config->block_size) 1078 bsize = config->block_size; 1079 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1080 /* In case of direct I/O, match underlying block size */ 1081 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1082 else 1083 bsize = 512; 1084 1085 blk_queue_logical_block_size(lo->lo_queue, bsize); 1086 blk_queue_physical_block_size(lo->lo_queue, bsize); 1087 blk_queue_io_min(lo->lo_queue, bsize); 1088 1089 loop_config_discard(lo); 1090 loop_update_rotational(lo); 1091 loop_update_dio(lo); 1092 loop_sysfs_init(lo); 1093 1094 size = get_loop_size(lo, file); 1095 loop_set_size(lo, size); 1096 1097 /* Order wrt reading lo_state in loop_validate_file(). */ 1098 wmb(); 1099 1100 lo->lo_state = Lo_bound; 1101 if (part_shift) 1102 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1103 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1104 if (partscan) 1105 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1106 1107 loop_global_unlock(lo, is_loop); 1108 if (partscan) 1109 loop_reread_partitions(lo); 1110 if (!(mode & FMODE_EXCL)) 1111 bd_abort_claiming(bdev, loop_configure); 1112 1113 error = 0; 1114 done: 1115 /* enable and uncork uevent now that we are done */ 1116 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1117 return error; 1118 1119 out_unlock: 1120 loop_global_unlock(lo, is_loop); 1121 out_bdev: 1122 if (!(mode & FMODE_EXCL)) 1123 bd_abort_claiming(bdev, loop_configure); 1124 out_putf: 1125 fput(file); 1126 /* This is safe: open() is still holding a reference. */ 1127 module_put(THIS_MODULE); 1128 goto done; 1129 } 1130 1131 static void __loop_clr_fd(struct loop_device *lo, bool release) 1132 { 1133 struct file *filp; 1134 gfp_t gfp = lo->old_gfp_mask; 1135 1136 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1137 blk_queue_write_cache(lo->lo_queue, false, false); 1138 1139 /* 1140 * Freeze the request queue when unbinding on a live file descriptor and 1141 * thus an open device. When called from ->release we are guaranteed 1142 * that there is no I/O in progress already. 1143 */ 1144 if (!release) 1145 blk_mq_freeze_queue(lo->lo_queue); 1146 1147 spin_lock_irq(&lo->lo_lock); 1148 filp = lo->lo_backing_file; 1149 lo->lo_backing_file = NULL; 1150 spin_unlock_irq(&lo->lo_lock); 1151 1152 lo->lo_device = NULL; 1153 lo->lo_offset = 0; 1154 lo->lo_sizelimit = 0; 1155 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1156 blk_queue_logical_block_size(lo->lo_queue, 512); 1157 blk_queue_physical_block_size(lo->lo_queue, 512); 1158 blk_queue_io_min(lo->lo_queue, 512); 1159 invalidate_disk(lo->lo_disk); 1160 loop_sysfs_exit(lo); 1161 /* let user-space know about this change */ 1162 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1163 mapping_set_gfp_mask(filp->f_mapping, gfp); 1164 /* This is safe: open() is still holding a reference. */ 1165 module_put(THIS_MODULE); 1166 if (!release) 1167 blk_mq_unfreeze_queue(lo->lo_queue); 1168 1169 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1170 1171 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1172 int err; 1173 1174 /* 1175 * open_mutex has been held already in release path, so don't 1176 * acquire it if this function is called in such case. 1177 * 1178 * If the reread partition isn't from release path, lo_refcnt 1179 * must be at least one and it can only become zero when the 1180 * current holder is released. 1181 */ 1182 if (!release) 1183 mutex_lock(&lo->lo_disk->open_mutex); 1184 err = bdev_disk_changed(lo->lo_disk, false); 1185 if (!release) 1186 mutex_unlock(&lo->lo_disk->open_mutex); 1187 if (err) 1188 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1189 __func__, lo->lo_number, err); 1190 /* Device is gone, no point in returning error */ 1191 } 1192 1193 /* 1194 * lo->lo_state is set to Lo_unbound here after above partscan has 1195 * finished. There cannot be anybody else entering __loop_clr_fd() as 1196 * Lo_rundown state protects us from all the other places trying to 1197 * change the 'lo' device. 1198 */ 1199 lo->lo_flags = 0; 1200 if (!part_shift) 1201 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1202 mutex_lock(&lo->lo_mutex); 1203 lo->lo_state = Lo_unbound; 1204 mutex_unlock(&lo->lo_mutex); 1205 1206 /* 1207 * Need not hold lo_mutex to fput backing file. Calling fput holding 1208 * lo_mutex triggers a circular lock dependency possibility warning as 1209 * fput can take open_mutex which is usually taken before lo_mutex. 1210 */ 1211 fput(filp); 1212 } 1213 1214 static int loop_clr_fd(struct loop_device *lo) 1215 { 1216 int err; 1217 1218 /* 1219 * Since lo_ioctl() is called without locks held, it is possible that 1220 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1221 * 1222 * Therefore, use global lock when setting Lo_rundown state in order to 1223 * make sure that loop_validate_file() will fail if the "struct file" 1224 * which loop_configure()/loop_change_fd() found via fget() was this 1225 * loop device. 1226 */ 1227 err = loop_global_lock_killable(lo, true); 1228 if (err) 1229 return err; 1230 if (lo->lo_state != Lo_bound) { 1231 loop_global_unlock(lo, true); 1232 return -ENXIO; 1233 } 1234 /* 1235 * If we've explicitly asked to tear down the loop device, 1236 * and it has an elevated reference count, set it for auto-teardown when 1237 * the last reference goes away. This stops $!~#$@ udev from 1238 * preventing teardown because it decided that it needs to run blkid on 1239 * the loopback device whenever they appear. xfstests is notorious for 1240 * failing tests because blkid via udev races with a losetup 1241 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1242 * command to fail with EBUSY. 1243 */ 1244 if (disk_openers(lo->lo_disk) > 1) { 1245 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1246 loop_global_unlock(lo, true); 1247 return 0; 1248 } 1249 lo->lo_state = Lo_rundown; 1250 loop_global_unlock(lo, true); 1251 1252 __loop_clr_fd(lo, false); 1253 return 0; 1254 } 1255 1256 static int 1257 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1258 { 1259 int err; 1260 int prev_lo_flags; 1261 bool partscan = false; 1262 bool size_changed = false; 1263 1264 err = mutex_lock_killable(&lo->lo_mutex); 1265 if (err) 1266 return err; 1267 if (lo->lo_state != Lo_bound) { 1268 err = -ENXIO; 1269 goto out_unlock; 1270 } 1271 1272 if (lo->lo_offset != info->lo_offset || 1273 lo->lo_sizelimit != info->lo_sizelimit) { 1274 size_changed = true; 1275 sync_blockdev(lo->lo_device); 1276 invalidate_bdev(lo->lo_device); 1277 } 1278 1279 /* I/O need to be drained during transfer transition */ 1280 blk_mq_freeze_queue(lo->lo_queue); 1281 1282 prev_lo_flags = lo->lo_flags; 1283 1284 err = loop_set_status_from_info(lo, info); 1285 if (err) 1286 goto out_unfreeze; 1287 1288 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1289 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1290 /* For those flags, use the previous values instead */ 1291 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1292 /* For flags that can't be cleared, use previous values too */ 1293 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1294 1295 if (size_changed) { 1296 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1297 lo->lo_backing_file); 1298 loop_set_size(lo, new_size); 1299 } 1300 1301 loop_config_discard(lo); 1302 1303 /* update dio if lo_offset or transfer is changed */ 1304 __loop_update_dio(lo, lo->use_dio); 1305 1306 out_unfreeze: 1307 blk_mq_unfreeze_queue(lo->lo_queue); 1308 1309 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1310 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1311 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1312 partscan = true; 1313 } 1314 out_unlock: 1315 mutex_unlock(&lo->lo_mutex); 1316 if (partscan) 1317 loop_reread_partitions(lo); 1318 1319 return err; 1320 } 1321 1322 static int 1323 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1324 { 1325 struct path path; 1326 struct kstat stat; 1327 int ret; 1328 1329 ret = mutex_lock_killable(&lo->lo_mutex); 1330 if (ret) 1331 return ret; 1332 if (lo->lo_state != Lo_bound) { 1333 mutex_unlock(&lo->lo_mutex); 1334 return -ENXIO; 1335 } 1336 1337 memset(info, 0, sizeof(*info)); 1338 info->lo_number = lo->lo_number; 1339 info->lo_offset = lo->lo_offset; 1340 info->lo_sizelimit = lo->lo_sizelimit; 1341 info->lo_flags = lo->lo_flags; 1342 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1343 1344 /* Drop lo_mutex while we call into the filesystem. */ 1345 path = lo->lo_backing_file->f_path; 1346 path_get(&path); 1347 mutex_unlock(&lo->lo_mutex); 1348 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1349 if (!ret) { 1350 info->lo_device = huge_encode_dev(stat.dev); 1351 info->lo_inode = stat.ino; 1352 info->lo_rdevice = huge_encode_dev(stat.rdev); 1353 } 1354 path_put(&path); 1355 return ret; 1356 } 1357 1358 static void 1359 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1360 { 1361 memset(info64, 0, sizeof(*info64)); 1362 info64->lo_number = info->lo_number; 1363 info64->lo_device = info->lo_device; 1364 info64->lo_inode = info->lo_inode; 1365 info64->lo_rdevice = info->lo_rdevice; 1366 info64->lo_offset = info->lo_offset; 1367 info64->lo_sizelimit = 0; 1368 info64->lo_flags = info->lo_flags; 1369 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1370 } 1371 1372 static int 1373 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1374 { 1375 memset(info, 0, sizeof(*info)); 1376 info->lo_number = info64->lo_number; 1377 info->lo_device = info64->lo_device; 1378 info->lo_inode = info64->lo_inode; 1379 info->lo_rdevice = info64->lo_rdevice; 1380 info->lo_offset = info64->lo_offset; 1381 info->lo_flags = info64->lo_flags; 1382 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1383 1384 /* error in case values were truncated */ 1385 if (info->lo_device != info64->lo_device || 1386 info->lo_rdevice != info64->lo_rdevice || 1387 info->lo_inode != info64->lo_inode || 1388 info->lo_offset != info64->lo_offset) 1389 return -EOVERFLOW; 1390 1391 return 0; 1392 } 1393 1394 static int 1395 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1396 { 1397 struct loop_info info; 1398 struct loop_info64 info64; 1399 1400 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1401 return -EFAULT; 1402 loop_info64_from_old(&info, &info64); 1403 return loop_set_status(lo, &info64); 1404 } 1405 1406 static int 1407 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1408 { 1409 struct loop_info64 info64; 1410 1411 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1412 return -EFAULT; 1413 return loop_set_status(lo, &info64); 1414 } 1415 1416 static int 1417 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1418 struct loop_info info; 1419 struct loop_info64 info64; 1420 int err; 1421 1422 if (!arg) 1423 return -EINVAL; 1424 err = loop_get_status(lo, &info64); 1425 if (!err) 1426 err = loop_info64_to_old(&info64, &info); 1427 if (!err && copy_to_user(arg, &info, sizeof(info))) 1428 err = -EFAULT; 1429 1430 return err; 1431 } 1432 1433 static int 1434 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1435 struct loop_info64 info64; 1436 int err; 1437 1438 if (!arg) 1439 return -EINVAL; 1440 err = loop_get_status(lo, &info64); 1441 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1442 err = -EFAULT; 1443 1444 return err; 1445 } 1446 1447 static int loop_set_capacity(struct loop_device *lo) 1448 { 1449 loff_t size; 1450 1451 if (unlikely(lo->lo_state != Lo_bound)) 1452 return -ENXIO; 1453 1454 size = get_loop_size(lo, lo->lo_backing_file); 1455 loop_set_size(lo, size); 1456 1457 return 0; 1458 } 1459 1460 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1461 { 1462 int error = -ENXIO; 1463 if (lo->lo_state != Lo_bound) 1464 goto out; 1465 1466 __loop_update_dio(lo, !!arg); 1467 if (lo->use_dio == !!arg) 1468 return 0; 1469 error = -EINVAL; 1470 out: 1471 return error; 1472 } 1473 1474 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1475 { 1476 int err = 0; 1477 1478 if (lo->lo_state != Lo_bound) 1479 return -ENXIO; 1480 1481 err = blk_validate_block_size(arg); 1482 if (err) 1483 return err; 1484 1485 if (lo->lo_queue->limits.logical_block_size == arg) 1486 return 0; 1487 1488 sync_blockdev(lo->lo_device); 1489 invalidate_bdev(lo->lo_device); 1490 1491 blk_mq_freeze_queue(lo->lo_queue); 1492 blk_queue_logical_block_size(lo->lo_queue, arg); 1493 blk_queue_physical_block_size(lo->lo_queue, arg); 1494 blk_queue_io_min(lo->lo_queue, arg); 1495 loop_update_dio(lo); 1496 blk_mq_unfreeze_queue(lo->lo_queue); 1497 1498 return err; 1499 } 1500 1501 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1502 unsigned long arg) 1503 { 1504 int err; 1505 1506 err = mutex_lock_killable(&lo->lo_mutex); 1507 if (err) 1508 return err; 1509 switch (cmd) { 1510 case LOOP_SET_CAPACITY: 1511 err = loop_set_capacity(lo); 1512 break; 1513 case LOOP_SET_DIRECT_IO: 1514 err = loop_set_dio(lo, arg); 1515 break; 1516 case LOOP_SET_BLOCK_SIZE: 1517 err = loop_set_block_size(lo, arg); 1518 break; 1519 default: 1520 err = -EINVAL; 1521 } 1522 mutex_unlock(&lo->lo_mutex); 1523 return err; 1524 } 1525 1526 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1527 unsigned int cmd, unsigned long arg) 1528 { 1529 struct loop_device *lo = bdev->bd_disk->private_data; 1530 void __user *argp = (void __user *) arg; 1531 int err; 1532 1533 switch (cmd) { 1534 case LOOP_SET_FD: { 1535 /* 1536 * Legacy case - pass in a zeroed out struct loop_config with 1537 * only the file descriptor set , which corresponds with the 1538 * default parameters we'd have used otherwise. 1539 */ 1540 struct loop_config config; 1541 1542 memset(&config, 0, sizeof(config)); 1543 config.fd = arg; 1544 1545 return loop_configure(lo, mode, bdev, &config); 1546 } 1547 case LOOP_CONFIGURE: { 1548 struct loop_config config; 1549 1550 if (copy_from_user(&config, argp, sizeof(config))) 1551 return -EFAULT; 1552 1553 return loop_configure(lo, mode, bdev, &config); 1554 } 1555 case LOOP_CHANGE_FD: 1556 return loop_change_fd(lo, bdev, arg); 1557 case LOOP_CLR_FD: 1558 return loop_clr_fd(lo); 1559 case LOOP_SET_STATUS: 1560 err = -EPERM; 1561 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1562 err = loop_set_status_old(lo, argp); 1563 } 1564 break; 1565 case LOOP_GET_STATUS: 1566 return loop_get_status_old(lo, argp); 1567 case LOOP_SET_STATUS64: 1568 err = -EPERM; 1569 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1570 err = loop_set_status64(lo, argp); 1571 } 1572 break; 1573 case LOOP_GET_STATUS64: 1574 return loop_get_status64(lo, argp); 1575 case LOOP_SET_CAPACITY: 1576 case LOOP_SET_DIRECT_IO: 1577 case LOOP_SET_BLOCK_SIZE: 1578 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1579 return -EPERM; 1580 fallthrough; 1581 default: 1582 err = lo_simple_ioctl(lo, cmd, arg); 1583 break; 1584 } 1585 1586 return err; 1587 } 1588 1589 #ifdef CONFIG_COMPAT 1590 struct compat_loop_info { 1591 compat_int_t lo_number; /* ioctl r/o */ 1592 compat_dev_t lo_device; /* ioctl r/o */ 1593 compat_ulong_t lo_inode; /* ioctl r/o */ 1594 compat_dev_t lo_rdevice; /* ioctl r/o */ 1595 compat_int_t lo_offset; 1596 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1597 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1598 compat_int_t lo_flags; /* ioctl r/o */ 1599 char lo_name[LO_NAME_SIZE]; 1600 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1601 compat_ulong_t lo_init[2]; 1602 char reserved[4]; 1603 }; 1604 1605 /* 1606 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1607 * - noinlined to reduce stack space usage in main part of driver 1608 */ 1609 static noinline int 1610 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1611 struct loop_info64 *info64) 1612 { 1613 struct compat_loop_info info; 1614 1615 if (copy_from_user(&info, arg, sizeof(info))) 1616 return -EFAULT; 1617 1618 memset(info64, 0, sizeof(*info64)); 1619 info64->lo_number = info.lo_number; 1620 info64->lo_device = info.lo_device; 1621 info64->lo_inode = info.lo_inode; 1622 info64->lo_rdevice = info.lo_rdevice; 1623 info64->lo_offset = info.lo_offset; 1624 info64->lo_sizelimit = 0; 1625 info64->lo_flags = info.lo_flags; 1626 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1627 return 0; 1628 } 1629 1630 /* 1631 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1632 * - noinlined to reduce stack space usage in main part of driver 1633 */ 1634 static noinline int 1635 loop_info64_to_compat(const struct loop_info64 *info64, 1636 struct compat_loop_info __user *arg) 1637 { 1638 struct compat_loop_info info; 1639 1640 memset(&info, 0, sizeof(info)); 1641 info.lo_number = info64->lo_number; 1642 info.lo_device = info64->lo_device; 1643 info.lo_inode = info64->lo_inode; 1644 info.lo_rdevice = info64->lo_rdevice; 1645 info.lo_offset = info64->lo_offset; 1646 info.lo_flags = info64->lo_flags; 1647 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1648 1649 /* error in case values were truncated */ 1650 if (info.lo_device != info64->lo_device || 1651 info.lo_rdevice != info64->lo_rdevice || 1652 info.lo_inode != info64->lo_inode || 1653 info.lo_offset != info64->lo_offset) 1654 return -EOVERFLOW; 1655 1656 if (copy_to_user(arg, &info, sizeof(info))) 1657 return -EFAULT; 1658 return 0; 1659 } 1660 1661 static int 1662 loop_set_status_compat(struct loop_device *lo, 1663 const struct compat_loop_info __user *arg) 1664 { 1665 struct loop_info64 info64; 1666 int ret; 1667 1668 ret = loop_info64_from_compat(arg, &info64); 1669 if (ret < 0) 1670 return ret; 1671 return loop_set_status(lo, &info64); 1672 } 1673 1674 static int 1675 loop_get_status_compat(struct loop_device *lo, 1676 struct compat_loop_info __user *arg) 1677 { 1678 struct loop_info64 info64; 1679 int err; 1680 1681 if (!arg) 1682 return -EINVAL; 1683 err = loop_get_status(lo, &info64); 1684 if (!err) 1685 err = loop_info64_to_compat(&info64, arg); 1686 return err; 1687 } 1688 1689 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1690 unsigned int cmd, unsigned long arg) 1691 { 1692 struct loop_device *lo = bdev->bd_disk->private_data; 1693 int err; 1694 1695 switch(cmd) { 1696 case LOOP_SET_STATUS: 1697 err = loop_set_status_compat(lo, 1698 (const struct compat_loop_info __user *)arg); 1699 break; 1700 case LOOP_GET_STATUS: 1701 err = loop_get_status_compat(lo, 1702 (struct compat_loop_info __user *)arg); 1703 break; 1704 case LOOP_SET_CAPACITY: 1705 case LOOP_CLR_FD: 1706 case LOOP_GET_STATUS64: 1707 case LOOP_SET_STATUS64: 1708 case LOOP_CONFIGURE: 1709 arg = (unsigned long) compat_ptr(arg); 1710 fallthrough; 1711 case LOOP_SET_FD: 1712 case LOOP_CHANGE_FD: 1713 case LOOP_SET_BLOCK_SIZE: 1714 case LOOP_SET_DIRECT_IO: 1715 err = lo_ioctl(bdev, mode, cmd, arg); 1716 break; 1717 default: 1718 err = -ENOIOCTLCMD; 1719 break; 1720 } 1721 return err; 1722 } 1723 #endif 1724 1725 static void lo_release(struct gendisk *disk, fmode_t mode) 1726 { 1727 struct loop_device *lo = disk->private_data; 1728 1729 if (disk_openers(disk) > 0) 1730 return; 1731 1732 mutex_lock(&lo->lo_mutex); 1733 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) { 1734 lo->lo_state = Lo_rundown; 1735 mutex_unlock(&lo->lo_mutex); 1736 /* 1737 * In autoclear mode, stop the loop thread 1738 * and remove configuration after last close. 1739 */ 1740 __loop_clr_fd(lo, true); 1741 return; 1742 } 1743 mutex_unlock(&lo->lo_mutex); 1744 } 1745 1746 static void lo_free_disk(struct gendisk *disk) 1747 { 1748 struct loop_device *lo = disk->private_data; 1749 1750 if (lo->workqueue) 1751 destroy_workqueue(lo->workqueue); 1752 loop_free_idle_workers(lo, true); 1753 del_timer_sync(&lo->timer); 1754 mutex_destroy(&lo->lo_mutex); 1755 kfree(lo); 1756 } 1757 1758 static const struct block_device_operations lo_fops = { 1759 .owner = THIS_MODULE, 1760 .release = lo_release, 1761 .ioctl = lo_ioctl, 1762 #ifdef CONFIG_COMPAT 1763 .compat_ioctl = lo_compat_ioctl, 1764 #endif 1765 .free_disk = lo_free_disk, 1766 }; 1767 1768 /* 1769 * And now the modules code and kernel interface. 1770 */ 1771 static int max_loop; 1772 module_param(max_loop, int, 0444); 1773 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1774 module_param(max_part, int, 0444); 1775 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1776 1777 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1778 1779 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1780 { 1781 int ret = kstrtoint(s, 10, &hw_queue_depth); 1782 1783 return (ret || (hw_queue_depth < 1)) ? -EINVAL : 0; 1784 } 1785 1786 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1787 .set = loop_set_hw_queue_depth, 1788 .get = param_get_int, 1789 }; 1790 1791 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1792 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 128"); 1793 1794 MODULE_LICENSE("GPL"); 1795 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1796 1797 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1798 const struct blk_mq_queue_data *bd) 1799 { 1800 struct request *rq = bd->rq; 1801 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1802 struct loop_device *lo = rq->q->queuedata; 1803 1804 blk_mq_start_request(rq); 1805 1806 if (lo->lo_state != Lo_bound) 1807 return BLK_STS_IOERR; 1808 1809 switch (req_op(rq)) { 1810 case REQ_OP_FLUSH: 1811 case REQ_OP_DISCARD: 1812 case REQ_OP_WRITE_ZEROES: 1813 cmd->use_aio = false; 1814 break; 1815 default: 1816 cmd->use_aio = lo->use_dio; 1817 break; 1818 } 1819 1820 /* always use the first bio's css */ 1821 cmd->blkcg_css = NULL; 1822 cmd->memcg_css = NULL; 1823 #ifdef CONFIG_BLK_CGROUP 1824 if (rq->bio) { 1825 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1826 #ifdef CONFIG_MEMCG 1827 if (cmd->blkcg_css) { 1828 cmd->memcg_css = 1829 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1830 &memory_cgrp_subsys); 1831 } 1832 #endif 1833 } 1834 #endif 1835 loop_queue_work(lo, cmd); 1836 1837 return BLK_STS_OK; 1838 } 1839 1840 static void loop_handle_cmd(struct loop_cmd *cmd) 1841 { 1842 struct request *rq = blk_mq_rq_from_pdu(cmd); 1843 const bool write = op_is_write(req_op(rq)); 1844 struct loop_device *lo = rq->q->queuedata; 1845 int ret = 0; 1846 struct mem_cgroup *old_memcg = NULL; 1847 1848 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1849 ret = -EIO; 1850 goto failed; 1851 } 1852 1853 if (cmd->blkcg_css) 1854 kthread_associate_blkcg(cmd->blkcg_css); 1855 if (cmd->memcg_css) 1856 old_memcg = set_active_memcg( 1857 mem_cgroup_from_css(cmd->memcg_css)); 1858 1859 ret = do_req_filebacked(lo, rq); 1860 1861 if (cmd->blkcg_css) 1862 kthread_associate_blkcg(NULL); 1863 1864 if (cmd->memcg_css) { 1865 set_active_memcg(old_memcg); 1866 css_put(cmd->memcg_css); 1867 } 1868 failed: 1869 /* complete non-aio request */ 1870 if (!cmd->use_aio || ret) { 1871 if (ret == -EOPNOTSUPP) 1872 cmd->ret = ret; 1873 else 1874 cmd->ret = ret ? -EIO : 0; 1875 if (likely(!blk_should_fake_timeout(rq->q))) 1876 blk_mq_complete_request(rq); 1877 } 1878 } 1879 1880 static void loop_process_work(struct loop_worker *worker, 1881 struct list_head *cmd_list, struct loop_device *lo) 1882 { 1883 int orig_flags = current->flags; 1884 struct loop_cmd *cmd; 1885 1886 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1887 spin_lock_irq(&lo->lo_work_lock); 1888 while (!list_empty(cmd_list)) { 1889 cmd = container_of( 1890 cmd_list->next, struct loop_cmd, list_entry); 1891 list_del(cmd_list->next); 1892 spin_unlock_irq(&lo->lo_work_lock); 1893 1894 loop_handle_cmd(cmd); 1895 cond_resched(); 1896 1897 spin_lock_irq(&lo->lo_work_lock); 1898 } 1899 1900 /* 1901 * We only add to the idle list if there are no pending cmds 1902 * *and* the worker will not run again which ensures that it 1903 * is safe to free any worker on the idle list 1904 */ 1905 if (worker && !work_pending(&worker->work)) { 1906 worker->last_ran_at = jiffies; 1907 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1908 loop_set_timer(lo); 1909 } 1910 spin_unlock_irq(&lo->lo_work_lock); 1911 current->flags = orig_flags; 1912 } 1913 1914 static void loop_workfn(struct work_struct *work) 1915 { 1916 struct loop_worker *worker = 1917 container_of(work, struct loop_worker, work); 1918 loop_process_work(worker, &worker->cmd_list, worker->lo); 1919 } 1920 1921 static void loop_rootcg_workfn(struct work_struct *work) 1922 { 1923 struct loop_device *lo = 1924 container_of(work, struct loop_device, rootcg_work); 1925 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1926 } 1927 1928 static const struct blk_mq_ops loop_mq_ops = { 1929 .queue_rq = loop_queue_rq, 1930 .complete = lo_complete_rq, 1931 }; 1932 1933 static int loop_add(int i) 1934 { 1935 struct loop_device *lo; 1936 struct gendisk *disk; 1937 int err; 1938 1939 err = -ENOMEM; 1940 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1941 if (!lo) 1942 goto out; 1943 lo->worker_tree = RB_ROOT; 1944 INIT_LIST_HEAD(&lo->idle_worker_list); 1945 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 1946 lo->lo_state = Lo_unbound; 1947 1948 err = mutex_lock_killable(&loop_ctl_mutex); 1949 if (err) 1950 goto out_free_dev; 1951 1952 /* allocate id, if @id >= 0, we're requesting that specific id */ 1953 if (i >= 0) { 1954 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1955 if (err == -ENOSPC) 1956 err = -EEXIST; 1957 } else { 1958 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1959 } 1960 mutex_unlock(&loop_ctl_mutex); 1961 if (err < 0) 1962 goto out_free_dev; 1963 i = err; 1964 1965 lo->tag_set.ops = &loop_mq_ops; 1966 lo->tag_set.nr_hw_queues = 1; 1967 lo->tag_set.queue_depth = hw_queue_depth; 1968 lo->tag_set.numa_node = NUMA_NO_NODE; 1969 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1970 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 1971 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1972 lo->tag_set.driver_data = lo; 1973 1974 err = blk_mq_alloc_tag_set(&lo->tag_set); 1975 if (err) 1976 goto out_free_idr; 1977 1978 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo); 1979 if (IS_ERR(disk)) { 1980 err = PTR_ERR(disk); 1981 goto out_cleanup_tags; 1982 } 1983 lo->lo_queue = lo->lo_disk->queue; 1984 1985 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 1986 1987 /* 1988 * By default, we do buffer IO, so it doesn't make sense to enable 1989 * merge because the I/O submitted to backing file is handled page by 1990 * page. For directio mode, merge does help to dispatch bigger request 1991 * to underlayer disk. We will enable merge once directio is enabled. 1992 */ 1993 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1994 1995 /* 1996 * Disable partition scanning by default. The in-kernel partition 1997 * scanning can be requested individually per-device during its 1998 * setup. Userspace can always add and remove partitions from all 1999 * devices. The needed partition minors are allocated from the 2000 * extended minor space, the main loop device numbers will continue 2001 * to match the loop minors, regardless of the number of partitions 2002 * used. 2003 * 2004 * If max_part is given, partition scanning is globally enabled for 2005 * all loop devices. The minors for the main loop devices will be 2006 * multiples of max_part. 2007 * 2008 * Note: Global-for-all-devices, set-only-at-init, read-only module 2009 * parameteters like 'max_loop' and 'max_part' make things needlessly 2010 * complicated, are too static, inflexible and may surprise 2011 * userspace tools. Parameters like this in general should be avoided. 2012 */ 2013 if (!part_shift) 2014 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2015 mutex_init(&lo->lo_mutex); 2016 lo->lo_number = i; 2017 spin_lock_init(&lo->lo_lock); 2018 spin_lock_init(&lo->lo_work_lock); 2019 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2020 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2021 disk->major = LOOP_MAJOR; 2022 disk->first_minor = i << part_shift; 2023 disk->minors = 1 << part_shift; 2024 disk->fops = &lo_fops; 2025 disk->private_data = lo; 2026 disk->queue = lo->lo_queue; 2027 disk->events = DISK_EVENT_MEDIA_CHANGE; 2028 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2029 sprintf(disk->disk_name, "loop%d", i); 2030 /* Make this loop device reachable from pathname. */ 2031 err = add_disk(disk); 2032 if (err) 2033 goto out_cleanup_disk; 2034 2035 /* Show this loop device. */ 2036 mutex_lock(&loop_ctl_mutex); 2037 lo->idr_visible = true; 2038 mutex_unlock(&loop_ctl_mutex); 2039 2040 return i; 2041 2042 out_cleanup_disk: 2043 put_disk(disk); 2044 out_cleanup_tags: 2045 blk_mq_free_tag_set(&lo->tag_set); 2046 out_free_idr: 2047 mutex_lock(&loop_ctl_mutex); 2048 idr_remove(&loop_index_idr, i); 2049 mutex_unlock(&loop_ctl_mutex); 2050 out_free_dev: 2051 kfree(lo); 2052 out: 2053 return err; 2054 } 2055 2056 static void loop_remove(struct loop_device *lo) 2057 { 2058 /* Make this loop device unreachable from pathname. */ 2059 del_gendisk(lo->lo_disk); 2060 blk_mq_free_tag_set(&lo->tag_set); 2061 2062 mutex_lock(&loop_ctl_mutex); 2063 idr_remove(&loop_index_idr, lo->lo_number); 2064 mutex_unlock(&loop_ctl_mutex); 2065 2066 put_disk(lo->lo_disk); 2067 } 2068 2069 static void loop_probe(dev_t dev) 2070 { 2071 int idx = MINOR(dev) >> part_shift; 2072 2073 if (max_loop && idx >= max_loop) 2074 return; 2075 loop_add(idx); 2076 } 2077 2078 static int loop_control_remove(int idx) 2079 { 2080 struct loop_device *lo; 2081 int ret; 2082 2083 if (idx < 0) { 2084 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2085 return -EINVAL; 2086 } 2087 2088 /* Hide this loop device for serialization. */ 2089 ret = mutex_lock_killable(&loop_ctl_mutex); 2090 if (ret) 2091 return ret; 2092 lo = idr_find(&loop_index_idr, idx); 2093 if (!lo || !lo->idr_visible) 2094 ret = -ENODEV; 2095 else 2096 lo->idr_visible = false; 2097 mutex_unlock(&loop_ctl_mutex); 2098 if (ret) 2099 return ret; 2100 2101 /* Check whether this loop device can be removed. */ 2102 ret = mutex_lock_killable(&lo->lo_mutex); 2103 if (ret) 2104 goto mark_visible; 2105 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2106 mutex_unlock(&lo->lo_mutex); 2107 ret = -EBUSY; 2108 goto mark_visible; 2109 } 2110 /* Mark this loop device as no more bound, but not quite unbound yet */ 2111 lo->lo_state = Lo_deleting; 2112 mutex_unlock(&lo->lo_mutex); 2113 2114 loop_remove(lo); 2115 return 0; 2116 2117 mark_visible: 2118 /* Show this loop device again. */ 2119 mutex_lock(&loop_ctl_mutex); 2120 lo->idr_visible = true; 2121 mutex_unlock(&loop_ctl_mutex); 2122 return ret; 2123 } 2124 2125 static int loop_control_get_free(int idx) 2126 { 2127 struct loop_device *lo; 2128 int id, ret; 2129 2130 ret = mutex_lock_killable(&loop_ctl_mutex); 2131 if (ret) 2132 return ret; 2133 idr_for_each_entry(&loop_index_idr, lo, id) { 2134 /* Hitting a race results in creating a new loop device which is harmless. */ 2135 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2136 goto found; 2137 } 2138 mutex_unlock(&loop_ctl_mutex); 2139 return loop_add(-1); 2140 found: 2141 mutex_unlock(&loop_ctl_mutex); 2142 return id; 2143 } 2144 2145 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2146 unsigned long parm) 2147 { 2148 switch (cmd) { 2149 case LOOP_CTL_ADD: 2150 return loop_add(parm); 2151 case LOOP_CTL_REMOVE: 2152 return loop_control_remove(parm); 2153 case LOOP_CTL_GET_FREE: 2154 return loop_control_get_free(parm); 2155 default: 2156 return -ENOSYS; 2157 } 2158 } 2159 2160 static const struct file_operations loop_ctl_fops = { 2161 .open = nonseekable_open, 2162 .unlocked_ioctl = loop_control_ioctl, 2163 .compat_ioctl = loop_control_ioctl, 2164 .owner = THIS_MODULE, 2165 .llseek = noop_llseek, 2166 }; 2167 2168 static struct miscdevice loop_misc = { 2169 .minor = LOOP_CTRL_MINOR, 2170 .name = "loop-control", 2171 .fops = &loop_ctl_fops, 2172 }; 2173 2174 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2175 MODULE_ALIAS("devname:loop-control"); 2176 2177 static int __init loop_init(void) 2178 { 2179 int i, nr; 2180 int err; 2181 2182 part_shift = 0; 2183 if (max_part > 0) { 2184 part_shift = fls(max_part); 2185 2186 /* 2187 * Adjust max_part according to part_shift as it is exported 2188 * to user space so that user can decide correct minor number 2189 * if [s]he want to create more devices. 2190 * 2191 * Note that -1 is required because partition 0 is reserved 2192 * for the whole disk. 2193 */ 2194 max_part = (1UL << part_shift) - 1; 2195 } 2196 2197 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2198 err = -EINVAL; 2199 goto err_out; 2200 } 2201 2202 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2203 err = -EINVAL; 2204 goto err_out; 2205 } 2206 2207 /* 2208 * If max_loop is specified, create that many devices upfront. 2209 * This also becomes a hard limit. If max_loop is not specified, 2210 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2211 * init time. Loop devices can be requested on-demand with the 2212 * /dev/loop-control interface, or be instantiated by accessing 2213 * a 'dead' device node. 2214 */ 2215 if (max_loop) 2216 nr = max_loop; 2217 else 2218 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2219 2220 err = misc_register(&loop_misc); 2221 if (err < 0) 2222 goto err_out; 2223 2224 2225 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2226 err = -EIO; 2227 goto misc_out; 2228 } 2229 2230 /* pre-create number of devices given by config or max_loop */ 2231 for (i = 0; i < nr; i++) 2232 loop_add(i); 2233 2234 printk(KERN_INFO "loop: module loaded\n"); 2235 return 0; 2236 2237 misc_out: 2238 misc_deregister(&loop_misc); 2239 err_out: 2240 return err; 2241 } 2242 2243 static void __exit loop_exit(void) 2244 { 2245 struct loop_device *lo; 2246 int id; 2247 2248 unregister_blkdev(LOOP_MAJOR, "loop"); 2249 misc_deregister(&loop_misc); 2250 2251 /* 2252 * There is no need to use loop_ctl_mutex here, for nobody else can 2253 * access loop_index_idr when this module is unloading (unless forced 2254 * module unloading is requested). If this is not a clean unloading, 2255 * we have no means to avoid kernel crash. 2256 */ 2257 idr_for_each_entry(&loop_index_idr, lo, id) 2258 loop_remove(lo); 2259 2260 idr_destroy(&loop_index_idr); 2261 } 2262 2263 module_init(loop_init); 2264 module_exit(loop_exit); 2265 2266 #ifndef MODULE 2267 static int __init max_loop_setup(char *str) 2268 { 2269 max_loop = simple_strtol(str, NULL, 0); 2270 return 1; 2271 } 2272 2273 __setup("max_loop=", max_loop_setup); 2274 #endif 2275