xref: /openbmc/linux/drivers/block/loop.c (revision 890f0b0d)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	if (lo->lo_state == Lo_bound)
218 		blk_mq_freeze_queue(lo->lo_queue);
219 	lo->use_dio = use_dio;
220 	if (use_dio) {
221 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 	} else {
224 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 	}
227 	if (lo->lo_state == Lo_bound)
228 		blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230 
231 static int
232 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
233 {
234 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
235 	sector_t x = (sector_t)size;
236 	struct block_device *bdev = lo->lo_device;
237 
238 	if (unlikely((loff_t)x != size))
239 		return -EFBIG;
240 	if (lo->lo_offset != offset)
241 		lo->lo_offset = offset;
242 	if (lo->lo_sizelimit != sizelimit)
243 		lo->lo_sizelimit = sizelimit;
244 	set_capacity(lo->lo_disk, x);
245 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
246 	/* let user-space know about the new size */
247 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
248 	return 0;
249 }
250 
251 static inline int
252 lo_do_transfer(struct loop_device *lo, int cmd,
253 	       struct page *rpage, unsigned roffs,
254 	       struct page *lpage, unsigned loffs,
255 	       int size, sector_t rblock)
256 {
257 	int ret;
258 
259 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
260 	if (likely(!ret))
261 		return 0;
262 
263 	printk_ratelimited(KERN_ERR
264 		"loop: Transfer error at byte offset %llu, length %i.\n",
265 		(unsigned long long)rblock << 9, size);
266 	return ret;
267 }
268 
269 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
270 {
271 	struct iov_iter i;
272 	ssize_t bw;
273 
274 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
275 
276 	file_start_write(file);
277 	bw = vfs_iter_write(file, &i, ppos, 0);
278 	file_end_write(file);
279 
280 	if (likely(bw ==  bvec->bv_len))
281 		return 0;
282 
283 	printk_ratelimited(KERN_ERR
284 		"loop: Write error at byte offset %llu, length %i.\n",
285 		(unsigned long long)*ppos, bvec->bv_len);
286 	if (bw >= 0)
287 		bw = -EIO;
288 	return bw;
289 }
290 
291 static int lo_write_simple(struct loop_device *lo, struct request *rq,
292 		loff_t pos)
293 {
294 	struct bio_vec bvec;
295 	struct req_iterator iter;
296 	int ret = 0;
297 
298 	rq_for_each_segment(bvec, rq, iter) {
299 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
300 		if (ret < 0)
301 			break;
302 		cond_resched();
303 	}
304 
305 	return ret;
306 }
307 
308 /*
309  * This is the slow, transforming version that needs to double buffer the
310  * data as it cannot do the transformations in place without having direct
311  * access to the destination pages of the backing file.
312  */
313 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
314 		loff_t pos)
315 {
316 	struct bio_vec bvec, b;
317 	struct req_iterator iter;
318 	struct page *page;
319 	int ret = 0;
320 
321 	page = alloc_page(GFP_NOIO);
322 	if (unlikely(!page))
323 		return -ENOMEM;
324 
325 	rq_for_each_segment(bvec, rq, iter) {
326 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
327 			bvec.bv_offset, bvec.bv_len, pos >> 9);
328 		if (unlikely(ret))
329 			break;
330 
331 		b.bv_page = page;
332 		b.bv_offset = 0;
333 		b.bv_len = bvec.bv_len;
334 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
335 		if (ret < 0)
336 			break;
337 	}
338 
339 	__free_page(page);
340 	return ret;
341 }
342 
343 static int lo_read_simple(struct loop_device *lo, struct request *rq,
344 		loff_t pos)
345 {
346 	struct bio_vec bvec;
347 	struct req_iterator iter;
348 	struct iov_iter i;
349 	ssize_t len;
350 
351 	rq_for_each_segment(bvec, rq, iter) {
352 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
353 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
354 		if (len < 0)
355 			return len;
356 
357 		flush_dcache_page(bvec.bv_page);
358 
359 		if (len != bvec.bv_len) {
360 			struct bio *bio;
361 
362 			__rq_for_each_bio(bio, rq)
363 				zero_fill_bio(bio);
364 			break;
365 		}
366 		cond_resched();
367 	}
368 
369 	return 0;
370 }
371 
372 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
373 		loff_t pos)
374 {
375 	struct bio_vec bvec, b;
376 	struct req_iterator iter;
377 	struct iov_iter i;
378 	struct page *page;
379 	ssize_t len;
380 	int ret = 0;
381 
382 	page = alloc_page(GFP_NOIO);
383 	if (unlikely(!page))
384 		return -ENOMEM;
385 
386 	rq_for_each_segment(bvec, rq, iter) {
387 		loff_t offset = pos;
388 
389 		b.bv_page = page;
390 		b.bv_offset = 0;
391 		b.bv_len = bvec.bv_len;
392 
393 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
394 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
395 		if (len < 0) {
396 			ret = len;
397 			goto out_free_page;
398 		}
399 
400 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
401 			bvec.bv_offset, len, offset >> 9);
402 		if (ret)
403 			goto out_free_page;
404 
405 		flush_dcache_page(bvec.bv_page);
406 
407 		if (len != bvec.bv_len) {
408 			struct bio *bio;
409 
410 			__rq_for_each_bio(bio, rq)
411 				zero_fill_bio(bio);
412 			break;
413 		}
414 	}
415 
416 	ret = 0;
417 out_free_page:
418 	__free_page(page);
419 	return ret;
420 }
421 
422 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
423 			int mode)
424 {
425 	/*
426 	 * We use fallocate to manipulate the space mappings used by the image
427 	 * a.k.a. discard/zerorange. However we do not support this if
428 	 * encryption is enabled, because it may give an attacker useful
429 	 * information.
430 	 */
431 	struct file *file = lo->lo_backing_file;
432 	int ret;
433 
434 	mode |= FALLOC_FL_KEEP_SIZE;
435 
436 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
437 		ret = -EOPNOTSUPP;
438 		goto out;
439 	}
440 
441 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
442 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
443 		ret = -EIO;
444  out:
445 	return ret;
446 }
447 
448 static int lo_req_flush(struct loop_device *lo, struct request *rq)
449 {
450 	struct file *file = lo->lo_backing_file;
451 	int ret = vfs_fsync(file, 0);
452 	if (unlikely(ret && ret != -EINVAL))
453 		ret = -EIO;
454 
455 	return ret;
456 }
457 
458 static void lo_complete_rq(struct request *rq)
459 {
460 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
461 	blk_status_t ret = BLK_STS_OK;
462 
463 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
464 	    req_op(rq) != REQ_OP_READ) {
465 		if (cmd->ret < 0)
466 			ret = BLK_STS_IOERR;
467 		goto end_io;
468 	}
469 
470 	/*
471 	 * Short READ - if we got some data, advance our request and
472 	 * retry it. If we got no data, end the rest with EIO.
473 	 */
474 	if (cmd->ret) {
475 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
476 		cmd->ret = 0;
477 		blk_mq_requeue_request(rq, true);
478 	} else {
479 		if (cmd->use_aio) {
480 			struct bio *bio = rq->bio;
481 
482 			while (bio) {
483 				zero_fill_bio(bio);
484 				bio = bio->bi_next;
485 			}
486 		}
487 		ret = BLK_STS_IOERR;
488 end_io:
489 		blk_mq_end_request(rq, ret);
490 	}
491 }
492 
493 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
494 {
495 	struct request *rq = blk_mq_rq_from_pdu(cmd);
496 
497 	if (!atomic_dec_and_test(&cmd->ref))
498 		return;
499 	kfree(cmd->bvec);
500 	cmd->bvec = NULL;
501 	blk_mq_complete_request(rq);
502 }
503 
504 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
505 {
506 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
507 
508 	if (cmd->css)
509 		css_put(cmd->css);
510 	cmd->ret = ret;
511 	lo_rw_aio_do_completion(cmd);
512 }
513 
514 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
515 		     loff_t pos, bool rw)
516 {
517 	struct iov_iter iter;
518 	struct req_iterator rq_iter;
519 	struct bio_vec *bvec;
520 	struct request *rq = blk_mq_rq_from_pdu(cmd);
521 	struct bio *bio = rq->bio;
522 	struct file *file = lo->lo_backing_file;
523 	struct bio_vec tmp;
524 	unsigned int offset;
525 	int nr_bvec = 0;
526 	int ret;
527 
528 	rq_for_each_bvec(tmp, rq, rq_iter)
529 		nr_bvec++;
530 
531 	if (rq->bio != rq->biotail) {
532 
533 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
534 				     GFP_NOIO);
535 		if (!bvec)
536 			return -EIO;
537 		cmd->bvec = bvec;
538 
539 		/*
540 		 * The bios of the request may be started from the middle of
541 		 * the 'bvec' because of bio splitting, so we can't directly
542 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
543 		 * API will take care of all details for us.
544 		 */
545 		rq_for_each_bvec(tmp, rq, rq_iter) {
546 			*bvec = tmp;
547 			bvec++;
548 		}
549 		bvec = cmd->bvec;
550 		offset = 0;
551 	} else {
552 		/*
553 		 * Same here, this bio may be started from the middle of the
554 		 * 'bvec' because of bio splitting, so offset from the bvec
555 		 * must be passed to iov iterator
556 		 */
557 		offset = bio->bi_iter.bi_bvec_done;
558 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
559 	}
560 	atomic_set(&cmd->ref, 2);
561 
562 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
563 	iter.iov_offset = offset;
564 
565 	cmd->iocb.ki_pos = pos;
566 	cmd->iocb.ki_filp = file;
567 	cmd->iocb.ki_complete = lo_rw_aio_complete;
568 	cmd->iocb.ki_flags = IOCB_DIRECT;
569 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
570 	if (cmd->css)
571 		kthread_associate_blkcg(cmd->css);
572 
573 	if (rw == WRITE)
574 		ret = call_write_iter(file, &cmd->iocb, &iter);
575 	else
576 		ret = call_read_iter(file, &cmd->iocb, &iter);
577 
578 	lo_rw_aio_do_completion(cmd);
579 	kthread_associate_blkcg(NULL);
580 
581 	if (ret != -EIOCBQUEUED)
582 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
583 	return 0;
584 }
585 
586 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
587 {
588 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
589 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
590 
591 	/*
592 	 * lo_write_simple and lo_read_simple should have been covered
593 	 * by io submit style function like lo_rw_aio(), one blocker
594 	 * is that lo_read_simple() need to call flush_dcache_page after
595 	 * the page is written from kernel, and it isn't easy to handle
596 	 * this in io submit style function which submits all segments
597 	 * of the req at one time. And direct read IO doesn't need to
598 	 * run flush_dcache_page().
599 	 */
600 	switch (req_op(rq)) {
601 	case REQ_OP_FLUSH:
602 		return lo_req_flush(lo, rq);
603 	case REQ_OP_WRITE_ZEROES:
604 		/*
605 		 * If the caller doesn't want deallocation, call zeroout to
606 		 * write zeroes the range.  Otherwise, punch them out.
607 		 */
608 		return lo_fallocate(lo, rq, pos,
609 			(rq->cmd_flags & REQ_NOUNMAP) ?
610 				FALLOC_FL_ZERO_RANGE :
611 				FALLOC_FL_PUNCH_HOLE);
612 	case REQ_OP_DISCARD:
613 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
614 	case REQ_OP_WRITE:
615 		if (lo->transfer)
616 			return lo_write_transfer(lo, rq, pos);
617 		else if (cmd->use_aio)
618 			return lo_rw_aio(lo, cmd, pos, WRITE);
619 		else
620 			return lo_write_simple(lo, rq, pos);
621 	case REQ_OP_READ:
622 		if (lo->transfer)
623 			return lo_read_transfer(lo, rq, pos);
624 		else if (cmd->use_aio)
625 			return lo_rw_aio(lo, cmd, pos, READ);
626 		else
627 			return lo_read_simple(lo, rq, pos);
628 	default:
629 		WARN_ON_ONCE(1);
630 		return -EIO;
631 	}
632 }
633 
634 static inline void loop_update_dio(struct loop_device *lo)
635 {
636 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
637 			lo->use_dio);
638 }
639 
640 static void loop_reread_partitions(struct loop_device *lo,
641 				   struct block_device *bdev)
642 {
643 	int rc;
644 
645 	mutex_lock(&bdev->bd_mutex);
646 	rc = bdev_disk_changed(bdev, false);
647 	mutex_unlock(&bdev->bd_mutex);
648 	if (rc)
649 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
650 			__func__, lo->lo_number, lo->lo_file_name, rc);
651 }
652 
653 static inline int is_loop_device(struct file *file)
654 {
655 	struct inode *i = file->f_mapping->host;
656 
657 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
658 }
659 
660 static int loop_validate_file(struct file *file, struct block_device *bdev)
661 {
662 	struct inode	*inode = file->f_mapping->host;
663 	struct file	*f = file;
664 
665 	/* Avoid recursion */
666 	while (is_loop_device(f)) {
667 		struct loop_device *l;
668 
669 		if (f->f_mapping->host->i_bdev == bdev)
670 			return -EBADF;
671 
672 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
673 		if (l->lo_state != Lo_bound) {
674 			return -EINVAL;
675 		}
676 		f = l->lo_backing_file;
677 	}
678 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
679 		return -EINVAL;
680 	return 0;
681 }
682 
683 /*
684  * loop_change_fd switched the backing store of a loopback device to
685  * a new file. This is useful for operating system installers to free up
686  * the original file and in High Availability environments to switch to
687  * an alternative location for the content in case of server meltdown.
688  * This can only work if the loop device is used read-only, and if the
689  * new backing store is the same size and type as the old backing store.
690  */
691 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
692 			  unsigned int arg)
693 {
694 	struct file	*file = NULL, *old_file;
695 	int		error;
696 	bool		partscan;
697 
698 	error = mutex_lock_killable(&loop_ctl_mutex);
699 	if (error)
700 		return error;
701 	error = -ENXIO;
702 	if (lo->lo_state != Lo_bound)
703 		goto out_err;
704 
705 	/* the loop device has to be read-only */
706 	error = -EINVAL;
707 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
708 		goto out_err;
709 
710 	error = -EBADF;
711 	file = fget(arg);
712 	if (!file)
713 		goto out_err;
714 
715 	error = loop_validate_file(file, bdev);
716 	if (error)
717 		goto out_err;
718 
719 	old_file = lo->lo_backing_file;
720 
721 	error = -EINVAL;
722 
723 	/* size of the new backing store needs to be the same */
724 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
725 		goto out_err;
726 
727 	/* and ... switch */
728 	blk_mq_freeze_queue(lo->lo_queue);
729 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
730 	lo->lo_backing_file = file;
731 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
732 	mapping_set_gfp_mask(file->f_mapping,
733 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
734 	loop_update_dio(lo);
735 	blk_mq_unfreeze_queue(lo->lo_queue);
736 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
737 	mutex_unlock(&loop_ctl_mutex);
738 	/*
739 	 * We must drop file reference outside of loop_ctl_mutex as dropping
740 	 * the file ref can take bd_mutex which creates circular locking
741 	 * dependency.
742 	 */
743 	fput(old_file);
744 	if (partscan)
745 		loop_reread_partitions(lo, bdev);
746 	return 0;
747 
748 out_err:
749 	mutex_unlock(&loop_ctl_mutex);
750 	if (file)
751 		fput(file);
752 	return error;
753 }
754 
755 /* loop sysfs attributes */
756 
757 static ssize_t loop_attr_show(struct device *dev, char *page,
758 			      ssize_t (*callback)(struct loop_device *, char *))
759 {
760 	struct gendisk *disk = dev_to_disk(dev);
761 	struct loop_device *lo = disk->private_data;
762 
763 	return callback(lo, page);
764 }
765 
766 #define LOOP_ATTR_RO(_name)						\
767 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
768 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
769 				struct device_attribute *attr, char *b)	\
770 {									\
771 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
772 }									\
773 static struct device_attribute loop_attr_##_name =			\
774 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
775 
776 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
777 {
778 	ssize_t ret;
779 	char *p = NULL;
780 
781 	spin_lock_irq(&lo->lo_lock);
782 	if (lo->lo_backing_file)
783 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
784 	spin_unlock_irq(&lo->lo_lock);
785 
786 	if (IS_ERR_OR_NULL(p))
787 		ret = PTR_ERR(p);
788 	else {
789 		ret = strlen(p);
790 		memmove(buf, p, ret);
791 		buf[ret++] = '\n';
792 		buf[ret] = 0;
793 	}
794 
795 	return ret;
796 }
797 
798 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
799 {
800 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
801 }
802 
803 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
804 {
805 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
806 }
807 
808 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
809 {
810 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
811 
812 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
813 }
814 
815 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
816 {
817 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
818 
819 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
820 }
821 
822 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
823 {
824 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
825 
826 	return sprintf(buf, "%s\n", dio ? "1" : "0");
827 }
828 
829 LOOP_ATTR_RO(backing_file);
830 LOOP_ATTR_RO(offset);
831 LOOP_ATTR_RO(sizelimit);
832 LOOP_ATTR_RO(autoclear);
833 LOOP_ATTR_RO(partscan);
834 LOOP_ATTR_RO(dio);
835 
836 static struct attribute *loop_attrs[] = {
837 	&loop_attr_backing_file.attr,
838 	&loop_attr_offset.attr,
839 	&loop_attr_sizelimit.attr,
840 	&loop_attr_autoclear.attr,
841 	&loop_attr_partscan.attr,
842 	&loop_attr_dio.attr,
843 	NULL,
844 };
845 
846 static struct attribute_group loop_attribute_group = {
847 	.name = "loop",
848 	.attrs= loop_attrs,
849 };
850 
851 static void loop_sysfs_init(struct loop_device *lo)
852 {
853 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
854 						&loop_attribute_group);
855 }
856 
857 static void loop_sysfs_exit(struct loop_device *lo)
858 {
859 	if (lo->sysfs_inited)
860 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
861 				   &loop_attribute_group);
862 }
863 
864 static void loop_config_discard(struct loop_device *lo)
865 {
866 	struct file *file = lo->lo_backing_file;
867 	struct inode *inode = file->f_mapping->host;
868 	struct request_queue *q = lo->lo_queue;
869 
870 	/*
871 	 * We use punch hole to reclaim the free space used by the
872 	 * image a.k.a. discard. However we do not support discard if
873 	 * encryption is enabled, because it may give an attacker
874 	 * useful information.
875 	 */
876 	if ((!file->f_op->fallocate) ||
877 	    lo->lo_encrypt_key_size) {
878 		q->limits.discard_granularity = 0;
879 		q->limits.discard_alignment = 0;
880 		blk_queue_max_discard_sectors(q, 0);
881 		blk_queue_max_write_zeroes_sectors(q, 0);
882 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
883 		return;
884 	}
885 
886 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
887 	q->limits.discard_alignment = 0;
888 
889 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
890 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
891 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
892 }
893 
894 static void loop_unprepare_queue(struct loop_device *lo)
895 {
896 	kthread_flush_worker(&lo->worker);
897 	kthread_stop(lo->worker_task);
898 }
899 
900 static int loop_kthread_worker_fn(void *worker_ptr)
901 {
902 	current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO;
903 	return kthread_worker_fn(worker_ptr);
904 }
905 
906 static int loop_prepare_queue(struct loop_device *lo)
907 {
908 	kthread_init_worker(&lo->worker);
909 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
910 			&lo->worker, "loop%d", lo->lo_number);
911 	if (IS_ERR(lo->worker_task))
912 		return -ENOMEM;
913 	set_user_nice(lo->worker_task, MIN_NICE);
914 	return 0;
915 }
916 
917 static void loop_update_rotational(struct loop_device *lo)
918 {
919 	struct file *file = lo->lo_backing_file;
920 	struct inode *file_inode = file->f_mapping->host;
921 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
922 	struct request_queue *q = lo->lo_queue;
923 	bool nonrot = true;
924 
925 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
926 	if (file_bdev)
927 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
928 
929 	if (nonrot)
930 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
931 	else
932 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
933 }
934 
935 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
936 		       struct block_device *bdev, unsigned int arg)
937 {
938 	struct file	*file;
939 	struct inode	*inode;
940 	struct address_space *mapping;
941 	struct block_device *claimed_bdev = NULL;
942 	int		lo_flags = 0;
943 	int		error;
944 	loff_t		size;
945 	bool		partscan;
946 
947 	/* This is safe, since we have a reference from open(). */
948 	__module_get(THIS_MODULE);
949 
950 	error = -EBADF;
951 	file = fget(arg);
952 	if (!file)
953 		goto out;
954 
955 	/*
956 	 * If we don't hold exclusive handle for the device, upgrade to it
957 	 * here to avoid changing device under exclusive owner.
958 	 */
959 	if (!(mode & FMODE_EXCL)) {
960 		claimed_bdev = bd_start_claiming(bdev, loop_set_fd);
961 		if (IS_ERR(claimed_bdev)) {
962 			error = PTR_ERR(claimed_bdev);
963 			goto out_putf;
964 		}
965 	}
966 
967 	error = mutex_lock_killable(&loop_ctl_mutex);
968 	if (error)
969 		goto out_bdev;
970 
971 	error = -EBUSY;
972 	if (lo->lo_state != Lo_unbound)
973 		goto out_unlock;
974 
975 	error = loop_validate_file(file, bdev);
976 	if (error)
977 		goto out_unlock;
978 
979 	mapping = file->f_mapping;
980 	inode = mapping->host;
981 
982 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
983 	    !file->f_op->write_iter)
984 		lo_flags |= LO_FLAGS_READ_ONLY;
985 
986 	error = -EFBIG;
987 	size = get_loop_size(lo, file);
988 	if ((loff_t)(sector_t)size != size)
989 		goto out_unlock;
990 	error = loop_prepare_queue(lo);
991 	if (error)
992 		goto out_unlock;
993 
994 	error = 0;
995 
996 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
997 
998 	lo->use_dio = false;
999 	lo->lo_device = bdev;
1000 	lo->lo_flags = lo_flags;
1001 	lo->lo_backing_file = file;
1002 	lo->transfer = NULL;
1003 	lo->ioctl = NULL;
1004 	lo->lo_sizelimit = 0;
1005 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1006 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1007 
1008 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1009 		blk_queue_write_cache(lo->lo_queue, true, false);
1010 
1011 	if (io_is_direct(lo->lo_backing_file) && inode->i_sb->s_bdev) {
1012 		/* In case of direct I/O, match underlying block size */
1013 		unsigned short bsize = bdev_logical_block_size(
1014 			inode->i_sb->s_bdev);
1015 
1016 		blk_queue_logical_block_size(lo->lo_queue, bsize);
1017 		blk_queue_physical_block_size(lo->lo_queue, bsize);
1018 		blk_queue_io_min(lo->lo_queue, bsize);
1019 	}
1020 
1021 	loop_update_rotational(lo);
1022 	loop_update_dio(lo);
1023 	set_capacity(lo->lo_disk, size);
1024 	bd_set_size(bdev, size << 9);
1025 	loop_sysfs_init(lo);
1026 	/* let user-space know about the new size */
1027 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1028 
1029 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1030 		      block_size(inode->i_bdev) : PAGE_SIZE);
1031 
1032 	lo->lo_state = Lo_bound;
1033 	if (part_shift)
1034 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1035 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1036 
1037 	/* Grab the block_device to prevent its destruction after we
1038 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1039 	 */
1040 	bdgrab(bdev);
1041 	mutex_unlock(&loop_ctl_mutex);
1042 	if (partscan)
1043 		loop_reread_partitions(lo, bdev);
1044 	if (claimed_bdev)
1045 		bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1046 	return 0;
1047 
1048 out_unlock:
1049 	mutex_unlock(&loop_ctl_mutex);
1050 out_bdev:
1051 	if (claimed_bdev)
1052 		bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1053 out_putf:
1054 	fput(file);
1055 out:
1056 	/* This is safe: open() is still holding a reference. */
1057 	module_put(THIS_MODULE);
1058 	return error;
1059 }
1060 
1061 static int
1062 loop_release_xfer(struct loop_device *lo)
1063 {
1064 	int err = 0;
1065 	struct loop_func_table *xfer = lo->lo_encryption;
1066 
1067 	if (xfer) {
1068 		if (xfer->release)
1069 			err = xfer->release(lo);
1070 		lo->transfer = NULL;
1071 		lo->lo_encryption = NULL;
1072 		module_put(xfer->owner);
1073 	}
1074 	return err;
1075 }
1076 
1077 static int
1078 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1079 	       const struct loop_info64 *i)
1080 {
1081 	int err = 0;
1082 
1083 	if (xfer) {
1084 		struct module *owner = xfer->owner;
1085 
1086 		if (!try_module_get(owner))
1087 			return -EINVAL;
1088 		if (xfer->init)
1089 			err = xfer->init(lo, i);
1090 		if (err)
1091 			module_put(owner);
1092 		else
1093 			lo->lo_encryption = xfer;
1094 	}
1095 	return err;
1096 }
1097 
1098 static int __loop_clr_fd(struct loop_device *lo, bool release)
1099 {
1100 	struct file *filp = NULL;
1101 	gfp_t gfp = lo->old_gfp_mask;
1102 	struct block_device *bdev = lo->lo_device;
1103 	int err = 0;
1104 	bool partscan = false;
1105 	int lo_number;
1106 
1107 	mutex_lock(&loop_ctl_mutex);
1108 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1109 		err = -ENXIO;
1110 		goto out_unlock;
1111 	}
1112 
1113 	filp = lo->lo_backing_file;
1114 	if (filp == NULL) {
1115 		err = -EINVAL;
1116 		goto out_unlock;
1117 	}
1118 
1119 	/* freeze request queue during the transition */
1120 	blk_mq_freeze_queue(lo->lo_queue);
1121 
1122 	spin_lock_irq(&lo->lo_lock);
1123 	lo->lo_backing_file = NULL;
1124 	spin_unlock_irq(&lo->lo_lock);
1125 
1126 	loop_release_xfer(lo);
1127 	lo->transfer = NULL;
1128 	lo->ioctl = NULL;
1129 	lo->lo_device = NULL;
1130 	lo->lo_encryption = NULL;
1131 	lo->lo_offset = 0;
1132 	lo->lo_sizelimit = 0;
1133 	lo->lo_encrypt_key_size = 0;
1134 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1135 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1136 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1137 	blk_queue_logical_block_size(lo->lo_queue, 512);
1138 	blk_queue_physical_block_size(lo->lo_queue, 512);
1139 	blk_queue_io_min(lo->lo_queue, 512);
1140 	if (bdev) {
1141 		bdput(bdev);
1142 		invalidate_bdev(bdev);
1143 		bdev->bd_inode->i_mapping->wb_err = 0;
1144 	}
1145 	set_capacity(lo->lo_disk, 0);
1146 	loop_sysfs_exit(lo);
1147 	if (bdev) {
1148 		bd_set_size(bdev, 0);
1149 		/* let user-space know about this change */
1150 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1151 	}
1152 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1153 	/* This is safe: open() is still holding a reference. */
1154 	module_put(THIS_MODULE);
1155 	blk_mq_unfreeze_queue(lo->lo_queue);
1156 
1157 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1158 	lo_number = lo->lo_number;
1159 	loop_unprepare_queue(lo);
1160 out_unlock:
1161 	mutex_unlock(&loop_ctl_mutex);
1162 	if (partscan) {
1163 		/*
1164 		 * bd_mutex has been held already in release path, so don't
1165 		 * acquire it if this function is called in such case.
1166 		 *
1167 		 * If the reread partition isn't from release path, lo_refcnt
1168 		 * must be at least one and it can only become zero when the
1169 		 * current holder is released.
1170 		 */
1171 		if (!release)
1172 			mutex_lock(&bdev->bd_mutex);
1173 		err = bdev_disk_changed(bdev, false);
1174 		if (!release)
1175 			mutex_unlock(&bdev->bd_mutex);
1176 		if (err)
1177 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1178 				__func__, lo_number, err);
1179 		/* Device is gone, no point in returning error */
1180 		err = 0;
1181 	}
1182 
1183 	/*
1184 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1185 	 * finished.
1186 	 *
1187 	 * There cannot be anybody else entering __loop_clr_fd() as
1188 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1189 	 * protects us from all the other places trying to change the 'lo'
1190 	 * device.
1191 	 */
1192 	mutex_lock(&loop_ctl_mutex);
1193 	lo->lo_flags = 0;
1194 	if (!part_shift)
1195 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1196 	lo->lo_state = Lo_unbound;
1197 	mutex_unlock(&loop_ctl_mutex);
1198 
1199 	/*
1200 	 * Need not hold loop_ctl_mutex to fput backing file.
1201 	 * Calling fput holding loop_ctl_mutex triggers a circular
1202 	 * lock dependency possibility warning as fput can take
1203 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1204 	 */
1205 	if (filp)
1206 		fput(filp);
1207 	return err;
1208 }
1209 
1210 static int loop_clr_fd(struct loop_device *lo)
1211 {
1212 	int err;
1213 
1214 	err = mutex_lock_killable(&loop_ctl_mutex);
1215 	if (err)
1216 		return err;
1217 	if (lo->lo_state != Lo_bound) {
1218 		mutex_unlock(&loop_ctl_mutex);
1219 		return -ENXIO;
1220 	}
1221 	/*
1222 	 * If we've explicitly asked to tear down the loop device,
1223 	 * and it has an elevated reference count, set it for auto-teardown when
1224 	 * the last reference goes away. This stops $!~#$@ udev from
1225 	 * preventing teardown because it decided that it needs to run blkid on
1226 	 * the loopback device whenever they appear. xfstests is notorious for
1227 	 * failing tests because blkid via udev races with a losetup
1228 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1229 	 * command to fail with EBUSY.
1230 	 */
1231 	if (atomic_read(&lo->lo_refcnt) > 1) {
1232 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1233 		mutex_unlock(&loop_ctl_mutex);
1234 		return 0;
1235 	}
1236 	lo->lo_state = Lo_rundown;
1237 	mutex_unlock(&loop_ctl_mutex);
1238 
1239 	return __loop_clr_fd(lo, false);
1240 }
1241 
1242 static int
1243 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1244 {
1245 	int err;
1246 	struct loop_func_table *xfer;
1247 	kuid_t uid = current_uid();
1248 	struct block_device *bdev;
1249 	bool partscan = false;
1250 
1251 	err = mutex_lock_killable(&loop_ctl_mutex);
1252 	if (err)
1253 		return err;
1254 	if (lo->lo_encrypt_key_size &&
1255 	    !uid_eq(lo->lo_key_owner, uid) &&
1256 	    !capable(CAP_SYS_ADMIN)) {
1257 		err = -EPERM;
1258 		goto out_unlock;
1259 	}
1260 	if (lo->lo_state != Lo_bound) {
1261 		err = -ENXIO;
1262 		goto out_unlock;
1263 	}
1264 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1265 		err = -EINVAL;
1266 		goto out_unlock;
1267 	}
1268 
1269 	if (lo->lo_offset != info->lo_offset ||
1270 	    lo->lo_sizelimit != info->lo_sizelimit) {
1271 		sync_blockdev(lo->lo_device);
1272 		kill_bdev(lo->lo_device);
1273 	}
1274 
1275 	/* I/O need to be drained during transfer transition */
1276 	blk_mq_freeze_queue(lo->lo_queue);
1277 
1278 	err = loop_release_xfer(lo);
1279 	if (err)
1280 		goto out_unfreeze;
1281 
1282 	if (info->lo_encrypt_type) {
1283 		unsigned int type = info->lo_encrypt_type;
1284 
1285 		if (type >= MAX_LO_CRYPT) {
1286 			err = -EINVAL;
1287 			goto out_unfreeze;
1288 		}
1289 		xfer = xfer_funcs[type];
1290 		if (xfer == NULL) {
1291 			err = -EINVAL;
1292 			goto out_unfreeze;
1293 		}
1294 	} else
1295 		xfer = NULL;
1296 
1297 	err = loop_init_xfer(lo, xfer, info);
1298 	if (err)
1299 		goto out_unfreeze;
1300 
1301 	if (lo->lo_offset != info->lo_offset ||
1302 	    lo->lo_sizelimit != info->lo_sizelimit) {
1303 		/* kill_bdev should have truncated all the pages */
1304 		if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1305 			err = -EAGAIN;
1306 			pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1307 				__func__, lo->lo_number, lo->lo_file_name,
1308 				lo->lo_device->bd_inode->i_mapping->nrpages);
1309 			goto out_unfreeze;
1310 		}
1311 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1312 			err = -EFBIG;
1313 			goto out_unfreeze;
1314 		}
1315 	}
1316 
1317 	loop_config_discard(lo);
1318 
1319 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1320 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1321 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1322 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1323 
1324 	if (!xfer)
1325 		xfer = &none_funcs;
1326 	lo->transfer = xfer->transfer;
1327 	lo->ioctl = xfer->ioctl;
1328 
1329 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1330 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1331 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1332 
1333 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1334 	lo->lo_init[0] = info->lo_init[0];
1335 	lo->lo_init[1] = info->lo_init[1];
1336 	if (info->lo_encrypt_key_size) {
1337 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1338 		       info->lo_encrypt_key_size);
1339 		lo->lo_key_owner = uid;
1340 	}
1341 
1342 	/* update dio if lo_offset or transfer is changed */
1343 	__loop_update_dio(lo, lo->use_dio);
1344 
1345 out_unfreeze:
1346 	blk_mq_unfreeze_queue(lo->lo_queue);
1347 
1348 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1349 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1350 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1351 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1352 		bdev = lo->lo_device;
1353 		partscan = true;
1354 	}
1355 out_unlock:
1356 	mutex_unlock(&loop_ctl_mutex);
1357 	if (partscan)
1358 		loop_reread_partitions(lo, bdev);
1359 
1360 	return err;
1361 }
1362 
1363 static int
1364 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1365 {
1366 	struct path path;
1367 	struct kstat stat;
1368 	int ret;
1369 
1370 	ret = mutex_lock_killable(&loop_ctl_mutex);
1371 	if (ret)
1372 		return ret;
1373 	if (lo->lo_state != Lo_bound) {
1374 		mutex_unlock(&loop_ctl_mutex);
1375 		return -ENXIO;
1376 	}
1377 
1378 	memset(info, 0, sizeof(*info));
1379 	info->lo_number = lo->lo_number;
1380 	info->lo_offset = lo->lo_offset;
1381 	info->lo_sizelimit = lo->lo_sizelimit;
1382 	info->lo_flags = lo->lo_flags;
1383 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1384 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1385 	info->lo_encrypt_type =
1386 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1387 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1388 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1389 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1390 		       lo->lo_encrypt_key_size);
1391 	}
1392 
1393 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1394 	path = lo->lo_backing_file->f_path;
1395 	path_get(&path);
1396 	mutex_unlock(&loop_ctl_mutex);
1397 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1398 	if (!ret) {
1399 		info->lo_device = huge_encode_dev(stat.dev);
1400 		info->lo_inode = stat.ino;
1401 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1402 	}
1403 	path_put(&path);
1404 	return ret;
1405 }
1406 
1407 static void
1408 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1409 {
1410 	memset(info64, 0, sizeof(*info64));
1411 	info64->lo_number = info->lo_number;
1412 	info64->lo_device = info->lo_device;
1413 	info64->lo_inode = info->lo_inode;
1414 	info64->lo_rdevice = info->lo_rdevice;
1415 	info64->lo_offset = info->lo_offset;
1416 	info64->lo_sizelimit = 0;
1417 	info64->lo_encrypt_type = info->lo_encrypt_type;
1418 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1419 	info64->lo_flags = info->lo_flags;
1420 	info64->lo_init[0] = info->lo_init[0];
1421 	info64->lo_init[1] = info->lo_init[1];
1422 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1423 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1424 	else
1425 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1426 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1427 }
1428 
1429 static int
1430 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1431 {
1432 	memset(info, 0, sizeof(*info));
1433 	info->lo_number = info64->lo_number;
1434 	info->lo_device = info64->lo_device;
1435 	info->lo_inode = info64->lo_inode;
1436 	info->lo_rdevice = info64->lo_rdevice;
1437 	info->lo_offset = info64->lo_offset;
1438 	info->lo_encrypt_type = info64->lo_encrypt_type;
1439 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1440 	info->lo_flags = info64->lo_flags;
1441 	info->lo_init[0] = info64->lo_init[0];
1442 	info->lo_init[1] = info64->lo_init[1];
1443 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1444 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1445 	else
1446 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1447 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1448 
1449 	/* error in case values were truncated */
1450 	if (info->lo_device != info64->lo_device ||
1451 	    info->lo_rdevice != info64->lo_rdevice ||
1452 	    info->lo_inode != info64->lo_inode ||
1453 	    info->lo_offset != info64->lo_offset)
1454 		return -EOVERFLOW;
1455 
1456 	return 0;
1457 }
1458 
1459 static int
1460 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1461 {
1462 	struct loop_info info;
1463 	struct loop_info64 info64;
1464 
1465 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1466 		return -EFAULT;
1467 	loop_info64_from_old(&info, &info64);
1468 	return loop_set_status(lo, &info64);
1469 }
1470 
1471 static int
1472 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1473 {
1474 	struct loop_info64 info64;
1475 
1476 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1477 		return -EFAULT;
1478 	return loop_set_status(lo, &info64);
1479 }
1480 
1481 static int
1482 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1483 	struct loop_info info;
1484 	struct loop_info64 info64;
1485 	int err;
1486 
1487 	if (!arg)
1488 		return -EINVAL;
1489 	err = loop_get_status(lo, &info64);
1490 	if (!err)
1491 		err = loop_info64_to_old(&info64, &info);
1492 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1493 		err = -EFAULT;
1494 
1495 	return err;
1496 }
1497 
1498 static int
1499 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1500 	struct loop_info64 info64;
1501 	int err;
1502 
1503 	if (!arg)
1504 		return -EINVAL;
1505 	err = loop_get_status(lo, &info64);
1506 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1507 		err = -EFAULT;
1508 
1509 	return err;
1510 }
1511 
1512 static int loop_set_capacity(struct loop_device *lo)
1513 {
1514 	if (unlikely(lo->lo_state != Lo_bound))
1515 		return -ENXIO;
1516 
1517 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1518 }
1519 
1520 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1521 {
1522 	int error = -ENXIO;
1523 	if (lo->lo_state != Lo_bound)
1524 		goto out;
1525 
1526 	__loop_update_dio(lo, !!arg);
1527 	if (lo->use_dio == !!arg)
1528 		return 0;
1529 	error = -EINVAL;
1530  out:
1531 	return error;
1532 }
1533 
1534 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1535 {
1536 	int err = 0;
1537 
1538 	if (lo->lo_state != Lo_bound)
1539 		return -ENXIO;
1540 
1541 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1542 		return -EINVAL;
1543 
1544 	if (lo->lo_queue->limits.logical_block_size == arg)
1545 		return 0;
1546 
1547 	sync_blockdev(lo->lo_device);
1548 	kill_bdev(lo->lo_device);
1549 
1550 	blk_mq_freeze_queue(lo->lo_queue);
1551 
1552 	/* kill_bdev should have truncated all the pages */
1553 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1554 		err = -EAGAIN;
1555 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1556 			__func__, lo->lo_number, lo->lo_file_name,
1557 			lo->lo_device->bd_inode->i_mapping->nrpages);
1558 		goto out_unfreeze;
1559 	}
1560 
1561 	blk_queue_logical_block_size(lo->lo_queue, arg);
1562 	blk_queue_physical_block_size(lo->lo_queue, arg);
1563 	blk_queue_io_min(lo->lo_queue, arg);
1564 	loop_update_dio(lo);
1565 out_unfreeze:
1566 	blk_mq_unfreeze_queue(lo->lo_queue);
1567 
1568 	return err;
1569 }
1570 
1571 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1572 			   unsigned long arg)
1573 {
1574 	int err;
1575 
1576 	err = mutex_lock_killable(&loop_ctl_mutex);
1577 	if (err)
1578 		return err;
1579 	switch (cmd) {
1580 	case LOOP_SET_CAPACITY:
1581 		err = loop_set_capacity(lo);
1582 		break;
1583 	case LOOP_SET_DIRECT_IO:
1584 		err = loop_set_dio(lo, arg);
1585 		break;
1586 	case LOOP_SET_BLOCK_SIZE:
1587 		err = loop_set_block_size(lo, arg);
1588 		break;
1589 	default:
1590 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1591 	}
1592 	mutex_unlock(&loop_ctl_mutex);
1593 	return err;
1594 }
1595 
1596 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1597 	unsigned int cmd, unsigned long arg)
1598 {
1599 	struct loop_device *lo = bdev->bd_disk->private_data;
1600 	int err;
1601 
1602 	switch (cmd) {
1603 	case LOOP_SET_FD:
1604 		return loop_set_fd(lo, mode, bdev, arg);
1605 	case LOOP_CHANGE_FD:
1606 		return loop_change_fd(lo, bdev, arg);
1607 	case LOOP_CLR_FD:
1608 		return loop_clr_fd(lo);
1609 	case LOOP_SET_STATUS:
1610 		err = -EPERM;
1611 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1612 			err = loop_set_status_old(lo,
1613 					(struct loop_info __user *)arg);
1614 		}
1615 		break;
1616 	case LOOP_GET_STATUS:
1617 		return loop_get_status_old(lo, (struct loop_info __user *) arg);
1618 	case LOOP_SET_STATUS64:
1619 		err = -EPERM;
1620 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1621 			err = loop_set_status64(lo,
1622 					(struct loop_info64 __user *) arg);
1623 		}
1624 		break;
1625 	case LOOP_GET_STATUS64:
1626 		return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1627 	case LOOP_SET_CAPACITY:
1628 	case LOOP_SET_DIRECT_IO:
1629 	case LOOP_SET_BLOCK_SIZE:
1630 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1631 			return -EPERM;
1632 		/* Fall through */
1633 	default:
1634 		err = lo_simple_ioctl(lo, cmd, arg);
1635 		break;
1636 	}
1637 
1638 	return err;
1639 }
1640 
1641 #ifdef CONFIG_COMPAT
1642 struct compat_loop_info {
1643 	compat_int_t	lo_number;      /* ioctl r/o */
1644 	compat_dev_t	lo_device;      /* ioctl r/o */
1645 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1646 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1647 	compat_int_t	lo_offset;
1648 	compat_int_t	lo_encrypt_type;
1649 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1650 	compat_int_t	lo_flags;       /* ioctl r/o */
1651 	char		lo_name[LO_NAME_SIZE];
1652 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1653 	compat_ulong_t	lo_init[2];
1654 	char		reserved[4];
1655 };
1656 
1657 /*
1658  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1659  * - noinlined to reduce stack space usage in main part of driver
1660  */
1661 static noinline int
1662 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1663 			struct loop_info64 *info64)
1664 {
1665 	struct compat_loop_info info;
1666 
1667 	if (copy_from_user(&info, arg, sizeof(info)))
1668 		return -EFAULT;
1669 
1670 	memset(info64, 0, sizeof(*info64));
1671 	info64->lo_number = info.lo_number;
1672 	info64->lo_device = info.lo_device;
1673 	info64->lo_inode = info.lo_inode;
1674 	info64->lo_rdevice = info.lo_rdevice;
1675 	info64->lo_offset = info.lo_offset;
1676 	info64->lo_sizelimit = 0;
1677 	info64->lo_encrypt_type = info.lo_encrypt_type;
1678 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1679 	info64->lo_flags = info.lo_flags;
1680 	info64->lo_init[0] = info.lo_init[0];
1681 	info64->lo_init[1] = info.lo_init[1];
1682 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1683 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1684 	else
1685 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1686 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1687 	return 0;
1688 }
1689 
1690 /*
1691  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1692  * - noinlined to reduce stack space usage in main part of driver
1693  */
1694 static noinline int
1695 loop_info64_to_compat(const struct loop_info64 *info64,
1696 		      struct compat_loop_info __user *arg)
1697 {
1698 	struct compat_loop_info info;
1699 
1700 	memset(&info, 0, sizeof(info));
1701 	info.lo_number = info64->lo_number;
1702 	info.lo_device = info64->lo_device;
1703 	info.lo_inode = info64->lo_inode;
1704 	info.lo_rdevice = info64->lo_rdevice;
1705 	info.lo_offset = info64->lo_offset;
1706 	info.lo_encrypt_type = info64->lo_encrypt_type;
1707 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1708 	info.lo_flags = info64->lo_flags;
1709 	info.lo_init[0] = info64->lo_init[0];
1710 	info.lo_init[1] = info64->lo_init[1];
1711 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1712 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1713 	else
1714 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1715 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1716 
1717 	/* error in case values were truncated */
1718 	if (info.lo_device != info64->lo_device ||
1719 	    info.lo_rdevice != info64->lo_rdevice ||
1720 	    info.lo_inode != info64->lo_inode ||
1721 	    info.lo_offset != info64->lo_offset ||
1722 	    info.lo_init[0] != info64->lo_init[0] ||
1723 	    info.lo_init[1] != info64->lo_init[1])
1724 		return -EOVERFLOW;
1725 
1726 	if (copy_to_user(arg, &info, sizeof(info)))
1727 		return -EFAULT;
1728 	return 0;
1729 }
1730 
1731 static int
1732 loop_set_status_compat(struct loop_device *lo,
1733 		       const struct compat_loop_info __user *arg)
1734 {
1735 	struct loop_info64 info64;
1736 	int ret;
1737 
1738 	ret = loop_info64_from_compat(arg, &info64);
1739 	if (ret < 0)
1740 		return ret;
1741 	return loop_set_status(lo, &info64);
1742 }
1743 
1744 static int
1745 loop_get_status_compat(struct loop_device *lo,
1746 		       struct compat_loop_info __user *arg)
1747 {
1748 	struct loop_info64 info64;
1749 	int err;
1750 
1751 	if (!arg)
1752 		return -EINVAL;
1753 	err = loop_get_status(lo, &info64);
1754 	if (!err)
1755 		err = loop_info64_to_compat(&info64, arg);
1756 	return err;
1757 }
1758 
1759 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1760 			   unsigned int cmd, unsigned long arg)
1761 {
1762 	struct loop_device *lo = bdev->bd_disk->private_data;
1763 	int err;
1764 
1765 	switch(cmd) {
1766 	case LOOP_SET_STATUS:
1767 		err = loop_set_status_compat(lo,
1768 			     (const struct compat_loop_info __user *)arg);
1769 		break;
1770 	case LOOP_GET_STATUS:
1771 		err = loop_get_status_compat(lo,
1772 				     (struct compat_loop_info __user *)arg);
1773 		break;
1774 	case LOOP_SET_CAPACITY:
1775 	case LOOP_CLR_FD:
1776 	case LOOP_GET_STATUS64:
1777 	case LOOP_SET_STATUS64:
1778 		arg = (unsigned long) compat_ptr(arg);
1779 		/* fall through */
1780 	case LOOP_SET_FD:
1781 	case LOOP_CHANGE_FD:
1782 	case LOOP_SET_BLOCK_SIZE:
1783 	case LOOP_SET_DIRECT_IO:
1784 		err = lo_ioctl(bdev, mode, cmd, arg);
1785 		break;
1786 	default:
1787 		err = -ENOIOCTLCMD;
1788 		break;
1789 	}
1790 	return err;
1791 }
1792 #endif
1793 
1794 static int lo_open(struct block_device *bdev, fmode_t mode)
1795 {
1796 	struct loop_device *lo;
1797 	int err;
1798 
1799 	err = mutex_lock_killable(&loop_ctl_mutex);
1800 	if (err)
1801 		return err;
1802 	lo = bdev->bd_disk->private_data;
1803 	if (!lo) {
1804 		err = -ENXIO;
1805 		goto out;
1806 	}
1807 
1808 	atomic_inc(&lo->lo_refcnt);
1809 out:
1810 	mutex_unlock(&loop_ctl_mutex);
1811 	return err;
1812 }
1813 
1814 static void lo_release(struct gendisk *disk, fmode_t mode)
1815 {
1816 	struct loop_device *lo;
1817 
1818 	mutex_lock(&loop_ctl_mutex);
1819 	lo = disk->private_data;
1820 	if (atomic_dec_return(&lo->lo_refcnt))
1821 		goto out_unlock;
1822 
1823 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1824 		if (lo->lo_state != Lo_bound)
1825 			goto out_unlock;
1826 		lo->lo_state = Lo_rundown;
1827 		mutex_unlock(&loop_ctl_mutex);
1828 		/*
1829 		 * In autoclear mode, stop the loop thread
1830 		 * and remove configuration after last close.
1831 		 */
1832 		__loop_clr_fd(lo, true);
1833 		return;
1834 	} else if (lo->lo_state == Lo_bound) {
1835 		/*
1836 		 * Otherwise keep thread (if running) and config,
1837 		 * but flush possible ongoing bios in thread.
1838 		 */
1839 		blk_mq_freeze_queue(lo->lo_queue);
1840 		blk_mq_unfreeze_queue(lo->lo_queue);
1841 	}
1842 
1843 out_unlock:
1844 	mutex_unlock(&loop_ctl_mutex);
1845 }
1846 
1847 static const struct block_device_operations lo_fops = {
1848 	.owner =	THIS_MODULE,
1849 	.open =		lo_open,
1850 	.release =	lo_release,
1851 	.ioctl =	lo_ioctl,
1852 #ifdef CONFIG_COMPAT
1853 	.compat_ioctl =	lo_compat_ioctl,
1854 #endif
1855 };
1856 
1857 /*
1858  * And now the modules code and kernel interface.
1859  */
1860 static int max_loop;
1861 module_param(max_loop, int, 0444);
1862 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1863 module_param(max_part, int, 0444);
1864 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1865 MODULE_LICENSE("GPL");
1866 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1867 
1868 int loop_register_transfer(struct loop_func_table *funcs)
1869 {
1870 	unsigned int n = funcs->number;
1871 
1872 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1873 		return -EINVAL;
1874 	xfer_funcs[n] = funcs;
1875 	return 0;
1876 }
1877 
1878 static int unregister_transfer_cb(int id, void *ptr, void *data)
1879 {
1880 	struct loop_device *lo = ptr;
1881 	struct loop_func_table *xfer = data;
1882 
1883 	mutex_lock(&loop_ctl_mutex);
1884 	if (lo->lo_encryption == xfer)
1885 		loop_release_xfer(lo);
1886 	mutex_unlock(&loop_ctl_mutex);
1887 	return 0;
1888 }
1889 
1890 int loop_unregister_transfer(int number)
1891 {
1892 	unsigned int n = number;
1893 	struct loop_func_table *xfer;
1894 
1895 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1896 		return -EINVAL;
1897 
1898 	xfer_funcs[n] = NULL;
1899 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1900 	return 0;
1901 }
1902 
1903 EXPORT_SYMBOL(loop_register_transfer);
1904 EXPORT_SYMBOL(loop_unregister_transfer);
1905 
1906 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1907 		const struct blk_mq_queue_data *bd)
1908 {
1909 	struct request *rq = bd->rq;
1910 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1911 	struct loop_device *lo = rq->q->queuedata;
1912 
1913 	blk_mq_start_request(rq);
1914 
1915 	if (lo->lo_state != Lo_bound)
1916 		return BLK_STS_IOERR;
1917 
1918 	switch (req_op(rq)) {
1919 	case REQ_OP_FLUSH:
1920 	case REQ_OP_DISCARD:
1921 	case REQ_OP_WRITE_ZEROES:
1922 		cmd->use_aio = false;
1923 		break;
1924 	default:
1925 		cmd->use_aio = lo->use_dio;
1926 		break;
1927 	}
1928 
1929 	/* always use the first bio's css */
1930 #ifdef CONFIG_BLK_CGROUP
1931 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1932 		cmd->css = &bio_blkcg(rq->bio)->css;
1933 		css_get(cmd->css);
1934 	} else
1935 #endif
1936 		cmd->css = NULL;
1937 	kthread_queue_work(&lo->worker, &cmd->work);
1938 
1939 	return BLK_STS_OK;
1940 }
1941 
1942 static void loop_handle_cmd(struct loop_cmd *cmd)
1943 {
1944 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1945 	const bool write = op_is_write(req_op(rq));
1946 	struct loop_device *lo = rq->q->queuedata;
1947 	int ret = 0;
1948 
1949 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1950 		ret = -EIO;
1951 		goto failed;
1952 	}
1953 
1954 	ret = do_req_filebacked(lo, rq);
1955  failed:
1956 	/* complete non-aio request */
1957 	if (!cmd->use_aio || ret) {
1958 		cmd->ret = ret ? -EIO : 0;
1959 		blk_mq_complete_request(rq);
1960 	}
1961 }
1962 
1963 static void loop_queue_work(struct kthread_work *work)
1964 {
1965 	struct loop_cmd *cmd =
1966 		container_of(work, struct loop_cmd, work);
1967 
1968 	loop_handle_cmd(cmd);
1969 }
1970 
1971 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1972 		unsigned int hctx_idx, unsigned int numa_node)
1973 {
1974 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1975 
1976 	kthread_init_work(&cmd->work, loop_queue_work);
1977 	return 0;
1978 }
1979 
1980 static const struct blk_mq_ops loop_mq_ops = {
1981 	.queue_rq       = loop_queue_rq,
1982 	.init_request	= loop_init_request,
1983 	.complete	= lo_complete_rq,
1984 };
1985 
1986 static int loop_add(struct loop_device **l, int i)
1987 {
1988 	struct loop_device *lo;
1989 	struct gendisk *disk;
1990 	int err;
1991 
1992 	err = -ENOMEM;
1993 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1994 	if (!lo)
1995 		goto out;
1996 
1997 	lo->lo_state = Lo_unbound;
1998 
1999 	/* allocate id, if @id >= 0, we're requesting that specific id */
2000 	if (i >= 0) {
2001 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2002 		if (err == -ENOSPC)
2003 			err = -EEXIST;
2004 	} else {
2005 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2006 	}
2007 	if (err < 0)
2008 		goto out_free_dev;
2009 	i = err;
2010 
2011 	err = -ENOMEM;
2012 	lo->tag_set.ops = &loop_mq_ops;
2013 	lo->tag_set.nr_hw_queues = 1;
2014 	lo->tag_set.queue_depth = 128;
2015 	lo->tag_set.numa_node = NUMA_NO_NODE;
2016 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2017 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2018 	lo->tag_set.driver_data = lo;
2019 
2020 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2021 	if (err)
2022 		goto out_free_idr;
2023 
2024 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2025 	if (IS_ERR(lo->lo_queue)) {
2026 		err = PTR_ERR(lo->lo_queue);
2027 		goto out_cleanup_tags;
2028 	}
2029 	lo->lo_queue->queuedata = lo;
2030 
2031 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2032 
2033 	/*
2034 	 * By default, we do buffer IO, so it doesn't make sense to enable
2035 	 * merge because the I/O submitted to backing file is handled page by
2036 	 * page. For directio mode, merge does help to dispatch bigger request
2037 	 * to underlayer disk. We will enable merge once directio is enabled.
2038 	 */
2039 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2040 
2041 	err = -ENOMEM;
2042 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2043 	if (!disk)
2044 		goto out_free_queue;
2045 
2046 	/*
2047 	 * Disable partition scanning by default. The in-kernel partition
2048 	 * scanning can be requested individually per-device during its
2049 	 * setup. Userspace can always add and remove partitions from all
2050 	 * devices. The needed partition minors are allocated from the
2051 	 * extended minor space, the main loop device numbers will continue
2052 	 * to match the loop minors, regardless of the number of partitions
2053 	 * used.
2054 	 *
2055 	 * If max_part is given, partition scanning is globally enabled for
2056 	 * all loop devices. The minors for the main loop devices will be
2057 	 * multiples of max_part.
2058 	 *
2059 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2060 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2061 	 * complicated, are too static, inflexible and may surprise
2062 	 * userspace tools. Parameters like this in general should be avoided.
2063 	 */
2064 	if (!part_shift)
2065 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2066 	disk->flags |= GENHD_FL_EXT_DEVT;
2067 	atomic_set(&lo->lo_refcnt, 0);
2068 	lo->lo_number		= i;
2069 	spin_lock_init(&lo->lo_lock);
2070 	disk->major		= LOOP_MAJOR;
2071 	disk->first_minor	= i << part_shift;
2072 	disk->fops		= &lo_fops;
2073 	disk->private_data	= lo;
2074 	disk->queue		= lo->lo_queue;
2075 	sprintf(disk->disk_name, "loop%d", i);
2076 	add_disk(disk);
2077 	*l = lo;
2078 	return lo->lo_number;
2079 
2080 out_free_queue:
2081 	blk_cleanup_queue(lo->lo_queue);
2082 out_cleanup_tags:
2083 	blk_mq_free_tag_set(&lo->tag_set);
2084 out_free_idr:
2085 	idr_remove(&loop_index_idr, i);
2086 out_free_dev:
2087 	kfree(lo);
2088 out:
2089 	return err;
2090 }
2091 
2092 static void loop_remove(struct loop_device *lo)
2093 {
2094 	del_gendisk(lo->lo_disk);
2095 	blk_cleanup_queue(lo->lo_queue);
2096 	blk_mq_free_tag_set(&lo->tag_set);
2097 	put_disk(lo->lo_disk);
2098 	kfree(lo);
2099 }
2100 
2101 static int find_free_cb(int id, void *ptr, void *data)
2102 {
2103 	struct loop_device *lo = ptr;
2104 	struct loop_device **l = data;
2105 
2106 	if (lo->lo_state == Lo_unbound) {
2107 		*l = lo;
2108 		return 1;
2109 	}
2110 	return 0;
2111 }
2112 
2113 static int loop_lookup(struct loop_device **l, int i)
2114 {
2115 	struct loop_device *lo;
2116 	int ret = -ENODEV;
2117 
2118 	if (i < 0) {
2119 		int err;
2120 
2121 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2122 		if (err == 1) {
2123 			*l = lo;
2124 			ret = lo->lo_number;
2125 		}
2126 		goto out;
2127 	}
2128 
2129 	/* lookup and return a specific i */
2130 	lo = idr_find(&loop_index_idr, i);
2131 	if (lo) {
2132 		*l = lo;
2133 		ret = lo->lo_number;
2134 	}
2135 out:
2136 	return ret;
2137 }
2138 
2139 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2140 {
2141 	struct loop_device *lo;
2142 	struct kobject *kobj;
2143 	int err;
2144 
2145 	mutex_lock(&loop_ctl_mutex);
2146 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2147 	if (err < 0)
2148 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2149 	if (err < 0)
2150 		kobj = NULL;
2151 	else
2152 		kobj = get_disk_and_module(lo->lo_disk);
2153 	mutex_unlock(&loop_ctl_mutex);
2154 
2155 	*part = 0;
2156 	return kobj;
2157 }
2158 
2159 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2160 			       unsigned long parm)
2161 {
2162 	struct loop_device *lo;
2163 	int ret;
2164 
2165 	ret = mutex_lock_killable(&loop_ctl_mutex);
2166 	if (ret)
2167 		return ret;
2168 
2169 	ret = -ENOSYS;
2170 	switch (cmd) {
2171 	case LOOP_CTL_ADD:
2172 		ret = loop_lookup(&lo, parm);
2173 		if (ret >= 0) {
2174 			ret = -EEXIST;
2175 			break;
2176 		}
2177 		ret = loop_add(&lo, parm);
2178 		break;
2179 	case LOOP_CTL_REMOVE:
2180 		ret = loop_lookup(&lo, parm);
2181 		if (ret < 0)
2182 			break;
2183 		if (lo->lo_state != Lo_unbound) {
2184 			ret = -EBUSY;
2185 			break;
2186 		}
2187 		if (atomic_read(&lo->lo_refcnt) > 0) {
2188 			ret = -EBUSY;
2189 			break;
2190 		}
2191 		lo->lo_disk->private_data = NULL;
2192 		idr_remove(&loop_index_idr, lo->lo_number);
2193 		loop_remove(lo);
2194 		break;
2195 	case LOOP_CTL_GET_FREE:
2196 		ret = loop_lookup(&lo, -1);
2197 		if (ret >= 0)
2198 			break;
2199 		ret = loop_add(&lo, -1);
2200 	}
2201 	mutex_unlock(&loop_ctl_mutex);
2202 
2203 	return ret;
2204 }
2205 
2206 static const struct file_operations loop_ctl_fops = {
2207 	.open		= nonseekable_open,
2208 	.unlocked_ioctl	= loop_control_ioctl,
2209 	.compat_ioctl	= loop_control_ioctl,
2210 	.owner		= THIS_MODULE,
2211 	.llseek		= noop_llseek,
2212 };
2213 
2214 static struct miscdevice loop_misc = {
2215 	.minor		= LOOP_CTRL_MINOR,
2216 	.name		= "loop-control",
2217 	.fops		= &loop_ctl_fops,
2218 };
2219 
2220 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2221 MODULE_ALIAS("devname:loop-control");
2222 
2223 static int __init loop_init(void)
2224 {
2225 	int i, nr;
2226 	unsigned long range;
2227 	struct loop_device *lo;
2228 	int err;
2229 
2230 	part_shift = 0;
2231 	if (max_part > 0) {
2232 		part_shift = fls(max_part);
2233 
2234 		/*
2235 		 * Adjust max_part according to part_shift as it is exported
2236 		 * to user space so that user can decide correct minor number
2237 		 * if [s]he want to create more devices.
2238 		 *
2239 		 * Note that -1 is required because partition 0 is reserved
2240 		 * for the whole disk.
2241 		 */
2242 		max_part = (1UL << part_shift) - 1;
2243 	}
2244 
2245 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2246 		err = -EINVAL;
2247 		goto err_out;
2248 	}
2249 
2250 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2251 		err = -EINVAL;
2252 		goto err_out;
2253 	}
2254 
2255 	/*
2256 	 * If max_loop is specified, create that many devices upfront.
2257 	 * This also becomes a hard limit. If max_loop is not specified,
2258 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2259 	 * init time. Loop devices can be requested on-demand with the
2260 	 * /dev/loop-control interface, or be instantiated by accessing
2261 	 * a 'dead' device node.
2262 	 */
2263 	if (max_loop) {
2264 		nr = max_loop;
2265 		range = max_loop << part_shift;
2266 	} else {
2267 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2268 		range = 1UL << MINORBITS;
2269 	}
2270 
2271 	err = misc_register(&loop_misc);
2272 	if (err < 0)
2273 		goto err_out;
2274 
2275 
2276 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2277 		err = -EIO;
2278 		goto misc_out;
2279 	}
2280 
2281 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2282 				  THIS_MODULE, loop_probe, NULL, NULL);
2283 
2284 	/* pre-create number of devices given by config or max_loop */
2285 	mutex_lock(&loop_ctl_mutex);
2286 	for (i = 0; i < nr; i++)
2287 		loop_add(&lo, i);
2288 	mutex_unlock(&loop_ctl_mutex);
2289 
2290 	printk(KERN_INFO "loop: module loaded\n");
2291 	return 0;
2292 
2293 misc_out:
2294 	misc_deregister(&loop_misc);
2295 err_out:
2296 	return err;
2297 }
2298 
2299 static int loop_exit_cb(int id, void *ptr, void *data)
2300 {
2301 	struct loop_device *lo = ptr;
2302 
2303 	loop_remove(lo);
2304 	return 0;
2305 }
2306 
2307 static void __exit loop_exit(void)
2308 {
2309 	unsigned long range;
2310 
2311 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2312 
2313 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2314 	idr_destroy(&loop_index_idr);
2315 
2316 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2317 	unregister_blkdev(LOOP_MAJOR, "loop");
2318 
2319 	misc_deregister(&loop_misc);
2320 }
2321 
2322 module_init(loop_init);
2323 module_exit(loop_exit);
2324 
2325 #ifndef MODULE
2326 static int __init max_loop_setup(char *str)
2327 {
2328 	max_loop = simple_strtol(str, NULL, 0);
2329 	return 1;
2330 }
2331 
2332 __setup("max_loop=", max_loop_setup);
2333 #endif
2334