1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations prepare_write and/or commit_write are not available on the 44 * backing filesystem. 45 * Anton Altaparmakov, 16 Feb 2005 46 * 47 * Still To Fix: 48 * - Advisory locking is ignored here. 49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 50 * 51 */ 52 53 #include <linux/config.h> 54 #include <linux/module.h> 55 #include <linux/moduleparam.h> 56 #include <linux/sched.h> 57 #include <linux/fs.h> 58 #include <linux/file.h> 59 #include <linux/stat.h> 60 #include <linux/errno.h> 61 #include <linux/major.h> 62 #include <linux/wait.h> 63 #include <linux/blkdev.h> 64 #include <linux/blkpg.h> 65 #include <linux/init.h> 66 #include <linux/devfs_fs_kernel.h> 67 #include <linux/smp_lock.h> 68 #include <linux/swap.h> 69 #include <linux/slab.h> 70 #include <linux/loop.h> 71 #include <linux/suspend.h> 72 #include <linux/writeback.h> 73 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 74 #include <linux/completion.h> 75 #include <linux/highmem.h> 76 #include <linux/gfp.h> 77 78 #include <asm/uaccess.h> 79 80 static int max_loop = 8; 81 static struct loop_device *loop_dev; 82 static struct gendisk **disks; 83 84 /* 85 * Transfer functions 86 */ 87 static int transfer_none(struct loop_device *lo, int cmd, 88 struct page *raw_page, unsigned raw_off, 89 struct page *loop_page, unsigned loop_off, 90 int size, sector_t real_block) 91 { 92 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 93 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 94 95 if (cmd == READ) 96 memcpy(loop_buf, raw_buf, size); 97 else 98 memcpy(raw_buf, loop_buf, size); 99 100 kunmap_atomic(raw_buf, KM_USER0); 101 kunmap_atomic(loop_buf, KM_USER1); 102 cond_resched(); 103 return 0; 104 } 105 106 static int transfer_xor(struct loop_device *lo, int cmd, 107 struct page *raw_page, unsigned raw_off, 108 struct page *loop_page, unsigned loop_off, 109 int size, sector_t real_block) 110 { 111 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 112 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 113 char *in, *out, *key; 114 int i, keysize; 115 116 if (cmd == READ) { 117 in = raw_buf; 118 out = loop_buf; 119 } else { 120 in = loop_buf; 121 out = raw_buf; 122 } 123 124 key = lo->lo_encrypt_key; 125 keysize = lo->lo_encrypt_key_size; 126 for (i = 0; i < size; i++) 127 *out++ = *in++ ^ key[(i & 511) % keysize]; 128 129 kunmap_atomic(raw_buf, KM_USER0); 130 kunmap_atomic(loop_buf, KM_USER1); 131 cond_resched(); 132 return 0; 133 } 134 135 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 136 { 137 if (unlikely(info->lo_encrypt_key_size <= 0)) 138 return -EINVAL; 139 return 0; 140 } 141 142 static struct loop_func_table none_funcs = { 143 .number = LO_CRYPT_NONE, 144 .transfer = transfer_none, 145 }; 146 147 static struct loop_func_table xor_funcs = { 148 .number = LO_CRYPT_XOR, 149 .transfer = transfer_xor, 150 .init = xor_init 151 }; 152 153 /* xfer_funcs[0] is special - its release function is never called */ 154 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 155 &none_funcs, 156 &xor_funcs 157 }; 158 159 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 160 { 161 loff_t size, offset, loopsize; 162 163 /* Compute loopsize in bytes */ 164 size = i_size_read(file->f_mapping->host); 165 offset = lo->lo_offset; 166 loopsize = size - offset; 167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 168 loopsize = lo->lo_sizelimit; 169 170 /* 171 * Unfortunately, if we want to do I/O on the device, 172 * the number of 512-byte sectors has to fit into a sector_t. 173 */ 174 return loopsize >> 9; 175 } 176 177 static int 178 figure_loop_size(struct loop_device *lo) 179 { 180 loff_t size = get_loop_size(lo, lo->lo_backing_file); 181 sector_t x = (sector_t)size; 182 183 if (unlikely((loff_t)x != size)) 184 return -EFBIG; 185 186 set_capacity(disks[lo->lo_number], x); 187 return 0; 188 } 189 190 static inline int 191 lo_do_transfer(struct loop_device *lo, int cmd, 192 struct page *rpage, unsigned roffs, 193 struct page *lpage, unsigned loffs, 194 int size, sector_t rblock) 195 { 196 if (unlikely(!lo->transfer)) 197 return 0; 198 199 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 200 } 201 202 /** 203 * do_lo_send_aops - helper for writing data to a loop device 204 * 205 * This is the fast version for backing filesystems which implement the address 206 * space operations prepare_write and commit_write. 207 */ 208 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 209 int bsize, loff_t pos, struct page *page) 210 { 211 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 212 struct address_space *mapping = file->f_mapping; 213 struct address_space_operations *aops = mapping->a_ops; 214 pgoff_t index; 215 unsigned offset, bv_offs; 216 int len, ret; 217 218 mutex_lock(&mapping->host->i_mutex); 219 index = pos >> PAGE_CACHE_SHIFT; 220 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 221 bv_offs = bvec->bv_offset; 222 len = bvec->bv_len; 223 while (len > 0) { 224 sector_t IV; 225 unsigned size; 226 int transfer_result; 227 228 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 229 size = PAGE_CACHE_SIZE - offset; 230 if (size > len) 231 size = len; 232 page = grab_cache_page(mapping, index); 233 if (unlikely(!page)) 234 goto fail; 235 ret = aops->prepare_write(file, page, offset, 236 offset + size); 237 if (unlikely(ret)) { 238 if (ret == AOP_TRUNCATED_PAGE) { 239 page_cache_release(page); 240 continue; 241 } 242 goto unlock; 243 } 244 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 245 bvec->bv_page, bv_offs, size, IV); 246 if (unlikely(transfer_result)) { 247 char *kaddr; 248 249 /* 250 * The transfer failed, but we still write the data to 251 * keep prepare/commit calls balanced. 252 */ 253 printk(KERN_ERR "loop: transfer error block %llu\n", 254 (unsigned long long)index); 255 kaddr = kmap_atomic(page, KM_USER0); 256 memset(kaddr + offset, 0, size); 257 kunmap_atomic(kaddr, KM_USER0); 258 } 259 flush_dcache_page(page); 260 ret = aops->commit_write(file, page, offset, 261 offset + size); 262 if (unlikely(ret)) { 263 if (ret == AOP_TRUNCATED_PAGE) { 264 page_cache_release(page); 265 continue; 266 } 267 goto unlock; 268 } 269 if (unlikely(transfer_result)) 270 goto unlock; 271 bv_offs += size; 272 len -= size; 273 offset = 0; 274 index++; 275 pos += size; 276 unlock_page(page); 277 page_cache_release(page); 278 } 279 ret = 0; 280 out: 281 mutex_unlock(&mapping->host->i_mutex); 282 return ret; 283 unlock: 284 unlock_page(page); 285 page_cache_release(page); 286 fail: 287 ret = -1; 288 goto out; 289 } 290 291 /** 292 * __do_lo_send_write - helper for writing data to a loop device 293 * 294 * This helper just factors out common code between do_lo_send_direct_write() 295 * and do_lo_send_write(). 296 */ 297 static inline int __do_lo_send_write(struct file *file, 298 u8 __user *buf, const int len, loff_t pos) 299 { 300 ssize_t bw; 301 mm_segment_t old_fs = get_fs(); 302 303 set_fs(get_ds()); 304 bw = file->f_op->write(file, buf, len, &pos); 305 set_fs(old_fs); 306 if (likely(bw == len)) 307 return 0; 308 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 309 (unsigned long long)pos, len); 310 if (bw >= 0) 311 bw = -EIO; 312 return bw; 313 } 314 315 /** 316 * do_lo_send_direct_write - helper for writing data to a loop device 317 * 318 * This is the fast, non-transforming version for backing filesystems which do 319 * not implement the address space operations prepare_write and commit_write. 320 * It uses the write file operation which should be present on all writeable 321 * filesystems. 322 */ 323 static int do_lo_send_direct_write(struct loop_device *lo, 324 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page) 325 { 326 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 327 (u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset, 328 bvec->bv_len, pos); 329 kunmap(bvec->bv_page); 330 cond_resched(); 331 return bw; 332 } 333 334 /** 335 * do_lo_send_write - helper for writing data to a loop device 336 * 337 * This is the slow, transforming version for filesystems which do not 338 * implement the address space operations prepare_write and commit_write. It 339 * uses the write file operation which should be present on all writeable 340 * filesystems. 341 * 342 * Using fops->write is slower than using aops->{prepare,commit}_write in the 343 * transforming case because we need to double buffer the data as we cannot do 344 * the transformations in place as we do not have direct access to the 345 * destination pages of the backing file. 346 */ 347 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 348 int bsize, loff_t pos, struct page *page) 349 { 350 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 351 bvec->bv_offset, bvec->bv_len, pos >> 9); 352 if (likely(!ret)) 353 return __do_lo_send_write(lo->lo_backing_file, 354 (u8 __user *)page_address(page), bvec->bv_len, 355 pos); 356 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 357 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 358 if (ret > 0) 359 ret = -EIO; 360 return ret; 361 } 362 363 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize, 364 loff_t pos) 365 { 366 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t, 367 struct page *page); 368 struct bio_vec *bvec; 369 struct page *page = NULL; 370 int i, ret = 0; 371 372 do_lo_send = do_lo_send_aops; 373 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 374 do_lo_send = do_lo_send_direct_write; 375 if (lo->transfer != transfer_none) { 376 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 377 if (unlikely(!page)) 378 goto fail; 379 kmap(page); 380 do_lo_send = do_lo_send_write; 381 } 382 } 383 bio_for_each_segment(bvec, bio, i) { 384 ret = do_lo_send(lo, bvec, bsize, pos, page); 385 if (ret < 0) 386 break; 387 pos += bvec->bv_len; 388 } 389 if (page) { 390 kunmap(page); 391 __free_page(page); 392 } 393 out: 394 return ret; 395 fail: 396 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 397 ret = -ENOMEM; 398 goto out; 399 } 400 401 struct lo_read_data { 402 struct loop_device *lo; 403 struct page *page; 404 unsigned offset; 405 int bsize; 406 }; 407 408 static int 409 lo_read_actor(read_descriptor_t *desc, struct page *page, 410 unsigned long offset, unsigned long size) 411 { 412 unsigned long count = desc->count; 413 struct lo_read_data *p = desc->arg.data; 414 struct loop_device *lo = p->lo; 415 sector_t IV; 416 417 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 418 419 if (size > count) 420 size = count; 421 422 if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) { 423 size = 0; 424 printk(KERN_ERR "loop: transfer error block %ld\n", 425 page->index); 426 desc->error = -EINVAL; 427 } 428 429 flush_dcache_page(p->page); 430 431 desc->count = count - size; 432 desc->written += size; 433 p->offset += size; 434 return size; 435 } 436 437 static int 438 do_lo_receive(struct loop_device *lo, 439 struct bio_vec *bvec, int bsize, loff_t pos) 440 { 441 struct lo_read_data cookie; 442 struct file *file; 443 int retval; 444 445 cookie.lo = lo; 446 cookie.page = bvec->bv_page; 447 cookie.offset = bvec->bv_offset; 448 cookie.bsize = bsize; 449 file = lo->lo_backing_file; 450 retval = file->f_op->sendfile(file, &pos, bvec->bv_len, 451 lo_read_actor, &cookie); 452 return (retval < 0)? retval: 0; 453 } 454 455 static int 456 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 457 { 458 struct bio_vec *bvec; 459 int i, ret = 0; 460 461 bio_for_each_segment(bvec, bio, i) { 462 ret = do_lo_receive(lo, bvec, bsize, pos); 463 if (ret < 0) 464 break; 465 pos += bvec->bv_len; 466 } 467 return ret; 468 } 469 470 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 471 { 472 loff_t pos; 473 int ret; 474 475 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 476 if (bio_rw(bio) == WRITE) 477 ret = lo_send(lo, bio, lo->lo_blocksize, pos); 478 else 479 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 480 return ret; 481 } 482 483 /* 484 * Add bio to back of pending list 485 */ 486 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 487 { 488 if (lo->lo_biotail) { 489 lo->lo_biotail->bi_next = bio; 490 lo->lo_biotail = bio; 491 } else 492 lo->lo_bio = lo->lo_biotail = bio; 493 } 494 495 /* 496 * Grab first pending buffer 497 */ 498 static struct bio *loop_get_bio(struct loop_device *lo) 499 { 500 struct bio *bio; 501 502 if ((bio = lo->lo_bio)) { 503 if (bio == lo->lo_biotail) 504 lo->lo_biotail = NULL; 505 lo->lo_bio = bio->bi_next; 506 bio->bi_next = NULL; 507 } 508 509 return bio; 510 } 511 512 static int loop_make_request(request_queue_t *q, struct bio *old_bio) 513 { 514 struct loop_device *lo = q->queuedata; 515 int rw = bio_rw(old_bio); 516 517 if (rw == READA) 518 rw = READ; 519 520 BUG_ON(!lo || (rw != READ && rw != WRITE)); 521 522 spin_lock_irq(&lo->lo_lock); 523 if (lo->lo_state != Lo_bound) 524 goto out; 525 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 526 goto out; 527 lo->lo_pending++; 528 loop_add_bio(lo, old_bio); 529 spin_unlock_irq(&lo->lo_lock); 530 complete(&lo->lo_bh_done); 531 return 0; 532 533 out: 534 if (lo->lo_pending == 0) 535 complete(&lo->lo_bh_done); 536 spin_unlock_irq(&lo->lo_lock); 537 bio_io_error(old_bio, old_bio->bi_size); 538 return 0; 539 } 540 541 /* 542 * kick off io on the underlying address space 543 */ 544 static void loop_unplug(request_queue_t *q) 545 { 546 struct loop_device *lo = q->queuedata; 547 548 clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags); 549 blk_run_address_space(lo->lo_backing_file->f_mapping); 550 } 551 552 struct switch_request { 553 struct file *file; 554 struct completion wait; 555 }; 556 557 static void do_loop_switch(struct loop_device *, struct switch_request *); 558 559 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 560 { 561 if (unlikely(!bio->bi_bdev)) { 562 do_loop_switch(lo, bio->bi_private); 563 bio_put(bio); 564 } else { 565 int ret = do_bio_filebacked(lo, bio); 566 bio_endio(bio, bio->bi_size, ret); 567 } 568 } 569 570 /* 571 * worker thread that handles reads/writes to file backed loop devices, 572 * to avoid blocking in our make_request_fn. it also does loop decrypting 573 * on reads for block backed loop, as that is too heavy to do from 574 * b_end_io context where irqs may be disabled. 575 */ 576 static int loop_thread(void *data) 577 { 578 struct loop_device *lo = data; 579 struct bio *bio; 580 581 daemonize("loop%d", lo->lo_number); 582 583 /* 584 * loop can be used in an encrypted device, 585 * hence, it mustn't be stopped at all 586 * because it could be indirectly used during suspension 587 */ 588 current->flags |= PF_NOFREEZE; 589 590 set_user_nice(current, -20); 591 592 lo->lo_state = Lo_bound; 593 lo->lo_pending = 1; 594 595 /* 596 * complete it, we are running 597 */ 598 complete(&lo->lo_done); 599 600 for (;;) { 601 int pending; 602 603 if (wait_for_completion_interruptible(&lo->lo_bh_done)) 604 continue; 605 606 spin_lock_irq(&lo->lo_lock); 607 608 /* 609 * could be completed because of tear-down, not pending work 610 */ 611 if (unlikely(!lo->lo_pending)) { 612 spin_unlock_irq(&lo->lo_lock); 613 break; 614 } 615 616 bio = loop_get_bio(lo); 617 lo->lo_pending--; 618 pending = lo->lo_pending; 619 spin_unlock_irq(&lo->lo_lock); 620 621 BUG_ON(!bio); 622 loop_handle_bio(lo, bio); 623 624 /* 625 * upped both for pending work and tear-down, lo_pending 626 * will hit zero then 627 */ 628 if (unlikely(!pending)) 629 break; 630 } 631 632 complete(&lo->lo_done); 633 return 0; 634 } 635 636 /* 637 * loop_switch performs the hard work of switching a backing store. 638 * First it needs to flush existing IO, it does this by sending a magic 639 * BIO down the pipe. The completion of this BIO does the actual switch. 640 */ 641 static int loop_switch(struct loop_device *lo, struct file *file) 642 { 643 struct switch_request w; 644 struct bio *bio = bio_alloc(GFP_KERNEL, 1); 645 if (!bio) 646 return -ENOMEM; 647 init_completion(&w.wait); 648 w.file = file; 649 bio->bi_private = &w; 650 bio->bi_bdev = NULL; 651 loop_make_request(lo->lo_queue, bio); 652 wait_for_completion(&w.wait); 653 return 0; 654 } 655 656 /* 657 * Do the actual switch; called from the BIO completion routine 658 */ 659 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 660 { 661 struct file *file = p->file; 662 struct file *old_file = lo->lo_backing_file; 663 struct address_space *mapping = file->f_mapping; 664 665 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 666 lo->lo_backing_file = file; 667 lo->lo_blocksize = mapping->host->i_blksize; 668 lo->old_gfp_mask = mapping_gfp_mask(mapping); 669 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 670 complete(&p->wait); 671 } 672 673 674 /* 675 * loop_change_fd switched the backing store of a loopback device to 676 * a new file. This is useful for operating system installers to free up 677 * the original file and in High Availability environments to switch to 678 * an alternative location for the content in case of server meltdown. 679 * This can only work if the loop device is used read-only, and if the 680 * new backing store is the same size and type as the old backing store. 681 */ 682 static int loop_change_fd(struct loop_device *lo, struct file *lo_file, 683 struct block_device *bdev, unsigned int arg) 684 { 685 struct file *file, *old_file; 686 struct inode *inode; 687 int error; 688 689 error = -ENXIO; 690 if (lo->lo_state != Lo_bound) 691 goto out; 692 693 /* the loop device has to be read-only */ 694 error = -EINVAL; 695 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 696 goto out; 697 698 error = -EBADF; 699 file = fget(arg); 700 if (!file) 701 goto out; 702 703 inode = file->f_mapping->host; 704 old_file = lo->lo_backing_file; 705 706 error = -EINVAL; 707 708 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 709 goto out_putf; 710 711 /* new backing store needs to support loop (eg sendfile) */ 712 if (!inode->i_fop->sendfile) 713 goto out_putf; 714 715 /* size of the new backing store needs to be the same */ 716 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 717 goto out_putf; 718 719 /* and ... switch */ 720 error = loop_switch(lo, file); 721 if (error) 722 goto out_putf; 723 724 fput(old_file); 725 return 0; 726 727 out_putf: 728 fput(file); 729 out: 730 return error; 731 } 732 733 static inline int is_loop_device(struct file *file) 734 { 735 struct inode *i = file->f_mapping->host; 736 737 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 738 } 739 740 static int loop_set_fd(struct loop_device *lo, struct file *lo_file, 741 struct block_device *bdev, unsigned int arg) 742 { 743 struct file *file, *f; 744 struct inode *inode; 745 struct address_space *mapping; 746 unsigned lo_blocksize; 747 int lo_flags = 0; 748 int error; 749 loff_t size; 750 751 /* This is safe, since we have a reference from open(). */ 752 __module_get(THIS_MODULE); 753 754 error = -EBADF; 755 file = fget(arg); 756 if (!file) 757 goto out; 758 759 error = -EBUSY; 760 if (lo->lo_state != Lo_unbound) 761 goto out_putf; 762 763 /* Avoid recursion */ 764 f = file; 765 while (is_loop_device(f)) { 766 struct loop_device *l; 767 768 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev) 769 goto out_putf; 770 771 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 772 if (l->lo_state == Lo_unbound) { 773 error = -EINVAL; 774 goto out_putf; 775 } 776 f = l->lo_backing_file; 777 } 778 779 mapping = file->f_mapping; 780 inode = mapping->host; 781 782 if (!(file->f_mode & FMODE_WRITE)) 783 lo_flags |= LO_FLAGS_READ_ONLY; 784 785 error = -EINVAL; 786 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 787 struct address_space_operations *aops = mapping->a_ops; 788 /* 789 * If we can't read - sorry. If we only can't write - well, 790 * it's going to be read-only. 791 */ 792 if (!file->f_op->sendfile) 793 goto out_putf; 794 if (aops->prepare_write && aops->commit_write) 795 lo_flags |= LO_FLAGS_USE_AOPS; 796 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 797 lo_flags |= LO_FLAGS_READ_ONLY; 798 799 lo_blocksize = inode->i_blksize; 800 error = 0; 801 } else { 802 goto out_putf; 803 } 804 805 size = get_loop_size(lo, file); 806 807 if ((loff_t)(sector_t)size != size) { 808 error = -EFBIG; 809 goto out_putf; 810 } 811 812 if (!(lo_file->f_mode & FMODE_WRITE)) 813 lo_flags |= LO_FLAGS_READ_ONLY; 814 815 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 816 817 lo->lo_blocksize = lo_blocksize; 818 lo->lo_device = bdev; 819 lo->lo_flags = lo_flags; 820 lo->lo_backing_file = file; 821 lo->transfer = NULL; 822 lo->ioctl = NULL; 823 lo->lo_sizelimit = 0; 824 lo->old_gfp_mask = mapping_gfp_mask(mapping); 825 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 826 827 lo->lo_bio = lo->lo_biotail = NULL; 828 829 /* 830 * set queue make_request_fn, and add limits based on lower level 831 * device 832 */ 833 blk_queue_make_request(lo->lo_queue, loop_make_request); 834 lo->lo_queue->queuedata = lo; 835 lo->lo_queue->unplug_fn = loop_unplug; 836 837 set_capacity(disks[lo->lo_number], size); 838 bd_set_size(bdev, size << 9); 839 840 set_blocksize(bdev, lo_blocksize); 841 842 kernel_thread(loop_thread, lo, CLONE_KERNEL); 843 wait_for_completion(&lo->lo_done); 844 return 0; 845 846 out_putf: 847 fput(file); 848 out: 849 /* This is safe: open() is still holding a reference. */ 850 module_put(THIS_MODULE); 851 return error; 852 } 853 854 static int 855 loop_release_xfer(struct loop_device *lo) 856 { 857 int err = 0; 858 struct loop_func_table *xfer = lo->lo_encryption; 859 860 if (xfer) { 861 if (xfer->release) 862 err = xfer->release(lo); 863 lo->transfer = NULL; 864 lo->lo_encryption = NULL; 865 module_put(xfer->owner); 866 } 867 return err; 868 } 869 870 static int 871 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 872 const struct loop_info64 *i) 873 { 874 int err = 0; 875 876 if (xfer) { 877 struct module *owner = xfer->owner; 878 879 if (!try_module_get(owner)) 880 return -EINVAL; 881 if (xfer->init) 882 err = xfer->init(lo, i); 883 if (err) 884 module_put(owner); 885 else 886 lo->lo_encryption = xfer; 887 } 888 return err; 889 } 890 891 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 892 { 893 struct file *filp = lo->lo_backing_file; 894 gfp_t gfp = lo->old_gfp_mask; 895 896 if (lo->lo_state != Lo_bound) 897 return -ENXIO; 898 899 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 900 return -EBUSY; 901 902 if (filp == NULL) 903 return -EINVAL; 904 905 spin_lock_irq(&lo->lo_lock); 906 lo->lo_state = Lo_rundown; 907 lo->lo_pending--; 908 if (!lo->lo_pending) 909 complete(&lo->lo_bh_done); 910 spin_unlock_irq(&lo->lo_lock); 911 912 wait_for_completion(&lo->lo_done); 913 914 lo->lo_backing_file = NULL; 915 916 loop_release_xfer(lo); 917 lo->transfer = NULL; 918 lo->ioctl = NULL; 919 lo->lo_device = NULL; 920 lo->lo_encryption = NULL; 921 lo->lo_offset = 0; 922 lo->lo_sizelimit = 0; 923 lo->lo_encrypt_key_size = 0; 924 lo->lo_flags = 0; 925 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 926 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 927 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 928 invalidate_bdev(bdev, 0); 929 set_capacity(disks[lo->lo_number], 0); 930 bd_set_size(bdev, 0); 931 mapping_set_gfp_mask(filp->f_mapping, gfp); 932 lo->lo_state = Lo_unbound; 933 fput(filp); 934 /* This is safe: open() is still holding a reference. */ 935 module_put(THIS_MODULE); 936 return 0; 937 } 938 939 static int 940 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 941 { 942 int err; 943 struct loop_func_table *xfer; 944 945 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && 946 !capable(CAP_SYS_ADMIN)) 947 return -EPERM; 948 if (lo->lo_state != Lo_bound) 949 return -ENXIO; 950 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 951 return -EINVAL; 952 953 err = loop_release_xfer(lo); 954 if (err) 955 return err; 956 957 if (info->lo_encrypt_type) { 958 unsigned int type = info->lo_encrypt_type; 959 960 if (type >= MAX_LO_CRYPT) 961 return -EINVAL; 962 xfer = xfer_funcs[type]; 963 if (xfer == NULL) 964 return -EINVAL; 965 } else 966 xfer = NULL; 967 968 err = loop_init_xfer(lo, xfer, info); 969 if (err) 970 return err; 971 972 if (lo->lo_offset != info->lo_offset || 973 lo->lo_sizelimit != info->lo_sizelimit) { 974 lo->lo_offset = info->lo_offset; 975 lo->lo_sizelimit = info->lo_sizelimit; 976 if (figure_loop_size(lo)) 977 return -EFBIG; 978 } 979 980 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 981 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 982 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 983 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 984 985 if (!xfer) 986 xfer = &none_funcs; 987 lo->transfer = xfer->transfer; 988 lo->ioctl = xfer->ioctl; 989 990 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 991 lo->lo_init[0] = info->lo_init[0]; 992 lo->lo_init[1] = info->lo_init[1]; 993 if (info->lo_encrypt_key_size) { 994 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 995 info->lo_encrypt_key_size); 996 lo->lo_key_owner = current->uid; 997 } 998 999 return 0; 1000 } 1001 1002 static int 1003 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1004 { 1005 struct file *file = lo->lo_backing_file; 1006 struct kstat stat; 1007 int error; 1008 1009 if (lo->lo_state != Lo_bound) 1010 return -ENXIO; 1011 error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat); 1012 if (error) 1013 return error; 1014 memset(info, 0, sizeof(*info)); 1015 info->lo_number = lo->lo_number; 1016 info->lo_device = huge_encode_dev(stat.dev); 1017 info->lo_inode = stat.ino; 1018 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1019 info->lo_offset = lo->lo_offset; 1020 info->lo_sizelimit = lo->lo_sizelimit; 1021 info->lo_flags = lo->lo_flags; 1022 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1023 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1024 info->lo_encrypt_type = 1025 lo->lo_encryption ? lo->lo_encryption->number : 0; 1026 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1027 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1028 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1029 lo->lo_encrypt_key_size); 1030 } 1031 return 0; 1032 } 1033 1034 static void 1035 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1036 { 1037 memset(info64, 0, sizeof(*info64)); 1038 info64->lo_number = info->lo_number; 1039 info64->lo_device = info->lo_device; 1040 info64->lo_inode = info->lo_inode; 1041 info64->lo_rdevice = info->lo_rdevice; 1042 info64->lo_offset = info->lo_offset; 1043 info64->lo_sizelimit = 0; 1044 info64->lo_encrypt_type = info->lo_encrypt_type; 1045 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1046 info64->lo_flags = info->lo_flags; 1047 info64->lo_init[0] = info->lo_init[0]; 1048 info64->lo_init[1] = info->lo_init[1]; 1049 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1050 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1051 else 1052 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1053 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1054 } 1055 1056 static int 1057 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1058 { 1059 memset(info, 0, sizeof(*info)); 1060 info->lo_number = info64->lo_number; 1061 info->lo_device = info64->lo_device; 1062 info->lo_inode = info64->lo_inode; 1063 info->lo_rdevice = info64->lo_rdevice; 1064 info->lo_offset = info64->lo_offset; 1065 info->lo_encrypt_type = info64->lo_encrypt_type; 1066 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1067 info->lo_flags = info64->lo_flags; 1068 info->lo_init[0] = info64->lo_init[0]; 1069 info->lo_init[1] = info64->lo_init[1]; 1070 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1071 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1072 else 1073 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1074 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1075 1076 /* error in case values were truncated */ 1077 if (info->lo_device != info64->lo_device || 1078 info->lo_rdevice != info64->lo_rdevice || 1079 info->lo_inode != info64->lo_inode || 1080 info->lo_offset != info64->lo_offset) 1081 return -EOVERFLOW; 1082 1083 return 0; 1084 } 1085 1086 static int 1087 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1088 { 1089 struct loop_info info; 1090 struct loop_info64 info64; 1091 1092 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1093 return -EFAULT; 1094 loop_info64_from_old(&info, &info64); 1095 return loop_set_status(lo, &info64); 1096 } 1097 1098 static int 1099 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1100 { 1101 struct loop_info64 info64; 1102 1103 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1104 return -EFAULT; 1105 return loop_set_status(lo, &info64); 1106 } 1107 1108 static int 1109 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1110 struct loop_info info; 1111 struct loop_info64 info64; 1112 int err = 0; 1113 1114 if (!arg) 1115 err = -EINVAL; 1116 if (!err) 1117 err = loop_get_status(lo, &info64); 1118 if (!err) 1119 err = loop_info64_to_old(&info64, &info); 1120 if (!err && copy_to_user(arg, &info, sizeof(info))) 1121 err = -EFAULT; 1122 1123 return err; 1124 } 1125 1126 static int 1127 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1128 struct loop_info64 info64; 1129 int err = 0; 1130 1131 if (!arg) 1132 err = -EINVAL; 1133 if (!err) 1134 err = loop_get_status(lo, &info64); 1135 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1136 err = -EFAULT; 1137 1138 return err; 1139 } 1140 1141 static int lo_ioctl(struct inode * inode, struct file * file, 1142 unsigned int cmd, unsigned long arg) 1143 { 1144 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1145 int err; 1146 1147 down(&lo->lo_ctl_mutex); 1148 switch (cmd) { 1149 case LOOP_SET_FD: 1150 err = loop_set_fd(lo, file, inode->i_bdev, arg); 1151 break; 1152 case LOOP_CHANGE_FD: 1153 err = loop_change_fd(lo, file, inode->i_bdev, arg); 1154 break; 1155 case LOOP_CLR_FD: 1156 err = loop_clr_fd(lo, inode->i_bdev); 1157 break; 1158 case LOOP_SET_STATUS: 1159 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1160 break; 1161 case LOOP_GET_STATUS: 1162 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1163 break; 1164 case LOOP_SET_STATUS64: 1165 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1166 break; 1167 case LOOP_GET_STATUS64: 1168 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1169 break; 1170 default: 1171 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1172 } 1173 up(&lo->lo_ctl_mutex); 1174 return err; 1175 } 1176 1177 static int lo_open(struct inode *inode, struct file *file) 1178 { 1179 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1180 1181 down(&lo->lo_ctl_mutex); 1182 lo->lo_refcnt++; 1183 up(&lo->lo_ctl_mutex); 1184 1185 return 0; 1186 } 1187 1188 static int lo_release(struct inode *inode, struct file *file) 1189 { 1190 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1191 1192 down(&lo->lo_ctl_mutex); 1193 --lo->lo_refcnt; 1194 up(&lo->lo_ctl_mutex); 1195 1196 return 0; 1197 } 1198 1199 static struct block_device_operations lo_fops = { 1200 .owner = THIS_MODULE, 1201 .open = lo_open, 1202 .release = lo_release, 1203 .ioctl = lo_ioctl, 1204 }; 1205 1206 /* 1207 * And now the modules code and kernel interface. 1208 */ 1209 module_param(max_loop, int, 0); 1210 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)"); 1211 MODULE_LICENSE("GPL"); 1212 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1213 1214 int loop_register_transfer(struct loop_func_table *funcs) 1215 { 1216 unsigned int n = funcs->number; 1217 1218 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1219 return -EINVAL; 1220 xfer_funcs[n] = funcs; 1221 return 0; 1222 } 1223 1224 int loop_unregister_transfer(int number) 1225 { 1226 unsigned int n = number; 1227 struct loop_device *lo; 1228 struct loop_func_table *xfer; 1229 1230 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1231 return -EINVAL; 1232 1233 xfer_funcs[n] = NULL; 1234 1235 for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) { 1236 down(&lo->lo_ctl_mutex); 1237 1238 if (lo->lo_encryption == xfer) 1239 loop_release_xfer(lo); 1240 1241 up(&lo->lo_ctl_mutex); 1242 } 1243 1244 return 0; 1245 } 1246 1247 EXPORT_SYMBOL(loop_register_transfer); 1248 EXPORT_SYMBOL(loop_unregister_transfer); 1249 1250 static int __init loop_init(void) 1251 { 1252 int i; 1253 1254 if (max_loop < 1 || max_loop > 256) { 1255 printk(KERN_WARNING "loop: invalid max_loop (must be between" 1256 " 1 and 256), using default (8)\n"); 1257 max_loop = 8; 1258 } 1259 1260 if (register_blkdev(LOOP_MAJOR, "loop")) 1261 return -EIO; 1262 1263 loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL); 1264 if (!loop_dev) 1265 goto out_mem1; 1266 memset(loop_dev, 0, max_loop * sizeof(struct loop_device)); 1267 1268 disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL); 1269 if (!disks) 1270 goto out_mem2; 1271 1272 for (i = 0; i < max_loop; i++) { 1273 disks[i] = alloc_disk(1); 1274 if (!disks[i]) 1275 goto out_mem3; 1276 } 1277 1278 devfs_mk_dir("loop"); 1279 1280 for (i = 0; i < max_loop; i++) { 1281 struct loop_device *lo = &loop_dev[i]; 1282 struct gendisk *disk = disks[i]; 1283 1284 memset(lo, 0, sizeof(*lo)); 1285 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1286 if (!lo->lo_queue) 1287 goto out_mem4; 1288 init_MUTEX(&lo->lo_ctl_mutex); 1289 init_completion(&lo->lo_done); 1290 init_completion(&lo->lo_bh_done); 1291 lo->lo_number = i; 1292 spin_lock_init(&lo->lo_lock); 1293 disk->major = LOOP_MAJOR; 1294 disk->first_minor = i; 1295 disk->fops = &lo_fops; 1296 sprintf(disk->disk_name, "loop%d", i); 1297 sprintf(disk->devfs_name, "loop/%d", i); 1298 disk->private_data = lo; 1299 disk->queue = lo->lo_queue; 1300 } 1301 1302 /* We cannot fail after we call this, so another loop!*/ 1303 for (i = 0; i < max_loop; i++) 1304 add_disk(disks[i]); 1305 printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop); 1306 return 0; 1307 1308 out_mem4: 1309 while (i--) 1310 blk_put_queue(loop_dev[i].lo_queue); 1311 devfs_remove("loop"); 1312 i = max_loop; 1313 out_mem3: 1314 while (i--) 1315 put_disk(disks[i]); 1316 kfree(disks); 1317 out_mem2: 1318 kfree(loop_dev); 1319 out_mem1: 1320 unregister_blkdev(LOOP_MAJOR, "loop"); 1321 printk(KERN_ERR "loop: ran out of memory\n"); 1322 return -ENOMEM; 1323 } 1324 1325 static void loop_exit(void) 1326 { 1327 int i; 1328 1329 for (i = 0; i < max_loop; i++) { 1330 del_gendisk(disks[i]); 1331 blk_put_queue(loop_dev[i].lo_queue); 1332 put_disk(disks[i]); 1333 } 1334 devfs_remove("loop"); 1335 if (unregister_blkdev(LOOP_MAJOR, "loop")) 1336 printk(KERN_WARNING "loop: cannot unregister blkdev\n"); 1337 1338 kfree(disks); 1339 kfree(loop_dev); 1340 } 1341 1342 module_init(loop_init); 1343 module_exit(loop_exit); 1344 1345 #ifndef MODULE 1346 static int __init max_loop_setup(char *str) 1347 { 1348 max_loop = simple_strtol(str, NULL, 0); 1349 return 1; 1350 } 1351 1352 __setup("max_loop=", max_loop_setup); 1353 #endif 1354