xref: /openbmc/linux/drivers/block/loop.c (revision 85b0a54a)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 
81 #include "loop.h"
82 
83 #include <linux/uaccess.h>
84 
85 static DEFINE_IDR(loop_index_idr);
86 static DEFINE_MUTEX(loop_ctl_mutex);
87 
88 static int max_part;
89 static int part_shift;
90 
91 static int transfer_xor(struct loop_device *lo, int cmd,
92 			struct page *raw_page, unsigned raw_off,
93 			struct page *loop_page, unsigned loop_off,
94 			int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 	char *in, *out, *key;
99 	int i, keysize;
100 
101 	if (cmd == READ) {
102 		in = raw_buf;
103 		out = loop_buf;
104 	} else {
105 		in = loop_buf;
106 		out = raw_buf;
107 	}
108 
109 	key = lo->lo_encrypt_key;
110 	keysize = lo->lo_encrypt_key_size;
111 	for (i = 0; i < size; i++)
112 		*out++ = *in++ ^ key[(i & 511) % keysize];
113 
114 	kunmap_atomic(loop_buf);
115 	kunmap_atomic(raw_buf);
116 	cond_resched();
117 	return 0;
118 }
119 
120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
121 {
122 	if (unlikely(info->lo_encrypt_key_size <= 0))
123 		return -EINVAL;
124 	return 0;
125 }
126 
127 static struct loop_func_table none_funcs = {
128 	.number = LO_CRYPT_NONE,
129 };
130 
131 static struct loop_func_table xor_funcs = {
132 	.number = LO_CRYPT_XOR,
133 	.transfer = transfer_xor,
134 	.init = xor_init
135 };
136 
137 /* xfer_funcs[0] is special - its release function is never called */
138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
139 	&none_funcs,
140 	&xor_funcs
141 };
142 
143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
144 {
145 	loff_t loopsize;
146 
147 	/* Compute loopsize in bytes */
148 	loopsize = i_size_read(file->f_mapping->host);
149 	if (offset > 0)
150 		loopsize -= offset;
151 	/* offset is beyond i_size, weird but possible */
152 	if (loopsize < 0)
153 		return 0;
154 
155 	if (sizelimit > 0 && sizelimit < loopsize)
156 		loopsize = sizelimit;
157 	/*
158 	 * Unfortunately, if we want to do I/O on the device,
159 	 * the number of 512-byte sectors has to fit into a sector_t.
160 	 */
161 	return loopsize >> 9;
162 }
163 
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165 {
166 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 }
168 
169 static void __loop_update_dio(struct loop_device *lo, bool dio)
170 {
171 	struct file *file = lo->lo_backing_file;
172 	struct address_space *mapping = file->f_mapping;
173 	struct inode *inode = mapping->host;
174 	unsigned short sb_bsize = 0;
175 	unsigned dio_align = 0;
176 	bool use_dio;
177 
178 	if (inode->i_sb->s_bdev) {
179 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
180 		dio_align = sb_bsize - 1;
181 	}
182 
183 	/*
184 	 * We support direct I/O only if lo_offset is aligned with the
185 	 * logical I/O size of backing device, and the logical block
186 	 * size of loop is bigger than the backing device's and the loop
187 	 * needn't transform transfer.
188 	 *
189 	 * TODO: the above condition may be loosed in the future, and
190 	 * direct I/O may be switched runtime at that time because most
191 	 * of requests in sane applications should be PAGE_SIZE aligned
192 	 */
193 	if (dio) {
194 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
195 				!(lo->lo_offset & dio_align) &&
196 				mapping->a_ops->direct_IO &&
197 				!lo->transfer)
198 			use_dio = true;
199 		else
200 			use_dio = false;
201 	} else {
202 		use_dio = false;
203 	}
204 
205 	if (lo->use_dio == use_dio)
206 		return;
207 
208 	/* flush dirty pages before changing direct IO */
209 	vfs_fsync(file, 0);
210 
211 	/*
212 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
213 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
214 	 * will get updated by ioctl(LOOP_GET_STATUS)
215 	 */
216 	blk_mq_freeze_queue(lo->lo_queue);
217 	lo->use_dio = use_dio;
218 	if (use_dio) {
219 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
220 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
221 	} else {
222 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
223 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
224 	}
225 	blk_mq_unfreeze_queue(lo->lo_queue);
226 }
227 
228 static int
229 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
230 {
231 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
232 	sector_t x = (sector_t)size;
233 	struct block_device *bdev = lo->lo_device;
234 
235 	if (unlikely((loff_t)x != size))
236 		return -EFBIG;
237 	if (lo->lo_offset != offset)
238 		lo->lo_offset = offset;
239 	if (lo->lo_sizelimit != sizelimit)
240 		lo->lo_sizelimit = sizelimit;
241 	set_capacity(lo->lo_disk, x);
242 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
243 	/* let user-space know about the new size */
244 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
245 	return 0;
246 }
247 
248 static inline int
249 lo_do_transfer(struct loop_device *lo, int cmd,
250 	       struct page *rpage, unsigned roffs,
251 	       struct page *lpage, unsigned loffs,
252 	       int size, sector_t rblock)
253 {
254 	int ret;
255 
256 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
257 	if (likely(!ret))
258 		return 0;
259 
260 	printk_ratelimited(KERN_ERR
261 		"loop: Transfer error at byte offset %llu, length %i.\n",
262 		(unsigned long long)rblock << 9, size);
263 	return ret;
264 }
265 
266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
267 {
268 	struct iov_iter i;
269 	ssize_t bw;
270 
271 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
272 
273 	file_start_write(file);
274 	bw = vfs_iter_write(file, &i, ppos, 0);
275 	file_end_write(file);
276 
277 	if (likely(bw ==  bvec->bv_len))
278 		return 0;
279 
280 	printk_ratelimited(KERN_ERR
281 		"loop: Write error at byte offset %llu, length %i.\n",
282 		(unsigned long long)*ppos, bvec->bv_len);
283 	if (bw >= 0)
284 		bw = -EIO;
285 	return bw;
286 }
287 
288 static int lo_write_simple(struct loop_device *lo, struct request *rq,
289 		loff_t pos)
290 {
291 	struct bio_vec bvec;
292 	struct req_iterator iter;
293 	int ret = 0;
294 
295 	rq_for_each_segment(bvec, rq, iter) {
296 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
297 		if (ret < 0)
298 			break;
299 		cond_resched();
300 	}
301 
302 	return ret;
303 }
304 
305 /*
306  * This is the slow, transforming version that needs to double buffer the
307  * data as it cannot do the transformations in place without having direct
308  * access to the destination pages of the backing file.
309  */
310 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
311 		loff_t pos)
312 {
313 	struct bio_vec bvec, b;
314 	struct req_iterator iter;
315 	struct page *page;
316 	int ret = 0;
317 
318 	page = alloc_page(GFP_NOIO);
319 	if (unlikely(!page))
320 		return -ENOMEM;
321 
322 	rq_for_each_segment(bvec, rq, iter) {
323 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
324 			bvec.bv_offset, bvec.bv_len, pos >> 9);
325 		if (unlikely(ret))
326 			break;
327 
328 		b.bv_page = page;
329 		b.bv_offset = 0;
330 		b.bv_len = bvec.bv_len;
331 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
332 		if (ret < 0)
333 			break;
334 	}
335 
336 	__free_page(page);
337 	return ret;
338 }
339 
340 static int lo_read_simple(struct loop_device *lo, struct request *rq,
341 		loff_t pos)
342 {
343 	struct bio_vec bvec;
344 	struct req_iterator iter;
345 	struct iov_iter i;
346 	ssize_t len;
347 
348 	rq_for_each_segment(bvec, rq, iter) {
349 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
350 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
351 		if (len < 0)
352 			return len;
353 
354 		flush_dcache_page(bvec.bv_page);
355 
356 		if (len != bvec.bv_len) {
357 			struct bio *bio;
358 
359 			__rq_for_each_bio(bio, rq)
360 				zero_fill_bio(bio);
361 			break;
362 		}
363 		cond_resched();
364 	}
365 
366 	return 0;
367 }
368 
369 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
370 		loff_t pos)
371 {
372 	struct bio_vec bvec, b;
373 	struct req_iterator iter;
374 	struct iov_iter i;
375 	struct page *page;
376 	ssize_t len;
377 	int ret = 0;
378 
379 	page = alloc_page(GFP_NOIO);
380 	if (unlikely(!page))
381 		return -ENOMEM;
382 
383 	rq_for_each_segment(bvec, rq, iter) {
384 		loff_t offset = pos;
385 
386 		b.bv_page = page;
387 		b.bv_offset = 0;
388 		b.bv_len = bvec.bv_len;
389 
390 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
391 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
392 		if (len < 0) {
393 			ret = len;
394 			goto out_free_page;
395 		}
396 
397 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
398 			bvec.bv_offset, len, offset >> 9);
399 		if (ret)
400 			goto out_free_page;
401 
402 		flush_dcache_page(bvec.bv_page);
403 
404 		if (len != bvec.bv_len) {
405 			struct bio *bio;
406 
407 			__rq_for_each_bio(bio, rq)
408 				zero_fill_bio(bio);
409 			break;
410 		}
411 	}
412 
413 	ret = 0;
414 out_free_page:
415 	__free_page(page);
416 	return ret;
417 }
418 
419 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
420 {
421 	/*
422 	 * We use punch hole to reclaim the free space used by the
423 	 * image a.k.a. discard. However we do not support discard if
424 	 * encryption is enabled, because it may give an attacker
425 	 * useful information.
426 	 */
427 	struct file *file = lo->lo_backing_file;
428 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
429 	int ret;
430 
431 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
432 		ret = -EOPNOTSUPP;
433 		goto out;
434 	}
435 
436 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
437 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
438 		ret = -EIO;
439  out:
440 	return ret;
441 }
442 
443 static int lo_req_flush(struct loop_device *lo, struct request *rq)
444 {
445 	struct file *file = lo->lo_backing_file;
446 	int ret = vfs_fsync(file, 0);
447 	if (unlikely(ret && ret != -EINVAL))
448 		ret = -EIO;
449 
450 	return ret;
451 }
452 
453 static void lo_complete_rq(struct request *rq)
454 {
455 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
456 	blk_status_t ret = BLK_STS_OK;
457 
458 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
459 	    req_op(rq) != REQ_OP_READ) {
460 		if (cmd->ret < 0)
461 			ret = BLK_STS_IOERR;
462 		goto end_io;
463 	}
464 
465 	/*
466 	 * Short READ - if we got some data, advance our request and
467 	 * retry it. If we got no data, end the rest with EIO.
468 	 */
469 	if (cmd->ret) {
470 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
471 		cmd->ret = 0;
472 		blk_mq_requeue_request(rq, true);
473 	} else {
474 		if (cmd->use_aio) {
475 			struct bio *bio = rq->bio;
476 
477 			while (bio) {
478 				zero_fill_bio(bio);
479 				bio = bio->bi_next;
480 			}
481 		}
482 		ret = BLK_STS_IOERR;
483 end_io:
484 		blk_mq_end_request(rq, ret);
485 	}
486 }
487 
488 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
489 {
490 	struct request *rq = blk_mq_rq_from_pdu(cmd);
491 
492 	if (!atomic_dec_and_test(&cmd->ref))
493 		return;
494 	kfree(cmd->bvec);
495 	cmd->bvec = NULL;
496 	blk_mq_complete_request(rq);
497 }
498 
499 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
500 {
501 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
502 
503 	if (cmd->css)
504 		css_put(cmd->css);
505 	cmd->ret = ret;
506 	lo_rw_aio_do_completion(cmd);
507 }
508 
509 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
510 		     loff_t pos, bool rw)
511 {
512 	struct iov_iter iter;
513 	struct bio_vec *bvec;
514 	struct request *rq = blk_mq_rq_from_pdu(cmd);
515 	struct bio *bio = rq->bio;
516 	struct file *file = lo->lo_backing_file;
517 	unsigned int offset;
518 	int segments = 0;
519 	int ret;
520 
521 	if (rq->bio != rq->biotail) {
522 		struct req_iterator iter;
523 		struct bio_vec tmp;
524 
525 		__rq_for_each_bio(bio, rq)
526 			segments += bio_segments(bio);
527 		bvec = kmalloc_array(segments, sizeof(struct bio_vec),
528 				     GFP_NOIO);
529 		if (!bvec)
530 			return -EIO;
531 		cmd->bvec = bvec;
532 
533 		/*
534 		 * The bios of the request may be started from the middle of
535 		 * the 'bvec' because of bio splitting, so we can't directly
536 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
537 		 * API will take care of all details for us.
538 		 */
539 		rq_for_each_segment(tmp, rq, iter) {
540 			*bvec = tmp;
541 			bvec++;
542 		}
543 		bvec = cmd->bvec;
544 		offset = 0;
545 	} else {
546 		/*
547 		 * Same here, this bio may be started from the middle of the
548 		 * 'bvec' because of bio splitting, so offset from the bvec
549 		 * must be passed to iov iterator
550 		 */
551 		offset = bio->bi_iter.bi_bvec_done;
552 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
553 		segments = bio_segments(bio);
554 	}
555 	atomic_set(&cmd->ref, 2);
556 
557 	iov_iter_bvec(&iter, rw, bvec, segments, blk_rq_bytes(rq));
558 	iter.iov_offset = offset;
559 
560 	cmd->iocb.ki_pos = pos;
561 	cmd->iocb.ki_filp = file;
562 	cmd->iocb.ki_complete = lo_rw_aio_complete;
563 	cmd->iocb.ki_flags = IOCB_DIRECT;
564 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
565 	if (cmd->css)
566 		kthread_associate_blkcg(cmd->css);
567 
568 	if (rw == WRITE)
569 		ret = call_write_iter(file, &cmd->iocb, &iter);
570 	else
571 		ret = call_read_iter(file, &cmd->iocb, &iter);
572 
573 	lo_rw_aio_do_completion(cmd);
574 	kthread_associate_blkcg(NULL);
575 
576 	if (ret != -EIOCBQUEUED)
577 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
578 	return 0;
579 }
580 
581 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
582 {
583 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
584 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
585 
586 	/*
587 	 * lo_write_simple and lo_read_simple should have been covered
588 	 * by io submit style function like lo_rw_aio(), one blocker
589 	 * is that lo_read_simple() need to call flush_dcache_page after
590 	 * the page is written from kernel, and it isn't easy to handle
591 	 * this in io submit style function which submits all segments
592 	 * of the req at one time. And direct read IO doesn't need to
593 	 * run flush_dcache_page().
594 	 */
595 	switch (req_op(rq)) {
596 	case REQ_OP_FLUSH:
597 		return lo_req_flush(lo, rq);
598 	case REQ_OP_DISCARD:
599 	case REQ_OP_WRITE_ZEROES:
600 		return lo_discard(lo, rq, pos);
601 	case REQ_OP_WRITE:
602 		if (lo->transfer)
603 			return lo_write_transfer(lo, rq, pos);
604 		else if (cmd->use_aio)
605 			return lo_rw_aio(lo, cmd, pos, WRITE);
606 		else
607 			return lo_write_simple(lo, rq, pos);
608 	case REQ_OP_READ:
609 		if (lo->transfer)
610 			return lo_read_transfer(lo, rq, pos);
611 		else if (cmd->use_aio)
612 			return lo_rw_aio(lo, cmd, pos, READ);
613 		else
614 			return lo_read_simple(lo, rq, pos);
615 	default:
616 		WARN_ON_ONCE(1);
617 		return -EIO;
618 		break;
619 	}
620 }
621 
622 static inline void loop_update_dio(struct loop_device *lo)
623 {
624 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
625 			lo->use_dio);
626 }
627 
628 static void loop_reread_partitions(struct loop_device *lo,
629 				   struct block_device *bdev)
630 {
631 	int rc;
632 
633 	rc = blkdev_reread_part(bdev);
634 	if (rc)
635 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
636 			__func__, lo->lo_number, lo->lo_file_name, rc);
637 }
638 
639 static inline int is_loop_device(struct file *file)
640 {
641 	struct inode *i = file->f_mapping->host;
642 
643 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
644 }
645 
646 static int loop_validate_file(struct file *file, struct block_device *bdev)
647 {
648 	struct inode	*inode = file->f_mapping->host;
649 	struct file	*f = file;
650 
651 	/* Avoid recursion */
652 	while (is_loop_device(f)) {
653 		struct loop_device *l;
654 
655 		if (f->f_mapping->host->i_bdev == bdev)
656 			return -EBADF;
657 
658 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
659 		if (l->lo_state == Lo_unbound) {
660 			return -EINVAL;
661 		}
662 		f = l->lo_backing_file;
663 	}
664 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
665 		return -EINVAL;
666 	return 0;
667 }
668 
669 /*
670  * loop_change_fd switched the backing store of a loopback device to
671  * a new file. This is useful for operating system installers to free up
672  * the original file and in High Availability environments to switch to
673  * an alternative location for the content in case of server meltdown.
674  * This can only work if the loop device is used read-only, and if the
675  * new backing store is the same size and type as the old backing store.
676  */
677 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
678 			  unsigned int arg)
679 {
680 	struct file	*file, *old_file;
681 	int		error;
682 	bool		partscan;
683 
684 	error = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
685 	if (error)
686 		return error;
687 	error = -ENXIO;
688 	if (lo->lo_state != Lo_bound)
689 		goto out_unlock;
690 
691 	/* the loop device has to be read-only */
692 	error = -EINVAL;
693 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
694 		goto out_unlock;
695 
696 	error = -EBADF;
697 	file = fget(arg);
698 	if (!file)
699 		goto out_unlock;
700 
701 	error = loop_validate_file(file, bdev);
702 	if (error)
703 		goto out_putf;
704 
705 	old_file = lo->lo_backing_file;
706 
707 	error = -EINVAL;
708 
709 	/* size of the new backing store needs to be the same */
710 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
711 		goto out_putf;
712 
713 	/* and ... switch */
714 	blk_mq_freeze_queue(lo->lo_queue);
715 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
716 	lo->lo_backing_file = file;
717 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
718 	mapping_set_gfp_mask(file->f_mapping,
719 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
720 	loop_update_dio(lo);
721 	blk_mq_unfreeze_queue(lo->lo_queue);
722 
723 	fput(old_file);
724 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
725 	mutex_unlock(&loop_ctl_mutex);
726 	if (partscan)
727 		loop_reread_partitions(lo, bdev);
728 	return 0;
729 
730 out_putf:
731 	fput(file);
732 out_unlock:
733 	mutex_unlock(&loop_ctl_mutex);
734 	return error;
735 }
736 
737 /* loop sysfs attributes */
738 
739 static ssize_t loop_attr_show(struct device *dev, char *page,
740 			      ssize_t (*callback)(struct loop_device *, char *))
741 {
742 	struct gendisk *disk = dev_to_disk(dev);
743 	struct loop_device *lo = disk->private_data;
744 
745 	return callback(lo, page);
746 }
747 
748 #define LOOP_ATTR_RO(_name)						\
749 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
750 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
751 				struct device_attribute *attr, char *b)	\
752 {									\
753 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
754 }									\
755 static struct device_attribute loop_attr_##_name =			\
756 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
757 
758 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
759 {
760 	ssize_t ret;
761 	char *p = NULL;
762 
763 	spin_lock_irq(&lo->lo_lock);
764 	if (lo->lo_backing_file)
765 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
766 	spin_unlock_irq(&lo->lo_lock);
767 
768 	if (IS_ERR_OR_NULL(p))
769 		ret = PTR_ERR(p);
770 	else {
771 		ret = strlen(p);
772 		memmove(buf, p, ret);
773 		buf[ret++] = '\n';
774 		buf[ret] = 0;
775 	}
776 
777 	return ret;
778 }
779 
780 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
781 {
782 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
783 }
784 
785 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
786 {
787 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
788 }
789 
790 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
791 {
792 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
793 
794 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
795 }
796 
797 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
798 {
799 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
800 
801 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
802 }
803 
804 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
805 {
806 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
807 
808 	return sprintf(buf, "%s\n", dio ? "1" : "0");
809 }
810 
811 LOOP_ATTR_RO(backing_file);
812 LOOP_ATTR_RO(offset);
813 LOOP_ATTR_RO(sizelimit);
814 LOOP_ATTR_RO(autoclear);
815 LOOP_ATTR_RO(partscan);
816 LOOP_ATTR_RO(dio);
817 
818 static struct attribute *loop_attrs[] = {
819 	&loop_attr_backing_file.attr,
820 	&loop_attr_offset.attr,
821 	&loop_attr_sizelimit.attr,
822 	&loop_attr_autoclear.attr,
823 	&loop_attr_partscan.attr,
824 	&loop_attr_dio.attr,
825 	NULL,
826 };
827 
828 static struct attribute_group loop_attribute_group = {
829 	.name = "loop",
830 	.attrs= loop_attrs,
831 };
832 
833 static void loop_sysfs_init(struct loop_device *lo)
834 {
835 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
836 						&loop_attribute_group);
837 }
838 
839 static void loop_sysfs_exit(struct loop_device *lo)
840 {
841 	if (lo->sysfs_inited)
842 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
843 				   &loop_attribute_group);
844 }
845 
846 static void loop_config_discard(struct loop_device *lo)
847 {
848 	struct file *file = lo->lo_backing_file;
849 	struct inode *inode = file->f_mapping->host;
850 	struct request_queue *q = lo->lo_queue;
851 
852 	/*
853 	 * We use punch hole to reclaim the free space used by the
854 	 * image a.k.a. discard. However we do not support discard if
855 	 * encryption is enabled, because it may give an attacker
856 	 * useful information.
857 	 */
858 	if ((!file->f_op->fallocate) ||
859 	    lo->lo_encrypt_key_size) {
860 		q->limits.discard_granularity = 0;
861 		q->limits.discard_alignment = 0;
862 		blk_queue_max_discard_sectors(q, 0);
863 		blk_queue_max_write_zeroes_sectors(q, 0);
864 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
865 		return;
866 	}
867 
868 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
869 	q->limits.discard_alignment = 0;
870 
871 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
872 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
873 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
874 }
875 
876 static void loop_unprepare_queue(struct loop_device *lo)
877 {
878 	kthread_flush_worker(&lo->worker);
879 	kthread_stop(lo->worker_task);
880 }
881 
882 static int loop_kthread_worker_fn(void *worker_ptr)
883 {
884 	current->flags |= PF_LESS_THROTTLE;
885 	return kthread_worker_fn(worker_ptr);
886 }
887 
888 static int loop_prepare_queue(struct loop_device *lo)
889 {
890 	kthread_init_worker(&lo->worker);
891 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
892 			&lo->worker, "loop%d", lo->lo_number);
893 	if (IS_ERR(lo->worker_task))
894 		return -ENOMEM;
895 	set_user_nice(lo->worker_task, MIN_NICE);
896 	return 0;
897 }
898 
899 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
900 		       struct block_device *bdev, unsigned int arg)
901 {
902 	struct file	*file;
903 	struct inode	*inode;
904 	struct address_space *mapping;
905 	int		lo_flags = 0;
906 	int		error;
907 	loff_t		size;
908 	bool		partscan;
909 
910 	/* This is safe, since we have a reference from open(). */
911 	__module_get(THIS_MODULE);
912 
913 	error = -EBADF;
914 	file = fget(arg);
915 	if (!file)
916 		goto out;
917 
918 	error = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
919 	if (error)
920 		goto out_putf;
921 
922 	error = -EBUSY;
923 	if (lo->lo_state != Lo_unbound)
924 		goto out_unlock;
925 
926 	error = loop_validate_file(file, bdev);
927 	if (error)
928 		goto out_unlock;
929 
930 	mapping = file->f_mapping;
931 	inode = mapping->host;
932 
933 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
934 	    !file->f_op->write_iter)
935 		lo_flags |= LO_FLAGS_READ_ONLY;
936 
937 	error = -EFBIG;
938 	size = get_loop_size(lo, file);
939 	if ((loff_t)(sector_t)size != size)
940 		goto out_unlock;
941 	error = loop_prepare_queue(lo);
942 	if (error)
943 		goto out_unlock;
944 
945 	error = 0;
946 
947 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
948 
949 	lo->use_dio = false;
950 	lo->lo_device = bdev;
951 	lo->lo_flags = lo_flags;
952 	lo->lo_backing_file = file;
953 	lo->transfer = NULL;
954 	lo->ioctl = NULL;
955 	lo->lo_sizelimit = 0;
956 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
957 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
958 
959 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
960 		blk_queue_write_cache(lo->lo_queue, true, false);
961 
962 	loop_update_dio(lo);
963 	set_capacity(lo->lo_disk, size);
964 	bd_set_size(bdev, size << 9);
965 	loop_sysfs_init(lo);
966 	/* let user-space know about the new size */
967 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
968 
969 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
970 		      block_size(inode->i_bdev) : PAGE_SIZE);
971 
972 	lo->lo_state = Lo_bound;
973 	if (part_shift)
974 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
975 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
976 
977 	/* Grab the block_device to prevent its destruction after we
978 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
979 	 */
980 	bdgrab(bdev);
981 	mutex_unlock(&loop_ctl_mutex);
982 	if (partscan)
983 		loop_reread_partitions(lo, bdev);
984 	return 0;
985 
986 out_unlock:
987 	mutex_unlock(&loop_ctl_mutex);
988 out_putf:
989 	fput(file);
990 out:
991 	/* This is safe: open() is still holding a reference. */
992 	module_put(THIS_MODULE);
993 	return error;
994 }
995 
996 static int
997 loop_release_xfer(struct loop_device *lo)
998 {
999 	int err = 0;
1000 	struct loop_func_table *xfer = lo->lo_encryption;
1001 
1002 	if (xfer) {
1003 		if (xfer->release)
1004 			err = xfer->release(lo);
1005 		lo->transfer = NULL;
1006 		lo->lo_encryption = NULL;
1007 		module_put(xfer->owner);
1008 	}
1009 	return err;
1010 }
1011 
1012 static int
1013 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1014 	       const struct loop_info64 *i)
1015 {
1016 	int err = 0;
1017 
1018 	if (xfer) {
1019 		struct module *owner = xfer->owner;
1020 
1021 		if (!try_module_get(owner))
1022 			return -EINVAL;
1023 		if (xfer->init)
1024 			err = xfer->init(lo, i);
1025 		if (err)
1026 			module_put(owner);
1027 		else
1028 			lo->lo_encryption = xfer;
1029 	}
1030 	return err;
1031 }
1032 
1033 static int __loop_clr_fd(struct loop_device *lo)
1034 {
1035 	struct file *filp = NULL;
1036 	gfp_t gfp = lo->old_gfp_mask;
1037 	struct block_device *bdev = lo->lo_device;
1038 	int err = 0;
1039 
1040 	mutex_lock(&loop_ctl_mutex);
1041 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1042 		err = -ENXIO;
1043 		goto out_unlock;
1044 	}
1045 
1046 	filp = lo->lo_backing_file;
1047 	if (filp == NULL) {
1048 		err = -EINVAL;
1049 		goto out_unlock;
1050 	}
1051 
1052 	/* freeze request queue during the transition */
1053 	blk_mq_freeze_queue(lo->lo_queue);
1054 
1055 	spin_lock_irq(&lo->lo_lock);
1056 	lo->lo_backing_file = NULL;
1057 	spin_unlock_irq(&lo->lo_lock);
1058 
1059 	loop_release_xfer(lo);
1060 	lo->transfer = NULL;
1061 	lo->ioctl = NULL;
1062 	lo->lo_device = NULL;
1063 	lo->lo_encryption = NULL;
1064 	lo->lo_offset = 0;
1065 	lo->lo_sizelimit = 0;
1066 	lo->lo_encrypt_key_size = 0;
1067 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1068 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1069 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1070 	blk_queue_logical_block_size(lo->lo_queue, 512);
1071 	blk_queue_physical_block_size(lo->lo_queue, 512);
1072 	blk_queue_io_min(lo->lo_queue, 512);
1073 	if (bdev) {
1074 		bdput(bdev);
1075 		invalidate_bdev(bdev);
1076 		bdev->bd_inode->i_mapping->wb_err = 0;
1077 	}
1078 	set_capacity(lo->lo_disk, 0);
1079 	loop_sysfs_exit(lo);
1080 	if (bdev) {
1081 		bd_set_size(bdev, 0);
1082 		/* let user-space know about this change */
1083 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1084 	}
1085 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1086 	lo->lo_state = Lo_unbound;
1087 	/* This is safe: open() is still holding a reference. */
1088 	module_put(THIS_MODULE);
1089 	blk_mq_unfreeze_queue(lo->lo_queue);
1090 
1091 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) {
1092 		/*
1093 		 * bd_mutex has been held already in release path, so don't
1094 		 * acquire it if this function is called in such case.
1095 		 *
1096 		 * If the reread partition isn't from release path, lo_refcnt
1097 		 * must be at least one and it can only become zero when the
1098 		 * current holder is released.
1099 		 */
1100 		if (!atomic_read(&lo->lo_refcnt))
1101 			err = __blkdev_reread_part(bdev);
1102 		else
1103 			err = blkdev_reread_part(bdev);
1104 		pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1105 			__func__, lo->lo_number, err);
1106 		/* Device is gone, no point in returning error */
1107 		err = 0;
1108 	}
1109 	lo->lo_flags = 0;
1110 	if (!part_shift)
1111 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1112 	loop_unprepare_queue(lo);
1113 out_unlock:
1114 	mutex_unlock(&loop_ctl_mutex);
1115 	/*
1116 	 * Need not hold loop_ctl_mutex to fput backing file.
1117 	 * Calling fput holding loop_ctl_mutex triggers a circular
1118 	 * lock dependency possibility warning as fput can take
1119 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1120 	 */
1121 	if (filp)
1122 		fput(filp);
1123 	return err;
1124 }
1125 
1126 static int loop_clr_fd(struct loop_device *lo)
1127 {
1128 	int err;
1129 
1130 	err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1131 	if (err)
1132 		return err;
1133 	if (lo->lo_state != Lo_bound) {
1134 		mutex_unlock(&loop_ctl_mutex);
1135 		return -ENXIO;
1136 	}
1137 	/*
1138 	 * If we've explicitly asked to tear down the loop device,
1139 	 * and it has an elevated reference count, set it for auto-teardown when
1140 	 * the last reference goes away. This stops $!~#$@ udev from
1141 	 * preventing teardown because it decided that it needs to run blkid on
1142 	 * the loopback device whenever they appear. xfstests is notorious for
1143 	 * failing tests because blkid via udev races with a losetup
1144 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1145 	 * command to fail with EBUSY.
1146 	 */
1147 	if (atomic_read(&lo->lo_refcnt) > 1) {
1148 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1149 		mutex_unlock(&loop_ctl_mutex);
1150 		return 0;
1151 	}
1152 	lo->lo_state = Lo_rundown;
1153 	mutex_unlock(&loop_ctl_mutex);
1154 
1155 	return __loop_clr_fd(lo);
1156 }
1157 
1158 static int
1159 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1160 {
1161 	int err;
1162 	struct loop_func_table *xfer;
1163 	kuid_t uid = current_uid();
1164 	struct block_device *bdev;
1165 	bool partscan = false;
1166 
1167 	err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1168 	if (err)
1169 		return err;
1170 	if (lo->lo_encrypt_key_size &&
1171 	    !uid_eq(lo->lo_key_owner, uid) &&
1172 	    !capable(CAP_SYS_ADMIN)) {
1173 		err = -EPERM;
1174 		goto out_unlock;
1175 	}
1176 	if (lo->lo_state != Lo_bound) {
1177 		err = -ENXIO;
1178 		goto out_unlock;
1179 	}
1180 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1181 		err = -EINVAL;
1182 		goto out_unlock;
1183 	}
1184 
1185 	/* I/O need to be drained during transfer transition */
1186 	blk_mq_freeze_queue(lo->lo_queue);
1187 
1188 	err = loop_release_xfer(lo);
1189 	if (err)
1190 		goto out_unfreeze;
1191 
1192 	if (info->lo_encrypt_type) {
1193 		unsigned int type = info->lo_encrypt_type;
1194 
1195 		if (type >= MAX_LO_CRYPT) {
1196 			err = -EINVAL;
1197 			goto out_unfreeze;
1198 		}
1199 		xfer = xfer_funcs[type];
1200 		if (xfer == NULL) {
1201 			err = -EINVAL;
1202 			goto out_unfreeze;
1203 		}
1204 	} else
1205 		xfer = NULL;
1206 
1207 	err = loop_init_xfer(lo, xfer, info);
1208 	if (err)
1209 		goto out_unfreeze;
1210 
1211 	if (lo->lo_offset != info->lo_offset ||
1212 	    lo->lo_sizelimit != info->lo_sizelimit) {
1213 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1214 			err = -EFBIG;
1215 			goto out_unfreeze;
1216 		}
1217 	}
1218 
1219 	loop_config_discard(lo);
1220 
1221 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1222 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1223 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1224 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1225 
1226 	if (!xfer)
1227 		xfer = &none_funcs;
1228 	lo->transfer = xfer->transfer;
1229 	lo->ioctl = xfer->ioctl;
1230 
1231 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1232 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1233 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1234 
1235 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1236 	lo->lo_init[0] = info->lo_init[0];
1237 	lo->lo_init[1] = info->lo_init[1];
1238 	if (info->lo_encrypt_key_size) {
1239 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1240 		       info->lo_encrypt_key_size);
1241 		lo->lo_key_owner = uid;
1242 	}
1243 
1244 	/* update dio if lo_offset or transfer is changed */
1245 	__loop_update_dio(lo, lo->use_dio);
1246 
1247 out_unfreeze:
1248 	blk_mq_unfreeze_queue(lo->lo_queue);
1249 
1250 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1251 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1252 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1253 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1254 		bdev = lo->lo_device;
1255 		partscan = true;
1256 	}
1257 out_unlock:
1258 	mutex_unlock(&loop_ctl_mutex);
1259 	if (partscan)
1260 		loop_reread_partitions(lo, bdev);
1261 
1262 	return err;
1263 }
1264 
1265 static int
1266 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1267 {
1268 	struct path path;
1269 	struct kstat stat;
1270 	int ret;
1271 
1272 	ret = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1273 	if (ret)
1274 		return ret;
1275 	if (lo->lo_state != Lo_bound) {
1276 		mutex_unlock(&loop_ctl_mutex);
1277 		return -ENXIO;
1278 	}
1279 
1280 	memset(info, 0, sizeof(*info));
1281 	info->lo_number = lo->lo_number;
1282 	info->lo_offset = lo->lo_offset;
1283 	info->lo_sizelimit = lo->lo_sizelimit;
1284 	info->lo_flags = lo->lo_flags;
1285 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1286 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1287 	info->lo_encrypt_type =
1288 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1289 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1290 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1291 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1292 		       lo->lo_encrypt_key_size);
1293 	}
1294 
1295 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1296 	path = lo->lo_backing_file->f_path;
1297 	path_get(&path);
1298 	mutex_unlock(&loop_ctl_mutex);
1299 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1300 	if (!ret) {
1301 		info->lo_device = huge_encode_dev(stat.dev);
1302 		info->lo_inode = stat.ino;
1303 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1304 	}
1305 	path_put(&path);
1306 	return ret;
1307 }
1308 
1309 static void
1310 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1311 {
1312 	memset(info64, 0, sizeof(*info64));
1313 	info64->lo_number = info->lo_number;
1314 	info64->lo_device = info->lo_device;
1315 	info64->lo_inode = info->lo_inode;
1316 	info64->lo_rdevice = info->lo_rdevice;
1317 	info64->lo_offset = info->lo_offset;
1318 	info64->lo_sizelimit = 0;
1319 	info64->lo_encrypt_type = info->lo_encrypt_type;
1320 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1321 	info64->lo_flags = info->lo_flags;
1322 	info64->lo_init[0] = info->lo_init[0];
1323 	info64->lo_init[1] = info->lo_init[1];
1324 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1325 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1326 	else
1327 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1328 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1329 }
1330 
1331 static int
1332 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1333 {
1334 	memset(info, 0, sizeof(*info));
1335 	info->lo_number = info64->lo_number;
1336 	info->lo_device = info64->lo_device;
1337 	info->lo_inode = info64->lo_inode;
1338 	info->lo_rdevice = info64->lo_rdevice;
1339 	info->lo_offset = info64->lo_offset;
1340 	info->lo_encrypt_type = info64->lo_encrypt_type;
1341 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1342 	info->lo_flags = info64->lo_flags;
1343 	info->lo_init[0] = info64->lo_init[0];
1344 	info->lo_init[1] = info64->lo_init[1];
1345 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1346 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1347 	else
1348 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1349 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1350 
1351 	/* error in case values were truncated */
1352 	if (info->lo_device != info64->lo_device ||
1353 	    info->lo_rdevice != info64->lo_rdevice ||
1354 	    info->lo_inode != info64->lo_inode ||
1355 	    info->lo_offset != info64->lo_offset)
1356 		return -EOVERFLOW;
1357 
1358 	return 0;
1359 }
1360 
1361 static int
1362 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1363 {
1364 	struct loop_info info;
1365 	struct loop_info64 info64;
1366 
1367 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1368 		return -EFAULT;
1369 	loop_info64_from_old(&info, &info64);
1370 	return loop_set_status(lo, &info64);
1371 }
1372 
1373 static int
1374 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1375 {
1376 	struct loop_info64 info64;
1377 
1378 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1379 		return -EFAULT;
1380 	return loop_set_status(lo, &info64);
1381 }
1382 
1383 static int
1384 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1385 	struct loop_info info;
1386 	struct loop_info64 info64;
1387 	int err;
1388 
1389 	if (!arg)
1390 		return -EINVAL;
1391 	err = loop_get_status(lo, &info64);
1392 	if (!err)
1393 		err = loop_info64_to_old(&info64, &info);
1394 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1395 		err = -EFAULT;
1396 
1397 	return err;
1398 }
1399 
1400 static int
1401 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1402 	struct loop_info64 info64;
1403 	int err;
1404 
1405 	if (!arg)
1406 		return -EINVAL;
1407 	err = loop_get_status(lo, &info64);
1408 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1409 		err = -EFAULT;
1410 
1411 	return err;
1412 }
1413 
1414 static int loop_set_capacity(struct loop_device *lo)
1415 {
1416 	if (unlikely(lo->lo_state != Lo_bound))
1417 		return -ENXIO;
1418 
1419 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1420 }
1421 
1422 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1423 {
1424 	int error = -ENXIO;
1425 	if (lo->lo_state != Lo_bound)
1426 		goto out;
1427 
1428 	__loop_update_dio(lo, !!arg);
1429 	if (lo->use_dio == !!arg)
1430 		return 0;
1431 	error = -EINVAL;
1432  out:
1433 	return error;
1434 }
1435 
1436 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1437 {
1438 	if (lo->lo_state != Lo_bound)
1439 		return -ENXIO;
1440 
1441 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1442 		return -EINVAL;
1443 
1444 	blk_mq_freeze_queue(lo->lo_queue);
1445 
1446 	blk_queue_logical_block_size(lo->lo_queue, arg);
1447 	blk_queue_physical_block_size(lo->lo_queue, arg);
1448 	blk_queue_io_min(lo->lo_queue, arg);
1449 	loop_update_dio(lo);
1450 
1451 	blk_mq_unfreeze_queue(lo->lo_queue);
1452 
1453 	return 0;
1454 }
1455 
1456 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1457 			   unsigned long arg)
1458 {
1459 	int err;
1460 
1461 	err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1462 	if (err)
1463 		return err;
1464 	switch (cmd) {
1465 	case LOOP_SET_CAPACITY:
1466 		err = loop_set_capacity(lo);
1467 		break;
1468 	case LOOP_SET_DIRECT_IO:
1469 		err = loop_set_dio(lo, arg);
1470 		break;
1471 	case LOOP_SET_BLOCK_SIZE:
1472 		err = loop_set_block_size(lo, arg);
1473 		break;
1474 	default:
1475 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1476 	}
1477 	mutex_unlock(&loop_ctl_mutex);
1478 	return err;
1479 }
1480 
1481 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1482 	unsigned int cmd, unsigned long arg)
1483 {
1484 	struct loop_device *lo = bdev->bd_disk->private_data;
1485 	int err;
1486 
1487 	switch (cmd) {
1488 	case LOOP_SET_FD:
1489 		return loop_set_fd(lo, mode, bdev, arg);
1490 	case LOOP_CHANGE_FD:
1491 		return loop_change_fd(lo, bdev, arg);
1492 	case LOOP_CLR_FD:
1493 		return loop_clr_fd(lo);
1494 	case LOOP_SET_STATUS:
1495 		err = -EPERM;
1496 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1497 			err = loop_set_status_old(lo,
1498 					(struct loop_info __user *)arg);
1499 		}
1500 		break;
1501 	case LOOP_GET_STATUS:
1502 		return loop_get_status_old(lo, (struct loop_info __user *) arg);
1503 	case LOOP_SET_STATUS64:
1504 		err = -EPERM;
1505 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1506 			err = loop_set_status64(lo,
1507 					(struct loop_info64 __user *) arg);
1508 		}
1509 		break;
1510 	case LOOP_GET_STATUS64:
1511 		return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1512 	case LOOP_SET_CAPACITY:
1513 	case LOOP_SET_DIRECT_IO:
1514 	case LOOP_SET_BLOCK_SIZE:
1515 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1516 			return -EPERM;
1517 		/* Fall through */
1518 	default:
1519 		err = lo_simple_ioctl(lo, cmd, arg);
1520 		break;
1521 	}
1522 
1523 	return err;
1524 }
1525 
1526 #ifdef CONFIG_COMPAT
1527 struct compat_loop_info {
1528 	compat_int_t	lo_number;      /* ioctl r/o */
1529 	compat_dev_t	lo_device;      /* ioctl r/o */
1530 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1531 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1532 	compat_int_t	lo_offset;
1533 	compat_int_t	lo_encrypt_type;
1534 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1535 	compat_int_t	lo_flags;       /* ioctl r/o */
1536 	char		lo_name[LO_NAME_SIZE];
1537 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1538 	compat_ulong_t	lo_init[2];
1539 	char		reserved[4];
1540 };
1541 
1542 /*
1543  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1544  * - noinlined to reduce stack space usage in main part of driver
1545  */
1546 static noinline int
1547 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1548 			struct loop_info64 *info64)
1549 {
1550 	struct compat_loop_info info;
1551 
1552 	if (copy_from_user(&info, arg, sizeof(info)))
1553 		return -EFAULT;
1554 
1555 	memset(info64, 0, sizeof(*info64));
1556 	info64->lo_number = info.lo_number;
1557 	info64->lo_device = info.lo_device;
1558 	info64->lo_inode = info.lo_inode;
1559 	info64->lo_rdevice = info.lo_rdevice;
1560 	info64->lo_offset = info.lo_offset;
1561 	info64->lo_sizelimit = 0;
1562 	info64->lo_encrypt_type = info.lo_encrypt_type;
1563 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1564 	info64->lo_flags = info.lo_flags;
1565 	info64->lo_init[0] = info.lo_init[0];
1566 	info64->lo_init[1] = info.lo_init[1];
1567 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1568 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1569 	else
1570 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1571 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1577  * - noinlined to reduce stack space usage in main part of driver
1578  */
1579 static noinline int
1580 loop_info64_to_compat(const struct loop_info64 *info64,
1581 		      struct compat_loop_info __user *arg)
1582 {
1583 	struct compat_loop_info info;
1584 
1585 	memset(&info, 0, sizeof(info));
1586 	info.lo_number = info64->lo_number;
1587 	info.lo_device = info64->lo_device;
1588 	info.lo_inode = info64->lo_inode;
1589 	info.lo_rdevice = info64->lo_rdevice;
1590 	info.lo_offset = info64->lo_offset;
1591 	info.lo_encrypt_type = info64->lo_encrypt_type;
1592 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1593 	info.lo_flags = info64->lo_flags;
1594 	info.lo_init[0] = info64->lo_init[0];
1595 	info.lo_init[1] = info64->lo_init[1];
1596 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1597 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1598 	else
1599 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1600 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1601 
1602 	/* error in case values were truncated */
1603 	if (info.lo_device != info64->lo_device ||
1604 	    info.lo_rdevice != info64->lo_rdevice ||
1605 	    info.lo_inode != info64->lo_inode ||
1606 	    info.lo_offset != info64->lo_offset ||
1607 	    info.lo_init[0] != info64->lo_init[0] ||
1608 	    info.lo_init[1] != info64->lo_init[1])
1609 		return -EOVERFLOW;
1610 
1611 	if (copy_to_user(arg, &info, sizeof(info)))
1612 		return -EFAULT;
1613 	return 0;
1614 }
1615 
1616 static int
1617 loop_set_status_compat(struct loop_device *lo,
1618 		       const struct compat_loop_info __user *arg)
1619 {
1620 	struct loop_info64 info64;
1621 	int ret;
1622 
1623 	ret = loop_info64_from_compat(arg, &info64);
1624 	if (ret < 0)
1625 		return ret;
1626 	return loop_set_status(lo, &info64);
1627 }
1628 
1629 static int
1630 loop_get_status_compat(struct loop_device *lo,
1631 		       struct compat_loop_info __user *arg)
1632 {
1633 	struct loop_info64 info64;
1634 	int err;
1635 
1636 	if (!arg)
1637 		return -EINVAL;
1638 	err = loop_get_status(lo, &info64);
1639 	if (!err)
1640 		err = loop_info64_to_compat(&info64, arg);
1641 	return err;
1642 }
1643 
1644 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1645 			   unsigned int cmd, unsigned long arg)
1646 {
1647 	struct loop_device *lo = bdev->bd_disk->private_data;
1648 	int err;
1649 
1650 	switch(cmd) {
1651 	case LOOP_SET_STATUS:
1652 		err = loop_set_status_compat(lo,
1653 			     (const struct compat_loop_info __user *)arg);
1654 		break;
1655 	case LOOP_GET_STATUS:
1656 		err = loop_get_status_compat(lo,
1657 				     (struct compat_loop_info __user *)arg);
1658 		break;
1659 	case LOOP_SET_CAPACITY:
1660 	case LOOP_CLR_FD:
1661 	case LOOP_GET_STATUS64:
1662 	case LOOP_SET_STATUS64:
1663 		arg = (unsigned long) compat_ptr(arg);
1664 		/* fall through */
1665 	case LOOP_SET_FD:
1666 	case LOOP_CHANGE_FD:
1667 	case LOOP_SET_BLOCK_SIZE:
1668 		err = lo_ioctl(bdev, mode, cmd, arg);
1669 		break;
1670 	default:
1671 		err = -ENOIOCTLCMD;
1672 		break;
1673 	}
1674 	return err;
1675 }
1676 #endif
1677 
1678 static int lo_open(struct block_device *bdev, fmode_t mode)
1679 {
1680 	struct loop_device *lo;
1681 	int err;
1682 
1683 	err = mutex_lock_killable(&loop_ctl_mutex);
1684 	if (err)
1685 		return err;
1686 	lo = bdev->bd_disk->private_data;
1687 	if (!lo) {
1688 		err = -ENXIO;
1689 		goto out;
1690 	}
1691 
1692 	atomic_inc(&lo->lo_refcnt);
1693 out:
1694 	mutex_unlock(&loop_ctl_mutex);
1695 	return err;
1696 }
1697 
1698 static void lo_release(struct gendisk *disk, fmode_t mode)
1699 {
1700 	struct loop_device *lo;
1701 
1702 	mutex_lock(&loop_ctl_mutex);
1703 	lo = disk->private_data;
1704 	if (atomic_dec_return(&lo->lo_refcnt))
1705 		goto out_unlock;
1706 
1707 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1708 		if (lo->lo_state != Lo_bound)
1709 			goto out_unlock;
1710 		lo->lo_state = Lo_rundown;
1711 		mutex_unlock(&loop_ctl_mutex);
1712 		/*
1713 		 * In autoclear mode, stop the loop thread
1714 		 * and remove configuration after last close.
1715 		 */
1716 		__loop_clr_fd(lo);
1717 		return;
1718 	} else if (lo->lo_state == Lo_bound) {
1719 		/*
1720 		 * Otherwise keep thread (if running) and config,
1721 		 * but flush possible ongoing bios in thread.
1722 		 */
1723 		blk_mq_freeze_queue(lo->lo_queue);
1724 		blk_mq_unfreeze_queue(lo->lo_queue);
1725 	}
1726 
1727 out_unlock:
1728 	mutex_unlock(&loop_ctl_mutex);
1729 }
1730 
1731 static const struct block_device_operations lo_fops = {
1732 	.owner =	THIS_MODULE,
1733 	.open =		lo_open,
1734 	.release =	lo_release,
1735 	.ioctl =	lo_ioctl,
1736 #ifdef CONFIG_COMPAT
1737 	.compat_ioctl =	lo_compat_ioctl,
1738 #endif
1739 };
1740 
1741 /*
1742  * And now the modules code and kernel interface.
1743  */
1744 static int max_loop;
1745 module_param(max_loop, int, 0444);
1746 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1747 module_param(max_part, int, 0444);
1748 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1749 MODULE_LICENSE("GPL");
1750 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1751 
1752 int loop_register_transfer(struct loop_func_table *funcs)
1753 {
1754 	unsigned int n = funcs->number;
1755 
1756 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1757 		return -EINVAL;
1758 	xfer_funcs[n] = funcs;
1759 	return 0;
1760 }
1761 
1762 static int unregister_transfer_cb(int id, void *ptr, void *data)
1763 {
1764 	struct loop_device *lo = ptr;
1765 	struct loop_func_table *xfer = data;
1766 
1767 	mutex_lock(&loop_ctl_mutex);
1768 	if (lo->lo_encryption == xfer)
1769 		loop_release_xfer(lo);
1770 	mutex_unlock(&loop_ctl_mutex);
1771 	return 0;
1772 }
1773 
1774 int loop_unregister_transfer(int number)
1775 {
1776 	unsigned int n = number;
1777 	struct loop_func_table *xfer;
1778 
1779 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1780 		return -EINVAL;
1781 
1782 	xfer_funcs[n] = NULL;
1783 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1784 	return 0;
1785 }
1786 
1787 EXPORT_SYMBOL(loop_register_transfer);
1788 EXPORT_SYMBOL(loop_unregister_transfer);
1789 
1790 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1791 		const struct blk_mq_queue_data *bd)
1792 {
1793 	struct request *rq = bd->rq;
1794 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1795 	struct loop_device *lo = rq->q->queuedata;
1796 
1797 	blk_mq_start_request(rq);
1798 
1799 	if (lo->lo_state != Lo_bound)
1800 		return BLK_STS_IOERR;
1801 
1802 	switch (req_op(rq)) {
1803 	case REQ_OP_FLUSH:
1804 	case REQ_OP_DISCARD:
1805 	case REQ_OP_WRITE_ZEROES:
1806 		cmd->use_aio = false;
1807 		break;
1808 	default:
1809 		cmd->use_aio = lo->use_dio;
1810 		break;
1811 	}
1812 
1813 	/* always use the first bio's css */
1814 #ifdef CONFIG_BLK_CGROUP
1815 	if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1816 		cmd->css = rq->bio->bi_css;
1817 		css_get(cmd->css);
1818 	} else
1819 #endif
1820 		cmd->css = NULL;
1821 	kthread_queue_work(&lo->worker, &cmd->work);
1822 
1823 	return BLK_STS_OK;
1824 }
1825 
1826 static void loop_handle_cmd(struct loop_cmd *cmd)
1827 {
1828 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1829 	const bool write = op_is_write(req_op(rq));
1830 	struct loop_device *lo = rq->q->queuedata;
1831 	int ret = 0;
1832 
1833 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1834 		ret = -EIO;
1835 		goto failed;
1836 	}
1837 
1838 	ret = do_req_filebacked(lo, rq);
1839  failed:
1840 	/* complete non-aio request */
1841 	if (!cmd->use_aio || ret) {
1842 		cmd->ret = ret ? -EIO : 0;
1843 		blk_mq_complete_request(rq);
1844 	}
1845 }
1846 
1847 static void loop_queue_work(struct kthread_work *work)
1848 {
1849 	struct loop_cmd *cmd =
1850 		container_of(work, struct loop_cmd, work);
1851 
1852 	loop_handle_cmd(cmd);
1853 }
1854 
1855 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1856 		unsigned int hctx_idx, unsigned int numa_node)
1857 {
1858 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1859 
1860 	kthread_init_work(&cmd->work, loop_queue_work);
1861 	return 0;
1862 }
1863 
1864 static const struct blk_mq_ops loop_mq_ops = {
1865 	.queue_rq       = loop_queue_rq,
1866 	.init_request	= loop_init_request,
1867 	.complete	= lo_complete_rq,
1868 };
1869 
1870 static int loop_add(struct loop_device **l, int i)
1871 {
1872 	struct loop_device *lo;
1873 	struct gendisk *disk;
1874 	int err;
1875 
1876 	err = -ENOMEM;
1877 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1878 	if (!lo)
1879 		goto out;
1880 
1881 	lo->lo_state = Lo_unbound;
1882 
1883 	/* allocate id, if @id >= 0, we're requesting that specific id */
1884 	if (i >= 0) {
1885 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1886 		if (err == -ENOSPC)
1887 			err = -EEXIST;
1888 	} else {
1889 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1890 	}
1891 	if (err < 0)
1892 		goto out_free_dev;
1893 	i = err;
1894 
1895 	err = -ENOMEM;
1896 	lo->tag_set.ops = &loop_mq_ops;
1897 	lo->tag_set.nr_hw_queues = 1;
1898 	lo->tag_set.queue_depth = 128;
1899 	lo->tag_set.numa_node = NUMA_NO_NODE;
1900 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1901 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1902 	lo->tag_set.driver_data = lo;
1903 
1904 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1905 	if (err)
1906 		goto out_free_idr;
1907 
1908 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1909 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1910 		err = PTR_ERR(lo->lo_queue);
1911 		goto out_cleanup_tags;
1912 	}
1913 	lo->lo_queue->queuedata = lo;
1914 
1915 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1916 
1917 	/*
1918 	 * By default, we do buffer IO, so it doesn't make sense to enable
1919 	 * merge because the I/O submitted to backing file is handled page by
1920 	 * page. For directio mode, merge does help to dispatch bigger request
1921 	 * to underlayer disk. We will enable merge once directio is enabled.
1922 	 */
1923 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1924 
1925 	err = -ENOMEM;
1926 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1927 	if (!disk)
1928 		goto out_free_queue;
1929 
1930 	/*
1931 	 * Disable partition scanning by default. The in-kernel partition
1932 	 * scanning can be requested individually per-device during its
1933 	 * setup. Userspace can always add and remove partitions from all
1934 	 * devices. The needed partition minors are allocated from the
1935 	 * extended minor space, the main loop device numbers will continue
1936 	 * to match the loop minors, regardless of the number of partitions
1937 	 * used.
1938 	 *
1939 	 * If max_part is given, partition scanning is globally enabled for
1940 	 * all loop devices. The minors for the main loop devices will be
1941 	 * multiples of max_part.
1942 	 *
1943 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1944 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1945 	 * complicated, are too static, inflexible and may surprise
1946 	 * userspace tools. Parameters like this in general should be avoided.
1947 	 */
1948 	if (!part_shift)
1949 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1950 	disk->flags |= GENHD_FL_EXT_DEVT;
1951 	atomic_set(&lo->lo_refcnt, 0);
1952 	lo->lo_number		= i;
1953 	spin_lock_init(&lo->lo_lock);
1954 	disk->major		= LOOP_MAJOR;
1955 	disk->first_minor	= i << part_shift;
1956 	disk->fops		= &lo_fops;
1957 	disk->private_data	= lo;
1958 	disk->queue		= lo->lo_queue;
1959 	sprintf(disk->disk_name, "loop%d", i);
1960 	add_disk(disk);
1961 	*l = lo;
1962 	return lo->lo_number;
1963 
1964 out_free_queue:
1965 	blk_cleanup_queue(lo->lo_queue);
1966 out_cleanup_tags:
1967 	blk_mq_free_tag_set(&lo->tag_set);
1968 out_free_idr:
1969 	idr_remove(&loop_index_idr, i);
1970 out_free_dev:
1971 	kfree(lo);
1972 out:
1973 	return err;
1974 }
1975 
1976 static void loop_remove(struct loop_device *lo)
1977 {
1978 	del_gendisk(lo->lo_disk);
1979 	blk_cleanup_queue(lo->lo_queue);
1980 	blk_mq_free_tag_set(&lo->tag_set);
1981 	put_disk(lo->lo_disk);
1982 	kfree(lo);
1983 }
1984 
1985 static int find_free_cb(int id, void *ptr, void *data)
1986 {
1987 	struct loop_device *lo = ptr;
1988 	struct loop_device **l = data;
1989 
1990 	if (lo->lo_state == Lo_unbound) {
1991 		*l = lo;
1992 		return 1;
1993 	}
1994 	return 0;
1995 }
1996 
1997 static int loop_lookup(struct loop_device **l, int i)
1998 {
1999 	struct loop_device *lo;
2000 	int ret = -ENODEV;
2001 
2002 	if (i < 0) {
2003 		int err;
2004 
2005 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2006 		if (err == 1) {
2007 			*l = lo;
2008 			ret = lo->lo_number;
2009 		}
2010 		goto out;
2011 	}
2012 
2013 	/* lookup and return a specific i */
2014 	lo = idr_find(&loop_index_idr, i);
2015 	if (lo) {
2016 		*l = lo;
2017 		ret = lo->lo_number;
2018 	}
2019 out:
2020 	return ret;
2021 }
2022 
2023 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2024 {
2025 	struct loop_device *lo;
2026 	struct kobject *kobj;
2027 	int err;
2028 
2029 	mutex_lock(&loop_ctl_mutex);
2030 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2031 	if (err < 0)
2032 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2033 	if (err < 0)
2034 		kobj = NULL;
2035 	else
2036 		kobj = get_disk_and_module(lo->lo_disk);
2037 	mutex_unlock(&loop_ctl_mutex);
2038 
2039 	*part = 0;
2040 	return kobj;
2041 }
2042 
2043 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2044 			       unsigned long parm)
2045 {
2046 	struct loop_device *lo;
2047 	int ret;
2048 
2049 	ret = mutex_lock_killable(&loop_ctl_mutex);
2050 	if (ret)
2051 		return ret;
2052 
2053 	ret = -ENOSYS;
2054 	switch (cmd) {
2055 	case LOOP_CTL_ADD:
2056 		ret = loop_lookup(&lo, parm);
2057 		if (ret >= 0) {
2058 			ret = -EEXIST;
2059 			break;
2060 		}
2061 		ret = loop_add(&lo, parm);
2062 		break;
2063 	case LOOP_CTL_REMOVE:
2064 		ret = loop_lookup(&lo, parm);
2065 		if (ret < 0)
2066 			break;
2067 		if (lo->lo_state != Lo_unbound) {
2068 			ret = -EBUSY;
2069 			mutex_unlock(&loop_ctl_mutex);
2070 			break;
2071 		}
2072 		if (atomic_read(&lo->lo_refcnt) > 0) {
2073 			ret = -EBUSY;
2074 			mutex_unlock(&loop_ctl_mutex);
2075 			break;
2076 		}
2077 		lo->lo_disk->private_data = NULL;
2078 		idr_remove(&loop_index_idr, lo->lo_number);
2079 		loop_remove(lo);
2080 		break;
2081 	case LOOP_CTL_GET_FREE:
2082 		ret = loop_lookup(&lo, -1);
2083 		if (ret >= 0)
2084 			break;
2085 		ret = loop_add(&lo, -1);
2086 	}
2087 	mutex_unlock(&loop_ctl_mutex);
2088 
2089 	return ret;
2090 }
2091 
2092 static const struct file_operations loop_ctl_fops = {
2093 	.open		= nonseekable_open,
2094 	.unlocked_ioctl	= loop_control_ioctl,
2095 	.compat_ioctl	= loop_control_ioctl,
2096 	.owner		= THIS_MODULE,
2097 	.llseek		= noop_llseek,
2098 };
2099 
2100 static struct miscdevice loop_misc = {
2101 	.minor		= LOOP_CTRL_MINOR,
2102 	.name		= "loop-control",
2103 	.fops		= &loop_ctl_fops,
2104 };
2105 
2106 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2107 MODULE_ALIAS("devname:loop-control");
2108 
2109 static int __init loop_init(void)
2110 {
2111 	int i, nr;
2112 	unsigned long range;
2113 	struct loop_device *lo;
2114 	int err;
2115 
2116 	part_shift = 0;
2117 	if (max_part > 0) {
2118 		part_shift = fls(max_part);
2119 
2120 		/*
2121 		 * Adjust max_part according to part_shift as it is exported
2122 		 * to user space so that user can decide correct minor number
2123 		 * if [s]he want to create more devices.
2124 		 *
2125 		 * Note that -1 is required because partition 0 is reserved
2126 		 * for the whole disk.
2127 		 */
2128 		max_part = (1UL << part_shift) - 1;
2129 	}
2130 
2131 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2132 		err = -EINVAL;
2133 		goto err_out;
2134 	}
2135 
2136 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2137 		err = -EINVAL;
2138 		goto err_out;
2139 	}
2140 
2141 	/*
2142 	 * If max_loop is specified, create that many devices upfront.
2143 	 * This also becomes a hard limit. If max_loop is not specified,
2144 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2145 	 * init time. Loop devices can be requested on-demand with the
2146 	 * /dev/loop-control interface, or be instantiated by accessing
2147 	 * a 'dead' device node.
2148 	 */
2149 	if (max_loop) {
2150 		nr = max_loop;
2151 		range = max_loop << part_shift;
2152 	} else {
2153 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2154 		range = 1UL << MINORBITS;
2155 	}
2156 
2157 	err = misc_register(&loop_misc);
2158 	if (err < 0)
2159 		goto err_out;
2160 
2161 
2162 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2163 		err = -EIO;
2164 		goto misc_out;
2165 	}
2166 
2167 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2168 				  THIS_MODULE, loop_probe, NULL, NULL);
2169 
2170 	/* pre-create number of devices given by config or max_loop */
2171 	mutex_lock(&loop_ctl_mutex);
2172 	for (i = 0; i < nr; i++)
2173 		loop_add(&lo, i);
2174 	mutex_unlock(&loop_ctl_mutex);
2175 
2176 	printk(KERN_INFO "loop: module loaded\n");
2177 	return 0;
2178 
2179 misc_out:
2180 	misc_deregister(&loop_misc);
2181 err_out:
2182 	return err;
2183 }
2184 
2185 static int loop_exit_cb(int id, void *ptr, void *data)
2186 {
2187 	struct loop_device *lo = ptr;
2188 
2189 	loop_remove(lo);
2190 	return 0;
2191 }
2192 
2193 static void __exit loop_exit(void)
2194 {
2195 	unsigned long range;
2196 
2197 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2198 
2199 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2200 	idr_destroy(&loop_index_idr);
2201 
2202 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2203 	unregister_blkdev(LOOP_MAJOR, "loop");
2204 
2205 	misc_deregister(&loop_misc);
2206 }
2207 
2208 module_init(loop_init);
2209 module_exit(loop_exit);
2210 
2211 #ifndef MODULE
2212 static int __init max_loop_setup(char *str)
2213 {
2214 	max_loop = simple_strtol(str, NULL, 0);
2215 	return 1;
2216 }
2217 
2218 __setup("max_loop=", max_loop_setup);
2219 #endif
2220