xref: /openbmc/linux/drivers/block/loop.c (revision 7fe2f639)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 
79 #include <asm/uaccess.h>
80 
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
83 
84 static int max_part;
85 static int part_shift;
86 
87 /*
88  * Transfer functions
89  */
90 static int transfer_none(struct loop_device *lo, int cmd,
91 			 struct page *raw_page, unsigned raw_off,
92 			 struct page *loop_page, unsigned loop_off,
93 			 int size, sector_t real_block)
94 {
95 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97 
98 	if (cmd == READ)
99 		memcpy(loop_buf, raw_buf, size);
100 	else
101 		memcpy(raw_buf, loop_buf, size);
102 
103 	kunmap_atomic(loop_buf, KM_USER1);
104 	kunmap_atomic(raw_buf, KM_USER0);
105 	cond_resched();
106 	return 0;
107 }
108 
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 			struct page *raw_page, unsigned raw_off,
111 			struct page *loop_page, unsigned loop_off,
112 			int size, sector_t real_block)
113 {
114 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 	char *in, *out, *key;
117 	int i, keysize;
118 
119 	if (cmd == READ) {
120 		in = raw_buf;
121 		out = loop_buf;
122 	} else {
123 		in = loop_buf;
124 		out = raw_buf;
125 	}
126 
127 	key = lo->lo_encrypt_key;
128 	keysize = lo->lo_encrypt_key_size;
129 	for (i = 0; i < size; i++)
130 		*out++ = *in++ ^ key[(i & 511) % keysize];
131 
132 	kunmap_atomic(loop_buf, KM_USER1);
133 	kunmap_atomic(raw_buf, KM_USER0);
134 	cond_resched();
135 	return 0;
136 }
137 
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 {
140 	if (unlikely(info->lo_encrypt_key_size <= 0))
141 		return -EINVAL;
142 	return 0;
143 }
144 
145 static struct loop_func_table none_funcs = {
146 	.number = LO_CRYPT_NONE,
147 	.transfer = transfer_none,
148 };
149 
150 static struct loop_func_table xor_funcs = {
151 	.number = LO_CRYPT_XOR,
152 	.transfer = transfer_xor,
153 	.init = xor_init
154 };
155 
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 	&none_funcs,
159 	&xor_funcs
160 };
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	loff_t size, offset, loopsize;
165 
166 	/* Compute loopsize in bytes */
167 	size = i_size_read(file->f_mapping->host);
168 	offset = lo->lo_offset;
169 	loopsize = size - offset;
170 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 		loopsize = lo->lo_sizelimit;
172 
173 	/*
174 	 * Unfortunately, if we want to do I/O on the device,
175 	 * the number of 512-byte sectors has to fit into a sector_t.
176 	 */
177 	return loopsize >> 9;
178 }
179 
180 static int
181 figure_loop_size(struct loop_device *lo)
182 {
183 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 	sector_t x = (sector_t)size;
185 
186 	if (unlikely((loff_t)x != size))
187 		return -EFBIG;
188 
189 	set_capacity(lo->lo_disk, x);
190 	return 0;
191 }
192 
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 	       struct page *rpage, unsigned roffs,
196 	       struct page *lpage, unsigned loffs,
197 	       int size, sector_t rblock)
198 {
199 	if (unlikely(!lo->transfer))
200 		return 0;
201 
202 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
203 }
204 
205 /**
206  * do_lo_send_aops - helper for writing data to a loop device
207  *
208  * This is the fast version for backing filesystems which implement the address
209  * space operations write_begin and write_end.
210  */
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 		loff_t pos, struct page *unused)
213 {
214 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 	struct address_space *mapping = file->f_mapping;
216 	pgoff_t index;
217 	unsigned offset, bv_offs;
218 	int len, ret;
219 
220 	mutex_lock(&mapping->host->i_mutex);
221 	index = pos >> PAGE_CACHE_SHIFT;
222 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 	bv_offs = bvec->bv_offset;
224 	len = bvec->bv_len;
225 	while (len > 0) {
226 		sector_t IV;
227 		unsigned size, copied;
228 		int transfer_result;
229 		struct page *page;
230 		void *fsdata;
231 
232 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 		size = PAGE_CACHE_SIZE - offset;
234 		if (size > len)
235 			size = len;
236 
237 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 							&page, &fsdata);
239 		if (ret)
240 			goto fail;
241 
242 		file_update_time(file);
243 
244 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
245 				bvec->bv_page, bv_offs, size, IV);
246 		copied = size;
247 		if (unlikely(transfer_result))
248 			copied = 0;
249 
250 		ret = pagecache_write_end(file, mapping, pos, size, copied,
251 							page, fsdata);
252 		if (ret < 0 || ret != copied)
253 			goto fail;
254 
255 		if (unlikely(transfer_result))
256 			goto fail;
257 
258 		bv_offs += copied;
259 		len -= copied;
260 		offset = 0;
261 		index++;
262 		pos += copied;
263 	}
264 	ret = 0;
265 out:
266 	mutex_unlock(&mapping->host->i_mutex);
267 	return ret;
268 fail:
269 	ret = -1;
270 	goto out;
271 }
272 
273 /**
274  * __do_lo_send_write - helper for writing data to a loop device
275  *
276  * This helper just factors out common code between do_lo_send_direct_write()
277  * and do_lo_send_write().
278  */
279 static int __do_lo_send_write(struct file *file,
280 		u8 *buf, const int len, loff_t pos)
281 {
282 	ssize_t bw;
283 	mm_segment_t old_fs = get_fs();
284 
285 	set_fs(get_ds());
286 	bw = file->f_op->write(file, buf, len, &pos);
287 	set_fs(old_fs);
288 	if (likely(bw == len))
289 		return 0;
290 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
291 			(unsigned long long)pos, len);
292 	if (bw >= 0)
293 		bw = -EIO;
294 	return bw;
295 }
296 
297 /**
298  * do_lo_send_direct_write - helper for writing data to a loop device
299  *
300  * This is the fast, non-transforming version for backing filesystems which do
301  * not implement the address space operations write_begin and write_end.
302  * It uses the write file operation which should be present on all writeable
303  * filesystems.
304  */
305 static int do_lo_send_direct_write(struct loop_device *lo,
306 		struct bio_vec *bvec, loff_t pos, struct page *page)
307 {
308 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
309 			kmap(bvec->bv_page) + bvec->bv_offset,
310 			bvec->bv_len, pos);
311 	kunmap(bvec->bv_page);
312 	cond_resched();
313 	return bw;
314 }
315 
316 /**
317  * do_lo_send_write - helper for writing data to a loop device
318  *
319  * This is the slow, transforming version for filesystems which do not
320  * implement the address space operations write_begin and write_end.  It
321  * uses the write file operation which should be present on all writeable
322  * filesystems.
323  *
324  * Using fops->write is slower than using aops->{prepare,commit}_write in the
325  * transforming case because we need to double buffer the data as we cannot do
326  * the transformations in place as we do not have direct access to the
327  * destination pages of the backing file.
328  */
329 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
330 		loff_t pos, struct page *page)
331 {
332 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
333 			bvec->bv_offset, bvec->bv_len, pos >> 9);
334 	if (likely(!ret))
335 		return __do_lo_send_write(lo->lo_backing_file,
336 				page_address(page), bvec->bv_len,
337 				pos);
338 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
339 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
340 	if (ret > 0)
341 		ret = -EIO;
342 	return ret;
343 }
344 
345 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
346 {
347 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
348 			struct page *page);
349 	struct bio_vec *bvec;
350 	struct page *page = NULL;
351 	int i, ret = 0;
352 
353 	do_lo_send = do_lo_send_aops;
354 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
355 		do_lo_send = do_lo_send_direct_write;
356 		if (lo->transfer != transfer_none) {
357 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
358 			if (unlikely(!page))
359 				goto fail;
360 			kmap(page);
361 			do_lo_send = do_lo_send_write;
362 		}
363 	}
364 	bio_for_each_segment(bvec, bio, i) {
365 		ret = do_lo_send(lo, bvec, pos, page);
366 		if (ret < 0)
367 			break;
368 		pos += bvec->bv_len;
369 	}
370 	if (page) {
371 		kunmap(page);
372 		__free_page(page);
373 	}
374 out:
375 	return ret;
376 fail:
377 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
378 	ret = -ENOMEM;
379 	goto out;
380 }
381 
382 struct lo_read_data {
383 	struct loop_device *lo;
384 	struct page *page;
385 	unsigned offset;
386 	int bsize;
387 };
388 
389 static int
390 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
391 		struct splice_desc *sd)
392 {
393 	struct lo_read_data *p = sd->u.data;
394 	struct loop_device *lo = p->lo;
395 	struct page *page = buf->page;
396 	sector_t IV;
397 	int size;
398 
399 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
400 							(buf->offset >> 9);
401 	size = sd->len;
402 	if (size > p->bsize)
403 		size = p->bsize;
404 
405 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
406 		printk(KERN_ERR "loop: transfer error block %ld\n",
407 		       page->index);
408 		size = -EINVAL;
409 	}
410 
411 	flush_dcache_page(p->page);
412 
413 	if (size > 0)
414 		p->offset += size;
415 
416 	return size;
417 }
418 
419 static int
420 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
421 {
422 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
423 }
424 
425 static int
426 do_lo_receive(struct loop_device *lo,
427 	      struct bio_vec *bvec, int bsize, loff_t pos)
428 {
429 	struct lo_read_data cookie;
430 	struct splice_desc sd;
431 	struct file *file;
432 	long retval;
433 
434 	cookie.lo = lo;
435 	cookie.page = bvec->bv_page;
436 	cookie.offset = bvec->bv_offset;
437 	cookie.bsize = bsize;
438 
439 	sd.len = 0;
440 	sd.total_len = bvec->bv_len;
441 	sd.flags = 0;
442 	sd.pos = pos;
443 	sd.u.data = &cookie;
444 
445 	file = lo->lo_backing_file;
446 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
447 
448 	if (retval < 0)
449 		return retval;
450 
451 	return 0;
452 }
453 
454 static int
455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
456 {
457 	struct bio_vec *bvec;
458 	int i, ret = 0;
459 
460 	bio_for_each_segment(bvec, bio, i) {
461 		ret = do_lo_receive(lo, bvec, bsize, pos);
462 		if (ret < 0)
463 			break;
464 		pos += bvec->bv_len;
465 	}
466 	return ret;
467 }
468 
469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
470 {
471 	loff_t pos;
472 	int ret;
473 
474 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
475 
476 	if (bio_rw(bio) == WRITE) {
477 		struct file *file = lo->lo_backing_file;
478 
479 		if (bio->bi_rw & REQ_FLUSH) {
480 			ret = vfs_fsync(file, 0);
481 			if (unlikely(ret && ret != -EINVAL)) {
482 				ret = -EIO;
483 				goto out;
484 			}
485 		}
486 
487 		ret = lo_send(lo, bio, pos);
488 
489 		if ((bio->bi_rw & REQ_FUA) && !ret) {
490 			ret = vfs_fsync(file, 0);
491 			if (unlikely(ret && ret != -EINVAL))
492 				ret = -EIO;
493 		}
494 	} else
495 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
496 
497 out:
498 	return ret;
499 }
500 
501 /*
502  * Add bio to back of pending list
503  */
504 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
505 {
506 	bio_list_add(&lo->lo_bio_list, bio);
507 }
508 
509 /*
510  * Grab first pending buffer
511  */
512 static struct bio *loop_get_bio(struct loop_device *lo)
513 {
514 	return bio_list_pop(&lo->lo_bio_list);
515 }
516 
517 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
518 {
519 	struct loop_device *lo = q->queuedata;
520 	int rw = bio_rw(old_bio);
521 
522 	if (rw == READA)
523 		rw = READ;
524 
525 	BUG_ON(!lo || (rw != READ && rw != WRITE));
526 
527 	spin_lock_irq(&lo->lo_lock);
528 	if (lo->lo_state != Lo_bound)
529 		goto out;
530 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
531 		goto out;
532 	loop_add_bio(lo, old_bio);
533 	wake_up(&lo->lo_event);
534 	spin_unlock_irq(&lo->lo_lock);
535 	return 0;
536 
537 out:
538 	spin_unlock_irq(&lo->lo_lock);
539 	bio_io_error(old_bio);
540 	return 0;
541 }
542 
543 struct switch_request {
544 	struct file *file;
545 	struct completion wait;
546 };
547 
548 static void do_loop_switch(struct loop_device *, struct switch_request *);
549 
550 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
551 {
552 	if (unlikely(!bio->bi_bdev)) {
553 		do_loop_switch(lo, bio->bi_private);
554 		bio_put(bio);
555 	} else {
556 		int ret = do_bio_filebacked(lo, bio);
557 		bio_endio(bio, ret);
558 	}
559 }
560 
561 /*
562  * worker thread that handles reads/writes to file backed loop devices,
563  * to avoid blocking in our make_request_fn. it also does loop decrypting
564  * on reads for block backed loop, as that is too heavy to do from
565  * b_end_io context where irqs may be disabled.
566  *
567  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
568  * calling kthread_stop().  Therefore once kthread_should_stop() is
569  * true, make_request will not place any more requests.  Therefore
570  * once kthread_should_stop() is true and lo_bio is NULL, we are
571  * done with the loop.
572  */
573 static int loop_thread(void *data)
574 {
575 	struct loop_device *lo = data;
576 	struct bio *bio;
577 
578 	set_user_nice(current, -20);
579 
580 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
581 
582 		wait_event_interruptible(lo->lo_event,
583 				!bio_list_empty(&lo->lo_bio_list) ||
584 				kthread_should_stop());
585 
586 		if (bio_list_empty(&lo->lo_bio_list))
587 			continue;
588 		spin_lock_irq(&lo->lo_lock);
589 		bio = loop_get_bio(lo);
590 		spin_unlock_irq(&lo->lo_lock);
591 
592 		BUG_ON(!bio);
593 		loop_handle_bio(lo, bio);
594 	}
595 
596 	return 0;
597 }
598 
599 /*
600  * loop_switch performs the hard work of switching a backing store.
601  * First it needs to flush existing IO, it does this by sending a magic
602  * BIO down the pipe. The completion of this BIO does the actual switch.
603  */
604 static int loop_switch(struct loop_device *lo, struct file *file)
605 {
606 	struct switch_request w;
607 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
608 	if (!bio)
609 		return -ENOMEM;
610 	init_completion(&w.wait);
611 	w.file = file;
612 	bio->bi_private = &w;
613 	bio->bi_bdev = NULL;
614 	loop_make_request(lo->lo_queue, bio);
615 	wait_for_completion(&w.wait);
616 	return 0;
617 }
618 
619 /*
620  * Helper to flush the IOs in loop, but keeping loop thread running
621  */
622 static int loop_flush(struct loop_device *lo)
623 {
624 	/* loop not yet configured, no running thread, nothing to flush */
625 	if (!lo->lo_thread)
626 		return 0;
627 
628 	return loop_switch(lo, NULL);
629 }
630 
631 /*
632  * Do the actual switch; called from the BIO completion routine
633  */
634 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
635 {
636 	struct file *file = p->file;
637 	struct file *old_file = lo->lo_backing_file;
638 	struct address_space *mapping;
639 
640 	/* if no new file, only flush of queued bios requested */
641 	if (!file)
642 		goto out;
643 
644 	mapping = file->f_mapping;
645 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
646 	lo->lo_backing_file = file;
647 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
648 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
649 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
650 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
651 out:
652 	complete(&p->wait);
653 }
654 
655 
656 /*
657  * loop_change_fd switched the backing store of a loopback device to
658  * a new file. This is useful for operating system installers to free up
659  * the original file and in High Availability environments to switch to
660  * an alternative location for the content in case of server meltdown.
661  * This can only work if the loop device is used read-only, and if the
662  * new backing store is the same size and type as the old backing store.
663  */
664 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
665 			  unsigned int arg)
666 {
667 	struct file	*file, *old_file;
668 	struct inode	*inode;
669 	int		error;
670 
671 	error = -ENXIO;
672 	if (lo->lo_state != Lo_bound)
673 		goto out;
674 
675 	/* the loop device has to be read-only */
676 	error = -EINVAL;
677 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
678 		goto out;
679 
680 	error = -EBADF;
681 	file = fget(arg);
682 	if (!file)
683 		goto out;
684 
685 	inode = file->f_mapping->host;
686 	old_file = lo->lo_backing_file;
687 
688 	error = -EINVAL;
689 
690 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
691 		goto out_putf;
692 
693 	/* size of the new backing store needs to be the same */
694 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
695 		goto out_putf;
696 
697 	/* and ... switch */
698 	error = loop_switch(lo, file);
699 	if (error)
700 		goto out_putf;
701 
702 	fput(old_file);
703 	if (max_part > 0)
704 		ioctl_by_bdev(bdev, BLKRRPART, 0);
705 	return 0;
706 
707  out_putf:
708 	fput(file);
709  out:
710 	return error;
711 }
712 
713 static inline int is_loop_device(struct file *file)
714 {
715 	struct inode *i = file->f_mapping->host;
716 
717 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
718 }
719 
720 /* loop sysfs attributes */
721 
722 static ssize_t loop_attr_show(struct device *dev, char *page,
723 			      ssize_t (*callback)(struct loop_device *, char *))
724 {
725 	struct loop_device *l, *lo = NULL;
726 
727 	mutex_lock(&loop_devices_mutex);
728 	list_for_each_entry(l, &loop_devices, lo_list)
729 		if (disk_to_dev(l->lo_disk) == dev) {
730 			lo = l;
731 			break;
732 		}
733 	mutex_unlock(&loop_devices_mutex);
734 
735 	return lo ? callback(lo, page) : -EIO;
736 }
737 
738 #define LOOP_ATTR_RO(_name)						\
739 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
740 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
741 				struct device_attribute *attr, char *b)	\
742 {									\
743 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
744 }									\
745 static struct device_attribute loop_attr_##_name =			\
746 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
747 
748 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
749 {
750 	ssize_t ret;
751 	char *p = NULL;
752 
753 	mutex_lock(&lo->lo_ctl_mutex);
754 	if (lo->lo_backing_file)
755 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
756 	mutex_unlock(&lo->lo_ctl_mutex);
757 
758 	if (IS_ERR_OR_NULL(p))
759 		ret = PTR_ERR(p);
760 	else {
761 		ret = strlen(p);
762 		memmove(buf, p, ret);
763 		buf[ret++] = '\n';
764 		buf[ret] = 0;
765 	}
766 
767 	return ret;
768 }
769 
770 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
771 {
772 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
773 }
774 
775 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
776 {
777 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
778 }
779 
780 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
781 {
782 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
783 
784 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
785 }
786 
787 LOOP_ATTR_RO(backing_file);
788 LOOP_ATTR_RO(offset);
789 LOOP_ATTR_RO(sizelimit);
790 LOOP_ATTR_RO(autoclear);
791 
792 static struct attribute *loop_attrs[] = {
793 	&loop_attr_backing_file.attr,
794 	&loop_attr_offset.attr,
795 	&loop_attr_sizelimit.attr,
796 	&loop_attr_autoclear.attr,
797 	NULL,
798 };
799 
800 static struct attribute_group loop_attribute_group = {
801 	.name = "loop",
802 	.attrs= loop_attrs,
803 };
804 
805 static int loop_sysfs_init(struct loop_device *lo)
806 {
807 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
808 				  &loop_attribute_group);
809 }
810 
811 static void loop_sysfs_exit(struct loop_device *lo)
812 {
813 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
814 			   &loop_attribute_group);
815 }
816 
817 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
818 		       struct block_device *bdev, unsigned int arg)
819 {
820 	struct file	*file, *f;
821 	struct inode	*inode;
822 	struct address_space *mapping;
823 	unsigned lo_blocksize;
824 	int		lo_flags = 0;
825 	int		error;
826 	loff_t		size;
827 
828 	/* This is safe, since we have a reference from open(). */
829 	__module_get(THIS_MODULE);
830 
831 	error = -EBADF;
832 	file = fget(arg);
833 	if (!file)
834 		goto out;
835 
836 	error = -EBUSY;
837 	if (lo->lo_state != Lo_unbound)
838 		goto out_putf;
839 
840 	/* Avoid recursion */
841 	f = file;
842 	while (is_loop_device(f)) {
843 		struct loop_device *l;
844 
845 		if (f->f_mapping->host->i_bdev == bdev)
846 			goto out_putf;
847 
848 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
849 		if (l->lo_state == Lo_unbound) {
850 			error = -EINVAL;
851 			goto out_putf;
852 		}
853 		f = l->lo_backing_file;
854 	}
855 
856 	mapping = file->f_mapping;
857 	inode = mapping->host;
858 
859 	if (!(file->f_mode & FMODE_WRITE))
860 		lo_flags |= LO_FLAGS_READ_ONLY;
861 
862 	error = -EINVAL;
863 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
864 		const struct address_space_operations *aops = mapping->a_ops;
865 
866 		if (aops->write_begin)
867 			lo_flags |= LO_FLAGS_USE_AOPS;
868 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
869 			lo_flags |= LO_FLAGS_READ_ONLY;
870 
871 		lo_blocksize = S_ISBLK(inode->i_mode) ?
872 			inode->i_bdev->bd_block_size : PAGE_SIZE;
873 
874 		error = 0;
875 	} else {
876 		goto out_putf;
877 	}
878 
879 	size = get_loop_size(lo, file);
880 
881 	if ((loff_t)(sector_t)size != size) {
882 		error = -EFBIG;
883 		goto out_putf;
884 	}
885 
886 	if (!(mode & FMODE_WRITE))
887 		lo_flags |= LO_FLAGS_READ_ONLY;
888 
889 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
890 
891 	lo->lo_blocksize = lo_blocksize;
892 	lo->lo_device = bdev;
893 	lo->lo_flags = lo_flags;
894 	lo->lo_backing_file = file;
895 	lo->transfer = transfer_none;
896 	lo->ioctl = NULL;
897 	lo->lo_sizelimit = 0;
898 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
899 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
900 
901 	bio_list_init(&lo->lo_bio_list);
902 
903 	/*
904 	 * set queue make_request_fn, and add limits based on lower level
905 	 * device
906 	 */
907 	blk_queue_make_request(lo->lo_queue, loop_make_request);
908 	lo->lo_queue->queuedata = lo;
909 
910 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
911 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
912 
913 	set_capacity(lo->lo_disk, size);
914 	bd_set_size(bdev, size << 9);
915 	loop_sysfs_init(lo);
916 	/* let user-space know about the new size */
917 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
918 
919 	set_blocksize(bdev, lo_blocksize);
920 
921 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
922 						lo->lo_number);
923 	if (IS_ERR(lo->lo_thread)) {
924 		error = PTR_ERR(lo->lo_thread);
925 		goto out_clr;
926 	}
927 	lo->lo_state = Lo_bound;
928 	wake_up_process(lo->lo_thread);
929 	if (max_part > 0)
930 		ioctl_by_bdev(bdev, BLKRRPART, 0);
931 	return 0;
932 
933 out_clr:
934 	loop_sysfs_exit(lo);
935 	lo->lo_thread = NULL;
936 	lo->lo_device = NULL;
937 	lo->lo_backing_file = NULL;
938 	lo->lo_flags = 0;
939 	set_capacity(lo->lo_disk, 0);
940 	invalidate_bdev(bdev);
941 	bd_set_size(bdev, 0);
942 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
943 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
944 	lo->lo_state = Lo_unbound;
945  out_putf:
946 	fput(file);
947  out:
948 	/* This is safe: open() is still holding a reference. */
949 	module_put(THIS_MODULE);
950 	return error;
951 }
952 
953 static int
954 loop_release_xfer(struct loop_device *lo)
955 {
956 	int err = 0;
957 	struct loop_func_table *xfer = lo->lo_encryption;
958 
959 	if (xfer) {
960 		if (xfer->release)
961 			err = xfer->release(lo);
962 		lo->transfer = NULL;
963 		lo->lo_encryption = NULL;
964 		module_put(xfer->owner);
965 	}
966 	return err;
967 }
968 
969 static int
970 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
971 	       const struct loop_info64 *i)
972 {
973 	int err = 0;
974 
975 	if (xfer) {
976 		struct module *owner = xfer->owner;
977 
978 		if (!try_module_get(owner))
979 			return -EINVAL;
980 		if (xfer->init)
981 			err = xfer->init(lo, i);
982 		if (err)
983 			module_put(owner);
984 		else
985 			lo->lo_encryption = xfer;
986 	}
987 	return err;
988 }
989 
990 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
991 {
992 	struct file *filp = lo->lo_backing_file;
993 	gfp_t gfp = lo->old_gfp_mask;
994 
995 	if (lo->lo_state != Lo_bound)
996 		return -ENXIO;
997 
998 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
999 		return -EBUSY;
1000 
1001 	if (filp == NULL)
1002 		return -EINVAL;
1003 
1004 	spin_lock_irq(&lo->lo_lock);
1005 	lo->lo_state = Lo_rundown;
1006 	spin_unlock_irq(&lo->lo_lock);
1007 
1008 	kthread_stop(lo->lo_thread);
1009 
1010 	lo->lo_backing_file = NULL;
1011 
1012 	loop_release_xfer(lo);
1013 	lo->transfer = NULL;
1014 	lo->ioctl = NULL;
1015 	lo->lo_device = NULL;
1016 	lo->lo_encryption = NULL;
1017 	lo->lo_offset = 0;
1018 	lo->lo_sizelimit = 0;
1019 	lo->lo_encrypt_key_size = 0;
1020 	lo->lo_flags = 0;
1021 	lo->lo_thread = NULL;
1022 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1023 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1024 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1025 	if (bdev)
1026 		invalidate_bdev(bdev);
1027 	set_capacity(lo->lo_disk, 0);
1028 	loop_sysfs_exit(lo);
1029 	if (bdev) {
1030 		bd_set_size(bdev, 0);
1031 		/* let user-space know about this change */
1032 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1033 	}
1034 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1035 	lo->lo_state = Lo_unbound;
1036 	/* This is safe: open() is still holding a reference. */
1037 	module_put(THIS_MODULE);
1038 	if (max_part > 0 && bdev)
1039 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1040 	mutex_unlock(&lo->lo_ctl_mutex);
1041 	/*
1042 	 * Need not hold lo_ctl_mutex to fput backing file.
1043 	 * Calling fput holding lo_ctl_mutex triggers a circular
1044 	 * lock dependency possibility warning as fput can take
1045 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1046 	 */
1047 	fput(filp);
1048 	return 0;
1049 }
1050 
1051 static int
1052 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1053 {
1054 	int err;
1055 	struct loop_func_table *xfer;
1056 	uid_t uid = current_uid();
1057 
1058 	if (lo->lo_encrypt_key_size &&
1059 	    lo->lo_key_owner != uid &&
1060 	    !capable(CAP_SYS_ADMIN))
1061 		return -EPERM;
1062 	if (lo->lo_state != Lo_bound)
1063 		return -ENXIO;
1064 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1065 		return -EINVAL;
1066 
1067 	err = loop_release_xfer(lo);
1068 	if (err)
1069 		return err;
1070 
1071 	if (info->lo_encrypt_type) {
1072 		unsigned int type = info->lo_encrypt_type;
1073 
1074 		if (type >= MAX_LO_CRYPT)
1075 			return -EINVAL;
1076 		xfer = xfer_funcs[type];
1077 		if (xfer == NULL)
1078 			return -EINVAL;
1079 	} else
1080 		xfer = NULL;
1081 
1082 	err = loop_init_xfer(lo, xfer, info);
1083 	if (err)
1084 		return err;
1085 
1086 	if (lo->lo_offset != info->lo_offset ||
1087 	    lo->lo_sizelimit != info->lo_sizelimit) {
1088 		lo->lo_offset = info->lo_offset;
1089 		lo->lo_sizelimit = info->lo_sizelimit;
1090 		if (figure_loop_size(lo))
1091 			return -EFBIG;
1092 	}
1093 
1094 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1095 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1096 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1097 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1098 
1099 	if (!xfer)
1100 		xfer = &none_funcs;
1101 	lo->transfer = xfer->transfer;
1102 	lo->ioctl = xfer->ioctl;
1103 
1104 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1105 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1106 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1107 
1108 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1109 	lo->lo_init[0] = info->lo_init[0];
1110 	lo->lo_init[1] = info->lo_init[1];
1111 	if (info->lo_encrypt_key_size) {
1112 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1113 		       info->lo_encrypt_key_size);
1114 		lo->lo_key_owner = uid;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static int
1121 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1122 {
1123 	struct file *file = lo->lo_backing_file;
1124 	struct kstat stat;
1125 	int error;
1126 
1127 	if (lo->lo_state != Lo_bound)
1128 		return -ENXIO;
1129 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1130 	if (error)
1131 		return error;
1132 	memset(info, 0, sizeof(*info));
1133 	info->lo_number = lo->lo_number;
1134 	info->lo_device = huge_encode_dev(stat.dev);
1135 	info->lo_inode = stat.ino;
1136 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1137 	info->lo_offset = lo->lo_offset;
1138 	info->lo_sizelimit = lo->lo_sizelimit;
1139 	info->lo_flags = lo->lo_flags;
1140 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1141 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1142 	info->lo_encrypt_type =
1143 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1144 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1145 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1146 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1147 		       lo->lo_encrypt_key_size);
1148 	}
1149 	return 0;
1150 }
1151 
1152 static void
1153 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1154 {
1155 	memset(info64, 0, sizeof(*info64));
1156 	info64->lo_number = info->lo_number;
1157 	info64->lo_device = info->lo_device;
1158 	info64->lo_inode = info->lo_inode;
1159 	info64->lo_rdevice = info->lo_rdevice;
1160 	info64->lo_offset = info->lo_offset;
1161 	info64->lo_sizelimit = 0;
1162 	info64->lo_encrypt_type = info->lo_encrypt_type;
1163 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1164 	info64->lo_flags = info->lo_flags;
1165 	info64->lo_init[0] = info->lo_init[0];
1166 	info64->lo_init[1] = info->lo_init[1];
1167 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1168 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1169 	else
1170 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1171 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1172 }
1173 
1174 static int
1175 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1176 {
1177 	memset(info, 0, sizeof(*info));
1178 	info->lo_number = info64->lo_number;
1179 	info->lo_device = info64->lo_device;
1180 	info->lo_inode = info64->lo_inode;
1181 	info->lo_rdevice = info64->lo_rdevice;
1182 	info->lo_offset = info64->lo_offset;
1183 	info->lo_encrypt_type = info64->lo_encrypt_type;
1184 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1185 	info->lo_flags = info64->lo_flags;
1186 	info->lo_init[0] = info64->lo_init[0];
1187 	info->lo_init[1] = info64->lo_init[1];
1188 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1189 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1190 	else
1191 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1192 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1193 
1194 	/* error in case values were truncated */
1195 	if (info->lo_device != info64->lo_device ||
1196 	    info->lo_rdevice != info64->lo_rdevice ||
1197 	    info->lo_inode != info64->lo_inode ||
1198 	    info->lo_offset != info64->lo_offset)
1199 		return -EOVERFLOW;
1200 
1201 	return 0;
1202 }
1203 
1204 static int
1205 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1206 {
1207 	struct loop_info info;
1208 	struct loop_info64 info64;
1209 
1210 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1211 		return -EFAULT;
1212 	loop_info64_from_old(&info, &info64);
1213 	return loop_set_status(lo, &info64);
1214 }
1215 
1216 static int
1217 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1218 {
1219 	struct loop_info64 info64;
1220 
1221 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1222 		return -EFAULT;
1223 	return loop_set_status(lo, &info64);
1224 }
1225 
1226 static int
1227 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1228 	struct loop_info info;
1229 	struct loop_info64 info64;
1230 	int err = 0;
1231 
1232 	if (!arg)
1233 		err = -EINVAL;
1234 	if (!err)
1235 		err = loop_get_status(lo, &info64);
1236 	if (!err)
1237 		err = loop_info64_to_old(&info64, &info);
1238 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1239 		err = -EFAULT;
1240 
1241 	return err;
1242 }
1243 
1244 static int
1245 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1246 	struct loop_info64 info64;
1247 	int err = 0;
1248 
1249 	if (!arg)
1250 		err = -EINVAL;
1251 	if (!err)
1252 		err = loop_get_status(lo, &info64);
1253 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1254 		err = -EFAULT;
1255 
1256 	return err;
1257 }
1258 
1259 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1260 {
1261 	int err;
1262 	sector_t sec;
1263 	loff_t sz;
1264 
1265 	err = -ENXIO;
1266 	if (unlikely(lo->lo_state != Lo_bound))
1267 		goto out;
1268 	err = figure_loop_size(lo);
1269 	if (unlikely(err))
1270 		goto out;
1271 	sec = get_capacity(lo->lo_disk);
1272 	/* the width of sector_t may be narrow for bit-shift */
1273 	sz = sec;
1274 	sz <<= 9;
1275 	mutex_lock(&bdev->bd_mutex);
1276 	bd_set_size(bdev, sz);
1277 	/* let user-space know about the new size */
1278 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1279 	mutex_unlock(&bdev->bd_mutex);
1280 
1281  out:
1282 	return err;
1283 }
1284 
1285 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1286 	unsigned int cmd, unsigned long arg)
1287 {
1288 	struct loop_device *lo = bdev->bd_disk->private_data;
1289 	int err;
1290 
1291 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1292 	switch (cmd) {
1293 	case LOOP_SET_FD:
1294 		err = loop_set_fd(lo, mode, bdev, arg);
1295 		break;
1296 	case LOOP_CHANGE_FD:
1297 		err = loop_change_fd(lo, bdev, arg);
1298 		break;
1299 	case LOOP_CLR_FD:
1300 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1301 		err = loop_clr_fd(lo, bdev);
1302 		if (!err)
1303 			goto out_unlocked;
1304 		break;
1305 	case LOOP_SET_STATUS:
1306 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1307 		break;
1308 	case LOOP_GET_STATUS:
1309 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1310 		break;
1311 	case LOOP_SET_STATUS64:
1312 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1313 		break;
1314 	case LOOP_GET_STATUS64:
1315 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1316 		break;
1317 	case LOOP_SET_CAPACITY:
1318 		err = -EPERM;
1319 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1320 			err = loop_set_capacity(lo, bdev);
1321 		break;
1322 	default:
1323 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1324 	}
1325 	mutex_unlock(&lo->lo_ctl_mutex);
1326 
1327 out_unlocked:
1328 	return err;
1329 }
1330 
1331 #ifdef CONFIG_COMPAT
1332 struct compat_loop_info {
1333 	compat_int_t	lo_number;      /* ioctl r/o */
1334 	compat_dev_t	lo_device;      /* ioctl r/o */
1335 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1336 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1337 	compat_int_t	lo_offset;
1338 	compat_int_t	lo_encrypt_type;
1339 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1340 	compat_int_t	lo_flags;       /* ioctl r/o */
1341 	char		lo_name[LO_NAME_SIZE];
1342 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1343 	compat_ulong_t	lo_init[2];
1344 	char		reserved[4];
1345 };
1346 
1347 /*
1348  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1349  * - noinlined to reduce stack space usage in main part of driver
1350  */
1351 static noinline int
1352 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1353 			struct loop_info64 *info64)
1354 {
1355 	struct compat_loop_info info;
1356 
1357 	if (copy_from_user(&info, arg, sizeof(info)))
1358 		return -EFAULT;
1359 
1360 	memset(info64, 0, sizeof(*info64));
1361 	info64->lo_number = info.lo_number;
1362 	info64->lo_device = info.lo_device;
1363 	info64->lo_inode = info.lo_inode;
1364 	info64->lo_rdevice = info.lo_rdevice;
1365 	info64->lo_offset = info.lo_offset;
1366 	info64->lo_sizelimit = 0;
1367 	info64->lo_encrypt_type = info.lo_encrypt_type;
1368 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1369 	info64->lo_flags = info.lo_flags;
1370 	info64->lo_init[0] = info.lo_init[0];
1371 	info64->lo_init[1] = info.lo_init[1];
1372 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1373 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1374 	else
1375 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1376 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1382  * - noinlined to reduce stack space usage in main part of driver
1383  */
1384 static noinline int
1385 loop_info64_to_compat(const struct loop_info64 *info64,
1386 		      struct compat_loop_info __user *arg)
1387 {
1388 	struct compat_loop_info info;
1389 
1390 	memset(&info, 0, sizeof(info));
1391 	info.lo_number = info64->lo_number;
1392 	info.lo_device = info64->lo_device;
1393 	info.lo_inode = info64->lo_inode;
1394 	info.lo_rdevice = info64->lo_rdevice;
1395 	info.lo_offset = info64->lo_offset;
1396 	info.lo_encrypt_type = info64->lo_encrypt_type;
1397 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1398 	info.lo_flags = info64->lo_flags;
1399 	info.lo_init[0] = info64->lo_init[0];
1400 	info.lo_init[1] = info64->lo_init[1];
1401 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1402 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1403 	else
1404 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1405 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1406 
1407 	/* error in case values were truncated */
1408 	if (info.lo_device != info64->lo_device ||
1409 	    info.lo_rdevice != info64->lo_rdevice ||
1410 	    info.lo_inode != info64->lo_inode ||
1411 	    info.lo_offset != info64->lo_offset ||
1412 	    info.lo_init[0] != info64->lo_init[0] ||
1413 	    info.lo_init[1] != info64->lo_init[1])
1414 		return -EOVERFLOW;
1415 
1416 	if (copy_to_user(arg, &info, sizeof(info)))
1417 		return -EFAULT;
1418 	return 0;
1419 }
1420 
1421 static int
1422 loop_set_status_compat(struct loop_device *lo,
1423 		       const struct compat_loop_info __user *arg)
1424 {
1425 	struct loop_info64 info64;
1426 	int ret;
1427 
1428 	ret = loop_info64_from_compat(arg, &info64);
1429 	if (ret < 0)
1430 		return ret;
1431 	return loop_set_status(lo, &info64);
1432 }
1433 
1434 static int
1435 loop_get_status_compat(struct loop_device *lo,
1436 		       struct compat_loop_info __user *arg)
1437 {
1438 	struct loop_info64 info64;
1439 	int err = 0;
1440 
1441 	if (!arg)
1442 		err = -EINVAL;
1443 	if (!err)
1444 		err = loop_get_status(lo, &info64);
1445 	if (!err)
1446 		err = loop_info64_to_compat(&info64, arg);
1447 	return err;
1448 }
1449 
1450 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1451 			   unsigned int cmd, unsigned long arg)
1452 {
1453 	struct loop_device *lo = bdev->bd_disk->private_data;
1454 	int err;
1455 
1456 	switch(cmd) {
1457 	case LOOP_SET_STATUS:
1458 		mutex_lock(&lo->lo_ctl_mutex);
1459 		err = loop_set_status_compat(
1460 			lo, (const struct compat_loop_info __user *) arg);
1461 		mutex_unlock(&lo->lo_ctl_mutex);
1462 		break;
1463 	case LOOP_GET_STATUS:
1464 		mutex_lock(&lo->lo_ctl_mutex);
1465 		err = loop_get_status_compat(
1466 			lo, (struct compat_loop_info __user *) arg);
1467 		mutex_unlock(&lo->lo_ctl_mutex);
1468 		break;
1469 	case LOOP_SET_CAPACITY:
1470 	case LOOP_CLR_FD:
1471 	case LOOP_GET_STATUS64:
1472 	case LOOP_SET_STATUS64:
1473 		arg = (unsigned long) compat_ptr(arg);
1474 	case LOOP_SET_FD:
1475 	case LOOP_CHANGE_FD:
1476 		err = lo_ioctl(bdev, mode, cmd, arg);
1477 		break;
1478 	default:
1479 		err = -ENOIOCTLCMD;
1480 		break;
1481 	}
1482 	return err;
1483 }
1484 #endif
1485 
1486 static int lo_open(struct block_device *bdev, fmode_t mode)
1487 {
1488 	struct loop_device *lo = bdev->bd_disk->private_data;
1489 
1490 	mutex_lock(&lo->lo_ctl_mutex);
1491 	lo->lo_refcnt++;
1492 	mutex_unlock(&lo->lo_ctl_mutex);
1493 
1494 	return 0;
1495 }
1496 
1497 static int lo_release(struct gendisk *disk, fmode_t mode)
1498 {
1499 	struct loop_device *lo = disk->private_data;
1500 	int err;
1501 
1502 	mutex_lock(&lo->lo_ctl_mutex);
1503 
1504 	if (--lo->lo_refcnt)
1505 		goto out;
1506 
1507 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1508 		/*
1509 		 * In autoclear mode, stop the loop thread
1510 		 * and remove configuration after last close.
1511 		 */
1512 		err = loop_clr_fd(lo, NULL);
1513 		if (!err)
1514 			goto out_unlocked;
1515 	} else {
1516 		/*
1517 		 * Otherwise keep thread (if running) and config,
1518 		 * but flush possible ongoing bios in thread.
1519 		 */
1520 		loop_flush(lo);
1521 	}
1522 
1523 out:
1524 	mutex_unlock(&lo->lo_ctl_mutex);
1525 out_unlocked:
1526 	return 0;
1527 }
1528 
1529 static const struct block_device_operations lo_fops = {
1530 	.owner =	THIS_MODULE,
1531 	.open =		lo_open,
1532 	.release =	lo_release,
1533 	.ioctl =	lo_ioctl,
1534 #ifdef CONFIG_COMPAT
1535 	.compat_ioctl =	lo_compat_ioctl,
1536 #endif
1537 };
1538 
1539 /*
1540  * And now the modules code and kernel interface.
1541  */
1542 static int max_loop;
1543 module_param(max_loop, int, S_IRUGO);
1544 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1545 module_param(max_part, int, S_IRUGO);
1546 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1547 MODULE_LICENSE("GPL");
1548 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1549 
1550 int loop_register_transfer(struct loop_func_table *funcs)
1551 {
1552 	unsigned int n = funcs->number;
1553 
1554 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1555 		return -EINVAL;
1556 	xfer_funcs[n] = funcs;
1557 	return 0;
1558 }
1559 
1560 int loop_unregister_transfer(int number)
1561 {
1562 	unsigned int n = number;
1563 	struct loop_device *lo;
1564 	struct loop_func_table *xfer;
1565 
1566 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1567 		return -EINVAL;
1568 
1569 	xfer_funcs[n] = NULL;
1570 
1571 	list_for_each_entry(lo, &loop_devices, lo_list) {
1572 		mutex_lock(&lo->lo_ctl_mutex);
1573 
1574 		if (lo->lo_encryption == xfer)
1575 			loop_release_xfer(lo);
1576 
1577 		mutex_unlock(&lo->lo_ctl_mutex);
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 EXPORT_SYMBOL(loop_register_transfer);
1584 EXPORT_SYMBOL(loop_unregister_transfer);
1585 
1586 static struct loop_device *loop_alloc(int i)
1587 {
1588 	struct loop_device *lo;
1589 	struct gendisk *disk;
1590 
1591 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1592 	if (!lo)
1593 		goto out;
1594 
1595 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1596 	if (!lo->lo_queue)
1597 		goto out_free_dev;
1598 
1599 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1600 	if (!disk)
1601 		goto out_free_queue;
1602 
1603 	mutex_init(&lo->lo_ctl_mutex);
1604 	lo->lo_number		= i;
1605 	lo->lo_thread		= NULL;
1606 	init_waitqueue_head(&lo->lo_event);
1607 	spin_lock_init(&lo->lo_lock);
1608 	disk->major		= LOOP_MAJOR;
1609 	disk->first_minor	= i << part_shift;
1610 	disk->fops		= &lo_fops;
1611 	disk->private_data	= lo;
1612 	disk->queue		= lo->lo_queue;
1613 	sprintf(disk->disk_name, "loop%d", i);
1614 	return lo;
1615 
1616 out_free_queue:
1617 	blk_cleanup_queue(lo->lo_queue);
1618 out_free_dev:
1619 	kfree(lo);
1620 out:
1621 	return NULL;
1622 }
1623 
1624 static void loop_free(struct loop_device *lo)
1625 {
1626 	blk_cleanup_queue(lo->lo_queue);
1627 	put_disk(lo->lo_disk);
1628 	list_del(&lo->lo_list);
1629 	kfree(lo);
1630 }
1631 
1632 static struct loop_device *loop_init_one(int i)
1633 {
1634 	struct loop_device *lo;
1635 
1636 	list_for_each_entry(lo, &loop_devices, lo_list) {
1637 		if (lo->lo_number == i)
1638 			return lo;
1639 	}
1640 
1641 	lo = loop_alloc(i);
1642 	if (lo) {
1643 		add_disk(lo->lo_disk);
1644 		list_add_tail(&lo->lo_list, &loop_devices);
1645 	}
1646 	return lo;
1647 }
1648 
1649 static void loop_del_one(struct loop_device *lo)
1650 {
1651 	del_gendisk(lo->lo_disk);
1652 	loop_free(lo);
1653 }
1654 
1655 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1656 {
1657 	struct loop_device *lo;
1658 	struct kobject *kobj;
1659 
1660 	mutex_lock(&loop_devices_mutex);
1661 	lo = loop_init_one(MINOR(dev) >> part_shift);
1662 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1663 	mutex_unlock(&loop_devices_mutex);
1664 
1665 	*part = 0;
1666 	return kobj;
1667 }
1668 
1669 static int __init loop_init(void)
1670 {
1671 	int i, nr;
1672 	unsigned long range;
1673 	struct loop_device *lo, *next;
1674 
1675 	/*
1676 	 * loop module now has a feature to instantiate underlying device
1677 	 * structure on-demand, provided that there is an access dev node.
1678 	 * However, this will not work well with user space tool that doesn't
1679 	 * know about such "feature".  In order to not break any existing
1680 	 * tool, we do the following:
1681 	 *
1682 	 * (1) if max_loop is specified, create that many upfront, and this
1683 	 *     also becomes a hard limit.
1684 	 * (2) if max_loop is not specified, create 8 loop device on module
1685 	 *     load, user can further extend loop device by create dev node
1686 	 *     themselves and have kernel automatically instantiate actual
1687 	 *     device on-demand.
1688 	 */
1689 
1690 	part_shift = 0;
1691 	if (max_part > 0) {
1692 		part_shift = fls(max_part);
1693 
1694 		/*
1695 		 * Adjust max_part according to part_shift as it is exported
1696 		 * to user space so that user can decide correct minor number
1697 		 * if [s]he want to create more devices.
1698 		 *
1699 		 * Note that -1 is required because partition 0 is reserved
1700 		 * for the whole disk.
1701 		 */
1702 		max_part = (1UL << part_shift) - 1;
1703 	}
1704 
1705 	if ((1UL << part_shift) > DISK_MAX_PARTS)
1706 		return -EINVAL;
1707 
1708 	if (max_loop > 1UL << (MINORBITS - part_shift))
1709 		return -EINVAL;
1710 
1711 	if (max_loop) {
1712 		nr = max_loop;
1713 		range = max_loop << part_shift;
1714 	} else {
1715 		nr = 8;
1716 		range = 1UL << MINORBITS;
1717 	}
1718 
1719 	if (register_blkdev(LOOP_MAJOR, "loop"))
1720 		return -EIO;
1721 
1722 	for (i = 0; i < nr; i++) {
1723 		lo = loop_alloc(i);
1724 		if (!lo)
1725 			goto Enomem;
1726 		list_add_tail(&lo->lo_list, &loop_devices);
1727 	}
1728 
1729 	/* point of no return */
1730 
1731 	list_for_each_entry(lo, &loop_devices, lo_list)
1732 		add_disk(lo->lo_disk);
1733 
1734 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1735 				  THIS_MODULE, loop_probe, NULL, NULL);
1736 
1737 	printk(KERN_INFO "loop: module loaded\n");
1738 	return 0;
1739 
1740 Enomem:
1741 	printk(KERN_INFO "loop: out of memory\n");
1742 
1743 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1744 		loop_free(lo);
1745 
1746 	unregister_blkdev(LOOP_MAJOR, "loop");
1747 	return -ENOMEM;
1748 }
1749 
1750 static void __exit loop_exit(void)
1751 {
1752 	unsigned long range;
1753 	struct loop_device *lo, *next;
1754 
1755 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1756 
1757 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1758 		loop_del_one(lo);
1759 
1760 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1761 	unregister_blkdev(LOOP_MAJOR, "loop");
1762 }
1763 
1764 module_init(loop_init);
1765 module_exit(loop_exit);
1766 
1767 #ifndef MODULE
1768 static int __init max_loop_setup(char *str)
1769 {
1770 	max_loop = simple_strtol(str, NULL, 0);
1771 	return 1;
1772 }
1773 
1774 __setup("max_loop=", max_loop_setup);
1775 #endif
1776