1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include "loop.h" 80 81 #include <linux/uaccess.h> 82 83 static DEFINE_IDR(loop_index_idr); 84 static DEFINE_MUTEX(loop_index_mutex); 85 86 static int max_part; 87 static int part_shift; 88 89 static int transfer_xor(struct loop_device *lo, int cmd, 90 struct page *raw_page, unsigned raw_off, 91 struct page *loop_page, unsigned loop_off, 92 int size, sector_t real_block) 93 { 94 char *raw_buf = kmap_atomic(raw_page) + raw_off; 95 char *loop_buf = kmap_atomic(loop_page) + loop_off; 96 char *in, *out, *key; 97 int i, keysize; 98 99 if (cmd == READ) { 100 in = raw_buf; 101 out = loop_buf; 102 } else { 103 in = loop_buf; 104 out = raw_buf; 105 } 106 107 key = lo->lo_encrypt_key; 108 keysize = lo->lo_encrypt_key_size; 109 for (i = 0; i < size; i++) 110 *out++ = *in++ ^ key[(i & 511) % keysize]; 111 112 kunmap_atomic(loop_buf); 113 kunmap_atomic(raw_buf); 114 cond_resched(); 115 return 0; 116 } 117 118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 119 { 120 if (unlikely(info->lo_encrypt_key_size <= 0)) 121 return -EINVAL; 122 return 0; 123 } 124 125 static struct loop_func_table none_funcs = { 126 .number = LO_CRYPT_NONE, 127 }; 128 129 static struct loop_func_table xor_funcs = { 130 .number = LO_CRYPT_XOR, 131 .transfer = transfer_xor, 132 .init = xor_init 133 }; 134 135 /* xfer_funcs[0] is special - its release function is never called */ 136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 137 &none_funcs, 138 &xor_funcs 139 }; 140 141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 142 { 143 loff_t loopsize; 144 145 /* Compute loopsize in bytes */ 146 loopsize = i_size_read(file->f_mapping->host); 147 if (offset > 0) 148 loopsize -= offset; 149 /* offset is beyond i_size, weird but possible */ 150 if (loopsize < 0) 151 return 0; 152 153 if (sizelimit > 0 && sizelimit < loopsize) 154 loopsize = sizelimit; 155 /* 156 * Unfortunately, if we want to do I/O on the device, 157 * the number of 512-byte sectors has to fit into a sector_t. 158 */ 159 return loopsize >> 9; 160 } 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 165 } 166 167 static void __loop_update_dio(struct loop_device *lo, bool dio) 168 { 169 struct file *file = lo->lo_backing_file; 170 struct address_space *mapping = file->f_mapping; 171 struct inode *inode = mapping->host; 172 unsigned short sb_bsize = 0; 173 unsigned dio_align = 0; 174 bool use_dio; 175 176 if (inode->i_sb->s_bdev) { 177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 178 dio_align = sb_bsize - 1; 179 } 180 181 /* 182 * We support direct I/O only if lo_offset is aligned with the 183 * logical I/O size of backing device, and the logical block 184 * size of loop is bigger than the backing device's and the loop 185 * needn't transform transfer. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane appplications should be PAGE_SIZE algined 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 mapping->a_ops->direct_IO && 195 !lo->transfer) 196 use_dio = true; 197 else 198 use_dio = false; 199 } else { 200 use_dio = false; 201 } 202 203 if (lo->use_dio == use_dio) 204 return; 205 206 /* flush dirty pages before changing direct IO */ 207 vfs_fsync(file, 0); 208 209 /* 210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 212 * will get updated by ioctl(LOOP_GET_STATUS) 213 */ 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) 217 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 218 else 219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 220 blk_mq_unfreeze_queue(lo->lo_queue); 221 } 222 223 static int 224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 225 { 226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 227 sector_t x = (sector_t)size; 228 struct block_device *bdev = lo->lo_device; 229 230 if (unlikely((loff_t)x != size)) 231 return -EFBIG; 232 if (lo->lo_offset != offset) 233 lo->lo_offset = offset; 234 if (lo->lo_sizelimit != sizelimit) 235 lo->lo_sizelimit = sizelimit; 236 set_capacity(lo->lo_disk, x); 237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 238 /* let user-space know about the new size */ 239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 240 return 0; 241 } 242 243 static inline int 244 lo_do_transfer(struct loop_device *lo, int cmd, 245 struct page *rpage, unsigned roffs, 246 struct page *lpage, unsigned loffs, 247 int size, sector_t rblock) 248 { 249 int ret; 250 251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 252 if (likely(!ret)) 253 return 0; 254 255 printk_ratelimited(KERN_ERR 256 "loop: Transfer error at byte offset %llu, length %i.\n", 257 (unsigned long long)rblock << 9, size); 258 return ret; 259 } 260 261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 262 { 263 struct iov_iter i; 264 ssize_t bw; 265 266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len); 267 268 file_start_write(file); 269 bw = vfs_iter_write(file, &i, ppos); 270 file_end_write(file); 271 272 if (likely(bw == bvec->bv_len)) 273 return 0; 274 275 printk_ratelimited(KERN_ERR 276 "loop: Write error at byte offset %llu, length %i.\n", 277 (unsigned long long)*ppos, bvec->bv_len); 278 if (bw >= 0) 279 bw = -EIO; 280 return bw; 281 } 282 283 static int lo_write_simple(struct loop_device *lo, struct request *rq, 284 loff_t pos) 285 { 286 struct bio_vec bvec; 287 struct req_iterator iter; 288 int ret = 0; 289 290 rq_for_each_segment(bvec, rq, iter) { 291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 292 if (ret < 0) 293 break; 294 cond_resched(); 295 } 296 297 return ret; 298 } 299 300 /* 301 * This is the slow, transforming version that needs to double buffer the 302 * data as it cannot do the transformations in place without having direct 303 * access to the destination pages of the backing file. 304 */ 305 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 306 loff_t pos) 307 { 308 struct bio_vec bvec, b; 309 struct req_iterator iter; 310 struct page *page; 311 int ret = 0; 312 313 page = alloc_page(GFP_NOIO); 314 if (unlikely(!page)) 315 return -ENOMEM; 316 317 rq_for_each_segment(bvec, rq, iter) { 318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 319 bvec.bv_offset, bvec.bv_len, pos >> 9); 320 if (unlikely(ret)) 321 break; 322 323 b.bv_page = page; 324 b.bv_offset = 0; 325 b.bv_len = bvec.bv_len; 326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 327 if (ret < 0) 328 break; 329 } 330 331 __free_page(page); 332 return ret; 333 } 334 335 static int lo_read_simple(struct loop_device *lo, struct request *rq, 336 loff_t pos) 337 { 338 struct bio_vec bvec; 339 struct req_iterator iter; 340 struct iov_iter i; 341 ssize_t len; 342 343 rq_for_each_segment(bvec, rq, iter) { 344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 346 if (len < 0) 347 return len; 348 349 flush_dcache_page(bvec.bv_page); 350 351 if (len != bvec.bv_len) { 352 struct bio *bio; 353 354 __rq_for_each_bio(bio, rq) 355 zero_fill_bio(bio); 356 break; 357 } 358 cond_resched(); 359 } 360 361 return 0; 362 } 363 364 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 365 loff_t pos) 366 { 367 struct bio_vec bvec, b; 368 struct req_iterator iter; 369 struct iov_iter i; 370 struct page *page; 371 ssize_t len; 372 int ret = 0; 373 374 page = alloc_page(GFP_NOIO); 375 if (unlikely(!page)) 376 return -ENOMEM; 377 378 rq_for_each_segment(bvec, rq, iter) { 379 loff_t offset = pos; 380 381 b.bv_page = page; 382 b.bv_offset = 0; 383 b.bv_len = bvec.bv_len; 384 385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 387 if (len < 0) { 388 ret = len; 389 goto out_free_page; 390 } 391 392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 393 bvec.bv_offset, len, offset >> 9); 394 if (ret) 395 goto out_free_page; 396 397 flush_dcache_page(bvec.bv_page); 398 399 if (len != bvec.bv_len) { 400 struct bio *bio; 401 402 __rq_for_each_bio(bio, rq) 403 zero_fill_bio(bio); 404 break; 405 } 406 } 407 408 ret = 0; 409 out_free_page: 410 __free_page(page); 411 return ret; 412 } 413 414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 415 { 416 /* 417 * We use punch hole to reclaim the free space used by the 418 * image a.k.a. discard. However we do not support discard if 419 * encryption is enabled, because it may give an attacker 420 * useful information. 421 */ 422 struct file *file = lo->lo_backing_file; 423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 424 int ret; 425 426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 427 ret = -EOPNOTSUPP; 428 goto out; 429 } 430 431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 433 ret = -EIO; 434 out: 435 return ret; 436 } 437 438 static int lo_req_flush(struct loop_device *lo, struct request *rq) 439 { 440 struct file *file = lo->lo_backing_file; 441 int ret = vfs_fsync(file, 0); 442 if (unlikely(ret && ret != -EINVAL)) 443 ret = -EIO; 444 445 return ret; 446 } 447 448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes) 449 { 450 if (bytes < 0 || op_is_write(req_op(cmd->rq))) 451 return; 452 453 if (unlikely(bytes < blk_rq_bytes(cmd->rq))) { 454 struct bio *bio = cmd->rq->bio; 455 456 bio_advance(bio, bytes); 457 zero_fill_bio(bio); 458 } 459 } 460 461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 462 { 463 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 464 struct request *rq = cmd->rq; 465 466 handle_partial_read(cmd, ret); 467 468 if (ret > 0) 469 ret = 0; 470 else if (ret < 0) 471 ret = -EIO; 472 473 blk_mq_complete_request(rq, ret); 474 } 475 476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 477 loff_t pos, bool rw) 478 { 479 struct iov_iter iter; 480 struct bio_vec *bvec; 481 struct bio *bio = cmd->rq->bio; 482 struct file *file = lo->lo_backing_file; 483 int ret; 484 485 /* nomerge for loop request queue */ 486 WARN_ON(cmd->rq->bio != cmd->rq->biotail); 487 488 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 489 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 490 bio_segments(bio), blk_rq_bytes(cmd->rq)); 491 /* 492 * This bio may be started from the middle of the 'bvec' 493 * because of bio splitting, so offset from the bvec must 494 * be passed to iov iterator 495 */ 496 iter.iov_offset = bio->bi_iter.bi_bvec_done; 497 498 cmd->iocb.ki_pos = pos; 499 cmd->iocb.ki_filp = file; 500 cmd->iocb.ki_complete = lo_rw_aio_complete; 501 cmd->iocb.ki_flags = IOCB_DIRECT; 502 503 if (rw == WRITE) 504 ret = file->f_op->write_iter(&cmd->iocb, &iter); 505 else 506 ret = file->f_op->read_iter(&cmd->iocb, &iter); 507 508 if (ret != -EIOCBQUEUED) 509 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 510 return 0; 511 } 512 513 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 514 { 515 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 516 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 517 518 /* 519 * lo_write_simple and lo_read_simple should have been covered 520 * by io submit style function like lo_rw_aio(), one blocker 521 * is that lo_read_simple() need to call flush_dcache_page after 522 * the page is written from kernel, and it isn't easy to handle 523 * this in io submit style function which submits all segments 524 * of the req at one time. And direct read IO doesn't need to 525 * run flush_dcache_page(). 526 */ 527 switch (req_op(rq)) { 528 case REQ_OP_FLUSH: 529 return lo_req_flush(lo, rq); 530 case REQ_OP_DISCARD: 531 return lo_discard(lo, rq, pos); 532 case REQ_OP_WRITE: 533 if (lo->transfer) 534 return lo_write_transfer(lo, rq, pos); 535 else if (cmd->use_aio) 536 return lo_rw_aio(lo, cmd, pos, WRITE); 537 else 538 return lo_write_simple(lo, rq, pos); 539 case REQ_OP_READ: 540 if (lo->transfer) 541 return lo_read_transfer(lo, rq, pos); 542 else if (cmd->use_aio) 543 return lo_rw_aio(lo, cmd, pos, READ); 544 else 545 return lo_read_simple(lo, rq, pos); 546 default: 547 WARN_ON_ONCE(1); 548 return -EIO; 549 break; 550 } 551 } 552 553 struct switch_request { 554 struct file *file; 555 struct completion wait; 556 }; 557 558 static inline void loop_update_dio(struct loop_device *lo) 559 { 560 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 561 lo->use_dio); 562 } 563 564 /* 565 * Do the actual switch; called from the BIO completion routine 566 */ 567 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 568 { 569 struct file *file = p->file; 570 struct file *old_file = lo->lo_backing_file; 571 struct address_space *mapping; 572 573 /* if no new file, only flush of queued bios requested */ 574 if (!file) 575 return; 576 577 mapping = file->f_mapping; 578 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 579 lo->lo_backing_file = file; 580 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 581 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 582 lo->old_gfp_mask = mapping_gfp_mask(mapping); 583 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 584 loop_update_dio(lo); 585 } 586 587 /* 588 * loop_switch performs the hard work of switching a backing store. 589 * First it needs to flush existing IO, it does this by sending a magic 590 * BIO down the pipe. The completion of this BIO does the actual switch. 591 */ 592 static int loop_switch(struct loop_device *lo, struct file *file) 593 { 594 struct switch_request w; 595 596 w.file = file; 597 598 /* freeze queue and wait for completion of scheduled requests */ 599 blk_mq_freeze_queue(lo->lo_queue); 600 601 /* do the switch action */ 602 do_loop_switch(lo, &w); 603 604 /* unfreeze */ 605 blk_mq_unfreeze_queue(lo->lo_queue); 606 607 return 0; 608 } 609 610 /* 611 * Helper to flush the IOs in loop, but keeping loop thread running 612 */ 613 static int loop_flush(struct loop_device *lo) 614 { 615 return loop_switch(lo, NULL); 616 } 617 618 static void loop_reread_partitions(struct loop_device *lo, 619 struct block_device *bdev) 620 { 621 int rc; 622 623 /* 624 * bd_mutex has been held already in release path, so don't 625 * acquire it if this function is called in such case. 626 * 627 * If the reread partition isn't from release path, lo_refcnt 628 * must be at least one and it can only become zero when the 629 * current holder is released. 630 */ 631 if (!atomic_read(&lo->lo_refcnt)) 632 rc = __blkdev_reread_part(bdev); 633 else 634 rc = blkdev_reread_part(bdev); 635 if (rc) 636 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 637 __func__, lo->lo_number, lo->lo_file_name, rc); 638 } 639 640 /* 641 * loop_change_fd switched the backing store of a loopback device to 642 * a new file. This is useful for operating system installers to free up 643 * the original file and in High Availability environments to switch to 644 * an alternative location for the content in case of server meltdown. 645 * This can only work if the loop device is used read-only, and if the 646 * new backing store is the same size and type as the old backing store. 647 */ 648 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 649 unsigned int arg) 650 { 651 struct file *file, *old_file; 652 struct inode *inode; 653 int error; 654 655 error = -ENXIO; 656 if (lo->lo_state != Lo_bound) 657 goto out; 658 659 /* the loop device has to be read-only */ 660 error = -EINVAL; 661 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 662 goto out; 663 664 error = -EBADF; 665 file = fget(arg); 666 if (!file) 667 goto out; 668 669 inode = file->f_mapping->host; 670 old_file = lo->lo_backing_file; 671 672 error = -EINVAL; 673 674 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 675 goto out_putf; 676 677 /* size of the new backing store needs to be the same */ 678 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 679 goto out_putf; 680 681 /* and ... switch */ 682 error = loop_switch(lo, file); 683 if (error) 684 goto out_putf; 685 686 fput(old_file); 687 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 688 loop_reread_partitions(lo, bdev); 689 return 0; 690 691 out_putf: 692 fput(file); 693 out: 694 return error; 695 } 696 697 static inline int is_loop_device(struct file *file) 698 { 699 struct inode *i = file->f_mapping->host; 700 701 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 702 } 703 704 /* loop sysfs attributes */ 705 706 static ssize_t loop_attr_show(struct device *dev, char *page, 707 ssize_t (*callback)(struct loop_device *, char *)) 708 { 709 struct gendisk *disk = dev_to_disk(dev); 710 struct loop_device *lo = disk->private_data; 711 712 return callback(lo, page); 713 } 714 715 #define LOOP_ATTR_RO(_name) \ 716 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 717 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 718 struct device_attribute *attr, char *b) \ 719 { \ 720 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 721 } \ 722 static struct device_attribute loop_attr_##_name = \ 723 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 724 725 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 726 { 727 ssize_t ret; 728 char *p = NULL; 729 730 spin_lock_irq(&lo->lo_lock); 731 if (lo->lo_backing_file) 732 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 733 spin_unlock_irq(&lo->lo_lock); 734 735 if (IS_ERR_OR_NULL(p)) 736 ret = PTR_ERR(p); 737 else { 738 ret = strlen(p); 739 memmove(buf, p, ret); 740 buf[ret++] = '\n'; 741 buf[ret] = 0; 742 } 743 744 return ret; 745 } 746 747 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 748 { 749 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 750 } 751 752 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 753 { 754 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 755 } 756 757 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 758 { 759 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 760 761 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 762 } 763 764 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 765 { 766 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 767 768 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 769 } 770 771 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 772 { 773 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 774 775 return sprintf(buf, "%s\n", dio ? "1" : "0"); 776 } 777 778 LOOP_ATTR_RO(backing_file); 779 LOOP_ATTR_RO(offset); 780 LOOP_ATTR_RO(sizelimit); 781 LOOP_ATTR_RO(autoclear); 782 LOOP_ATTR_RO(partscan); 783 LOOP_ATTR_RO(dio); 784 785 static struct attribute *loop_attrs[] = { 786 &loop_attr_backing_file.attr, 787 &loop_attr_offset.attr, 788 &loop_attr_sizelimit.attr, 789 &loop_attr_autoclear.attr, 790 &loop_attr_partscan.attr, 791 &loop_attr_dio.attr, 792 NULL, 793 }; 794 795 static struct attribute_group loop_attribute_group = { 796 .name = "loop", 797 .attrs= loop_attrs, 798 }; 799 800 static int loop_sysfs_init(struct loop_device *lo) 801 { 802 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 803 &loop_attribute_group); 804 } 805 806 static void loop_sysfs_exit(struct loop_device *lo) 807 { 808 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 809 &loop_attribute_group); 810 } 811 812 static void loop_config_discard(struct loop_device *lo) 813 { 814 struct file *file = lo->lo_backing_file; 815 struct inode *inode = file->f_mapping->host; 816 struct request_queue *q = lo->lo_queue; 817 818 /* 819 * We use punch hole to reclaim the free space used by the 820 * image a.k.a. discard. However we do not support discard if 821 * encryption is enabled, because it may give an attacker 822 * useful information. 823 */ 824 if ((!file->f_op->fallocate) || 825 lo->lo_encrypt_key_size) { 826 q->limits.discard_granularity = 0; 827 q->limits.discard_alignment = 0; 828 blk_queue_max_discard_sectors(q, 0); 829 q->limits.discard_zeroes_data = 0; 830 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 831 return; 832 } 833 834 q->limits.discard_granularity = inode->i_sb->s_blocksize; 835 q->limits.discard_alignment = 0; 836 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 837 q->limits.discard_zeroes_data = 1; 838 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 839 } 840 841 static void loop_unprepare_queue(struct loop_device *lo) 842 { 843 kthread_flush_worker(&lo->worker); 844 kthread_stop(lo->worker_task); 845 } 846 847 static int loop_prepare_queue(struct loop_device *lo) 848 { 849 kthread_init_worker(&lo->worker); 850 lo->worker_task = kthread_run(kthread_worker_fn, 851 &lo->worker, "loop%d", lo->lo_number); 852 if (IS_ERR(lo->worker_task)) 853 return -ENOMEM; 854 set_user_nice(lo->worker_task, MIN_NICE); 855 return 0; 856 } 857 858 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 859 struct block_device *bdev, unsigned int arg) 860 { 861 struct file *file, *f; 862 struct inode *inode; 863 struct address_space *mapping; 864 unsigned lo_blocksize; 865 int lo_flags = 0; 866 int error; 867 loff_t size; 868 869 /* This is safe, since we have a reference from open(). */ 870 __module_get(THIS_MODULE); 871 872 error = -EBADF; 873 file = fget(arg); 874 if (!file) 875 goto out; 876 877 error = -EBUSY; 878 if (lo->lo_state != Lo_unbound) 879 goto out_putf; 880 881 /* Avoid recursion */ 882 f = file; 883 while (is_loop_device(f)) { 884 struct loop_device *l; 885 886 if (f->f_mapping->host->i_bdev == bdev) 887 goto out_putf; 888 889 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 890 if (l->lo_state == Lo_unbound) { 891 error = -EINVAL; 892 goto out_putf; 893 } 894 f = l->lo_backing_file; 895 } 896 897 mapping = file->f_mapping; 898 inode = mapping->host; 899 900 error = -EINVAL; 901 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 902 goto out_putf; 903 904 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 905 !file->f_op->write_iter) 906 lo_flags |= LO_FLAGS_READ_ONLY; 907 908 lo_blocksize = S_ISBLK(inode->i_mode) ? 909 inode->i_bdev->bd_block_size : PAGE_SIZE; 910 911 error = -EFBIG; 912 size = get_loop_size(lo, file); 913 if ((loff_t)(sector_t)size != size) 914 goto out_putf; 915 error = loop_prepare_queue(lo); 916 if (error) 917 goto out_putf; 918 919 error = 0; 920 921 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 922 923 lo->use_dio = false; 924 lo->lo_blocksize = lo_blocksize; 925 lo->lo_device = bdev; 926 lo->lo_flags = lo_flags; 927 lo->lo_backing_file = file; 928 lo->transfer = NULL; 929 lo->ioctl = NULL; 930 lo->lo_sizelimit = 0; 931 lo->old_gfp_mask = mapping_gfp_mask(mapping); 932 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 933 934 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 935 blk_queue_write_cache(lo->lo_queue, true, false); 936 937 loop_update_dio(lo); 938 set_capacity(lo->lo_disk, size); 939 bd_set_size(bdev, size << 9); 940 loop_sysfs_init(lo); 941 /* let user-space know about the new size */ 942 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 943 944 set_blocksize(bdev, lo_blocksize); 945 946 lo->lo_state = Lo_bound; 947 if (part_shift) 948 lo->lo_flags |= LO_FLAGS_PARTSCAN; 949 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 950 loop_reread_partitions(lo, bdev); 951 952 /* Grab the block_device to prevent its destruction after we 953 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 954 */ 955 bdgrab(bdev); 956 return 0; 957 958 out_putf: 959 fput(file); 960 out: 961 /* This is safe: open() is still holding a reference. */ 962 module_put(THIS_MODULE); 963 return error; 964 } 965 966 static int 967 loop_release_xfer(struct loop_device *lo) 968 { 969 int err = 0; 970 struct loop_func_table *xfer = lo->lo_encryption; 971 972 if (xfer) { 973 if (xfer->release) 974 err = xfer->release(lo); 975 lo->transfer = NULL; 976 lo->lo_encryption = NULL; 977 module_put(xfer->owner); 978 } 979 return err; 980 } 981 982 static int 983 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 984 const struct loop_info64 *i) 985 { 986 int err = 0; 987 988 if (xfer) { 989 struct module *owner = xfer->owner; 990 991 if (!try_module_get(owner)) 992 return -EINVAL; 993 if (xfer->init) 994 err = xfer->init(lo, i); 995 if (err) 996 module_put(owner); 997 else 998 lo->lo_encryption = xfer; 999 } 1000 return err; 1001 } 1002 1003 static int loop_clr_fd(struct loop_device *lo) 1004 { 1005 struct file *filp = lo->lo_backing_file; 1006 gfp_t gfp = lo->old_gfp_mask; 1007 struct block_device *bdev = lo->lo_device; 1008 1009 if (lo->lo_state != Lo_bound) 1010 return -ENXIO; 1011 1012 /* 1013 * If we've explicitly asked to tear down the loop device, 1014 * and it has an elevated reference count, set it for auto-teardown when 1015 * the last reference goes away. This stops $!~#$@ udev from 1016 * preventing teardown because it decided that it needs to run blkid on 1017 * the loopback device whenever they appear. xfstests is notorious for 1018 * failing tests because blkid via udev races with a losetup 1019 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1020 * command to fail with EBUSY. 1021 */ 1022 if (atomic_read(&lo->lo_refcnt) > 1) { 1023 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1024 mutex_unlock(&lo->lo_ctl_mutex); 1025 return 0; 1026 } 1027 1028 if (filp == NULL) 1029 return -EINVAL; 1030 1031 /* freeze request queue during the transition */ 1032 blk_mq_freeze_queue(lo->lo_queue); 1033 1034 spin_lock_irq(&lo->lo_lock); 1035 lo->lo_state = Lo_rundown; 1036 lo->lo_backing_file = NULL; 1037 spin_unlock_irq(&lo->lo_lock); 1038 1039 loop_release_xfer(lo); 1040 lo->transfer = NULL; 1041 lo->ioctl = NULL; 1042 lo->lo_device = NULL; 1043 lo->lo_encryption = NULL; 1044 lo->lo_offset = 0; 1045 lo->lo_sizelimit = 0; 1046 lo->lo_encrypt_key_size = 0; 1047 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1048 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1049 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1050 if (bdev) { 1051 bdput(bdev); 1052 invalidate_bdev(bdev); 1053 } 1054 set_capacity(lo->lo_disk, 0); 1055 loop_sysfs_exit(lo); 1056 if (bdev) { 1057 bd_set_size(bdev, 0); 1058 /* let user-space know about this change */ 1059 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1060 } 1061 mapping_set_gfp_mask(filp->f_mapping, gfp); 1062 lo->lo_state = Lo_unbound; 1063 /* This is safe: open() is still holding a reference. */ 1064 module_put(THIS_MODULE); 1065 blk_mq_unfreeze_queue(lo->lo_queue); 1066 1067 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1068 loop_reread_partitions(lo, bdev); 1069 lo->lo_flags = 0; 1070 if (!part_shift) 1071 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1072 loop_unprepare_queue(lo); 1073 mutex_unlock(&lo->lo_ctl_mutex); 1074 /* 1075 * Need not hold lo_ctl_mutex to fput backing file. 1076 * Calling fput holding lo_ctl_mutex triggers a circular 1077 * lock dependency possibility warning as fput can take 1078 * bd_mutex which is usually taken before lo_ctl_mutex. 1079 */ 1080 fput(filp); 1081 return 0; 1082 } 1083 1084 static int 1085 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1086 { 1087 int err; 1088 struct loop_func_table *xfer; 1089 kuid_t uid = current_uid(); 1090 1091 if (lo->lo_encrypt_key_size && 1092 !uid_eq(lo->lo_key_owner, uid) && 1093 !capable(CAP_SYS_ADMIN)) 1094 return -EPERM; 1095 if (lo->lo_state != Lo_bound) 1096 return -ENXIO; 1097 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1098 return -EINVAL; 1099 1100 /* I/O need to be drained during transfer transition */ 1101 blk_mq_freeze_queue(lo->lo_queue); 1102 1103 err = loop_release_xfer(lo); 1104 if (err) 1105 goto exit; 1106 1107 if (info->lo_encrypt_type) { 1108 unsigned int type = info->lo_encrypt_type; 1109 1110 if (type >= MAX_LO_CRYPT) 1111 return -EINVAL; 1112 xfer = xfer_funcs[type]; 1113 if (xfer == NULL) 1114 return -EINVAL; 1115 } else 1116 xfer = NULL; 1117 1118 err = loop_init_xfer(lo, xfer, info); 1119 if (err) 1120 goto exit; 1121 1122 if (lo->lo_offset != info->lo_offset || 1123 lo->lo_sizelimit != info->lo_sizelimit) 1124 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1125 err = -EFBIG; 1126 goto exit; 1127 } 1128 1129 loop_config_discard(lo); 1130 1131 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1132 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1133 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1134 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1135 1136 if (!xfer) 1137 xfer = &none_funcs; 1138 lo->transfer = xfer->transfer; 1139 lo->ioctl = xfer->ioctl; 1140 1141 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1142 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1143 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1144 1145 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1146 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1147 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1148 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1149 loop_reread_partitions(lo, lo->lo_device); 1150 } 1151 1152 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1153 lo->lo_init[0] = info->lo_init[0]; 1154 lo->lo_init[1] = info->lo_init[1]; 1155 if (info->lo_encrypt_key_size) { 1156 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1157 info->lo_encrypt_key_size); 1158 lo->lo_key_owner = uid; 1159 } 1160 1161 /* update dio if lo_offset or transfer is changed */ 1162 __loop_update_dio(lo, lo->use_dio); 1163 1164 exit: 1165 blk_mq_unfreeze_queue(lo->lo_queue); 1166 return err; 1167 } 1168 1169 static int 1170 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1171 { 1172 struct file *file = lo->lo_backing_file; 1173 struct kstat stat; 1174 int error; 1175 1176 if (lo->lo_state != Lo_bound) 1177 return -ENXIO; 1178 error = vfs_getattr(&file->f_path, &stat); 1179 if (error) 1180 return error; 1181 memset(info, 0, sizeof(*info)); 1182 info->lo_number = lo->lo_number; 1183 info->lo_device = huge_encode_dev(stat.dev); 1184 info->lo_inode = stat.ino; 1185 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1186 info->lo_offset = lo->lo_offset; 1187 info->lo_sizelimit = lo->lo_sizelimit; 1188 info->lo_flags = lo->lo_flags; 1189 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1190 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1191 info->lo_encrypt_type = 1192 lo->lo_encryption ? lo->lo_encryption->number : 0; 1193 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1194 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1195 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1196 lo->lo_encrypt_key_size); 1197 } 1198 return 0; 1199 } 1200 1201 static void 1202 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1203 { 1204 memset(info64, 0, sizeof(*info64)); 1205 info64->lo_number = info->lo_number; 1206 info64->lo_device = info->lo_device; 1207 info64->lo_inode = info->lo_inode; 1208 info64->lo_rdevice = info->lo_rdevice; 1209 info64->lo_offset = info->lo_offset; 1210 info64->lo_sizelimit = 0; 1211 info64->lo_encrypt_type = info->lo_encrypt_type; 1212 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1213 info64->lo_flags = info->lo_flags; 1214 info64->lo_init[0] = info->lo_init[0]; 1215 info64->lo_init[1] = info->lo_init[1]; 1216 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1217 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1218 else 1219 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1220 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1221 } 1222 1223 static int 1224 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1225 { 1226 memset(info, 0, sizeof(*info)); 1227 info->lo_number = info64->lo_number; 1228 info->lo_device = info64->lo_device; 1229 info->lo_inode = info64->lo_inode; 1230 info->lo_rdevice = info64->lo_rdevice; 1231 info->lo_offset = info64->lo_offset; 1232 info->lo_encrypt_type = info64->lo_encrypt_type; 1233 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1234 info->lo_flags = info64->lo_flags; 1235 info->lo_init[0] = info64->lo_init[0]; 1236 info->lo_init[1] = info64->lo_init[1]; 1237 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1238 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1239 else 1240 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1241 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1242 1243 /* error in case values were truncated */ 1244 if (info->lo_device != info64->lo_device || 1245 info->lo_rdevice != info64->lo_rdevice || 1246 info->lo_inode != info64->lo_inode || 1247 info->lo_offset != info64->lo_offset) 1248 return -EOVERFLOW; 1249 1250 return 0; 1251 } 1252 1253 static int 1254 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1255 { 1256 struct loop_info info; 1257 struct loop_info64 info64; 1258 1259 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1260 return -EFAULT; 1261 loop_info64_from_old(&info, &info64); 1262 return loop_set_status(lo, &info64); 1263 } 1264 1265 static int 1266 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1267 { 1268 struct loop_info64 info64; 1269 1270 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1271 return -EFAULT; 1272 return loop_set_status(lo, &info64); 1273 } 1274 1275 static int 1276 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1277 struct loop_info info; 1278 struct loop_info64 info64; 1279 int err = 0; 1280 1281 if (!arg) 1282 err = -EINVAL; 1283 if (!err) 1284 err = loop_get_status(lo, &info64); 1285 if (!err) 1286 err = loop_info64_to_old(&info64, &info); 1287 if (!err && copy_to_user(arg, &info, sizeof(info))) 1288 err = -EFAULT; 1289 1290 return err; 1291 } 1292 1293 static int 1294 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1295 struct loop_info64 info64; 1296 int err = 0; 1297 1298 if (!arg) 1299 err = -EINVAL; 1300 if (!err) 1301 err = loop_get_status(lo, &info64); 1302 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1303 err = -EFAULT; 1304 1305 return err; 1306 } 1307 1308 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1309 { 1310 if (unlikely(lo->lo_state != Lo_bound)) 1311 return -ENXIO; 1312 1313 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1314 } 1315 1316 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1317 { 1318 int error = -ENXIO; 1319 if (lo->lo_state != Lo_bound) 1320 goto out; 1321 1322 __loop_update_dio(lo, !!arg); 1323 if (lo->use_dio == !!arg) 1324 return 0; 1325 error = -EINVAL; 1326 out: 1327 return error; 1328 } 1329 1330 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1331 unsigned int cmd, unsigned long arg) 1332 { 1333 struct loop_device *lo = bdev->bd_disk->private_data; 1334 int err; 1335 1336 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1337 switch (cmd) { 1338 case LOOP_SET_FD: 1339 err = loop_set_fd(lo, mode, bdev, arg); 1340 break; 1341 case LOOP_CHANGE_FD: 1342 err = loop_change_fd(lo, bdev, arg); 1343 break; 1344 case LOOP_CLR_FD: 1345 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1346 err = loop_clr_fd(lo); 1347 if (!err) 1348 goto out_unlocked; 1349 break; 1350 case LOOP_SET_STATUS: 1351 err = -EPERM; 1352 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1353 err = loop_set_status_old(lo, 1354 (struct loop_info __user *)arg); 1355 break; 1356 case LOOP_GET_STATUS: 1357 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1358 break; 1359 case LOOP_SET_STATUS64: 1360 err = -EPERM; 1361 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1362 err = loop_set_status64(lo, 1363 (struct loop_info64 __user *) arg); 1364 break; 1365 case LOOP_GET_STATUS64: 1366 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1367 break; 1368 case LOOP_SET_CAPACITY: 1369 err = -EPERM; 1370 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1371 err = loop_set_capacity(lo, bdev); 1372 break; 1373 case LOOP_SET_DIRECT_IO: 1374 err = -EPERM; 1375 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1376 err = loop_set_dio(lo, arg); 1377 break; 1378 default: 1379 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1380 } 1381 mutex_unlock(&lo->lo_ctl_mutex); 1382 1383 out_unlocked: 1384 return err; 1385 } 1386 1387 #ifdef CONFIG_COMPAT 1388 struct compat_loop_info { 1389 compat_int_t lo_number; /* ioctl r/o */ 1390 compat_dev_t lo_device; /* ioctl r/o */ 1391 compat_ulong_t lo_inode; /* ioctl r/o */ 1392 compat_dev_t lo_rdevice; /* ioctl r/o */ 1393 compat_int_t lo_offset; 1394 compat_int_t lo_encrypt_type; 1395 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1396 compat_int_t lo_flags; /* ioctl r/o */ 1397 char lo_name[LO_NAME_SIZE]; 1398 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1399 compat_ulong_t lo_init[2]; 1400 char reserved[4]; 1401 }; 1402 1403 /* 1404 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1405 * - noinlined to reduce stack space usage in main part of driver 1406 */ 1407 static noinline int 1408 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1409 struct loop_info64 *info64) 1410 { 1411 struct compat_loop_info info; 1412 1413 if (copy_from_user(&info, arg, sizeof(info))) 1414 return -EFAULT; 1415 1416 memset(info64, 0, sizeof(*info64)); 1417 info64->lo_number = info.lo_number; 1418 info64->lo_device = info.lo_device; 1419 info64->lo_inode = info.lo_inode; 1420 info64->lo_rdevice = info.lo_rdevice; 1421 info64->lo_offset = info.lo_offset; 1422 info64->lo_sizelimit = 0; 1423 info64->lo_encrypt_type = info.lo_encrypt_type; 1424 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1425 info64->lo_flags = info.lo_flags; 1426 info64->lo_init[0] = info.lo_init[0]; 1427 info64->lo_init[1] = info.lo_init[1]; 1428 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1429 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1430 else 1431 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1432 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1433 return 0; 1434 } 1435 1436 /* 1437 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1438 * - noinlined to reduce stack space usage in main part of driver 1439 */ 1440 static noinline int 1441 loop_info64_to_compat(const struct loop_info64 *info64, 1442 struct compat_loop_info __user *arg) 1443 { 1444 struct compat_loop_info info; 1445 1446 memset(&info, 0, sizeof(info)); 1447 info.lo_number = info64->lo_number; 1448 info.lo_device = info64->lo_device; 1449 info.lo_inode = info64->lo_inode; 1450 info.lo_rdevice = info64->lo_rdevice; 1451 info.lo_offset = info64->lo_offset; 1452 info.lo_encrypt_type = info64->lo_encrypt_type; 1453 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1454 info.lo_flags = info64->lo_flags; 1455 info.lo_init[0] = info64->lo_init[0]; 1456 info.lo_init[1] = info64->lo_init[1]; 1457 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1458 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1459 else 1460 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1461 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1462 1463 /* error in case values were truncated */ 1464 if (info.lo_device != info64->lo_device || 1465 info.lo_rdevice != info64->lo_rdevice || 1466 info.lo_inode != info64->lo_inode || 1467 info.lo_offset != info64->lo_offset || 1468 info.lo_init[0] != info64->lo_init[0] || 1469 info.lo_init[1] != info64->lo_init[1]) 1470 return -EOVERFLOW; 1471 1472 if (copy_to_user(arg, &info, sizeof(info))) 1473 return -EFAULT; 1474 return 0; 1475 } 1476 1477 static int 1478 loop_set_status_compat(struct loop_device *lo, 1479 const struct compat_loop_info __user *arg) 1480 { 1481 struct loop_info64 info64; 1482 int ret; 1483 1484 ret = loop_info64_from_compat(arg, &info64); 1485 if (ret < 0) 1486 return ret; 1487 return loop_set_status(lo, &info64); 1488 } 1489 1490 static int 1491 loop_get_status_compat(struct loop_device *lo, 1492 struct compat_loop_info __user *arg) 1493 { 1494 struct loop_info64 info64; 1495 int err = 0; 1496 1497 if (!arg) 1498 err = -EINVAL; 1499 if (!err) 1500 err = loop_get_status(lo, &info64); 1501 if (!err) 1502 err = loop_info64_to_compat(&info64, arg); 1503 return err; 1504 } 1505 1506 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1507 unsigned int cmd, unsigned long arg) 1508 { 1509 struct loop_device *lo = bdev->bd_disk->private_data; 1510 int err; 1511 1512 switch(cmd) { 1513 case LOOP_SET_STATUS: 1514 mutex_lock(&lo->lo_ctl_mutex); 1515 err = loop_set_status_compat( 1516 lo, (const struct compat_loop_info __user *) arg); 1517 mutex_unlock(&lo->lo_ctl_mutex); 1518 break; 1519 case LOOP_GET_STATUS: 1520 mutex_lock(&lo->lo_ctl_mutex); 1521 err = loop_get_status_compat( 1522 lo, (struct compat_loop_info __user *) arg); 1523 mutex_unlock(&lo->lo_ctl_mutex); 1524 break; 1525 case LOOP_SET_CAPACITY: 1526 case LOOP_CLR_FD: 1527 case LOOP_GET_STATUS64: 1528 case LOOP_SET_STATUS64: 1529 arg = (unsigned long) compat_ptr(arg); 1530 case LOOP_SET_FD: 1531 case LOOP_CHANGE_FD: 1532 err = lo_ioctl(bdev, mode, cmd, arg); 1533 break; 1534 default: 1535 err = -ENOIOCTLCMD; 1536 break; 1537 } 1538 return err; 1539 } 1540 #endif 1541 1542 static int lo_open(struct block_device *bdev, fmode_t mode) 1543 { 1544 struct loop_device *lo; 1545 int err = 0; 1546 1547 mutex_lock(&loop_index_mutex); 1548 lo = bdev->bd_disk->private_data; 1549 if (!lo) { 1550 err = -ENXIO; 1551 goto out; 1552 } 1553 1554 atomic_inc(&lo->lo_refcnt); 1555 out: 1556 mutex_unlock(&loop_index_mutex); 1557 return err; 1558 } 1559 1560 static void lo_release(struct gendisk *disk, fmode_t mode) 1561 { 1562 struct loop_device *lo = disk->private_data; 1563 int err; 1564 1565 if (atomic_dec_return(&lo->lo_refcnt)) 1566 return; 1567 1568 mutex_lock(&lo->lo_ctl_mutex); 1569 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1570 /* 1571 * In autoclear mode, stop the loop thread 1572 * and remove configuration after last close. 1573 */ 1574 err = loop_clr_fd(lo); 1575 if (!err) 1576 return; 1577 } else { 1578 /* 1579 * Otherwise keep thread (if running) and config, 1580 * but flush possible ongoing bios in thread. 1581 */ 1582 loop_flush(lo); 1583 } 1584 1585 mutex_unlock(&lo->lo_ctl_mutex); 1586 } 1587 1588 static const struct block_device_operations lo_fops = { 1589 .owner = THIS_MODULE, 1590 .open = lo_open, 1591 .release = lo_release, 1592 .ioctl = lo_ioctl, 1593 #ifdef CONFIG_COMPAT 1594 .compat_ioctl = lo_compat_ioctl, 1595 #endif 1596 }; 1597 1598 /* 1599 * And now the modules code and kernel interface. 1600 */ 1601 static int max_loop; 1602 module_param(max_loop, int, S_IRUGO); 1603 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1604 module_param(max_part, int, S_IRUGO); 1605 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1606 MODULE_LICENSE("GPL"); 1607 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1608 1609 int loop_register_transfer(struct loop_func_table *funcs) 1610 { 1611 unsigned int n = funcs->number; 1612 1613 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1614 return -EINVAL; 1615 xfer_funcs[n] = funcs; 1616 return 0; 1617 } 1618 1619 static int unregister_transfer_cb(int id, void *ptr, void *data) 1620 { 1621 struct loop_device *lo = ptr; 1622 struct loop_func_table *xfer = data; 1623 1624 mutex_lock(&lo->lo_ctl_mutex); 1625 if (lo->lo_encryption == xfer) 1626 loop_release_xfer(lo); 1627 mutex_unlock(&lo->lo_ctl_mutex); 1628 return 0; 1629 } 1630 1631 int loop_unregister_transfer(int number) 1632 { 1633 unsigned int n = number; 1634 struct loop_func_table *xfer; 1635 1636 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1637 return -EINVAL; 1638 1639 xfer_funcs[n] = NULL; 1640 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1641 return 0; 1642 } 1643 1644 EXPORT_SYMBOL(loop_register_transfer); 1645 EXPORT_SYMBOL(loop_unregister_transfer); 1646 1647 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1648 const struct blk_mq_queue_data *bd) 1649 { 1650 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); 1651 struct loop_device *lo = cmd->rq->q->queuedata; 1652 1653 blk_mq_start_request(bd->rq); 1654 1655 if (lo->lo_state != Lo_bound) 1656 return BLK_MQ_RQ_QUEUE_ERROR; 1657 1658 switch (req_op(cmd->rq)) { 1659 case REQ_OP_FLUSH: 1660 case REQ_OP_DISCARD: 1661 cmd->use_aio = false; 1662 break; 1663 default: 1664 cmd->use_aio = lo->use_dio; 1665 break; 1666 } 1667 1668 kthread_queue_work(&lo->worker, &cmd->work); 1669 1670 return BLK_MQ_RQ_QUEUE_OK; 1671 } 1672 1673 static void loop_handle_cmd(struct loop_cmd *cmd) 1674 { 1675 const bool write = op_is_write(req_op(cmd->rq)); 1676 struct loop_device *lo = cmd->rq->q->queuedata; 1677 int ret = 0; 1678 1679 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1680 ret = -EIO; 1681 goto failed; 1682 } 1683 1684 ret = do_req_filebacked(lo, cmd->rq); 1685 failed: 1686 /* complete non-aio request */ 1687 if (!cmd->use_aio || ret) 1688 blk_mq_complete_request(cmd->rq, ret ? -EIO : 0); 1689 } 1690 1691 static void loop_queue_work(struct kthread_work *work) 1692 { 1693 struct loop_cmd *cmd = 1694 container_of(work, struct loop_cmd, work); 1695 1696 loop_handle_cmd(cmd); 1697 } 1698 1699 static int loop_init_request(void *data, struct request *rq, 1700 unsigned int hctx_idx, unsigned int request_idx, 1701 unsigned int numa_node) 1702 { 1703 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1704 1705 cmd->rq = rq; 1706 kthread_init_work(&cmd->work, loop_queue_work); 1707 1708 return 0; 1709 } 1710 1711 static struct blk_mq_ops loop_mq_ops = { 1712 .queue_rq = loop_queue_rq, 1713 .init_request = loop_init_request, 1714 }; 1715 1716 static int loop_add(struct loop_device **l, int i) 1717 { 1718 struct loop_device *lo; 1719 struct gendisk *disk; 1720 int err; 1721 1722 err = -ENOMEM; 1723 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1724 if (!lo) 1725 goto out; 1726 1727 lo->lo_state = Lo_unbound; 1728 1729 /* allocate id, if @id >= 0, we're requesting that specific id */ 1730 if (i >= 0) { 1731 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1732 if (err == -ENOSPC) 1733 err = -EEXIST; 1734 } else { 1735 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1736 } 1737 if (err < 0) 1738 goto out_free_dev; 1739 i = err; 1740 1741 err = -ENOMEM; 1742 lo->tag_set.ops = &loop_mq_ops; 1743 lo->tag_set.nr_hw_queues = 1; 1744 lo->tag_set.queue_depth = 128; 1745 lo->tag_set.numa_node = NUMA_NO_NODE; 1746 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1747 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1748 lo->tag_set.driver_data = lo; 1749 1750 err = blk_mq_alloc_tag_set(&lo->tag_set); 1751 if (err) 1752 goto out_free_idr; 1753 1754 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1755 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1756 err = PTR_ERR(lo->lo_queue); 1757 goto out_cleanup_tags; 1758 } 1759 lo->lo_queue->queuedata = lo; 1760 1761 /* 1762 * It doesn't make sense to enable merge because the I/O 1763 * submitted to backing file is handled page by page. 1764 */ 1765 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1766 1767 err = -ENOMEM; 1768 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1769 if (!disk) 1770 goto out_free_queue; 1771 1772 /* 1773 * Disable partition scanning by default. The in-kernel partition 1774 * scanning can be requested individually per-device during its 1775 * setup. Userspace can always add and remove partitions from all 1776 * devices. The needed partition minors are allocated from the 1777 * extended minor space, the main loop device numbers will continue 1778 * to match the loop minors, regardless of the number of partitions 1779 * used. 1780 * 1781 * If max_part is given, partition scanning is globally enabled for 1782 * all loop devices. The minors for the main loop devices will be 1783 * multiples of max_part. 1784 * 1785 * Note: Global-for-all-devices, set-only-at-init, read-only module 1786 * parameteters like 'max_loop' and 'max_part' make things needlessly 1787 * complicated, are too static, inflexible and may surprise 1788 * userspace tools. Parameters like this in general should be avoided. 1789 */ 1790 if (!part_shift) 1791 disk->flags |= GENHD_FL_NO_PART_SCAN; 1792 disk->flags |= GENHD_FL_EXT_DEVT; 1793 mutex_init(&lo->lo_ctl_mutex); 1794 atomic_set(&lo->lo_refcnt, 0); 1795 lo->lo_number = i; 1796 spin_lock_init(&lo->lo_lock); 1797 disk->major = LOOP_MAJOR; 1798 disk->first_minor = i << part_shift; 1799 disk->fops = &lo_fops; 1800 disk->private_data = lo; 1801 disk->queue = lo->lo_queue; 1802 sprintf(disk->disk_name, "loop%d", i); 1803 add_disk(disk); 1804 *l = lo; 1805 return lo->lo_number; 1806 1807 out_free_queue: 1808 blk_cleanup_queue(lo->lo_queue); 1809 out_cleanup_tags: 1810 blk_mq_free_tag_set(&lo->tag_set); 1811 out_free_idr: 1812 idr_remove(&loop_index_idr, i); 1813 out_free_dev: 1814 kfree(lo); 1815 out: 1816 return err; 1817 } 1818 1819 static void loop_remove(struct loop_device *lo) 1820 { 1821 blk_cleanup_queue(lo->lo_queue); 1822 del_gendisk(lo->lo_disk); 1823 blk_mq_free_tag_set(&lo->tag_set); 1824 put_disk(lo->lo_disk); 1825 kfree(lo); 1826 } 1827 1828 static int find_free_cb(int id, void *ptr, void *data) 1829 { 1830 struct loop_device *lo = ptr; 1831 struct loop_device **l = data; 1832 1833 if (lo->lo_state == Lo_unbound) { 1834 *l = lo; 1835 return 1; 1836 } 1837 return 0; 1838 } 1839 1840 static int loop_lookup(struct loop_device **l, int i) 1841 { 1842 struct loop_device *lo; 1843 int ret = -ENODEV; 1844 1845 if (i < 0) { 1846 int err; 1847 1848 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1849 if (err == 1) { 1850 *l = lo; 1851 ret = lo->lo_number; 1852 } 1853 goto out; 1854 } 1855 1856 /* lookup and return a specific i */ 1857 lo = idr_find(&loop_index_idr, i); 1858 if (lo) { 1859 *l = lo; 1860 ret = lo->lo_number; 1861 } 1862 out: 1863 return ret; 1864 } 1865 1866 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1867 { 1868 struct loop_device *lo; 1869 struct kobject *kobj; 1870 int err; 1871 1872 mutex_lock(&loop_index_mutex); 1873 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1874 if (err < 0) 1875 err = loop_add(&lo, MINOR(dev) >> part_shift); 1876 if (err < 0) 1877 kobj = NULL; 1878 else 1879 kobj = get_disk(lo->lo_disk); 1880 mutex_unlock(&loop_index_mutex); 1881 1882 *part = 0; 1883 return kobj; 1884 } 1885 1886 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1887 unsigned long parm) 1888 { 1889 struct loop_device *lo; 1890 int ret = -ENOSYS; 1891 1892 mutex_lock(&loop_index_mutex); 1893 switch (cmd) { 1894 case LOOP_CTL_ADD: 1895 ret = loop_lookup(&lo, parm); 1896 if (ret >= 0) { 1897 ret = -EEXIST; 1898 break; 1899 } 1900 ret = loop_add(&lo, parm); 1901 break; 1902 case LOOP_CTL_REMOVE: 1903 ret = loop_lookup(&lo, parm); 1904 if (ret < 0) 1905 break; 1906 mutex_lock(&lo->lo_ctl_mutex); 1907 if (lo->lo_state != Lo_unbound) { 1908 ret = -EBUSY; 1909 mutex_unlock(&lo->lo_ctl_mutex); 1910 break; 1911 } 1912 if (atomic_read(&lo->lo_refcnt) > 0) { 1913 ret = -EBUSY; 1914 mutex_unlock(&lo->lo_ctl_mutex); 1915 break; 1916 } 1917 lo->lo_disk->private_data = NULL; 1918 mutex_unlock(&lo->lo_ctl_mutex); 1919 idr_remove(&loop_index_idr, lo->lo_number); 1920 loop_remove(lo); 1921 break; 1922 case LOOP_CTL_GET_FREE: 1923 ret = loop_lookup(&lo, -1); 1924 if (ret >= 0) 1925 break; 1926 ret = loop_add(&lo, -1); 1927 } 1928 mutex_unlock(&loop_index_mutex); 1929 1930 return ret; 1931 } 1932 1933 static const struct file_operations loop_ctl_fops = { 1934 .open = nonseekable_open, 1935 .unlocked_ioctl = loop_control_ioctl, 1936 .compat_ioctl = loop_control_ioctl, 1937 .owner = THIS_MODULE, 1938 .llseek = noop_llseek, 1939 }; 1940 1941 static struct miscdevice loop_misc = { 1942 .minor = LOOP_CTRL_MINOR, 1943 .name = "loop-control", 1944 .fops = &loop_ctl_fops, 1945 }; 1946 1947 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1948 MODULE_ALIAS("devname:loop-control"); 1949 1950 static int __init loop_init(void) 1951 { 1952 int i, nr; 1953 unsigned long range; 1954 struct loop_device *lo; 1955 int err; 1956 1957 err = misc_register(&loop_misc); 1958 if (err < 0) 1959 return err; 1960 1961 part_shift = 0; 1962 if (max_part > 0) { 1963 part_shift = fls(max_part); 1964 1965 /* 1966 * Adjust max_part according to part_shift as it is exported 1967 * to user space so that user can decide correct minor number 1968 * if [s]he want to create more devices. 1969 * 1970 * Note that -1 is required because partition 0 is reserved 1971 * for the whole disk. 1972 */ 1973 max_part = (1UL << part_shift) - 1; 1974 } 1975 1976 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1977 err = -EINVAL; 1978 goto misc_out; 1979 } 1980 1981 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1982 err = -EINVAL; 1983 goto misc_out; 1984 } 1985 1986 /* 1987 * If max_loop is specified, create that many devices upfront. 1988 * This also becomes a hard limit. If max_loop is not specified, 1989 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1990 * init time. Loop devices can be requested on-demand with the 1991 * /dev/loop-control interface, or be instantiated by accessing 1992 * a 'dead' device node. 1993 */ 1994 if (max_loop) { 1995 nr = max_loop; 1996 range = max_loop << part_shift; 1997 } else { 1998 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1999 range = 1UL << MINORBITS; 2000 } 2001 2002 if (register_blkdev(LOOP_MAJOR, "loop")) { 2003 err = -EIO; 2004 goto misc_out; 2005 } 2006 2007 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2008 THIS_MODULE, loop_probe, NULL, NULL); 2009 2010 /* pre-create number of devices given by config or max_loop */ 2011 mutex_lock(&loop_index_mutex); 2012 for (i = 0; i < nr; i++) 2013 loop_add(&lo, i); 2014 mutex_unlock(&loop_index_mutex); 2015 2016 printk(KERN_INFO "loop: module loaded\n"); 2017 return 0; 2018 2019 misc_out: 2020 misc_deregister(&loop_misc); 2021 return err; 2022 } 2023 2024 static int loop_exit_cb(int id, void *ptr, void *data) 2025 { 2026 struct loop_device *lo = ptr; 2027 2028 loop_remove(lo); 2029 return 0; 2030 } 2031 2032 static void __exit loop_exit(void) 2033 { 2034 unsigned long range; 2035 2036 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2037 2038 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2039 idr_destroy(&loop_index_idr); 2040 2041 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2042 unregister_blkdev(LOOP_MAJOR, "loop"); 2043 2044 misc_deregister(&loop_misc); 2045 } 2046 2047 module_init(loop_init); 2048 module_exit(loop_exit); 2049 2050 #ifndef MODULE 2051 static int __init max_loop_setup(char *str) 2052 { 2053 max_loop = simple_strtol(str, NULL, 0); 2054 return 1; 2055 } 2056 2057 __setup("max_loop=", max_loop_setup); 2058 #endif 2059