1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/pagemap.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 #include <linux/sched/mm.h> 82 83 #include "loop.h" 84 85 #include <linux/uaccess.h> 86 87 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 88 89 static DEFINE_IDR(loop_index_idr); 90 static DEFINE_MUTEX(loop_ctl_mutex); 91 static DEFINE_MUTEX(loop_validate_mutex); 92 93 /** 94 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 95 * 96 * @lo: struct loop_device 97 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 98 * 99 * Returns 0 on success, -EINTR otherwise. 100 * 101 * Since loop_validate_file() traverses on other "struct loop_device" if 102 * is_loop_device() is true, we need a global lock for serializing concurrent 103 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 104 */ 105 static int loop_global_lock_killable(struct loop_device *lo, bool global) 106 { 107 int err; 108 109 if (global) { 110 err = mutex_lock_killable(&loop_validate_mutex); 111 if (err) 112 return err; 113 } 114 err = mutex_lock_killable(&lo->lo_mutex); 115 if (err && global) 116 mutex_unlock(&loop_validate_mutex); 117 return err; 118 } 119 120 /** 121 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 122 * 123 * @lo: struct loop_device 124 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 125 */ 126 static void loop_global_unlock(struct loop_device *lo, bool global) 127 { 128 mutex_unlock(&lo->lo_mutex); 129 if (global) 130 mutex_unlock(&loop_validate_mutex); 131 } 132 133 static int max_part; 134 static int part_shift; 135 136 static int transfer_xor(struct loop_device *lo, int cmd, 137 struct page *raw_page, unsigned raw_off, 138 struct page *loop_page, unsigned loop_off, 139 int size, sector_t real_block) 140 { 141 char *raw_buf = kmap_atomic(raw_page) + raw_off; 142 char *loop_buf = kmap_atomic(loop_page) + loop_off; 143 char *in, *out, *key; 144 int i, keysize; 145 146 if (cmd == READ) { 147 in = raw_buf; 148 out = loop_buf; 149 } else { 150 in = loop_buf; 151 out = raw_buf; 152 } 153 154 key = lo->lo_encrypt_key; 155 keysize = lo->lo_encrypt_key_size; 156 for (i = 0; i < size; i++) 157 *out++ = *in++ ^ key[(i & 511) % keysize]; 158 159 kunmap_atomic(loop_buf); 160 kunmap_atomic(raw_buf); 161 cond_resched(); 162 return 0; 163 } 164 165 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 166 { 167 if (unlikely(info->lo_encrypt_key_size <= 0)) 168 return -EINVAL; 169 return 0; 170 } 171 172 static struct loop_func_table none_funcs = { 173 .number = LO_CRYPT_NONE, 174 }; 175 176 static struct loop_func_table xor_funcs = { 177 .number = LO_CRYPT_XOR, 178 .transfer = transfer_xor, 179 .init = xor_init 180 }; 181 182 /* xfer_funcs[0] is special - its release function is never called */ 183 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 184 &none_funcs, 185 &xor_funcs 186 }; 187 188 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 189 { 190 loff_t loopsize; 191 192 /* Compute loopsize in bytes */ 193 loopsize = i_size_read(file->f_mapping->host); 194 if (offset > 0) 195 loopsize -= offset; 196 /* offset is beyond i_size, weird but possible */ 197 if (loopsize < 0) 198 return 0; 199 200 if (sizelimit > 0 && sizelimit < loopsize) 201 loopsize = sizelimit; 202 /* 203 * Unfortunately, if we want to do I/O on the device, 204 * the number of 512-byte sectors has to fit into a sector_t. 205 */ 206 return loopsize >> 9; 207 } 208 209 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 210 { 211 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 212 } 213 214 static void __loop_update_dio(struct loop_device *lo, bool dio) 215 { 216 struct file *file = lo->lo_backing_file; 217 struct address_space *mapping = file->f_mapping; 218 struct inode *inode = mapping->host; 219 unsigned short sb_bsize = 0; 220 unsigned dio_align = 0; 221 bool use_dio; 222 223 if (inode->i_sb->s_bdev) { 224 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 225 dio_align = sb_bsize - 1; 226 } 227 228 /* 229 * We support direct I/O only if lo_offset is aligned with the 230 * logical I/O size of backing device, and the logical block 231 * size of loop is bigger than the backing device's and the loop 232 * needn't transform transfer. 233 * 234 * TODO: the above condition may be loosed in the future, and 235 * direct I/O may be switched runtime at that time because most 236 * of requests in sane applications should be PAGE_SIZE aligned 237 */ 238 if (dio) { 239 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 240 !(lo->lo_offset & dio_align) && 241 mapping->a_ops->direct_IO && 242 !lo->transfer) 243 use_dio = true; 244 else 245 use_dio = false; 246 } else { 247 use_dio = false; 248 } 249 250 if (lo->use_dio == use_dio) 251 return; 252 253 /* flush dirty pages before changing direct IO */ 254 vfs_fsync(file, 0); 255 256 /* 257 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 258 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 259 * will get updated by ioctl(LOOP_GET_STATUS) 260 */ 261 if (lo->lo_state == Lo_bound) 262 blk_mq_freeze_queue(lo->lo_queue); 263 lo->use_dio = use_dio; 264 if (use_dio) { 265 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 266 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 267 } else { 268 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 269 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 270 } 271 if (lo->lo_state == Lo_bound) 272 blk_mq_unfreeze_queue(lo->lo_queue); 273 } 274 275 /** 276 * loop_validate_block_size() - validates the passed in block size 277 * @bsize: size to validate 278 */ 279 static int 280 loop_validate_block_size(unsigned short bsize) 281 { 282 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 283 return -EINVAL; 284 285 return 0; 286 } 287 288 /** 289 * loop_set_size() - sets device size and notifies userspace 290 * @lo: struct loop_device to set the size for 291 * @size: new size of the loop device 292 * 293 * Callers must validate that the size passed into this function fits into 294 * a sector_t, eg using loop_validate_size() 295 */ 296 static void loop_set_size(struct loop_device *lo, loff_t size) 297 { 298 if (!set_capacity_and_notify(lo->lo_disk, size)) 299 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 300 } 301 302 static inline int 303 lo_do_transfer(struct loop_device *lo, int cmd, 304 struct page *rpage, unsigned roffs, 305 struct page *lpage, unsigned loffs, 306 int size, sector_t rblock) 307 { 308 int ret; 309 310 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 311 if (likely(!ret)) 312 return 0; 313 314 printk_ratelimited(KERN_ERR 315 "loop: Transfer error at byte offset %llu, length %i.\n", 316 (unsigned long long)rblock << 9, size); 317 return ret; 318 } 319 320 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 321 { 322 struct iov_iter i; 323 ssize_t bw; 324 325 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 326 327 file_start_write(file); 328 bw = vfs_iter_write(file, &i, ppos, 0); 329 file_end_write(file); 330 331 if (likely(bw == bvec->bv_len)) 332 return 0; 333 334 printk_ratelimited(KERN_ERR 335 "loop: Write error at byte offset %llu, length %i.\n", 336 (unsigned long long)*ppos, bvec->bv_len); 337 if (bw >= 0) 338 bw = -EIO; 339 return bw; 340 } 341 342 static int lo_write_simple(struct loop_device *lo, struct request *rq, 343 loff_t pos) 344 { 345 struct bio_vec bvec; 346 struct req_iterator iter; 347 int ret = 0; 348 349 rq_for_each_segment(bvec, rq, iter) { 350 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 351 if (ret < 0) 352 break; 353 cond_resched(); 354 } 355 356 return ret; 357 } 358 359 /* 360 * This is the slow, transforming version that needs to double buffer the 361 * data as it cannot do the transformations in place without having direct 362 * access to the destination pages of the backing file. 363 */ 364 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 365 loff_t pos) 366 { 367 struct bio_vec bvec, b; 368 struct req_iterator iter; 369 struct page *page; 370 int ret = 0; 371 372 page = alloc_page(GFP_NOIO); 373 if (unlikely(!page)) 374 return -ENOMEM; 375 376 rq_for_each_segment(bvec, rq, iter) { 377 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 378 bvec.bv_offset, bvec.bv_len, pos >> 9); 379 if (unlikely(ret)) 380 break; 381 382 b.bv_page = page; 383 b.bv_offset = 0; 384 b.bv_len = bvec.bv_len; 385 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 386 if (ret < 0) 387 break; 388 } 389 390 __free_page(page); 391 return ret; 392 } 393 394 static int lo_read_simple(struct loop_device *lo, struct request *rq, 395 loff_t pos) 396 { 397 struct bio_vec bvec; 398 struct req_iterator iter; 399 struct iov_iter i; 400 ssize_t len; 401 402 rq_for_each_segment(bvec, rq, iter) { 403 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 404 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 405 if (len < 0) 406 return len; 407 408 flush_dcache_page(bvec.bv_page); 409 410 if (len != bvec.bv_len) { 411 struct bio *bio; 412 413 __rq_for_each_bio(bio, rq) 414 zero_fill_bio(bio); 415 break; 416 } 417 cond_resched(); 418 } 419 420 return 0; 421 } 422 423 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 424 loff_t pos) 425 { 426 struct bio_vec bvec, b; 427 struct req_iterator iter; 428 struct iov_iter i; 429 struct page *page; 430 ssize_t len; 431 int ret = 0; 432 433 page = alloc_page(GFP_NOIO); 434 if (unlikely(!page)) 435 return -ENOMEM; 436 437 rq_for_each_segment(bvec, rq, iter) { 438 loff_t offset = pos; 439 440 b.bv_page = page; 441 b.bv_offset = 0; 442 b.bv_len = bvec.bv_len; 443 444 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 445 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 446 if (len < 0) { 447 ret = len; 448 goto out_free_page; 449 } 450 451 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 452 bvec.bv_offset, len, offset >> 9); 453 if (ret) 454 goto out_free_page; 455 456 flush_dcache_page(bvec.bv_page); 457 458 if (len != bvec.bv_len) { 459 struct bio *bio; 460 461 __rq_for_each_bio(bio, rq) 462 zero_fill_bio(bio); 463 break; 464 } 465 } 466 467 ret = 0; 468 out_free_page: 469 __free_page(page); 470 return ret; 471 } 472 473 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 474 int mode) 475 { 476 /* 477 * We use fallocate to manipulate the space mappings used by the image 478 * a.k.a. discard/zerorange. However we do not support this if 479 * encryption is enabled, because it may give an attacker useful 480 * information. 481 */ 482 struct file *file = lo->lo_backing_file; 483 struct request_queue *q = lo->lo_queue; 484 int ret; 485 486 mode |= FALLOC_FL_KEEP_SIZE; 487 488 if (!blk_queue_discard(q)) { 489 ret = -EOPNOTSUPP; 490 goto out; 491 } 492 493 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 494 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 495 ret = -EIO; 496 out: 497 return ret; 498 } 499 500 static int lo_req_flush(struct loop_device *lo, struct request *rq) 501 { 502 struct file *file = lo->lo_backing_file; 503 int ret = vfs_fsync(file, 0); 504 if (unlikely(ret && ret != -EINVAL)) 505 ret = -EIO; 506 507 return ret; 508 } 509 510 static void lo_complete_rq(struct request *rq) 511 { 512 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 513 blk_status_t ret = BLK_STS_OK; 514 515 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 516 req_op(rq) != REQ_OP_READ) { 517 if (cmd->ret < 0) 518 ret = errno_to_blk_status(cmd->ret); 519 goto end_io; 520 } 521 522 /* 523 * Short READ - if we got some data, advance our request and 524 * retry it. If we got no data, end the rest with EIO. 525 */ 526 if (cmd->ret) { 527 blk_update_request(rq, BLK_STS_OK, cmd->ret); 528 cmd->ret = 0; 529 blk_mq_requeue_request(rq, true); 530 } else { 531 if (cmd->use_aio) { 532 struct bio *bio = rq->bio; 533 534 while (bio) { 535 zero_fill_bio(bio); 536 bio = bio->bi_next; 537 } 538 } 539 ret = BLK_STS_IOERR; 540 end_io: 541 blk_mq_end_request(rq, ret); 542 } 543 } 544 545 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 546 { 547 struct request *rq = blk_mq_rq_from_pdu(cmd); 548 549 if (!atomic_dec_and_test(&cmd->ref)) 550 return; 551 kfree(cmd->bvec); 552 cmd->bvec = NULL; 553 if (likely(!blk_should_fake_timeout(rq->q))) 554 blk_mq_complete_request(rq); 555 } 556 557 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 558 { 559 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 560 561 cmd->ret = ret; 562 lo_rw_aio_do_completion(cmd); 563 } 564 565 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 566 loff_t pos, bool rw) 567 { 568 struct iov_iter iter; 569 struct req_iterator rq_iter; 570 struct bio_vec *bvec; 571 struct request *rq = blk_mq_rq_from_pdu(cmd); 572 struct bio *bio = rq->bio; 573 struct file *file = lo->lo_backing_file; 574 struct bio_vec tmp; 575 unsigned int offset; 576 int nr_bvec = 0; 577 int ret; 578 579 rq_for_each_bvec(tmp, rq, rq_iter) 580 nr_bvec++; 581 582 if (rq->bio != rq->biotail) { 583 584 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 585 GFP_NOIO); 586 if (!bvec) 587 return -EIO; 588 cmd->bvec = bvec; 589 590 /* 591 * The bios of the request may be started from the middle of 592 * the 'bvec' because of bio splitting, so we can't directly 593 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 594 * API will take care of all details for us. 595 */ 596 rq_for_each_bvec(tmp, rq, rq_iter) { 597 *bvec = tmp; 598 bvec++; 599 } 600 bvec = cmd->bvec; 601 offset = 0; 602 } else { 603 /* 604 * Same here, this bio may be started from the middle of the 605 * 'bvec' because of bio splitting, so offset from the bvec 606 * must be passed to iov iterator 607 */ 608 offset = bio->bi_iter.bi_bvec_done; 609 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 610 } 611 atomic_set(&cmd->ref, 2); 612 613 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 614 iter.iov_offset = offset; 615 616 cmd->iocb.ki_pos = pos; 617 cmd->iocb.ki_filp = file; 618 cmd->iocb.ki_complete = lo_rw_aio_complete; 619 cmd->iocb.ki_flags = IOCB_DIRECT; 620 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 621 622 if (rw == WRITE) 623 ret = call_write_iter(file, &cmd->iocb, &iter); 624 else 625 ret = call_read_iter(file, &cmd->iocb, &iter); 626 627 lo_rw_aio_do_completion(cmd); 628 629 if (ret != -EIOCBQUEUED) 630 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 631 return 0; 632 } 633 634 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 635 { 636 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 637 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 638 639 /* 640 * lo_write_simple and lo_read_simple should have been covered 641 * by io submit style function like lo_rw_aio(), one blocker 642 * is that lo_read_simple() need to call flush_dcache_page after 643 * the page is written from kernel, and it isn't easy to handle 644 * this in io submit style function which submits all segments 645 * of the req at one time. And direct read IO doesn't need to 646 * run flush_dcache_page(). 647 */ 648 switch (req_op(rq)) { 649 case REQ_OP_FLUSH: 650 return lo_req_flush(lo, rq); 651 case REQ_OP_WRITE_ZEROES: 652 /* 653 * If the caller doesn't want deallocation, call zeroout to 654 * write zeroes the range. Otherwise, punch them out. 655 */ 656 return lo_fallocate(lo, rq, pos, 657 (rq->cmd_flags & REQ_NOUNMAP) ? 658 FALLOC_FL_ZERO_RANGE : 659 FALLOC_FL_PUNCH_HOLE); 660 case REQ_OP_DISCARD: 661 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 662 case REQ_OP_WRITE: 663 if (lo->transfer) 664 return lo_write_transfer(lo, rq, pos); 665 else if (cmd->use_aio) 666 return lo_rw_aio(lo, cmd, pos, WRITE); 667 else 668 return lo_write_simple(lo, rq, pos); 669 case REQ_OP_READ: 670 if (lo->transfer) 671 return lo_read_transfer(lo, rq, pos); 672 else if (cmd->use_aio) 673 return lo_rw_aio(lo, cmd, pos, READ); 674 else 675 return lo_read_simple(lo, rq, pos); 676 default: 677 WARN_ON_ONCE(1); 678 return -EIO; 679 } 680 } 681 682 static inline void loop_update_dio(struct loop_device *lo) 683 { 684 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 685 lo->use_dio); 686 } 687 688 static void loop_reread_partitions(struct loop_device *lo) 689 { 690 int rc; 691 692 mutex_lock(&lo->lo_disk->open_mutex); 693 rc = bdev_disk_changed(lo->lo_disk, false); 694 mutex_unlock(&lo->lo_disk->open_mutex); 695 if (rc) 696 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 697 __func__, lo->lo_number, lo->lo_file_name, rc); 698 } 699 700 static inline int is_loop_device(struct file *file) 701 { 702 struct inode *i = file->f_mapping->host; 703 704 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 705 } 706 707 static int loop_validate_file(struct file *file, struct block_device *bdev) 708 { 709 struct inode *inode = file->f_mapping->host; 710 struct file *f = file; 711 712 /* Avoid recursion */ 713 while (is_loop_device(f)) { 714 struct loop_device *l; 715 716 lockdep_assert_held(&loop_validate_mutex); 717 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 718 return -EBADF; 719 720 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 721 if (l->lo_state != Lo_bound) 722 return -EINVAL; 723 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 724 rmb(); 725 f = l->lo_backing_file; 726 } 727 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 728 return -EINVAL; 729 return 0; 730 } 731 732 /* 733 * loop_change_fd switched the backing store of a loopback device to 734 * a new file. This is useful for operating system installers to free up 735 * the original file and in High Availability environments to switch to 736 * an alternative location for the content in case of server meltdown. 737 * This can only work if the loop device is used read-only, and if the 738 * new backing store is the same size and type as the old backing store. 739 */ 740 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 741 unsigned int arg) 742 { 743 struct file *file = fget(arg); 744 struct file *old_file; 745 int error; 746 bool partscan; 747 bool is_loop; 748 749 if (!file) 750 return -EBADF; 751 is_loop = is_loop_device(file); 752 error = loop_global_lock_killable(lo, is_loop); 753 if (error) 754 goto out_putf; 755 error = -ENXIO; 756 if (lo->lo_state != Lo_bound) 757 goto out_err; 758 759 /* the loop device has to be read-only */ 760 error = -EINVAL; 761 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 762 goto out_err; 763 764 error = loop_validate_file(file, bdev); 765 if (error) 766 goto out_err; 767 768 old_file = lo->lo_backing_file; 769 770 error = -EINVAL; 771 772 /* size of the new backing store needs to be the same */ 773 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 774 goto out_err; 775 776 /* and ... switch */ 777 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 778 blk_mq_freeze_queue(lo->lo_queue); 779 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 780 lo->lo_backing_file = file; 781 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 782 mapping_set_gfp_mask(file->f_mapping, 783 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 784 loop_update_dio(lo); 785 blk_mq_unfreeze_queue(lo->lo_queue); 786 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 787 loop_global_unlock(lo, is_loop); 788 789 /* 790 * Flush loop_validate_file() before fput(), for l->lo_backing_file 791 * might be pointing at old_file which might be the last reference. 792 */ 793 if (!is_loop) { 794 mutex_lock(&loop_validate_mutex); 795 mutex_unlock(&loop_validate_mutex); 796 } 797 /* 798 * We must drop file reference outside of lo_mutex as dropping 799 * the file ref can take open_mutex which creates circular locking 800 * dependency. 801 */ 802 fput(old_file); 803 if (partscan) 804 loop_reread_partitions(lo); 805 return 0; 806 807 out_err: 808 loop_global_unlock(lo, is_loop); 809 out_putf: 810 fput(file); 811 return error; 812 } 813 814 /* loop sysfs attributes */ 815 816 static ssize_t loop_attr_show(struct device *dev, char *page, 817 ssize_t (*callback)(struct loop_device *, char *)) 818 { 819 struct gendisk *disk = dev_to_disk(dev); 820 struct loop_device *lo = disk->private_data; 821 822 return callback(lo, page); 823 } 824 825 #define LOOP_ATTR_RO(_name) \ 826 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 827 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 828 struct device_attribute *attr, char *b) \ 829 { \ 830 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 831 } \ 832 static struct device_attribute loop_attr_##_name = \ 833 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 834 835 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 836 { 837 ssize_t ret; 838 char *p = NULL; 839 840 spin_lock_irq(&lo->lo_lock); 841 if (lo->lo_backing_file) 842 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 843 spin_unlock_irq(&lo->lo_lock); 844 845 if (IS_ERR_OR_NULL(p)) 846 ret = PTR_ERR(p); 847 else { 848 ret = strlen(p); 849 memmove(buf, p, ret); 850 buf[ret++] = '\n'; 851 buf[ret] = 0; 852 } 853 854 return ret; 855 } 856 857 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 858 { 859 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 860 } 861 862 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 863 { 864 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 865 } 866 867 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 868 { 869 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 870 871 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 872 } 873 874 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 875 { 876 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 877 878 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 879 } 880 881 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 882 { 883 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 884 885 return sprintf(buf, "%s\n", dio ? "1" : "0"); 886 } 887 888 LOOP_ATTR_RO(backing_file); 889 LOOP_ATTR_RO(offset); 890 LOOP_ATTR_RO(sizelimit); 891 LOOP_ATTR_RO(autoclear); 892 LOOP_ATTR_RO(partscan); 893 LOOP_ATTR_RO(dio); 894 895 static struct attribute *loop_attrs[] = { 896 &loop_attr_backing_file.attr, 897 &loop_attr_offset.attr, 898 &loop_attr_sizelimit.attr, 899 &loop_attr_autoclear.attr, 900 &loop_attr_partscan.attr, 901 &loop_attr_dio.attr, 902 NULL, 903 }; 904 905 static struct attribute_group loop_attribute_group = { 906 .name = "loop", 907 .attrs= loop_attrs, 908 }; 909 910 static void loop_sysfs_init(struct loop_device *lo) 911 { 912 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 913 &loop_attribute_group); 914 } 915 916 static void loop_sysfs_exit(struct loop_device *lo) 917 { 918 if (lo->sysfs_inited) 919 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 920 &loop_attribute_group); 921 } 922 923 static void loop_config_discard(struct loop_device *lo) 924 { 925 struct file *file = lo->lo_backing_file; 926 struct inode *inode = file->f_mapping->host; 927 struct request_queue *q = lo->lo_queue; 928 u32 granularity, max_discard_sectors; 929 930 /* 931 * If the backing device is a block device, mirror its zeroing 932 * capability. Set the discard sectors to the block device's zeroing 933 * capabilities because loop discards result in blkdev_issue_zeroout(), 934 * not blkdev_issue_discard(). This maintains consistent behavior with 935 * file-backed loop devices: discarded regions read back as zero. 936 */ 937 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 938 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 939 940 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 941 granularity = backingq->limits.discard_granularity ?: 942 queue_physical_block_size(backingq); 943 944 /* 945 * We use punch hole to reclaim the free space used by the 946 * image a.k.a. discard. However we do not support discard if 947 * encryption is enabled, because it may give an attacker 948 * useful information. 949 */ 950 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 951 max_discard_sectors = 0; 952 granularity = 0; 953 954 } else { 955 max_discard_sectors = UINT_MAX >> 9; 956 granularity = inode->i_sb->s_blocksize; 957 } 958 959 if (max_discard_sectors) { 960 q->limits.discard_granularity = granularity; 961 blk_queue_max_discard_sectors(q, max_discard_sectors); 962 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 963 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 964 } else { 965 q->limits.discard_granularity = 0; 966 blk_queue_max_discard_sectors(q, 0); 967 blk_queue_max_write_zeroes_sectors(q, 0); 968 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 969 } 970 q->limits.discard_alignment = 0; 971 } 972 973 struct loop_worker { 974 struct rb_node rb_node; 975 struct work_struct work; 976 struct list_head cmd_list; 977 struct list_head idle_list; 978 struct loop_device *lo; 979 struct cgroup_subsys_state *blkcg_css; 980 unsigned long last_ran_at; 981 }; 982 983 static void loop_workfn(struct work_struct *work); 984 static void loop_rootcg_workfn(struct work_struct *work); 985 static void loop_free_idle_workers(struct timer_list *timer); 986 987 #ifdef CONFIG_BLK_CGROUP 988 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 989 { 990 return !css || css == blkcg_root_css; 991 } 992 #else 993 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 994 { 995 return !css; 996 } 997 #endif 998 999 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 1000 { 1001 struct rb_node **node = &(lo->worker_tree.rb_node), *parent = NULL; 1002 struct loop_worker *cur_worker, *worker = NULL; 1003 struct work_struct *work; 1004 struct list_head *cmd_list; 1005 1006 spin_lock_irq(&lo->lo_work_lock); 1007 1008 if (queue_on_root_worker(cmd->blkcg_css)) 1009 goto queue_work; 1010 1011 node = &lo->worker_tree.rb_node; 1012 1013 while (*node) { 1014 parent = *node; 1015 cur_worker = container_of(*node, struct loop_worker, rb_node); 1016 if (cur_worker->blkcg_css == cmd->blkcg_css) { 1017 worker = cur_worker; 1018 break; 1019 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 1020 node = &(*node)->rb_left; 1021 } else { 1022 node = &(*node)->rb_right; 1023 } 1024 } 1025 if (worker) 1026 goto queue_work; 1027 1028 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 1029 /* 1030 * In the event we cannot allocate a worker, just queue on the 1031 * rootcg worker and issue the I/O as the rootcg 1032 */ 1033 if (!worker) { 1034 cmd->blkcg_css = NULL; 1035 if (cmd->memcg_css) 1036 css_put(cmd->memcg_css); 1037 cmd->memcg_css = NULL; 1038 goto queue_work; 1039 } 1040 1041 worker->blkcg_css = cmd->blkcg_css; 1042 css_get(worker->blkcg_css); 1043 INIT_WORK(&worker->work, loop_workfn); 1044 INIT_LIST_HEAD(&worker->cmd_list); 1045 INIT_LIST_HEAD(&worker->idle_list); 1046 worker->lo = lo; 1047 rb_link_node(&worker->rb_node, parent, node); 1048 rb_insert_color(&worker->rb_node, &lo->worker_tree); 1049 queue_work: 1050 if (worker) { 1051 /* 1052 * We need to remove from the idle list here while 1053 * holding the lock so that the idle timer doesn't 1054 * free the worker 1055 */ 1056 if (!list_empty(&worker->idle_list)) 1057 list_del_init(&worker->idle_list); 1058 work = &worker->work; 1059 cmd_list = &worker->cmd_list; 1060 } else { 1061 work = &lo->rootcg_work; 1062 cmd_list = &lo->rootcg_cmd_list; 1063 } 1064 list_add_tail(&cmd->list_entry, cmd_list); 1065 queue_work(lo->workqueue, work); 1066 spin_unlock_irq(&lo->lo_work_lock); 1067 } 1068 1069 static void loop_update_rotational(struct loop_device *lo) 1070 { 1071 struct file *file = lo->lo_backing_file; 1072 struct inode *file_inode = file->f_mapping->host; 1073 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 1074 struct request_queue *q = lo->lo_queue; 1075 bool nonrot = true; 1076 1077 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 1078 if (file_bdev) 1079 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 1080 1081 if (nonrot) 1082 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1083 else 1084 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1085 } 1086 1087 static int 1088 loop_release_xfer(struct loop_device *lo) 1089 { 1090 int err = 0; 1091 struct loop_func_table *xfer = lo->lo_encryption; 1092 1093 if (xfer) { 1094 if (xfer->release) 1095 err = xfer->release(lo); 1096 lo->transfer = NULL; 1097 lo->lo_encryption = NULL; 1098 module_put(xfer->owner); 1099 } 1100 return err; 1101 } 1102 1103 static int 1104 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1105 const struct loop_info64 *i) 1106 { 1107 int err = 0; 1108 1109 if (xfer) { 1110 struct module *owner = xfer->owner; 1111 1112 if (!try_module_get(owner)) 1113 return -EINVAL; 1114 if (xfer->init) 1115 err = xfer->init(lo, i); 1116 if (err) 1117 module_put(owner); 1118 else 1119 lo->lo_encryption = xfer; 1120 } 1121 return err; 1122 } 1123 1124 /** 1125 * loop_set_status_from_info - configure device from loop_info 1126 * @lo: struct loop_device to configure 1127 * @info: struct loop_info64 to configure the device with 1128 * 1129 * Configures the loop device parameters according to the passed 1130 * in loop_info64 configuration. 1131 */ 1132 static int 1133 loop_set_status_from_info(struct loop_device *lo, 1134 const struct loop_info64 *info) 1135 { 1136 int err; 1137 struct loop_func_table *xfer; 1138 kuid_t uid = current_uid(); 1139 1140 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1141 return -EINVAL; 1142 1143 err = loop_release_xfer(lo); 1144 if (err) 1145 return err; 1146 1147 if (info->lo_encrypt_type) { 1148 unsigned int type = info->lo_encrypt_type; 1149 1150 if (type >= MAX_LO_CRYPT) 1151 return -EINVAL; 1152 xfer = xfer_funcs[type]; 1153 if (xfer == NULL) 1154 return -EINVAL; 1155 } else 1156 xfer = NULL; 1157 1158 err = loop_init_xfer(lo, xfer, info); 1159 if (err) 1160 return err; 1161 1162 lo->lo_offset = info->lo_offset; 1163 lo->lo_sizelimit = info->lo_sizelimit; 1164 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1165 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1166 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1167 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1168 1169 if (!xfer) 1170 xfer = &none_funcs; 1171 lo->transfer = xfer->transfer; 1172 lo->ioctl = xfer->ioctl; 1173 1174 lo->lo_flags = info->lo_flags; 1175 1176 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1177 lo->lo_init[0] = info->lo_init[0]; 1178 lo->lo_init[1] = info->lo_init[1]; 1179 if (info->lo_encrypt_key_size) { 1180 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1181 info->lo_encrypt_key_size); 1182 lo->lo_key_owner = uid; 1183 } 1184 1185 return 0; 1186 } 1187 1188 static int loop_configure(struct loop_device *lo, fmode_t mode, 1189 struct block_device *bdev, 1190 const struct loop_config *config) 1191 { 1192 struct file *file = fget(config->fd); 1193 struct inode *inode; 1194 struct address_space *mapping; 1195 int error; 1196 loff_t size; 1197 bool partscan; 1198 unsigned short bsize; 1199 bool is_loop; 1200 1201 if (!file) 1202 return -EBADF; 1203 is_loop = is_loop_device(file); 1204 1205 /* This is safe, since we have a reference from open(). */ 1206 __module_get(THIS_MODULE); 1207 1208 /* 1209 * If we don't hold exclusive handle for the device, upgrade to it 1210 * here to avoid changing device under exclusive owner. 1211 */ 1212 if (!(mode & FMODE_EXCL)) { 1213 error = bd_prepare_to_claim(bdev, loop_configure); 1214 if (error) 1215 goto out_putf; 1216 } 1217 1218 error = loop_global_lock_killable(lo, is_loop); 1219 if (error) 1220 goto out_bdev; 1221 1222 error = -EBUSY; 1223 if (lo->lo_state != Lo_unbound) 1224 goto out_unlock; 1225 1226 error = loop_validate_file(file, bdev); 1227 if (error) 1228 goto out_unlock; 1229 1230 mapping = file->f_mapping; 1231 inode = mapping->host; 1232 1233 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1234 error = -EINVAL; 1235 goto out_unlock; 1236 } 1237 1238 if (config->block_size) { 1239 error = loop_validate_block_size(config->block_size); 1240 if (error) 1241 goto out_unlock; 1242 } 1243 1244 error = loop_set_status_from_info(lo, &config->info); 1245 if (error) 1246 goto out_unlock; 1247 1248 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1249 !file->f_op->write_iter) 1250 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1251 1252 lo->workqueue = alloc_workqueue("loop%d", 1253 WQ_UNBOUND | WQ_FREEZABLE, 1254 0, 1255 lo->lo_number); 1256 if (!lo->workqueue) { 1257 error = -ENOMEM; 1258 goto out_unlock; 1259 } 1260 1261 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1262 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1263 1264 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 1265 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 1266 INIT_LIST_HEAD(&lo->idle_worker_list); 1267 lo->worker_tree = RB_ROOT; 1268 timer_setup(&lo->timer, loop_free_idle_workers, 1269 TIMER_DEFERRABLE); 1270 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1271 lo->lo_device = bdev; 1272 lo->lo_backing_file = file; 1273 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1274 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1275 1276 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1277 blk_queue_write_cache(lo->lo_queue, true, false); 1278 1279 if (config->block_size) 1280 bsize = config->block_size; 1281 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1282 /* In case of direct I/O, match underlying block size */ 1283 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1284 else 1285 bsize = 512; 1286 1287 blk_queue_logical_block_size(lo->lo_queue, bsize); 1288 blk_queue_physical_block_size(lo->lo_queue, bsize); 1289 blk_queue_io_min(lo->lo_queue, bsize); 1290 1291 loop_config_discard(lo); 1292 loop_update_rotational(lo); 1293 loop_update_dio(lo); 1294 loop_sysfs_init(lo); 1295 1296 size = get_loop_size(lo, file); 1297 loop_set_size(lo, size); 1298 1299 /* Order wrt reading lo_state in loop_validate_file(). */ 1300 wmb(); 1301 1302 lo->lo_state = Lo_bound; 1303 if (part_shift) 1304 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1305 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1306 if (partscan) 1307 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1308 1309 loop_global_unlock(lo, is_loop); 1310 if (partscan) 1311 loop_reread_partitions(lo); 1312 if (!(mode & FMODE_EXCL)) 1313 bd_abort_claiming(bdev, loop_configure); 1314 return 0; 1315 1316 out_unlock: 1317 loop_global_unlock(lo, is_loop); 1318 out_bdev: 1319 if (!(mode & FMODE_EXCL)) 1320 bd_abort_claiming(bdev, loop_configure); 1321 out_putf: 1322 fput(file); 1323 /* This is safe: open() is still holding a reference. */ 1324 module_put(THIS_MODULE); 1325 return error; 1326 } 1327 1328 static int __loop_clr_fd(struct loop_device *lo, bool release) 1329 { 1330 struct file *filp = NULL; 1331 gfp_t gfp = lo->old_gfp_mask; 1332 struct block_device *bdev = lo->lo_device; 1333 int err = 0; 1334 bool partscan = false; 1335 int lo_number; 1336 struct loop_worker *pos, *worker; 1337 1338 /* 1339 * Flush loop_configure() and loop_change_fd(). It is acceptable for 1340 * loop_validate_file() to succeed, for actual clear operation has not 1341 * started yet. 1342 */ 1343 mutex_lock(&loop_validate_mutex); 1344 mutex_unlock(&loop_validate_mutex); 1345 /* 1346 * loop_validate_file() now fails because l->lo_state != Lo_bound 1347 * became visible. 1348 */ 1349 1350 mutex_lock(&lo->lo_mutex); 1351 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1352 err = -ENXIO; 1353 goto out_unlock; 1354 } 1355 1356 filp = lo->lo_backing_file; 1357 if (filp == NULL) { 1358 err = -EINVAL; 1359 goto out_unlock; 1360 } 1361 1362 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1363 blk_queue_write_cache(lo->lo_queue, false, false); 1364 1365 /* freeze request queue during the transition */ 1366 blk_mq_freeze_queue(lo->lo_queue); 1367 1368 destroy_workqueue(lo->workqueue); 1369 spin_lock_irq(&lo->lo_work_lock); 1370 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1371 idle_list) { 1372 list_del(&worker->idle_list); 1373 rb_erase(&worker->rb_node, &lo->worker_tree); 1374 css_put(worker->blkcg_css); 1375 kfree(worker); 1376 } 1377 spin_unlock_irq(&lo->lo_work_lock); 1378 del_timer_sync(&lo->timer); 1379 1380 spin_lock_irq(&lo->lo_lock); 1381 lo->lo_backing_file = NULL; 1382 spin_unlock_irq(&lo->lo_lock); 1383 1384 loop_release_xfer(lo); 1385 lo->transfer = NULL; 1386 lo->ioctl = NULL; 1387 lo->lo_device = NULL; 1388 lo->lo_encryption = NULL; 1389 lo->lo_offset = 0; 1390 lo->lo_sizelimit = 0; 1391 lo->lo_encrypt_key_size = 0; 1392 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1393 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1394 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1395 blk_queue_logical_block_size(lo->lo_queue, 512); 1396 blk_queue_physical_block_size(lo->lo_queue, 512); 1397 blk_queue_io_min(lo->lo_queue, 512); 1398 if (bdev) { 1399 invalidate_bdev(bdev); 1400 bdev->bd_inode->i_mapping->wb_err = 0; 1401 } 1402 set_capacity(lo->lo_disk, 0); 1403 loop_sysfs_exit(lo); 1404 if (bdev) { 1405 /* let user-space know about this change */ 1406 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1407 } 1408 mapping_set_gfp_mask(filp->f_mapping, gfp); 1409 /* This is safe: open() is still holding a reference. */ 1410 module_put(THIS_MODULE); 1411 blk_mq_unfreeze_queue(lo->lo_queue); 1412 1413 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1414 lo_number = lo->lo_number; 1415 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1416 out_unlock: 1417 mutex_unlock(&lo->lo_mutex); 1418 if (partscan) { 1419 /* 1420 * open_mutex has been held already in release path, so don't 1421 * acquire it if this function is called in such case. 1422 * 1423 * If the reread partition isn't from release path, lo_refcnt 1424 * must be at least one and it can only become zero when the 1425 * current holder is released. 1426 */ 1427 if (!release) 1428 mutex_lock(&lo->lo_disk->open_mutex); 1429 err = bdev_disk_changed(lo->lo_disk, false); 1430 if (!release) 1431 mutex_unlock(&lo->lo_disk->open_mutex); 1432 if (err) 1433 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1434 __func__, lo_number, err); 1435 /* Device is gone, no point in returning error */ 1436 err = 0; 1437 } 1438 1439 /* 1440 * lo->lo_state is set to Lo_unbound here after above partscan has 1441 * finished. 1442 * 1443 * There cannot be anybody else entering __loop_clr_fd() as 1444 * lo->lo_backing_file is already cleared and Lo_rundown state 1445 * protects us from all the other places trying to change the 'lo' 1446 * device. 1447 */ 1448 mutex_lock(&lo->lo_mutex); 1449 lo->lo_flags = 0; 1450 if (!part_shift) 1451 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1452 lo->lo_state = Lo_unbound; 1453 mutex_unlock(&lo->lo_mutex); 1454 1455 /* 1456 * Need not hold lo_mutex to fput backing file. Calling fput holding 1457 * lo_mutex triggers a circular lock dependency possibility warning as 1458 * fput can take open_mutex which is usually taken before lo_mutex. 1459 */ 1460 if (filp) 1461 fput(filp); 1462 return err; 1463 } 1464 1465 static int loop_clr_fd(struct loop_device *lo) 1466 { 1467 int err; 1468 1469 err = mutex_lock_killable(&lo->lo_mutex); 1470 if (err) 1471 return err; 1472 if (lo->lo_state != Lo_bound) { 1473 mutex_unlock(&lo->lo_mutex); 1474 return -ENXIO; 1475 } 1476 /* 1477 * If we've explicitly asked to tear down the loop device, 1478 * and it has an elevated reference count, set it for auto-teardown when 1479 * the last reference goes away. This stops $!~#$@ udev from 1480 * preventing teardown because it decided that it needs to run blkid on 1481 * the loopback device whenever they appear. xfstests is notorious for 1482 * failing tests because blkid via udev races with a losetup 1483 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1484 * command to fail with EBUSY. 1485 */ 1486 if (atomic_read(&lo->lo_refcnt) > 1) { 1487 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1488 mutex_unlock(&lo->lo_mutex); 1489 return 0; 1490 } 1491 lo->lo_state = Lo_rundown; 1492 mutex_unlock(&lo->lo_mutex); 1493 1494 return __loop_clr_fd(lo, false); 1495 } 1496 1497 static int 1498 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1499 { 1500 int err; 1501 kuid_t uid = current_uid(); 1502 int prev_lo_flags; 1503 bool partscan = false; 1504 bool size_changed = false; 1505 1506 err = mutex_lock_killable(&lo->lo_mutex); 1507 if (err) 1508 return err; 1509 if (lo->lo_encrypt_key_size && 1510 !uid_eq(lo->lo_key_owner, uid) && 1511 !capable(CAP_SYS_ADMIN)) { 1512 err = -EPERM; 1513 goto out_unlock; 1514 } 1515 if (lo->lo_state != Lo_bound) { 1516 err = -ENXIO; 1517 goto out_unlock; 1518 } 1519 1520 if (lo->lo_offset != info->lo_offset || 1521 lo->lo_sizelimit != info->lo_sizelimit) { 1522 size_changed = true; 1523 sync_blockdev(lo->lo_device); 1524 invalidate_bdev(lo->lo_device); 1525 } 1526 1527 /* I/O need to be drained during transfer transition */ 1528 blk_mq_freeze_queue(lo->lo_queue); 1529 1530 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1531 /* If any pages were dirtied after invalidate_bdev(), try again */ 1532 err = -EAGAIN; 1533 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1534 __func__, lo->lo_number, lo->lo_file_name, 1535 lo->lo_device->bd_inode->i_mapping->nrpages); 1536 goto out_unfreeze; 1537 } 1538 1539 prev_lo_flags = lo->lo_flags; 1540 1541 err = loop_set_status_from_info(lo, info); 1542 if (err) 1543 goto out_unfreeze; 1544 1545 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1546 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1547 /* For those flags, use the previous values instead */ 1548 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1549 /* For flags that can't be cleared, use previous values too */ 1550 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1551 1552 if (size_changed) { 1553 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1554 lo->lo_backing_file); 1555 loop_set_size(lo, new_size); 1556 } 1557 1558 loop_config_discard(lo); 1559 1560 /* update dio if lo_offset or transfer is changed */ 1561 __loop_update_dio(lo, lo->use_dio); 1562 1563 out_unfreeze: 1564 blk_mq_unfreeze_queue(lo->lo_queue); 1565 1566 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1567 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1568 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1569 partscan = true; 1570 } 1571 out_unlock: 1572 mutex_unlock(&lo->lo_mutex); 1573 if (partscan) 1574 loop_reread_partitions(lo); 1575 1576 return err; 1577 } 1578 1579 static int 1580 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1581 { 1582 struct path path; 1583 struct kstat stat; 1584 int ret; 1585 1586 ret = mutex_lock_killable(&lo->lo_mutex); 1587 if (ret) 1588 return ret; 1589 if (lo->lo_state != Lo_bound) { 1590 mutex_unlock(&lo->lo_mutex); 1591 return -ENXIO; 1592 } 1593 1594 memset(info, 0, sizeof(*info)); 1595 info->lo_number = lo->lo_number; 1596 info->lo_offset = lo->lo_offset; 1597 info->lo_sizelimit = lo->lo_sizelimit; 1598 info->lo_flags = lo->lo_flags; 1599 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1600 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1601 info->lo_encrypt_type = 1602 lo->lo_encryption ? lo->lo_encryption->number : 0; 1603 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1604 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1605 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1606 lo->lo_encrypt_key_size); 1607 } 1608 1609 /* Drop lo_mutex while we call into the filesystem. */ 1610 path = lo->lo_backing_file->f_path; 1611 path_get(&path); 1612 mutex_unlock(&lo->lo_mutex); 1613 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1614 if (!ret) { 1615 info->lo_device = huge_encode_dev(stat.dev); 1616 info->lo_inode = stat.ino; 1617 info->lo_rdevice = huge_encode_dev(stat.rdev); 1618 } 1619 path_put(&path); 1620 return ret; 1621 } 1622 1623 static void 1624 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1625 { 1626 memset(info64, 0, sizeof(*info64)); 1627 info64->lo_number = info->lo_number; 1628 info64->lo_device = info->lo_device; 1629 info64->lo_inode = info->lo_inode; 1630 info64->lo_rdevice = info->lo_rdevice; 1631 info64->lo_offset = info->lo_offset; 1632 info64->lo_sizelimit = 0; 1633 info64->lo_encrypt_type = info->lo_encrypt_type; 1634 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1635 info64->lo_flags = info->lo_flags; 1636 info64->lo_init[0] = info->lo_init[0]; 1637 info64->lo_init[1] = info->lo_init[1]; 1638 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1639 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1640 else 1641 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1642 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1643 } 1644 1645 static int 1646 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1647 { 1648 memset(info, 0, sizeof(*info)); 1649 info->lo_number = info64->lo_number; 1650 info->lo_device = info64->lo_device; 1651 info->lo_inode = info64->lo_inode; 1652 info->lo_rdevice = info64->lo_rdevice; 1653 info->lo_offset = info64->lo_offset; 1654 info->lo_encrypt_type = info64->lo_encrypt_type; 1655 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1656 info->lo_flags = info64->lo_flags; 1657 info->lo_init[0] = info64->lo_init[0]; 1658 info->lo_init[1] = info64->lo_init[1]; 1659 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1660 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1661 else 1662 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1663 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1664 1665 /* error in case values were truncated */ 1666 if (info->lo_device != info64->lo_device || 1667 info->lo_rdevice != info64->lo_rdevice || 1668 info->lo_inode != info64->lo_inode || 1669 info->lo_offset != info64->lo_offset) 1670 return -EOVERFLOW; 1671 1672 return 0; 1673 } 1674 1675 static int 1676 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1677 { 1678 struct loop_info info; 1679 struct loop_info64 info64; 1680 1681 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1682 return -EFAULT; 1683 loop_info64_from_old(&info, &info64); 1684 return loop_set_status(lo, &info64); 1685 } 1686 1687 static int 1688 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1689 { 1690 struct loop_info64 info64; 1691 1692 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1693 return -EFAULT; 1694 return loop_set_status(lo, &info64); 1695 } 1696 1697 static int 1698 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1699 struct loop_info info; 1700 struct loop_info64 info64; 1701 int err; 1702 1703 if (!arg) 1704 return -EINVAL; 1705 err = loop_get_status(lo, &info64); 1706 if (!err) 1707 err = loop_info64_to_old(&info64, &info); 1708 if (!err && copy_to_user(arg, &info, sizeof(info))) 1709 err = -EFAULT; 1710 1711 return err; 1712 } 1713 1714 static int 1715 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1716 struct loop_info64 info64; 1717 int err; 1718 1719 if (!arg) 1720 return -EINVAL; 1721 err = loop_get_status(lo, &info64); 1722 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1723 err = -EFAULT; 1724 1725 return err; 1726 } 1727 1728 static int loop_set_capacity(struct loop_device *lo) 1729 { 1730 loff_t size; 1731 1732 if (unlikely(lo->lo_state != Lo_bound)) 1733 return -ENXIO; 1734 1735 size = get_loop_size(lo, lo->lo_backing_file); 1736 loop_set_size(lo, size); 1737 1738 return 0; 1739 } 1740 1741 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1742 { 1743 int error = -ENXIO; 1744 if (lo->lo_state != Lo_bound) 1745 goto out; 1746 1747 __loop_update_dio(lo, !!arg); 1748 if (lo->use_dio == !!arg) 1749 return 0; 1750 error = -EINVAL; 1751 out: 1752 return error; 1753 } 1754 1755 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1756 { 1757 int err = 0; 1758 1759 if (lo->lo_state != Lo_bound) 1760 return -ENXIO; 1761 1762 err = loop_validate_block_size(arg); 1763 if (err) 1764 return err; 1765 1766 if (lo->lo_queue->limits.logical_block_size == arg) 1767 return 0; 1768 1769 sync_blockdev(lo->lo_device); 1770 invalidate_bdev(lo->lo_device); 1771 1772 blk_mq_freeze_queue(lo->lo_queue); 1773 1774 /* invalidate_bdev should have truncated all the pages */ 1775 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1776 err = -EAGAIN; 1777 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1778 __func__, lo->lo_number, lo->lo_file_name, 1779 lo->lo_device->bd_inode->i_mapping->nrpages); 1780 goto out_unfreeze; 1781 } 1782 1783 blk_queue_logical_block_size(lo->lo_queue, arg); 1784 blk_queue_physical_block_size(lo->lo_queue, arg); 1785 blk_queue_io_min(lo->lo_queue, arg); 1786 loop_update_dio(lo); 1787 out_unfreeze: 1788 blk_mq_unfreeze_queue(lo->lo_queue); 1789 1790 return err; 1791 } 1792 1793 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1794 unsigned long arg) 1795 { 1796 int err; 1797 1798 err = mutex_lock_killable(&lo->lo_mutex); 1799 if (err) 1800 return err; 1801 switch (cmd) { 1802 case LOOP_SET_CAPACITY: 1803 err = loop_set_capacity(lo); 1804 break; 1805 case LOOP_SET_DIRECT_IO: 1806 err = loop_set_dio(lo, arg); 1807 break; 1808 case LOOP_SET_BLOCK_SIZE: 1809 err = loop_set_block_size(lo, arg); 1810 break; 1811 default: 1812 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1813 } 1814 mutex_unlock(&lo->lo_mutex); 1815 return err; 1816 } 1817 1818 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1819 unsigned int cmd, unsigned long arg) 1820 { 1821 struct loop_device *lo = bdev->bd_disk->private_data; 1822 void __user *argp = (void __user *) arg; 1823 int err; 1824 1825 switch (cmd) { 1826 case LOOP_SET_FD: { 1827 /* 1828 * Legacy case - pass in a zeroed out struct loop_config with 1829 * only the file descriptor set , which corresponds with the 1830 * default parameters we'd have used otherwise. 1831 */ 1832 struct loop_config config; 1833 1834 memset(&config, 0, sizeof(config)); 1835 config.fd = arg; 1836 1837 return loop_configure(lo, mode, bdev, &config); 1838 } 1839 case LOOP_CONFIGURE: { 1840 struct loop_config config; 1841 1842 if (copy_from_user(&config, argp, sizeof(config))) 1843 return -EFAULT; 1844 1845 return loop_configure(lo, mode, bdev, &config); 1846 } 1847 case LOOP_CHANGE_FD: 1848 return loop_change_fd(lo, bdev, arg); 1849 case LOOP_CLR_FD: 1850 return loop_clr_fd(lo); 1851 case LOOP_SET_STATUS: 1852 err = -EPERM; 1853 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1854 err = loop_set_status_old(lo, argp); 1855 } 1856 break; 1857 case LOOP_GET_STATUS: 1858 return loop_get_status_old(lo, argp); 1859 case LOOP_SET_STATUS64: 1860 err = -EPERM; 1861 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1862 err = loop_set_status64(lo, argp); 1863 } 1864 break; 1865 case LOOP_GET_STATUS64: 1866 return loop_get_status64(lo, argp); 1867 case LOOP_SET_CAPACITY: 1868 case LOOP_SET_DIRECT_IO: 1869 case LOOP_SET_BLOCK_SIZE: 1870 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1871 return -EPERM; 1872 fallthrough; 1873 default: 1874 err = lo_simple_ioctl(lo, cmd, arg); 1875 break; 1876 } 1877 1878 return err; 1879 } 1880 1881 #ifdef CONFIG_COMPAT 1882 struct compat_loop_info { 1883 compat_int_t lo_number; /* ioctl r/o */ 1884 compat_dev_t lo_device; /* ioctl r/o */ 1885 compat_ulong_t lo_inode; /* ioctl r/o */ 1886 compat_dev_t lo_rdevice; /* ioctl r/o */ 1887 compat_int_t lo_offset; 1888 compat_int_t lo_encrypt_type; 1889 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1890 compat_int_t lo_flags; /* ioctl r/o */ 1891 char lo_name[LO_NAME_SIZE]; 1892 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1893 compat_ulong_t lo_init[2]; 1894 char reserved[4]; 1895 }; 1896 1897 /* 1898 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1899 * - noinlined to reduce stack space usage in main part of driver 1900 */ 1901 static noinline int 1902 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1903 struct loop_info64 *info64) 1904 { 1905 struct compat_loop_info info; 1906 1907 if (copy_from_user(&info, arg, sizeof(info))) 1908 return -EFAULT; 1909 1910 memset(info64, 0, sizeof(*info64)); 1911 info64->lo_number = info.lo_number; 1912 info64->lo_device = info.lo_device; 1913 info64->lo_inode = info.lo_inode; 1914 info64->lo_rdevice = info.lo_rdevice; 1915 info64->lo_offset = info.lo_offset; 1916 info64->lo_sizelimit = 0; 1917 info64->lo_encrypt_type = info.lo_encrypt_type; 1918 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1919 info64->lo_flags = info.lo_flags; 1920 info64->lo_init[0] = info.lo_init[0]; 1921 info64->lo_init[1] = info.lo_init[1]; 1922 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1923 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1924 else 1925 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1926 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1927 return 0; 1928 } 1929 1930 /* 1931 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1932 * - noinlined to reduce stack space usage in main part of driver 1933 */ 1934 static noinline int 1935 loop_info64_to_compat(const struct loop_info64 *info64, 1936 struct compat_loop_info __user *arg) 1937 { 1938 struct compat_loop_info info; 1939 1940 memset(&info, 0, sizeof(info)); 1941 info.lo_number = info64->lo_number; 1942 info.lo_device = info64->lo_device; 1943 info.lo_inode = info64->lo_inode; 1944 info.lo_rdevice = info64->lo_rdevice; 1945 info.lo_offset = info64->lo_offset; 1946 info.lo_encrypt_type = info64->lo_encrypt_type; 1947 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1948 info.lo_flags = info64->lo_flags; 1949 info.lo_init[0] = info64->lo_init[0]; 1950 info.lo_init[1] = info64->lo_init[1]; 1951 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1952 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1953 else 1954 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1955 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1956 1957 /* error in case values were truncated */ 1958 if (info.lo_device != info64->lo_device || 1959 info.lo_rdevice != info64->lo_rdevice || 1960 info.lo_inode != info64->lo_inode || 1961 info.lo_offset != info64->lo_offset || 1962 info.lo_init[0] != info64->lo_init[0] || 1963 info.lo_init[1] != info64->lo_init[1]) 1964 return -EOVERFLOW; 1965 1966 if (copy_to_user(arg, &info, sizeof(info))) 1967 return -EFAULT; 1968 return 0; 1969 } 1970 1971 static int 1972 loop_set_status_compat(struct loop_device *lo, 1973 const struct compat_loop_info __user *arg) 1974 { 1975 struct loop_info64 info64; 1976 int ret; 1977 1978 ret = loop_info64_from_compat(arg, &info64); 1979 if (ret < 0) 1980 return ret; 1981 return loop_set_status(lo, &info64); 1982 } 1983 1984 static int 1985 loop_get_status_compat(struct loop_device *lo, 1986 struct compat_loop_info __user *arg) 1987 { 1988 struct loop_info64 info64; 1989 int err; 1990 1991 if (!arg) 1992 return -EINVAL; 1993 err = loop_get_status(lo, &info64); 1994 if (!err) 1995 err = loop_info64_to_compat(&info64, arg); 1996 return err; 1997 } 1998 1999 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 2000 unsigned int cmd, unsigned long arg) 2001 { 2002 struct loop_device *lo = bdev->bd_disk->private_data; 2003 int err; 2004 2005 switch(cmd) { 2006 case LOOP_SET_STATUS: 2007 err = loop_set_status_compat(lo, 2008 (const struct compat_loop_info __user *)arg); 2009 break; 2010 case LOOP_GET_STATUS: 2011 err = loop_get_status_compat(lo, 2012 (struct compat_loop_info __user *)arg); 2013 break; 2014 case LOOP_SET_CAPACITY: 2015 case LOOP_CLR_FD: 2016 case LOOP_GET_STATUS64: 2017 case LOOP_SET_STATUS64: 2018 case LOOP_CONFIGURE: 2019 arg = (unsigned long) compat_ptr(arg); 2020 fallthrough; 2021 case LOOP_SET_FD: 2022 case LOOP_CHANGE_FD: 2023 case LOOP_SET_BLOCK_SIZE: 2024 case LOOP_SET_DIRECT_IO: 2025 err = lo_ioctl(bdev, mode, cmd, arg); 2026 break; 2027 default: 2028 err = -ENOIOCTLCMD; 2029 break; 2030 } 2031 return err; 2032 } 2033 #endif 2034 2035 static int lo_open(struct block_device *bdev, fmode_t mode) 2036 { 2037 struct loop_device *lo = bdev->bd_disk->private_data; 2038 int err; 2039 2040 err = mutex_lock_killable(&lo->lo_mutex); 2041 if (err) 2042 return err; 2043 if (lo->lo_state == Lo_deleting) 2044 err = -ENXIO; 2045 else 2046 atomic_inc(&lo->lo_refcnt); 2047 mutex_unlock(&lo->lo_mutex); 2048 return err; 2049 } 2050 2051 static void lo_release(struct gendisk *disk, fmode_t mode) 2052 { 2053 struct loop_device *lo = disk->private_data; 2054 2055 mutex_lock(&lo->lo_mutex); 2056 if (atomic_dec_return(&lo->lo_refcnt)) 2057 goto out_unlock; 2058 2059 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 2060 if (lo->lo_state != Lo_bound) 2061 goto out_unlock; 2062 lo->lo_state = Lo_rundown; 2063 mutex_unlock(&lo->lo_mutex); 2064 /* 2065 * In autoclear mode, stop the loop thread 2066 * and remove configuration after last close. 2067 */ 2068 __loop_clr_fd(lo, true); 2069 return; 2070 } else if (lo->lo_state == Lo_bound) { 2071 /* 2072 * Otherwise keep thread (if running) and config, 2073 * but flush possible ongoing bios in thread. 2074 */ 2075 blk_mq_freeze_queue(lo->lo_queue); 2076 blk_mq_unfreeze_queue(lo->lo_queue); 2077 } 2078 2079 out_unlock: 2080 mutex_unlock(&lo->lo_mutex); 2081 } 2082 2083 static const struct block_device_operations lo_fops = { 2084 .owner = THIS_MODULE, 2085 .open = lo_open, 2086 .release = lo_release, 2087 .ioctl = lo_ioctl, 2088 #ifdef CONFIG_COMPAT 2089 .compat_ioctl = lo_compat_ioctl, 2090 #endif 2091 }; 2092 2093 /* 2094 * And now the modules code and kernel interface. 2095 */ 2096 static int max_loop; 2097 module_param(max_loop, int, 0444); 2098 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 2099 module_param(max_part, int, 0444); 2100 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 2101 MODULE_LICENSE("GPL"); 2102 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 2103 2104 int loop_register_transfer(struct loop_func_table *funcs) 2105 { 2106 unsigned int n = funcs->number; 2107 2108 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 2109 return -EINVAL; 2110 xfer_funcs[n] = funcs; 2111 return 0; 2112 } 2113 2114 int loop_unregister_transfer(int number) 2115 { 2116 unsigned int n = number; 2117 struct loop_func_table *xfer; 2118 2119 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 2120 return -EINVAL; 2121 /* 2122 * This function is called from only cleanup_cryptoloop(). 2123 * Given that each loop device that has a transfer enabled holds a 2124 * reference to the module implementing it we should never get here 2125 * with a transfer that is set (unless forced module unloading is 2126 * requested). Thus, check module's refcount and warn if this is 2127 * not a clean unloading. 2128 */ 2129 #ifdef CONFIG_MODULE_UNLOAD 2130 if (xfer->owner && module_refcount(xfer->owner) != -1) 2131 pr_err("Danger! Unregistering an in use transfer function.\n"); 2132 #endif 2133 2134 xfer_funcs[n] = NULL; 2135 return 0; 2136 } 2137 2138 EXPORT_SYMBOL(loop_register_transfer); 2139 EXPORT_SYMBOL(loop_unregister_transfer); 2140 2141 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 2142 const struct blk_mq_queue_data *bd) 2143 { 2144 struct request *rq = bd->rq; 2145 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2146 struct loop_device *lo = rq->q->queuedata; 2147 2148 blk_mq_start_request(rq); 2149 2150 if (lo->lo_state != Lo_bound) 2151 return BLK_STS_IOERR; 2152 2153 switch (req_op(rq)) { 2154 case REQ_OP_FLUSH: 2155 case REQ_OP_DISCARD: 2156 case REQ_OP_WRITE_ZEROES: 2157 cmd->use_aio = false; 2158 break; 2159 default: 2160 cmd->use_aio = lo->use_dio; 2161 break; 2162 } 2163 2164 /* always use the first bio's css */ 2165 cmd->blkcg_css = NULL; 2166 cmd->memcg_css = NULL; 2167 #ifdef CONFIG_BLK_CGROUP 2168 if (rq->bio && rq->bio->bi_blkg) { 2169 cmd->blkcg_css = &bio_blkcg(rq->bio)->css; 2170 #ifdef CONFIG_MEMCG 2171 cmd->memcg_css = 2172 cgroup_get_e_css(cmd->blkcg_css->cgroup, 2173 &memory_cgrp_subsys); 2174 #endif 2175 } 2176 #endif 2177 loop_queue_work(lo, cmd); 2178 2179 return BLK_STS_OK; 2180 } 2181 2182 static void loop_handle_cmd(struct loop_cmd *cmd) 2183 { 2184 struct request *rq = blk_mq_rq_from_pdu(cmd); 2185 const bool write = op_is_write(req_op(rq)); 2186 struct loop_device *lo = rq->q->queuedata; 2187 int ret = 0; 2188 struct mem_cgroup *old_memcg = NULL; 2189 2190 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 2191 ret = -EIO; 2192 goto failed; 2193 } 2194 2195 if (cmd->blkcg_css) 2196 kthread_associate_blkcg(cmd->blkcg_css); 2197 if (cmd->memcg_css) 2198 old_memcg = set_active_memcg( 2199 mem_cgroup_from_css(cmd->memcg_css)); 2200 2201 ret = do_req_filebacked(lo, rq); 2202 2203 if (cmd->blkcg_css) 2204 kthread_associate_blkcg(NULL); 2205 2206 if (cmd->memcg_css) { 2207 set_active_memcg(old_memcg); 2208 css_put(cmd->memcg_css); 2209 } 2210 failed: 2211 /* complete non-aio request */ 2212 if (!cmd->use_aio || ret) { 2213 if (ret == -EOPNOTSUPP) 2214 cmd->ret = ret; 2215 else 2216 cmd->ret = ret ? -EIO : 0; 2217 if (likely(!blk_should_fake_timeout(rq->q))) 2218 blk_mq_complete_request(rq); 2219 } 2220 } 2221 2222 static void loop_set_timer(struct loop_device *lo) 2223 { 2224 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 2225 } 2226 2227 static void loop_process_work(struct loop_worker *worker, 2228 struct list_head *cmd_list, struct loop_device *lo) 2229 { 2230 int orig_flags = current->flags; 2231 struct loop_cmd *cmd; 2232 2233 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 2234 spin_lock_irq(&lo->lo_work_lock); 2235 while (!list_empty(cmd_list)) { 2236 cmd = container_of( 2237 cmd_list->next, struct loop_cmd, list_entry); 2238 list_del(cmd_list->next); 2239 spin_unlock_irq(&lo->lo_work_lock); 2240 2241 loop_handle_cmd(cmd); 2242 cond_resched(); 2243 2244 spin_lock_irq(&lo->lo_work_lock); 2245 } 2246 2247 /* 2248 * We only add to the idle list if there are no pending cmds 2249 * *and* the worker will not run again which ensures that it 2250 * is safe to free any worker on the idle list 2251 */ 2252 if (worker && !work_pending(&worker->work)) { 2253 worker->last_ran_at = jiffies; 2254 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 2255 loop_set_timer(lo); 2256 } 2257 spin_unlock_irq(&lo->lo_work_lock); 2258 current->flags = orig_flags; 2259 } 2260 2261 static void loop_workfn(struct work_struct *work) 2262 { 2263 struct loop_worker *worker = 2264 container_of(work, struct loop_worker, work); 2265 loop_process_work(worker, &worker->cmd_list, worker->lo); 2266 } 2267 2268 static void loop_rootcg_workfn(struct work_struct *work) 2269 { 2270 struct loop_device *lo = 2271 container_of(work, struct loop_device, rootcg_work); 2272 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 2273 } 2274 2275 static void loop_free_idle_workers(struct timer_list *timer) 2276 { 2277 struct loop_device *lo = container_of(timer, struct loop_device, timer); 2278 struct loop_worker *pos, *worker; 2279 2280 spin_lock_irq(&lo->lo_work_lock); 2281 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 2282 idle_list) { 2283 if (time_is_after_jiffies(worker->last_ran_at + 2284 LOOP_IDLE_WORKER_TIMEOUT)) 2285 break; 2286 list_del(&worker->idle_list); 2287 rb_erase(&worker->rb_node, &lo->worker_tree); 2288 css_put(worker->blkcg_css); 2289 kfree(worker); 2290 } 2291 if (!list_empty(&lo->idle_worker_list)) 2292 loop_set_timer(lo); 2293 spin_unlock_irq(&lo->lo_work_lock); 2294 } 2295 2296 static const struct blk_mq_ops loop_mq_ops = { 2297 .queue_rq = loop_queue_rq, 2298 .complete = lo_complete_rq, 2299 }; 2300 2301 static int loop_add(int i) 2302 { 2303 struct loop_device *lo; 2304 struct gendisk *disk; 2305 int err; 2306 2307 err = -ENOMEM; 2308 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2309 if (!lo) 2310 goto out; 2311 lo->lo_state = Lo_unbound; 2312 2313 err = mutex_lock_killable(&loop_ctl_mutex); 2314 if (err) 2315 goto out_free_dev; 2316 2317 /* allocate id, if @id >= 0, we're requesting that specific id */ 2318 if (i >= 0) { 2319 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2320 if (err == -ENOSPC) 2321 err = -EEXIST; 2322 } else { 2323 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2324 } 2325 mutex_unlock(&loop_ctl_mutex); 2326 if (err < 0) 2327 goto out_free_dev; 2328 i = err; 2329 2330 err = -ENOMEM; 2331 lo->tag_set.ops = &loop_mq_ops; 2332 lo->tag_set.nr_hw_queues = 1; 2333 lo->tag_set.queue_depth = 128; 2334 lo->tag_set.numa_node = NUMA_NO_NODE; 2335 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2336 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 2337 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2338 lo->tag_set.driver_data = lo; 2339 2340 err = blk_mq_alloc_tag_set(&lo->tag_set); 2341 if (err) 2342 goto out_free_idr; 2343 2344 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo); 2345 if (IS_ERR(disk)) { 2346 err = PTR_ERR(disk); 2347 goto out_cleanup_tags; 2348 } 2349 lo->lo_queue = lo->lo_disk->queue; 2350 2351 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2352 2353 /* 2354 * By default, we do buffer IO, so it doesn't make sense to enable 2355 * merge because the I/O submitted to backing file is handled page by 2356 * page. For directio mode, merge does help to dispatch bigger request 2357 * to underlayer disk. We will enable merge once directio is enabled. 2358 */ 2359 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2360 2361 /* 2362 * Disable partition scanning by default. The in-kernel partition 2363 * scanning can be requested individually per-device during its 2364 * setup. Userspace can always add and remove partitions from all 2365 * devices. The needed partition minors are allocated from the 2366 * extended minor space, the main loop device numbers will continue 2367 * to match the loop minors, regardless of the number of partitions 2368 * used. 2369 * 2370 * If max_part is given, partition scanning is globally enabled for 2371 * all loop devices. The minors for the main loop devices will be 2372 * multiples of max_part. 2373 * 2374 * Note: Global-for-all-devices, set-only-at-init, read-only module 2375 * parameteters like 'max_loop' and 'max_part' make things needlessly 2376 * complicated, are too static, inflexible and may surprise 2377 * userspace tools. Parameters like this in general should be avoided. 2378 */ 2379 if (!part_shift) 2380 disk->flags |= GENHD_FL_NO_PART_SCAN; 2381 disk->flags |= GENHD_FL_EXT_DEVT; 2382 atomic_set(&lo->lo_refcnt, 0); 2383 mutex_init(&lo->lo_mutex); 2384 lo->lo_number = i; 2385 spin_lock_init(&lo->lo_lock); 2386 spin_lock_init(&lo->lo_work_lock); 2387 disk->major = LOOP_MAJOR; 2388 disk->first_minor = i << part_shift; 2389 disk->minors = 1 << part_shift; 2390 disk->fops = &lo_fops; 2391 disk->private_data = lo; 2392 disk->queue = lo->lo_queue; 2393 disk->events = DISK_EVENT_MEDIA_CHANGE; 2394 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2395 sprintf(disk->disk_name, "loop%d", i); 2396 /* Make this loop device reachable from pathname. */ 2397 add_disk(disk); 2398 /* Show this loop device. */ 2399 mutex_lock(&loop_ctl_mutex); 2400 lo->idr_visible = true; 2401 mutex_unlock(&loop_ctl_mutex); 2402 return i; 2403 2404 out_cleanup_tags: 2405 blk_mq_free_tag_set(&lo->tag_set); 2406 out_free_idr: 2407 mutex_lock(&loop_ctl_mutex); 2408 idr_remove(&loop_index_idr, i); 2409 mutex_unlock(&loop_ctl_mutex); 2410 out_free_dev: 2411 kfree(lo); 2412 out: 2413 return err; 2414 } 2415 2416 static void loop_remove(struct loop_device *lo) 2417 { 2418 /* Make this loop device unreachable from pathname. */ 2419 del_gendisk(lo->lo_disk); 2420 blk_cleanup_disk(lo->lo_disk); 2421 blk_mq_free_tag_set(&lo->tag_set); 2422 mutex_lock(&loop_ctl_mutex); 2423 idr_remove(&loop_index_idr, lo->lo_number); 2424 mutex_unlock(&loop_ctl_mutex); 2425 /* There is no route which can find this loop device. */ 2426 mutex_destroy(&lo->lo_mutex); 2427 kfree(lo); 2428 } 2429 2430 static void loop_probe(dev_t dev) 2431 { 2432 int idx = MINOR(dev) >> part_shift; 2433 2434 if (max_loop && idx >= max_loop) 2435 return; 2436 loop_add(idx); 2437 } 2438 2439 static int loop_control_remove(int idx) 2440 { 2441 struct loop_device *lo; 2442 int ret; 2443 2444 if (idx < 0) { 2445 pr_warn("deleting an unspecified loop device is not supported.\n"); 2446 return -EINVAL; 2447 } 2448 2449 /* Hide this loop device for serialization. */ 2450 ret = mutex_lock_killable(&loop_ctl_mutex); 2451 if (ret) 2452 return ret; 2453 lo = idr_find(&loop_index_idr, idx); 2454 if (!lo || !lo->idr_visible) 2455 ret = -ENODEV; 2456 else 2457 lo->idr_visible = false; 2458 mutex_unlock(&loop_ctl_mutex); 2459 if (ret) 2460 return ret; 2461 2462 /* Check whether this loop device can be removed. */ 2463 ret = mutex_lock_killable(&lo->lo_mutex); 2464 if (ret) 2465 goto mark_visible; 2466 if (lo->lo_state != Lo_unbound || 2467 atomic_read(&lo->lo_refcnt) > 0) { 2468 mutex_unlock(&lo->lo_mutex); 2469 ret = -EBUSY; 2470 goto mark_visible; 2471 } 2472 /* Mark this loop device no longer open()-able. */ 2473 lo->lo_state = Lo_deleting; 2474 mutex_unlock(&lo->lo_mutex); 2475 2476 loop_remove(lo); 2477 return 0; 2478 2479 mark_visible: 2480 /* Show this loop device again. */ 2481 mutex_lock(&loop_ctl_mutex); 2482 lo->idr_visible = true; 2483 mutex_unlock(&loop_ctl_mutex); 2484 return ret; 2485 } 2486 2487 static int loop_control_get_free(int idx) 2488 { 2489 struct loop_device *lo; 2490 int id, ret; 2491 2492 ret = mutex_lock_killable(&loop_ctl_mutex); 2493 if (ret) 2494 return ret; 2495 idr_for_each_entry(&loop_index_idr, lo, id) { 2496 /* Hitting a race results in creating a new loop device which is harmless. */ 2497 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2498 goto found; 2499 } 2500 mutex_unlock(&loop_ctl_mutex); 2501 return loop_add(-1); 2502 found: 2503 mutex_unlock(&loop_ctl_mutex); 2504 return id; 2505 } 2506 2507 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2508 unsigned long parm) 2509 { 2510 switch (cmd) { 2511 case LOOP_CTL_ADD: 2512 return loop_add(parm); 2513 case LOOP_CTL_REMOVE: 2514 return loop_control_remove(parm); 2515 case LOOP_CTL_GET_FREE: 2516 return loop_control_get_free(parm); 2517 default: 2518 return -ENOSYS; 2519 } 2520 } 2521 2522 static const struct file_operations loop_ctl_fops = { 2523 .open = nonseekable_open, 2524 .unlocked_ioctl = loop_control_ioctl, 2525 .compat_ioctl = loop_control_ioctl, 2526 .owner = THIS_MODULE, 2527 .llseek = noop_llseek, 2528 }; 2529 2530 static struct miscdevice loop_misc = { 2531 .minor = LOOP_CTRL_MINOR, 2532 .name = "loop-control", 2533 .fops = &loop_ctl_fops, 2534 }; 2535 2536 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2537 MODULE_ALIAS("devname:loop-control"); 2538 2539 static int __init loop_init(void) 2540 { 2541 int i, nr; 2542 int err; 2543 2544 part_shift = 0; 2545 if (max_part > 0) { 2546 part_shift = fls(max_part); 2547 2548 /* 2549 * Adjust max_part according to part_shift as it is exported 2550 * to user space so that user can decide correct minor number 2551 * if [s]he want to create more devices. 2552 * 2553 * Note that -1 is required because partition 0 is reserved 2554 * for the whole disk. 2555 */ 2556 max_part = (1UL << part_shift) - 1; 2557 } 2558 2559 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2560 err = -EINVAL; 2561 goto err_out; 2562 } 2563 2564 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2565 err = -EINVAL; 2566 goto err_out; 2567 } 2568 2569 /* 2570 * If max_loop is specified, create that many devices upfront. 2571 * This also becomes a hard limit. If max_loop is not specified, 2572 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2573 * init time. Loop devices can be requested on-demand with the 2574 * /dev/loop-control interface, or be instantiated by accessing 2575 * a 'dead' device node. 2576 */ 2577 if (max_loop) 2578 nr = max_loop; 2579 else 2580 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2581 2582 err = misc_register(&loop_misc); 2583 if (err < 0) 2584 goto err_out; 2585 2586 2587 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2588 err = -EIO; 2589 goto misc_out; 2590 } 2591 2592 /* pre-create number of devices given by config or max_loop */ 2593 for (i = 0; i < nr; i++) 2594 loop_add(i); 2595 2596 printk(KERN_INFO "loop: module loaded\n"); 2597 return 0; 2598 2599 misc_out: 2600 misc_deregister(&loop_misc); 2601 err_out: 2602 return err; 2603 } 2604 2605 static void __exit loop_exit(void) 2606 { 2607 struct loop_device *lo; 2608 int id; 2609 2610 unregister_blkdev(LOOP_MAJOR, "loop"); 2611 misc_deregister(&loop_misc); 2612 2613 /* 2614 * There is no need to use loop_ctl_mutex here, for nobody else can 2615 * access loop_index_idr when this module is unloading (unless forced 2616 * module unloading is requested). If this is not a clean unloading, 2617 * we have no means to avoid kernel crash. 2618 */ 2619 idr_for_each_entry(&loop_index_idr, lo, id) 2620 loop_remove(lo); 2621 2622 idr_destroy(&loop_index_idr); 2623 } 2624 2625 module_init(loop_init); 2626 module_exit(loop_exit); 2627 2628 #ifndef MODULE 2629 static int __init max_loop_setup(char *str) 2630 { 2631 max_loop = simple_strtol(str, NULL, 0); 2632 return 1; 2633 } 2634 2635 __setup("max_loop=", max_loop_setup); 2636 #endif 2637