1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/smp_lock.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/loop.h> 68 #include <linux/compat.h> 69 #include <linux/suspend.h> 70 #include <linux/freezer.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/gfp.h> 76 #include <linux/kthread.h> 77 #include <linux/splice.h> 78 79 #include <asm/uaccess.h> 80 81 static LIST_HEAD(loop_devices); 82 static DEFINE_MUTEX(loop_devices_mutex); 83 84 static int max_part; 85 static int part_shift; 86 87 /* 88 * Transfer functions 89 */ 90 static int transfer_none(struct loop_device *lo, int cmd, 91 struct page *raw_page, unsigned raw_off, 92 struct page *loop_page, unsigned loop_off, 93 int size, sector_t real_block) 94 { 95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 97 98 if (cmd == READ) 99 memcpy(loop_buf, raw_buf, size); 100 else 101 memcpy(raw_buf, loop_buf, size); 102 103 kunmap_atomic(raw_buf, KM_USER0); 104 kunmap_atomic(loop_buf, KM_USER1); 105 cond_resched(); 106 return 0; 107 } 108 109 static int transfer_xor(struct loop_device *lo, int cmd, 110 struct page *raw_page, unsigned raw_off, 111 struct page *loop_page, unsigned loop_off, 112 int size, sector_t real_block) 113 { 114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 116 char *in, *out, *key; 117 int i, keysize; 118 119 if (cmd == READ) { 120 in = raw_buf; 121 out = loop_buf; 122 } else { 123 in = loop_buf; 124 out = raw_buf; 125 } 126 127 key = lo->lo_encrypt_key; 128 keysize = lo->lo_encrypt_key_size; 129 for (i = 0; i < size; i++) 130 *out++ = *in++ ^ key[(i & 511) % keysize]; 131 132 kunmap_atomic(raw_buf, KM_USER0); 133 kunmap_atomic(loop_buf, KM_USER1); 134 cond_resched(); 135 return 0; 136 } 137 138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 139 { 140 if (unlikely(info->lo_encrypt_key_size <= 0)) 141 return -EINVAL; 142 return 0; 143 } 144 145 static struct loop_func_table none_funcs = { 146 .number = LO_CRYPT_NONE, 147 .transfer = transfer_none, 148 }; 149 150 static struct loop_func_table xor_funcs = { 151 .number = LO_CRYPT_XOR, 152 .transfer = transfer_xor, 153 .init = xor_init 154 }; 155 156 /* xfer_funcs[0] is special - its release function is never called */ 157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 158 &none_funcs, 159 &xor_funcs 160 }; 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 loff_t size, offset, loopsize; 165 166 /* Compute loopsize in bytes */ 167 size = i_size_read(file->f_mapping->host); 168 offset = lo->lo_offset; 169 loopsize = size - offset; 170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 171 loopsize = lo->lo_sizelimit; 172 173 /* 174 * Unfortunately, if we want to do I/O on the device, 175 * the number of 512-byte sectors has to fit into a sector_t. 176 */ 177 return loopsize >> 9; 178 } 179 180 static int 181 figure_loop_size(struct loop_device *lo) 182 { 183 loff_t size = get_loop_size(lo, lo->lo_backing_file); 184 sector_t x = (sector_t)size; 185 186 if (unlikely((loff_t)x != size)) 187 return -EFBIG; 188 189 set_capacity(lo->lo_disk, x); 190 return 0; 191 } 192 193 static inline int 194 lo_do_transfer(struct loop_device *lo, int cmd, 195 struct page *rpage, unsigned roffs, 196 struct page *lpage, unsigned loffs, 197 int size, sector_t rblock) 198 { 199 if (unlikely(!lo->transfer)) 200 return 0; 201 202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 203 } 204 205 /** 206 * do_lo_send_aops - helper for writing data to a loop device 207 * 208 * This is the fast version for backing filesystems which implement the address 209 * space operations write_begin and write_end. 210 */ 211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 212 loff_t pos, struct page *unused) 213 { 214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 215 struct address_space *mapping = file->f_mapping; 216 pgoff_t index; 217 unsigned offset, bv_offs; 218 int len, ret; 219 220 mutex_lock(&mapping->host->i_mutex); 221 index = pos >> PAGE_CACHE_SHIFT; 222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 223 bv_offs = bvec->bv_offset; 224 len = bvec->bv_len; 225 while (len > 0) { 226 sector_t IV; 227 unsigned size, copied; 228 int transfer_result; 229 struct page *page; 230 void *fsdata; 231 232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 233 size = PAGE_CACHE_SIZE - offset; 234 if (size > len) 235 size = len; 236 237 ret = pagecache_write_begin(file, mapping, pos, size, 0, 238 &page, &fsdata); 239 if (ret) 240 goto fail; 241 242 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 243 bvec->bv_page, bv_offs, size, IV); 244 copied = size; 245 if (unlikely(transfer_result)) 246 copied = 0; 247 248 ret = pagecache_write_end(file, mapping, pos, size, copied, 249 page, fsdata); 250 if (ret < 0 || ret != copied) 251 goto fail; 252 253 if (unlikely(transfer_result)) 254 goto fail; 255 256 bv_offs += copied; 257 len -= copied; 258 offset = 0; 259 index++; 260 pos += copied; 261 } 262 ret = 0; 263 out: 264 mutex_unlock(&mapping->host->i_mutex); 265 return ret; 266 fail: 267 ret = -1; 268 goto out; 269 } 270 271 /** 272 * __do_lo_send_write - helper for writing data to a loop device 273 * 274 * This helper just factors out common code between do_lo_send_direct_write() 275 * and do_lo_send_write(). 276 */ 277 static int __do_lo_send_write(struct file *file, 278 u8 *buf, const int len, loff_t pos) 279 { 280 ssize_t bw; 281 mm_segment_t old_fs = get_fs(); 282 283 set_fs(get_ds()); 284 bw = file->f_op->write(file, buf, len, &pos); 285 set_fs(old_fs); 286 if (likely(bw == len)) 287 return 0; 288 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 289 (unsigned long long)pos, len); 290 if (bw >= 0) 291 bw = -EIO; 292 return bw; 293 } 294 295 /** 296 * do_lo_send_direct_write - helper for writing data to a loop device 297 * 298 * This is the fast, non-transforming version for backing filesystems which do 299 * not implement the address space operations write_begin and write_end. 300 * It uses the write file operation which should be present on all writeable 301 * filesystems. 302 */ 303 static int do_lo_send_direct_write(struct loop_device *lo, 304 struct bio_vec *bvec, loff_t pos, struct page *page) 305 { 306 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 307 kmap(bvec->bv_page) + bvec->bv_offset, 308 bvec->bv_len, pos); 309 kunmap(bvec->bv_page); 310 cond_resched(); 311 return bw; 312 } 313 314 /** 315 * do_lo_send_write - helper for writing data to a loop device 316 * 317 * This is the slow, transforming version for filesystems which do not 318 * implement the address space operations write_begin and write_end. It 319 * uses the write file operation which should be present on all writeable 320 * filesystems. 321 * 322 * Using fops->write is slower than using aops->{prepare,commit}_write in the 323 * transforming case because we need to double buffer the data as we cannot do 324 * the transformations in place as we do not have direct access to the 325 * destination pages of the backing file. 326 */ 327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 328 loff_t pos, struct page *page) 329 { 330 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 331 bvec->bv_offset, bvec->bv_len, pos >> 9); 332 if (likely(!ret)) 333 return __do_lo_send_write(lo->lo_backing_file, 334 page_address(page), bvec->bv_len, 335 pos); 336 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 337 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 338 if (ret > 0) 339 ret = -EIO; 340 return ret; 341 } 342 343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 344 { 345 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 346 struct page *page); 347 struct bio_vec *bvec; 348 struct page *page = NULL; 349 int i, ret = 0; 350 351 do_lo_send = do_lo_send_aops; 352 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 353 do_lo_send = do_lo_send_direct_write; 354 if (lo->transfer != transfer_none) { 355 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 356 if (unlikely(!page)) 357 goto fail; 358 kmap(page); 359 do_lo_send = do_lo_send_write; 360 } 361 } 362 bio_for_each_segment(bvec, bio, i) { 363 ret = do_lo_send(lo, bvec, pos, page); 364 if (ret < 0) 365 break; 366 pos += bvec->bv_len; 367 } 368 if (page) { 369 kunmap(page); 370 __free_page(page); 371 } 372 out: 373 return ret; 374 fail: 375 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 376 ret = -ENOMEM; 377 goto out; 378 } 379 380 struct lo_read_data { 381 struct loop_device *lo; 382 struct page *page; 383 unsigned offset; 384 int bsize; 385 }; 386 387 static int 388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 389 struct splice_desc *sd) 390 { 391 struct lo_read_data *p = sd->u.data; 392 struct loop_device *lo = p->lo; 393 struct page *page = buf->page; 394 sector_t IV; 395 int size, ret; 396 397 ret = buf->ops->confirm(pipe, buf); 398 if (unlikely(ret)) 399 return ret; 400 401 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 402 (buf->offset >> 9); 403 size = sd->len; 404 if (size > p->bsize) 405 size = p->bsize; 406 407 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 408 printk(KERN_ERR "loop: transfer error block %ld\n", 409 page->index); 410 size = -EINVAL; 411 } 412 413 flush_dcache_page(p->page); 414 415 if (size > 0) 416 p->offset += size; 417 418 return size; 419 } 420 421 static int 422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 423 { 424 return __splice_from_pipe(pipe, sd, lo_splice_actor); 425 } 426 427 static int 428 do_lo_receive(struct loop_device *lo, 429 struct bio_vec *bvec, int bsize, loff_t pos) 430 { 431 struct lo_read_data cookie; 432 struct splice_desc sd; 433 struct file *file; 434 long retval; 435 436 cookie.lo = lo; 437 cookie.page = bvec->bv_page; 438 cookie.offset = bvec->bv_offset; 439 cookie.bsize = bsize; 440 441 sd.len = 0; 442 sd.total_len = bvec->bv_len; 443 sd.flags = 0; 444 sd.pos = pos; 445 sd.u.data = &cookie; 446 447 file = lo->lo_backing_file; 448 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 449 450 if (retval < 0) 451 return retval; 452 453 return 0; 454 } 455 456 static int 457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 458 { 459 struct bio_vec *bvec; 460 int i, ret = 0; 461 462 bio_for_each_segment(bvec, bio, i) { 463 ret = do_lo_receive(lo, bvec, bsize, pos); 464 if (ret < 0) 465 break; 466 pos += bvec->bv_len; 467 } 468 return ret; 469 } 470 471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 472 { 473 loff_t pos; 474 int ret; 475 476 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 477 478 if (bio_rw(bio) == WRITE) { 479 int barrier = bio_barrier(bio); 480 struct file *file = lo->lo_backing_file; 481 482 if (barrier) { 483 if (unlikely(!file->f_op->fsync)) { 484 ret = -EOPNOTSUPP; 485 goto out; 486 } 487 488 ret = vfs_fsync(file, file->f_path.dentry, 0); 489 if (unlikely(ret)) { 490 ret = -EIO; 491 goto out; 492 } 493 } 494 495 ret = lo_send(lo, bio, pos); 496 497 if (barrier && !ret) { 498 ret = vfs_fsync(file, file->f_path.dentry, 0); 499 if (unlikely(ret)) 500 ret = -EIO; 501 } 502 } else 503 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 504 505 out: 506 return ret; 507 } 508 509 /* 510 * Add bio to back of pending list 511 */ 512 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 513 { 514 bio_list_add(&lo->lo_bio_list, bio); 515 } 516 517 /* 518 * Grab first pending buffer 519 */ 520 static struct bio *loop_get_bio(struct loop_device *lo) 521 { 522 return bio_list_pop(&lo->lo_bio_list); 523 } 524 525 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 526 { 527 struct loop_device *lo = q->queuedata; 528 int rw = bio_rw(old_bio); 529 530 if (rw == READA) 531 rw = READ; 532 533 BUG_ON(!lo || (rw != READ && rw != WRITE)); 534 535 spin_lock_irq(&lo->lo_lock); 536 if (lo->lo_state != Lo_bound) 537 goto out; 538 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 539 goto out; 540 loop_add_bio(lo, old_bio); 541 wake_up(&lo->lo_event); 542 spin_unlock_irq(&lo->lo_lock); 543 return 0; 544 545 out: 546 spin_unlock_irq(&lo->lo_lock); 547 bio_io_error(old_bio); 548 return 0; 549 } 550 551 /* 552 * kick off io on the underlying address space 553 */ 554 static void loop_unplug(struct request_queue *q) 555 { 556 struct loop_device *lo = q->queuedata; 557 558 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 559 blk_run_address_space(lo->lo_backing_file->f_mapping); 560 } 561 562 struct switch_request { 563 struct file *file; 564 struct completion wait; 565 }; 566 567 static void do_loop_switch(struct loop_device *, struct switch_request *); 568 569 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 570 { 571 if (unlikely(!bio->bi_bdev)) { 572 do_loop_switch(lo, bio->bi_private); 573 bio_put(bio); 574 } else { 575 int ret = do_bio_filebacked(lo, bio); 576 bio_endio(bio, ret); 577 } 578 } 579 580 /* 581 * worker thread that handles reads/writes to file backed loop devices, 582 * to avoid blocking in our make_request_fn. it also does loop decrypting 583 * on reads for block backed loop, as that is too heavy to do from 584 * b_end_io context where irqs may be disabled. 585 * 586 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 587 * calling kthread_stop(). Therefore once kthread_should_stop() is 588 * true, make_request will not place any more requests. Therefore 589 * once kthread_should_stop() is true and lo_bio is NULL, we are 590 * done with the loop. 591 */ 592 static int loop_thread(void *data) 593 { 594 struct loop_device *lo = data; 595 struct bio *bio; 596 597 set_user_nice(current, -20); 598 599 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 600 601 wait_event_interruptible(lo->lo_event, 602 !bio_list_empty(&lo->lo_bio_list) || 603 kthread_should_stop()); 604 605 if (bio_list_empty(&lo->lo_bio_list)) 606 continue; 607 spin_lock_irq(&lo->lo_lock); 608 bio = loop_get_bio(lo); 609 spin_unlock_irq(&lo->lo_lock); 610 611 BUG_ON(!bio); 612 loop_handle_bio(lo, bio); 613 } 614 615 return 0; 616 } 617 618 /* 619 * loop_switch performs the hard work of switching a backing store. 620 * First it needs to flush existing IO, it does this by sending a magic 621 * BIO down the pipe. The completion of this BIO does the actual switch. 622 */ 623 static int loop_switch(struct loop_device *lo, struct file *file) 624 { 625 struct switch_request w; 626 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 627 if (!bio) 628 return -ENOMEM; 629 init_completion(&w.wait); 630 w.file = file; 631 bio->bi_private = &w; 632 bio->bi_bdev = NULL; 633 loop_make_request(lo->lo_queue, bio); 634 wait_for_completion(&w.wait); 635 return 0; 636 } 637 638 /* 639 * Helper to flush the IOs in loop, but keeping loop thread running 640 */ 641 static int loop_flush(struct loop_device *lo) 642 { 643 /* loop not yet configured, no running thread, nothing to flush */ 644 if (!lo->lo_thread) 645 return 0; 646 647 return loop_switch(lo, NULL); 648 } 649 650 /* 651 * Do the actual switch; called from the BIO completion routine 652 */ 653 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 654 { 655 struct file *file = p->file; 656 struct file *old_file = lo->lo_backing_file; 657 struct address_space *mapping; 658 659 /* if no new file, only flush of queued bios requested */ 660 if (!file) 661 goto out; 662 663 mapping = file->f_mapping; 664 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 665 lo->lo_backing_file = file; 666 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 667 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 668 lo->old_gfp_mask = mapping_gfp_mask(mapping); 669 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 670 out: 671 complete(&p->wait); 672 } 673 674 675 /* 676 * loop_change_fd switched the backing store of a loopback device to 677 * a new file. This is useful for operating system installers to free up 678 * the original file and in High Availability environments to switch to 679 * an alternative location for the content in case of server meltdown. 680 * This can only work if the loop device is used read-only, and if the 681 * new backing store is the same size and type as the old backing store. 682 */ 683 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 684 unsigned int arg) 685 { 686 struct file *file, *old_file; 687 struct inode *inode; 688 int error; 689 690 error = -ENXIO; 691 if (lo->lo_state != Lo_bound) 692 goto out; 693 694 /* the loop device has to be read-only */ 695 error = -EINVAL; 696 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 697 goto out; 698 699 error = -EBADF; 700 file = fget(arg); 701 if (!file) 702 goto out; 703 704 inode = file->f_mapping->host; 705 old_file = lo->lo_backing_file; 706 707 error = -EINVAL; 708 709 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 710 goto out_putf; 711 712 /* size of the new backing store needs to be the same */ 713 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 714 goto out_putf; 715 716 /* and ... switch */ 717 error = loop_switch(lo, file); 718 if (error) 719 goto out_putf; 720 721 fput(old_file); 722 if (max_part > 0) 723 ioctl_by_bdev(bdev, BLKRRPART, 0); 724 return 0; 725 726 out_putf: 727 fput(file); 728 out: 729 return error; 730 } 731 732 static inline int is_loop_device(struct file *file) 733 { 734 struct inode *i = file->f_mapping->host; 735 736 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 737 } 738 739 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 740 struct block_device *bdev, unsigned int arg) 741 { 742 struct file *file, *f; 743 struct inode *inode; 744 struct address_space *mapping; 745 unsigned lo_blocksize; 746 int lo_flags = 0; 747 int error; 748 loff_t size; 749 750 /* This is safe, since we have a reference from open(). */ 751 __module_get(THIS_MODULE); 752 753 error = -EBADF; 754 file = fget(arg); 755 if (!file) 756 goto out; 757 758 error = -EBUSY; 759 if (lo->lo_state != Lo_unbound) 760 goto out_putf; 761 762 /* Avoid recursion */ 763 f = file; 764 while (is_loop_device(f)) { 765 struct loop_device *l; 766 767 if (f->f_mapping->host->i_bdev == bdev) 768 goto out_putf; 769 770 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 771 if (l->lo_state == Lo_unbound) { 772 error = -EINVAL; 773 goto out_putf; 774 } 775 f = l->lo_backing_file; 776 } 777 778 mapping = file->f_mapping; 779 inode = mapping->host; 780 781 if (!(file->f_mode & FMODE_WRITE)) 782 lo_flags |= LO_FLAGS_READ_ONLY; 783 784 error = -EINVAL; 785 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 786 const struct address_space_operations *aops = mapping->a_ops; 787 788 if (aops->write_begin) 789 lo_flags |= LO_FLAGS_USE_AOPS; 790 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 791 lo_flags |= LO_FLAGS_READ_ONLY; 792 793 lo_blocksize = S_ISBLK(inode->i_mode) ? 794 inode->i_bdev->bd_block_size : PAGE_SIZE; 795 796 error = 0; 797 } else { 798 goto out_putf; 799 } 800 801 size = get_loop_size(lo, file); 802 803 if ((loff_t)(sector_t)size != size) { 804 error = -EFBIG; 805 goto out_putf; 806 } 807 808 if (!(mode & FMODE_WRITE)) 809 lo_flags |= LO_FLAGS_READ_ONLY; 810 811 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 812 813 lo->lo_blocksize = lo_blocksize; 814 lo->lo_device = bdev; 815 lo->lo_flags = lo_flags; 816 lo->lo_backing_file = file; 817 lo->transfer = transfer_none; 818 lo->ioctl = NULL; 819 lo->lo_sizelimit = 0; 820 lo->old_gfp_mask = mapping_gfp_mask(mapping); 821 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 822 823 bio_list_init(&lo->lo_bio_list); 824 825 /* 826 * set queue make_request_fn, and add limits based on lower level 827 * device 828 */ 829 blk_queue_make_request(lo->lo_queue, loop_make_request); 830 lo->lo_queue->queuedata = lo; 831 lo->lo_queue->unplug_fn = loop_unplug; 832 833 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 834 blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN, NULL); 835 836 set_capacity(lo->lo_disk, size); 837 bd_set_size(bdev, size << 9); 838 839 set_blocksize(bdev, lo_blocksize); 840 841 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 842 lo->lo_number); 843 if (IS_ERR(lo->lo_thread)) { 844 error = PTR_ERR(lo->lo_thread); 845 goto out_clr; 846 } 847 lo->lo_state = Lo_bound; 848 wake_up_process(lo->lo_thread); 849 if (max_part > 0) 850 ioctl_by_bdev(bdev, BLKRRPART, 0); 851 return 0; 852 853 out_clr: 854 lo->lo_thread = NULL; 855 lo->lo_device = NULL; 856 lo->lo_backing_file = NULL; 857 lo->lo_flags = 0; 858 set_capacity(lo->lo_disk, 0); 859 invalidate_bdev(bdev); 860 bd_set_size(bdev, 0); 861 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 862 lo->lo_state = Lo_unbound; 863 out_putf: 864 fput(file); 865 out: 866 /* This is safe: open() is still holding a reference. */ 867 module_put(THIS_MODULE); 868 return error; 869 } 870 871 static int 872 loop_release_xfer(struct loop_device *lo) 873 { 874 int err = 0; 875 struct loop_func_table *xfer = lo->lo_encryption; 876 877 if (xfer) { 878 if (xfer->release) 879 err = xfer->release(lo); 880 lo->transfer = NULL; 881 lo->lo_encryption = NULL; 882 module_put(xfer->owner); 883 } 884 return err; 885 } 886 887 static int 888 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 889 const struct loop_info64 *i) 890 { 891 int err = 0; 892 893 if (xfer) { 894 struct module *owner = xfer->owner; 895 896 if (!try_module_get(owner)) 897 return -EINVAL; 898 if (xfer->init) 899 err = xfer->init(lo, i); 900 if (err) 901 module_put(owner); 902 else 903 lo->lo_encryption = xfer; 904 } 905 return err; 906 } 907 908 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 909 { 910 struct file *filp = lo->lo_backing_file; 911 gfp_t gfp = lo->old_gfp_mask; 912 913 if (lo->lo_state != Lo_bound) 914 return -ENXIO; 915 916 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 917 return -EBUSY; 918 919 if (filp == NULL) 920 return -EINVAL; 921 922 spin_lock_irq(&lo->lo_lock); 923 lo->lo_state = Lo_rundown; 924 spin_unlock_irq(&lo->lo_lock); 925 926 kthread_stop(lo->lo_thread); 927 928 lo->lo_queue->unplug_fn = NULL; 929 lo->lo_backing_file = NULL; 930 931 loop_release_xfer(lo); 932 lo->transfer = NULL; 933 lo->ioctl = NULL; 934 lo->lo_device = NULL; 935 lo->lo_encryption = NULL; 936 lo->lo_offset = 0; 937 lo->lo_sizelimit = 0; 938 lo->lo_encrypt_key_size = 0; 939 lo->lo_flags = 0; 940 lo->lo_thread = NULL; 941 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 942 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 943 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 944 if (bdev) 945 invalidate_bdev(bdev); 946 set_capacity(lo->lo_disk, 0); 947 if (bdev) 948 bd_set_size(bdev, 0); 949 mapping_set_gfp_mask(filp->f_mapping, gfp); 950 lo->lo_state = Lo_unbound; 951 /* This is safe: open() is still holding a reference. */ 952 module_put(THIS_MODULE); 953 if (max_part > 0) 954 ioctl_by_bdev(bdev, BLKRRPART, 0); 955 mutex_unlock(&lo->lo_ctl_mutex); 956 /* 957 * Need not hold lo_ctl_mutex to fput backing file. 958 * Calling fput holding lo_ctl_mutex triggers a circular 959 * lock dependency possibility warning as fput can take 960 * bd_mutex which is usually taken before lo_ctl_mutex. 961 */ 962 fput(filp); 963 return 0; 964 } 965 966 static int 967 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 968 { 969 int err; 970 struct loop_func_table *xfer; 971 uid_t uid = current_uid(); 972 973 if (lo->lo_encrypt_key_size && 974 lo->lo_key_owner != uid && 975 !capable(CAP_SYS_ADMIN)) 976 return -EPERM; 977 if (lo->lo_state != Lo_bound) 978 return -ENXIO; 979 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 980 return -EINVAL; 981 982 err = loop_release_xfer(lo); 983 if (err) 984 return err; 985 986 if (info->lo_encrypt_type) { 987 unsigned int type = info->lo_encrypt_type; 988 989 if (type >= MAX_LO_CRYPT) 990 return -EINVAL; 991 xfer = xfer_funcs[type]; 992 if (xfer == NULL) 993 return -EINVAL; 994 } else 995 xfer = NULL; 996 997 err = loop_init_xfer(lo, xfer, info); 998 if (err) 999 return err; 1000 1001 if (lo->lo_offset != info->lo_offset || 1002 lo->lo_sizelimit != info->lo_sizelimit) { 1003 lo->lo_offset = info->lo_offset; 1004 lo->lo_sizelimit = info->lo_sizelimit; 1005 if (figure_loop_size(lo)) 1006 return -EFBIG; 1007 } 1008 1009 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1010 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1011 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1012 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1013 1014 if (!xfer) 1015 xfer = &none_funcs; 1016 lo->transfer = xfer->transfer; 1017 lo->ioctl = xfer->ioctl; 1018 1019 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1020 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1021 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1022 1023 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1024 lo->lo_init[0] = info->lo_init[0]; 1025 lo->lo_init[1] = info->lo_init[1]; 1026 if (info->lo_encrypt_key_size) { 1027 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1028 info->lo_encrypt_key_size); 1029 lo->lo_key_owner = uid; 1030 } 1031 1032 return 0; 1033 } 1034 1035 static int 1036 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1037 { 1038 struct file *file = lo->lo_backing_file; 1039 struct kstat stat; 1040 int error; 1041 1042 if (lo->lo_state != Lo_bound) 1043 return -ENXIO; 1044 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1045 if (error) 1046 return error; 1047 memset(info, 0, sizeof(*info)); 1048 info->lo_number = lo->lo_number; 1049 info->lo_device = huge_encode_dev(stat.dev); 1050 info->lo_inode = stat.ino; 1051 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1052 info->lo_offset = lo->lo_offset; 1053 info->lo_sizelimit = lo->lo_sizelimit; 1054 info->lo_flags = lo->lo_flags; 1055 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1056 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1057 info->lo_encrypt_type = 1058 lo->lo_encryption ? lo->lo_encryption->number : 0; 1059 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1060 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1061 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1062 lo->lo_encrypt_key_size); 1063 } 1064 return 0; 1065 } 1066 1067 static void 1068 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1069 { 1070 memset(info64, 0, sizeof(*info64)); 1071 info64->lo_number = info->lo_number; 1072 info64->lo_device = info->lo_device; 1073 info64->lo_inode = info->lo_inode; 1074 info64->lo_rdevice = info->lo_rdevice; 1075 info64->lo_offset = info->lo_offset; 1076 info64->lo_sizelimit = 0; 1077 info64->lo_encrypt_type = info->lo_encrypt_type; 1078 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1079 info64->lo_flags = info->lo_flags; 1080 info64->lo_init[0] = info->lo_init[0]; 1081 info64->lo_init[1] = info->lo_init[1]; 1082 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1083 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1084 else 1085 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1086 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1087 } 1088 1089 static int 1090 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1091 { 1092 memset(info, 0, sizeof(*info)); 1093 info->lo_number = info64->lo_number; 1094 info->lo_device = info64->lo_device; 1095 info->lo_inode = info64->lo_inode; 1096 info->lo_rdevice = info64->lo_rdevice; 1097 info->lo_offset = info64->lo_offset; 1098 info->lo_encrypt_type = info64->lo_encrypt_type; 1099 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1100 info->lo_flags = info64->lo_flags; 1101 info->lo_init[0] = info64->lo_init[0]; 1102 info->lo_init[1] = info64->lo_init[1]; 1103 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1104 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1105 else 1106 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1107 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1108 1109 /* error in case values were truncated */ 1110 if (info->lo_device != info64->lo_device || 1111 info->lo_rdevice != info64->lo_rdevice || 1112 info->lo_inode != info64->lo_inode || 1113 info->lo_offset != info64->lo_offset) 1114 return -EOVERFLOW; 1115 1116 return 0; 1117 } 1118 1119 static int 1120 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1121 { 1122 struct loop_info info; 1123 struct loop_info64 info64; 1124 1125 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1126 return -EFAULT; 1127 loop_info64_from_old(&info, &info64); 1128 return loop_set_status(lo, &info64); 1129 } 1130 1131 static int 1132 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1133 { 1134 struct loop_info64 info64; 1135 1136 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1137 return -EFAULT; 1138 return loop_set_status(lo, &info64); 1139 } 1140 1141 static int 1142 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1143 struct loop_info info; 1144 struct loop_info64 info64; 1145 int err = 0; 1146 1147 if (!arg) 1148 err = -EINVAL; 1149 if (!err) 1150 err = loop_get_status(lo, &info64); 1151 if (!err) 1152 err = loop_info64_to_old(&info64, &info); 1153 if (!err && copy_to_user(arg, &info, sizeof(info))) 1154 err = -EFAULT; 1155 1156 return err; 1157 } 1158 1159 static int 1160 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1161 struct loop_info64 info64; 1162 int err = 0; 1163 1164 if (!arg) 1165 err = -EINVAL; 1166 if (!err) 1167 err = loop_get_status(lo, &info64); 1168 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1169 err = -EFAULT; 1170 1171 return err; 1172 } 1173 1174 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1175 { 1176 int err; 1177 sector_t sec; 1178 loff_t sz; 1179 1180 err = -ENXIO; 1181 if (unlikely(lo->lo_state != Lo_bound)) 1182 goto out; 1183 err = figure_loop_size(lo); 1184 if (unlikely(err)) 1185 goto out; 1186 sec = get_capacity(lo->lo_disk); 1187 /* the width of sector_t may be narrow for bit-shift */ 1188 sz = sec; 1189 sz <<= 9; 1190 mutex_lock(&bdev->bd_mutex); 1191 bd_set_size(bdev, sz); 1192 mutex_unlock(&bdev->bd_mutex); 1193 1194 out: 1195 return err; 1196 } 1197 1198 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1199 unsigned int cmd, unsigned long arg) 1200 { 1201 struct loop_device *lo = bdev->bd_disk->private_data; 1202 int err; 1203 1204 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1205 switch (cmd) { 1206 case LOOP_SET_FD: 1207 err = loop_set_fd(lo, mode, bdev, arg); 1208 break; 1209 case LOOP_CHANGE_FD: 1210 err = loop_change_fd(lo, bdev, arg); 1211 break; 1212 case LOOP_CLR_FD: 1213 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1214 err = loop_clr_fd(lo, bdev); 1215 if (!err) 1216 goto out_unlocked; 1217 break; 1218 case LOOP_SET_STATUS: 1219 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1220 break; 1221 case LOOP_GET_STATUS: 1222 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1223 break; 1224 case LOOP_SET_STATUS64: 1225 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1226 break; 1227 case LOOP_GET_STATUS64: 1228 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1229 break; 1230 case LOOP_SET_CAPACITY: 1231 err = -EPERM; 1232 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1233 err = loop_set_capacity(lo, bdev); 1234 break; 1235 default: 1236 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1237 } 1238 mutex_unlock(&lo->lo_ctl_mutex); 1239 1240 out_unlocked: 1241 return err; 1242 } 1243 1244 #ifdef CONFIG_COMPAT 1245 struct compat_loop_info { 1246 compat_int_t lo_number; /* ioctl r/o */ 1247 compat_dev_t lo_device; /* ioctl r/o */ 1248 compat_ulong_t lo_inode; /* ioctl r/o */ 1249 compat_dev_t lo_rdevice; /* ioctl r/o */ 1250 compat_int_t lo_offset; 1251 compat_int_t lo_encrypt_type; 1252 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1253 compat_int_t lo_flags; /* ioctl r/o */ 1254 char lo_name[LO_NAME_SIZE]; 1255 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1256 compat_ulong_t lo_init[2]; 1257 char reserved[4]; 1258 }; 1259 1260 /* 1261 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1262 * - noinlined to reduce stack space usage in main part of driver 1263 */ 1264 static noinline int 1265 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1266 struct loop_info64 *info64) 1267 { 1268 struct compat_loop_info info; 1269 1270 if (copy_from_user(&info, arg, sizeof(info))) 1271 return -EFAULT; 1272 1273 memset(info64, 0, sizeof(*info64)); 1274 info64->lo_number = info.lo_number; 1275 info64->lo_device = info.lo_device; 1276 info64->lo_inode = info.lo_inode; 1277 info64->lo_rdevice = info.lo_rdevice; 1278 info64->lo_offset = info.lo_offset; 1279 info64->lo_sizelimit = 0; 1280 info64->lo_encrypt_type = info.lo_encrypt_type; 1281 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1282 info64->lo_flags = info.lo_flags; 1283 info64->lo_init[0] = info.lo_init[0]; 1284 info64->lo_init[1] = info.lo_init[1]; 1285 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1286 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1287 else 1288 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1289 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1290 return 0; 1291 } 1292 1293 /* 1294 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1295 * - noinlined to reduce stack space usage in main part of driver 1296 */ 1297 static noinline int 1298 loop_info64_to_compat(const struct loop_info64 *info64, 1299 struct compat_loop_info __user *arg) 1300 { 1301 struct compat_loop_info info; 1302 1303 memset(&info, 0, sizeof(info)); 1304 info.lo_number = info64->lo_number; 1305 info.lo_device = info64->lo_device; 1306 info.lo_inode = info64->lo_inode; 1307 info.lo_rdevice = info64->lo_rdevice; 1308 info.lo_offset = info64->lo_offset; 1309 info.lo_encrypt_type = info64->lo_encrypt_type; 1310 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1311 info.lo_flags = info64->lo_flags; 1312 info.lo_init[0] = info64->lo_init[0]; 1313 info.lo_init[1] = info64->lo_init[1]; 1314 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1315 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1316 else 1317 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1318 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1319 1320 /* error in case values were truncated */ 1321 if (info.lo_device != info64->lo_device || 1322 info.lo_rdevice != info64->lo_rdevice || 1323 info.lo_inode != info64->lo_inode || 1324 info.lo_offset != info64->lo_offset || 1325 info.lo_init[0] != info64->lo_init[0] || 1326 info.lo_init[1] != info64->lo_init[1]) 1327 return -EOVERFLOW; 1328 1329 if (copy_to_user(arg, &info, sizeof(info))) 1330 return -EFAULT; 1331 return 0; 1332 } 1333 1334 static int 1335 loop_set_status_compat(struct loop_device *lo, 1336 const struct compat_loop_info __user *arg) 1337 { 1338 struct loop_info64 info64; 1339 int ret; 1340 1341 ret = loop_info64_from_compat(arg, &info64); 1342 if (ret < 0) 1343 return ret; 1344 return loop_set_status(lo, &info64); 1345 } 1346 1347 static int 1348 loop_get_status_compat(struct loop_device *lo, 1349 struct compat_loop_info __user *arg) 1350 { 1351 struct loop_info64 info64; 1352 int err = 0; 1353 1354 if (!arg) 1355 err = -EINVAL; 1356 if (!err) 1357 err = loop_get_status(lo, &info64); 1358 if (!err) 1359 err = loop_info64_to_compat(&info64, arg); 1360 return err; 1361 } 1362 1363 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1364 unsigned int cmd, unsigned long arg) 1365 { 1366 struct loop_device *lo = bdev->bd_disk->private_data; 1367 int err; 1368 1369 switch(cmd) { 1370 case LOOP_SET_STATUS: 1371 mutex_lock(&lo->lo_ctl_mutex); 1372 err = loop_set_status_compat( 1373 lo, (const struct compat_loop_info __user *) arg); 1374 mutex_unlock(&lo->lo_ctl_mutex); 1375 break; 1376 case LOOP_GET_STATUS: 1377 mutex_lock(&lo->lo_ctl_mutex); 1378 err = loop_get_status_compat( 1379 lo, (struct compat_loop_info __user *) arg); 1380 mutex_unlock(&lo->lo_ctl_mutex); 1381 break; 1382 case LOOP_SET_CAPACITY: 1383 case LOOP_CLR_FD: 1384 case LOOP_GET_STATUS64: 1385 case LOOP_SET_STATUS64: 1386 arg = (unsigned long) compat_ptr(arg); 1387 case LOOP_SET_FD: 1388 case LOOP_CHANGE_FD: 1389 err = lo_ioctl(bdev, mode, cmd, arg); 1390 break; 1391 default: 1392 err = -ENOIOCTLCMD; 1393 break; 1394 } 1395 return err; 1396 } 1397 #endif 1398 1399 static int lo_open(struct block_device *bdev, fmode_t mode) 1400 { 1401 struct loop_device *lo = bdev->bd_disk->private_data; 1402 1403 mutex_lock(&lo->lo_ctl_mutex); 1404 lo->lo_refcnt++; 1405 mutex_unlock(&lo->lo_ctl_mutex); 1406 1407 return 0; 1408 } 1409 1410 static int lo_release(struct gendisk *disk, fmode_t mode) 1411 { 1412 struct loop_device *lo = disk->private_data; 1413 int err; 1414 1415 mutex_lock(&lo->lo_ctl_mutex); 1416 1417 if (--lo->lo_refcnt) 1418 goto out; 1419 1420 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1421 /* 1422 * In autoclear mode, stop the loop thread 1423 * and remove configuration after last close. 1424 */ 1425 err = loop_clr_fd(lo, NULL); 1426 if (!err) 1427 goto out_unlocked; 1428 } else { 1429 /* 1430 * Otherwise keep thread (if running) and config, 1431 * but flush possible ongoing bios in thread. 1432 */ 1433 loop_flush(lo); 1434 } 1435 1436 out: 1437 mutex_unlock(&lo->lo_ctl_mutex); 1438 out_unlocked: 1439 return 0; 1440 } 1441 1442 static struct block_device_operations lo_fops = { 1443 .owner = THIS_MODULE, 1444 .open = lo_open, 1445 .release = lo_release, 1446 .ioctl = lo_ioctl, 1447 #ifdef CONFIG_COMPAT 1448 .compat_ioctl = lo_compat_ioctl, 1449 #endif 1450 }; 1451 1452 /* 1453 * And now the modules code and kernel interface. 1454 */ 1455 static int max_loop; 1456 module_param(max_loop, int, 0); 1457 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1458 module_param(max_part, int, 0); 1459 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1460 MODULE_LICENSE("GPL"); 1461 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1462 1463 int loop_register_transfer(struct loop_func_table *funcs) 1464 { 1465 unsigned int n = funcs->number; 1466 1467 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1468 return -EINVAL; 1469 xfer_funcs[n] = funcs; 1470 return 0; 1471 } 1472 1473 int loop_unregister_transfer(int number) 1474 { 1475 unsigned int n = number; 1476 struct loop_device *lo; 1477 struct loop_func_table *xfer; 1478 1479 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1480 return -EINVAL; 1481 1482 xfer_funcs[n] = NULL; 1483 1484 list_for_each_entry(lo, &loop_devices, lo_list) { 1485 mutex_lock(&lo->lo_ctl_mutex); 1486 1487 if (lo->lo_encryption == xfer) 1488 loop_release_xfer(lo); 1489 1490 mutex_unlock(&lo->lo_ctl_mutex); 1491 } 1492 1493 return 0; 1494 } 1495 1496 EXPORT_SYMBOL(loop_register_transfer); 1497 EXPORT_SYMBOL(loop_unregister_transfer); 1498 1499 static struct loop_device *loop_alloc(int i) 1500 { 1501 struct loop_device *lo; 1502 struct gendisk *disk; 1503 1504 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1505 if (!lo) 1506 goto out; 1507 1508 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1509 if (!lo->lo_queue) 1510 goto out_free_dev; 1511 1512 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1513 if (!disk) 1514 goto out_free_queue; 1515 1516 mutex_init(&lo->lo_ctl_mutex); 1517 lo->lo_number = i; 1518 lo->lo_thread = NULL; 1519 init_waitqueue_head(&lo->lo_event); 1520 spin_lock_init(&lo->lo_lock); 1521 disk->major = LOOP_MAJOR; 1522 disk->first_minor = i << part_shift; 1523 disk->fops = &lo_fops; 1524 disk->private_data = lo; 1525 disk->queue = lo->lo_queue; 1526 sprintf(disk->disk_name, "loop%d", i); 1527 return lo; 1528 1529 out_free_queue: 1530 blk_cleanup_queue(lo->lo_queue); 1531 out_free_dev: 1532 kfree(lo); 1533 out: 1534 return NULL; 1535 } 1536 1537 static void loop_free(struct loop_device *lo) 1538 { 1539 blk_cleanup_queue(lo->lo_queue); 1540 put_disk(lo->lo_disk); 1541 list_del(&lo->lo_list); 1542 kfree(lo); 1543 } 1544 1545 static struct loop_device *loop_init_one(int i) 1546 { 1547 struct loop_device *lo; 1548 1549 list_for_each_entry(lo, &loop_devices, lo_list) { 1550 if (lo->lo_number == i) 1551 return lo; 1552 } 1553 1554 lo = loop_alloc(i); 1555 if (lo) { 1556 add_disk(lo->lo_disk); 1557 list_add_tail(&lo->lo_list, &loop_devices); 1558 } 1559 return lo; 1560 } 1561 1562 static void loop_del_one(struct loop_device *lo) 1563 { 1564 del_gendisk(lo->lo_disk); 1565 loop_free(lo); 1566 } 1567 1568 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1569 { 1570 struct loop_device *lo; 1571 struct kobject *kobj; 1572 1573 mutex_lock(&loop_devices_mutex); 1574 lo = loop_init_one(dev & MINORMASK); 1575 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1576 mutex_unlock(&loop_devices_mutex); 1577 1578 *part = 0; 1579 return kobj; 1580 } 1581 1582 static int __init loop_init(void) 1583 { 1584 int i, nr; 1585 unsigned long range; 1586 struct loop_device *lo, *next; 1587 1588 /* 1589 * loop module now has a feature to instantiate underlying device 1590 * structure on-demand, provided that there is an access dev node. 1591 * However, this will not work well with user space tool that doesn't 1592 * know about such "feature". In order to not break any existing 1593 * tool, we do the following: 1594 * 1595 * (1) if max_loop is specified, create that many upfront, and this 1596 * also becomes a hard limit. 1597 * (2) if max_loop is not specified, create 8 loop device on module 1598 * load, user can further extend loop device by create dev node 1599 * themselves and have kernel automatically instantiate actual 1600 * device on-demand. 1601 */ 1602 1603 part_shift = 0; 1604 if (max_part > 0) 1605 part_shift = fls(max_part); 1606 1607 if (max_loop > 1UL << (MINORBITS - part_shift)) 1608 return -EINVAL; 1609 1610 if (max_loop) { 1611 nr = max_loop; 1612 range = max_loop; 1613 } else { 1614 nr = 8; 1615 range = 1UL << (MINORBITS - part_shift); 1616 } 1617 1618 if (register_blkdev(LOOP_MAJOR, "loop")) 1619 return -EIO; 1620 1621 for (i = 0; i < nr; i++) { 1622 lo = loop_alloc(i); 1623 if (!lo) 1624 goto Enomem; 1625 list_add_tail(&lo->lo_list, &loop_devices); 1626 } 1627 1628 /* point of no return */ 1629 1630 list_for_each_entry(lo, &loop_devices, lo_list) 1631 add_disk(lo->lo_disk); 1632 1633 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1634 THIS_MODULE, loop_probe, NULL, NULL); 1635 1636 printk(KERN_INFO "loop: module loaded\n"); 1637 return 0; 1638 1639 Enomem: 1640 printk(KERN_INFO "loop: out of memory\n"); 1641 1642 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1643 loop_free(lo); 1644 1645 unregister_blkdev(LOOP_MAJOR, "loop"); 1646 return -ENOMEM; 1647 } 1648 1649 static void __exit loop_exit(void) 1650 { 1651 unsigned long range; 1652 struct loop_device *lo, *next; 1653 1654 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1655 1656 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1657 loop_del_one(lo); 1658 1659 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1660 unregister_blkdev(LOOP_MAJOR, "loop"); 1661 } 1662 1663 module_init(loop_init); 1664 module_exit(loop_exit); 1665 1666 #ifndef MODULE 1667 static int __init max_loop_setup(char *str) 1668 { 1669 max_loop = simple_strtol(str, NULL, 0); 1670 return 1; 1671 } 1672 1673 __setup("max_loop=", max_loop_setup); 1674 #endif 1675