xref: /openbmc/linux/drivers/block/loop.c (revision 78c99ba1)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/smp_lock.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/loop.h>
68 #include <linux/compat.h>
69 #include <linux/suspend.h>
70 #include <linux/freezer.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 #include <linux/splice.h>
78 
79 #include <asm/uaccess.h>
80 
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
83 
84 static int max_part;
85 static int part_shift;
86 
87 /*
88  * Transfer functions
89  */
90 static int transfer_none(struct loop_device *lo, int cmd,
91 			 struct page *raw_page, unsigned raw_off,
92 			 struct page *loop_page, unsigned loop_off,
93 			 int size, sector_t real_block)
94 {
95 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97 
98 	if (cmd == READ)
99 		memcpy(loop_buf, raw_buf, size);
100 	else
101 		memcpy(raw_buf, loop_buf, size);
102 
103 	kunmap_atomic(raw_buf, KM_USER0);
104 	kunmap_atomic(loop_buf, KM_USER1);
105 	cond_resched();
106 	return 0;
107 }
108 
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 			struct page *raw_page, unsigned raw_off,
111 			struct page *loop_page, unsigned loop_off,
112 			int size, sector_t real_block)
113 {
114 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 	char *in, *out, *key;
117 	int i, keysize;
118 
119 	if (cmd == READ) {
120 		in = raw_buf;
121 		out = loop_buf;
122 	} else {
123 		in = loop_buf;
124 		out = raw_buf;
125 	}
126 
127 	key = lo->lo_encrypt_key;
128 	keysize = lo->lo_encrypt_key_size;
129 	for (i = 0; i < size; i++)
130 		*out++ = *in++ ^ key[(i & 511) % keysize];
131 
132 	kunmap_atomic(raw_buf, KM_USER0);
133 	kunmap_atomic(loop_buf, KM_USER1);
134 	cond_resched();
135 	return 0;
136 }
137 
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 {
140 	if (unlikely(info->lo_encrypt_key_size <= 0))
141 		return -EINVAL;
142 	return 0;
143 }
144 
145 static struct loop_func_table none_funcs = {
146 	.number = LO_CRYPT_NONE,
147 	.transfer = transfer_none,
148 };
149 
150 static struct loop_func_table xor_funcs = {
151 	.number = LO_CRYPT_XOR,
152 	.transfer = transfer_xor,
153 	.init = xor_init
154 };
155 
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 	&none_funcs,
159 	&xor_funcs
160 };
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	loff_t size, offset, loopsize;
165 
166 	/* Compute loopsize in bytes */
167 	size = i_size_read(file->f_mapping->host);
168 	offset = lo->lo_offset;
169 	loopsize = size - offset;
170 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 		loopsize = lo->lo_sizelimit;
172 
173 	/*
174 	 * Unfortunately, if we want to do I/O on the device,
175 	 * the number of 512-byte sectors has to fit into a sector_t.
176 	 */
177 	return loopsize >> 9;
178 }
179 
180 static int
181 figure_loop_size(struct loop_device *lo)
182 {
183 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 	sector_t x = (sector_t)size;
185 
186 	if (unlikely((loff_t)x != size))
187 		return -EFBIG;
188 
189 	set_capacity(lo->lo_disk, x);
190 	return 0;
191 }
192 
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 	       struct page *rpage, unsigned roffs,
196 	       struct page *lpage, unsigned loffs,
197 	       int size, sector_t rblock)
198 {
199 	if (unlikely(!lo->transfer))
200 		return 0;
201 
202 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
203 }
204 
205 /**
206  * do_lo_send_aops - helper for writing data to a loop device
207  *
208  * This is the fast version for backing filesystems which implement the address
209  * space operations write_begin and write_end.
210  */
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 		loff_t pos, struct page *unused)
213 {
214 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 	struct address_space *mapping = file->f_mapping;
216 	pgoff_t index;
217 	unsigned offset, bv_offs;
218 	int len, ret;
219 
220 	mutex_lock(&mapping->host->i_mutex);
221 	index = pos >> PAGE_CACHE_SHIFT;
222 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 	bv_offs = bvec->bv_offset;
224 	len = bvec->bv_len;
225 	while (len > 0) {
226 		sector_t IV;
227 		unsigned size, copied;
228 		int transfer_result;
229 		struct page *page;
230 		void *fsdata;
231 
232 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 		size = PAGE_CACHE_SIZE - offset;
234 		if (size > len)
235 			size = len;
236 
237 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 							&page, &fsdata);
239 		if (ret)
240 			goto fail;
241 
242 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
243 				bvec->bv_page, bv_offs, size, IV);
244 		copied = size;
245 		if (unlikely(transfer_result))
246 			copied = 0;
247 
248 		ret = pagecache_write_end(file, mapping, pos, size, copied,
249 							page, fsdata);
250 		if (ret < 0 || ret != copied)
251 			goto fail;
252 
253 		if (unlikely(transfer_result))
254 			goto fail;
255 
256 		bv_offs += copied;
257 		len -= copied;
258 		offset = 0;
259 		index++;
260 		pos += copied;
261 	}
262 	ret = 0;
263 out:
264 	mutex_unlock(&mapping->host->i_mutex);
265 	return ret;
266 fail:
267 	ret = -1;
268 	goto out;
269 }
270 
271 /**
272  * __do_lo_send_write - helper for writing data to a loop device
273  *
274  * This helper just factors out common code between do_lo_send_direct_write()
275  * and do_lo_send_write().
276  */
277 static int __do_lo_send_write(struct file *file,
278 		u8 *buf, const int len, loff_t pos)
279 {
280 	ssize_t bw;
281 	mm_segment_t old_fs = get_fs();
282 
283 	set_fs(get_ds());
284 	bw = file->f_op->write(file, buf, len, &pos);
285 	set_fs(old_fs);
286 	if (likely(bw == len))
287 		return 0;
288 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
289 			(unsigned long long)pos, len);
290 	if (bw >= 0)
291 		bw = -EIO;
292 	return bw;
293 }
294 
295 /**
296  * do_lo_send_direct_write - helper for writing data to a loop device
297  *
298  * This is the fast, non-transforming version for backing filesystems which do
299  * not implement the address space operations write_begin and write_end.
300  * It uses the write file operation which should be present on all writeable
301  * filesystems.
302  */
303 static int do_lo_send_direct_write(struct loop_device *lo,
304 		struct bio_vec *bvec, loff_t pos, struct page *page)
305 {
306 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
307 			kmap(bvec->bv_page) + bvec->bv_offset,
308 			bvec->bv_len, pos);
309 	kunmap(bvec->bv_page);
310 	cond_resched();
311 	return bw;
312 }
313 
314 /**
315  * do_lo_send_write - helper for writing data to a loop device
316  *
317  * This is the slow, transforming version for filesystems which do not
318  * implement the address space operations write_begin and write_end.  It
319  * uses the write file operation which should be present on all writeable
320  * filesystems.
321  *
322  * Using fops->write is slower than using aops->{prepare,commit}_write in the
323  * transforming case because we need to double buffer the data as we cannot do
324  * the transformations in place as we do not have direct access to the
325  * destination pages of the backing file.
326  */
327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
328 		loff_t pos, struct page *page)
329 {
330 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
331 			bvec->bv_offset, bvec->bv_len, pos >> 9);
332 	if (likely(!ret))
333 		return __do_lo_send_write(lo->lo_backing_file,
334 				page_address(page), bvec->bv_len,
335 				pos);
336 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
337 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
338 	if (ret > 0)
339 		ret = -EIO;
340 	return ret;
341 }
342 
343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
344 {
345 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
346 			struct page *page);
347 	struct bio_vec *bvec;
348 	struct page *page = NULL;
349 	int i, ret = 0;
350 
351 	do_lo_send = do_lo_send_aops;
352 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
353 		do_lo_send = do_lo_send_direct_write;
354 		if (lo->transfer != transfer_none) {
355 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
356 			if (unlikely(!page))
357 				goto fail;
358 			kmap(page);
359 			do_lo_send = do_lo_send_write;
360 		}
361 	}
362 	bio_for_each_segment(bvec, bio, i) {
363 		ret = do_lo_send(lo, bvec, pos, page);
364 		if (ret < 0)
365 			break;
366 		pos += bvec->bv_len;
367 	}
368 	if (page) {
369 		kunmap(page);
370 		__free_page(page);
371 	}
372 out:
373 	return ret;
374 fail:
375 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
376 	ret = -ENOMEM;
377 	goto out;
378 }
379 
380 struct lo_read_data {
381 	struct loop_device *lo;
382 	struct page *page;
383 	unsigned offset;
384 	int bsize;
385 };
386 
387 static int
388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
389 		struct splice_desc *sd)
390 {
391 	struct lo_read_data *p = sd->u.data;
392 	struct loop_device *lo = p->lo;
393 	struct page *page = buf->page;
394 	sector_t IV;
395 	int size, ret;
396 
397 	ret = buf->ops->confirm(pipe, buf);
398 	if (unlikely(ret))
399 		return ret;
400 
401 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
402 							(buf->offset >> 9);
403 	size = sd->len;
404 	if (size > p->bsize)
405 		size = p->bsize;
406 
407 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
408 		printk(KERN_ERR "loop: transfer error block %ld\n",
409 		       page->index);
410 		size = -EINVAL;
411 	}
412 
413 	flush_dcache_page(p->page);
414 
415 	if (size > 0)
416 		p->offset += size;
417 
418 	return size;
419 }
420 
421 static int
422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
423 {
424 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
425 }
426 
427 static int
428 do_lo_receive(struct loop_device *lo,
429 	      struct bio_vec *bvec, int bsize, loff_t pos)
430 {
431 	struct lo_read_data cookie;
432 	struct splice_desc sd;
433 	struct file *file;
434 	long retval;
435 
436 	cookie.lo = lo;
437 	cookie.page = bvec->bv_page;
438 	cookie.offset = bvec->bv_offset;
439 	cookie.bsize = bsize;
440 
441 	sd.len = 0;
442 	sd.total_len = bvec->bv_len;
443 	sd.flags = 0;
444 	sd.pos = pos;
445 	sd.u.data = &cookie;
446 
447 	file = lo->lo_backing_file;
448 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
449 
450 	if (retval < 0)
451 		return retval;
452 
453 	return 0;
454 }
455 
456 static int
457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
458 {
459 	struct bio_vec *bvec;
460 	int i, ret = 0;
461 
462 	bio_for_each_segment(bvec, bio, i) {
463 		ret = do_lo_receive(lo, bvec, bsize, pos);
464 		if (ret < 0)
465 			break;
466 		pos += bvec->bv_len;
467 	}
468 	return ret;
469 }
470 
471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
472 {
473 	loff_t pos;
474 	int ret;
475 
476 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
477 
478 	if (bio_rw(bio) == WRITE) {
479 		int barrier = bio_barrier(bio);
480 		struct file *file = lo->lo_backing_file;
481 
482 		if (barrier) {
483 			if (unlikely(!file->f_op->fsync)) {
484 				ret = -EOPNOTSUPP;
485 				goto out;
486 			}
487 
488 			ret = vfs_fsync(file, file->f_path.dentry, 0);
489 			if (unlikely(ret)) {
490 				ret = -EIO;
491 				goto out;
492 			}
493 		}
494 
495 		ret = lo_send(lo, bio, pos);
496 
497 		if (barrier && !ret) {
498 			ret = vfs_fsync(file, file->f_path.dentry, 0);
499 			if (unlikely(ret))
500 				ret = -EIO;
501 		}
502 	} else
503 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
504 
505 out:
506 	return ret;
507 }
508 
509 /*
510  * Add bio to back of pending list
511  */
512 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
513 {
514 	bio_list_add(&lo->lo_bio_list, bio);
515 }
516 
517 /*
518  * Grab first pending buffer
519  */
520 static struct bio *loop_get_bio(struct loop_device *lo)
521 {
522 	return bio_list_pop(&lo->lo_bio_list);
523 }
524 
525 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
526 {
527 	struct loop_device *lo = q->queuedata;
528 	int rw = bio_rw(old_bio);
529 
530 	if (rw == READA)
531 		rw = READ;
532 
533 	BUG_ON(!lo || (rw != READ && rw != WRITE));
534 
535 	spin_lock_irq(&lo->lo_lock);
536 	if (lo->lo_state != Lo_bound)
537 		goto out;
538 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
539 		goto out;
540 	loop_add_bio(lo, old_bio);
541 	wake_up(&lo->lo_event);
542 	spin_unlock_irq(&lo->lo_lock);
543 	return 0;
544 
545 out:
546 	spin_unlock_irq(&lo->lo_lock);
547 	bio_io_error(old_bio);
548 	return 0;
549 }
550 
551 /*
552  * kick off io on the underlying address space
553  */
554 static void loop_unplug(struct request_queue *q)
555 {
556 	struct loop_device *lo = q->queuedata;
557 
558 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
559 	blk_run_address_space(lo->lo_backing_file->f_mapping);
560 }
561 
562 struct switch_request {
563 	struct file *file;
564 	struct completion wait;
565 };
566 
567 static void do_loop_switch(struct loop_device *, struct switch_request *);
568 
569 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
570 {
571 	if (unlikely(!bio->bi_bdev)) {
572 		do_loop_switch(lo, bio->bi_private);
573 		bio_put(bio);
574 	} else {
575 		int ret = do_bio_filebacked(lo, bio);
576 		bio_endio(bio, ret);
577 	}
578 }
579 
580 /*
581  * worker thread that handles reads/writes to file backed loop devices,
582  * to avoid blocking in our make_request_fn. it also does loop decrypting
583  * on reads for block backed loop, as that is too heavy to do from
584  * b_end_io context where irqs may be disabled.
585  *
586  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
587  * calling kthread_stop().  Therefore once kthread_should_stop() is
588  * true, make_request will not place any more requests.  Therefore
589  * once kthread_should_stop() is true and lo_bio is NULL, we are
590  * done with the loop.
591  */
592 static int loop_thread(void *data)
593 {
594 	struct loop_device *lo = data;
595 	struct bio *bio;
596 
597 	set_user_nice(current, -20);
598 
599 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
600 
601 		wait_event_interruptible(lo->lo_event,
602 				!bio_list_empty(&lo->lo_bio_list) ||
603 				kthread_should_stop());
604 
605 		if (bio_list_empty(&lo->lo_bio_list))
606 			continue;
607 		spin_lock_irq(&lo->lo_lock);
608 		bio = loop_get_bio(lo);
609 		spin_unlock_irq(&lo->lo_lock);
610 
611 		BUG_ON(!bio);
612 		loop_handle_bio(lo, bio);
613 	}
614 
615 	return 0;
616 }
617 
618 /*
619  * loop_switch performs the hard work of switching a backing store.
620  * First it needs to flush existing IO, it does this by sending a magic
621  * BIO down the pipe. The completion of this BIO does the actual switch.
622  */
623 static int loop_switch(struct loop_device *lo, struct file *file)
624 {
625 	struct switch_request w;
626 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
627 	if (!bio)
628 		return -ENOMEM;
629 	init_completion(&w.wait);
630 	w.file = file;
631 	bio->bi_private = &w;
632 	bio->bi_bdev = NULL;
633 	loop_make_request(lo->lo_queue, bio);
634 	wait_for_completion(&w.wait);
635 	return 0;
636 }
637 
638 /*
639  * Helper to flush the IOs in loop, but keeping loop thread running
640  */
641 static int loop_flush(struct loop_device *lo)
642 {
643 	/* loop not yet configured, no running thread, nothing to flush */
644 	if (!lo->lo_thread)
645 		return 0;
646 
647 	return loop_switch(lo, NULL);
648 }
649 
650 /*
651  * Do the actual switch; called from the BIO completion routine
652  */
653 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
654 {
655 	struct file *file = p->file;
656 	struct file *old_file = lo->lo_backing_file;
657 	struct address_space *mapping;
658 
659 	/* if no new file, only flush of queued bios requested */
660 	if (!file)
661 		goto out;
662 
663 	mapping = file->f_mapping;
664 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
665 	lo->lo_backing_file = file;
666 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
667 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
668 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
669 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
670 out:
671 	complete(&p->wait);
672 }
673 
674 
675 /*
676  * loop_change_fd switched the backing store of a loopback device to
677  * a new file. This is useful for operating system installers to free up
678  * the original file and in High Availability environments to switch to
679  * an alternative location for the content in case of server meltdown.
680  * This can only work if the loop device is used read-only, and if the
681  * new backing store is the same size and type as the old backing store.
682  */
683 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
684 			  unsigned int arg)
685 {
686 	struct file	*file, *old_file;
687 	struct inode	*inode;
688 	int		error;
689 
690 	error = -ENXIO;
691 	if (lo->lo_state != Lo_bound)
692 		goto out;
693 
694 	/* the loop device has to be read-only */
695 	error = -EINVAL;
696 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
697 		goto out;
698 
699 	error = -EBADF;
700 	file = fget(arg);
701 	if (!file)
702 		goto out;
703 
704 	inode = file->f_mapping->host;
705 	old_file = lo->lo_backing_file;
706 
707 	error = -EINVAL;
708 
709 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
710 		goto out_putf;
711 
712 	/* size of the new backing store needs to be the same */
713 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
714 		goto out_putf;
715 
716 	/* and ... switch */
717 	error = loop_switch(lo, file);
718 	if (error)
719 		goto out_putf;
720 
721 	fput(old_file);
722 	if (max_part > 0)
723 		ioctl_by_bdev(bdev, BLKRRPART, 0);
724 	return 0;
725 
726  out_putf:
727 	fput(file);
728  out:
729 	return error;
730 }
731 
732 static inline int is_loop_device(struct file *file)
733 {
734 	struct inode *i = file->f_mapping->host;
735 
736 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
737 }
738 
739 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
740 		       struct block_device *bdev, unsigned int arg)
741 {
742 	struct file	*file, *f;
743 	struct inode	*inode;
744 	struct address_space *mapping;
745 	unsigned lo_blocksize;
746 	int		lo_flags = 0;
747 	int		error;
748 	loff_t		size;
749 
750 	/* This is safe, since we have a reference from open(). */
751 	__module_get(THIS_MODULE);
752 
753 	error = -EBADF;
754 	file = fget(arg);
755 	if (!file)
756 		goto out;
757 
758 	error = -EBUSY;
759 	if (lo->lo_state != Lo_unbound)
760 		goto out_putf;
761 
762 	/* Avoid recursion */
763 	f = file;
764 	while (is_loop_device(f)) {
765 		struct loop_device *l;
766 
767 		if (f->f_mapping->host->i_bdev == bdev)
768 			goto out_putf;
769 
770 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
771 		if (l->lo_state == Lo_unbound) {
772 			error = -EINVAL;
773 			goto out_putf;
774 		}
775 		f = l->lo_backing_file;
776 	}
777 
778 	mapping = file->f_mapping;
779 	inode = mapping->host;
780 
781 	if (!(file->f_mode & FMODE_WRITE))
782 		lo_flags |= LO_FLAGS_READ_ONLY;
783 
784 	error = -EINVAL;
785 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
786 		const struct address_space_operations *aops = mapping->a_ops;
787 
788 		if (aops->write_begin)
789 			lo_flags |= LO_FLAGS_USE_AOPS;
790 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
791 			lo_flags |= LO_FLAGS_READ_ONLY;
792 
793 		lo_blocksize = S_ISBLK(inode->i_mode) ?
794 			inode->i_bdev->bd_block_size : PAGE_SIZE;
795 
796 		error = 0;
797 	} else {
798 		goto out_putf;
799 	}
800 
801 	size = get_loop_size(lo, file);
802 
803 	if ((loff_t)(sector_t)size != size) {
804 		error = -EFBIG;
805 		goto out_putf;
806 	}
807 
808 	if (!(mode & FMODE_WRITE))
809 		lo_flags |= LO_FLAGS_READ_ONLY;
810 
811 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
812 
813 	lo->lo_blocksize = lo_blocksize;
814 	lo->lo_device = bdev;
815 	lo->lo_flags = lo_flags;
816 	lo->lo_backing_file = file;
817 	lo->transfer = transfer_none;
818 	lo->ioctl = NULL;
819 	lo->lo_sizelimit = 0;
820 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
821 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
822 
823 	bio_list_init(&lo->lo_bio_list);
824 
825 	/*
826 	 * set queue make_request_fn, and add limits based on lower level
827 	 * device
828 	 */
829 	blk_queue_make_request(lo->lo_queue, loop_make_request);
830 	lo->lo_queue->queuedata = lo;
831 	lo->lo_queue->unplug_fn = loop_unplug;
832 
833 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
834 		blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN, NULL);
835 
836 	set_capacity(lo->lo_disk, size);
837 	bd_set_size(bdev, size << 9);
838 
839 	set_blocksize(bdev, lo_blocksize);
840 
841 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
842 						lo->lo_number);
843 	if (IS_ERR(lo->lo_thread)) {
844 		error = PTR_ERR(lo->lo_thread);
845 		goto out_clr;
846 	}
847 	lo->lo_state = Lo_bound;
848 	wake_up_process(lo->lo_thread);
849 	if (max_part > 0)
850 		ioctl_by_bdev(bdev, BLKRRPART, 0);
851 	return 0;
852 
853 out_clr:
854 	lo->lo_thread = NULL;
855 	lo->lo_device = NULL;
856 	lo->lo_backing_file = NULL;
857 	lo->lo_flags = 0;
858 	set_capacity(lo->lo_disk, 0);
859 	invalidate_bdev(bdev);
860 	bd_set_size(bdev, 0);
861 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
862 	lo->lo_state = Lo_unbound;
863  out_putf:
864 	fput(file);
865  out:
866 	/* This is safe: open() is still holding a reference. */
867 	module_put(THIS_MODULE);
868 	return error;
869 }
870 
871 static int
872 loop_release_xfer(struct loop_device *lo)
873 {
874 	int err = 0;
875 	struct loop_func_table *xfer = lo->lo_encryption;
876 
877 	if (xfer) {
878 		if (xfer->release)
879 			err = xfer->release(lo);
880 		lo->transfer = NULL;
881 		lo->lo_encryption = NULL;
882 		module_put(xfer->owner);
883 	}
884 	return err;
885 }
886 
887 static int
888 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
889 	       const struct loop_info64 *i)
890 {
891 	int err = 0;
892 
893 	if (xfer) {
894 		struct module *owner = xfer->owner;
895 
896 		if (!try_module_get(owner))
897 			return -EINVAL;
898 		if (xfer->init)
899 			err = xfer->init(lo, i);
900 		if (err)
901 			module_put(owner);
902 		else
903 			lo->lo_encryption = xfer;
904 	}
905 	return err;
906 }
907 
908 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
909 {
910 	struct file *filp = lo->lo_backing_file;
911 	gfp_t gfp = lo->old_gfp_mask;
912 
913 	if (lo->lo_state != Lo_bound)
914 		return -ENXIO;
915 
916 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
917 		return -EBUSY;
918 
919 	if (filp == NULL)
920 		return -EINVAL;
921 
922 	spin_lock_irq(&lo->lo_lock);
923 	lo->lo_state = Lo_rundown;
924 	spin_unlock_irq(&lo->lo_lock);
925 
926 	kthread_stop(lo->lo_thread);
927 
928 	lo->lo_queue->unplug_fn = NULL;
929 	lo->lo_backing_file = NULL;
930 
931 	loop_release_xfer(lo);
932 	lo->transfer = NULL;
933 	lo->ioctl = NULL;
934 	lo->lo_device = NULL;
935 	lo->lo_encryption = NULL;
936 	lo->lo_offset = 0;
937 	lo->lo_sizelimit = 0;
938 	lo->lo_encrypt_key_size = 0;
939 	lo->lo_flags = 0;
940 	lo->lo_thread = NULL;
941 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
942 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
943 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
944 	if (bdev)
945 		invalidate_bdev(bdev);
946 	set_capacity(lo->lo_disk, 0);
947 	if (bdev)
948 		bd_set_size(bdev, 0);
949 	mapping_set_gfp_mask(filp->f_mapping, gfp);
950 	lo->lo_state = Lo_unbound;
951 	/* This is safe: open() is still holding a reference. */
952 	module_put(THIS_MODULE);
953 	if (max_part > 0)
954 		ioctl_by_bdev(bdev, BLKRRPART, 0);
955 	mutex_unlock(&lo->lo_ctl_mutex);
956 	/*
957 	 * Need not hold lo_ctl_mutex to fput backing file.
958 	 * Calling fput holding lo_ctl_mutex triggers a circular
959 	 * lock dependency possibility warning as fput can take
960 	 * bd_mutex which is usually taken before lo_ctl_mutex.
961 	 */
962 	fput(filp);
963 	return 0;
964 }
965 
966 static int
967 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
968 {
969 	int err;
970 	struct loop_func_table *xfer;
971 	uid_t uid = current_uid();
972 
973 	if (lo->lo_encrypt_key_size &&
974 	    lo->lo_key_owner != uid &&
975 	    !capable(CAP_SYS_ADMIN))
976 		return -EPERM;
977 	if (lo->lo_state != Lo_bound)
978 		return -ENXIO;
979 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
980 		return -EINVAL;
981 
982 	err = loop_release_xfer(lo);
983 	if (err)
984 		return err;
985 
986 	if (info->lo_encrypt_type) {
987 		unsigned int type = info->lo_encrypt_type;
988 
989 		if (type >= MAX_LO_CRYPT)
990 			return -EINVAL;
991 		xfer = xfer_funcs[type];
992 		if (xfer == NULL)
993 			return -EINVAL;
994 	} else
995 		xfer = NULL;
996 
997 	err = loop_init_xfer(lo, xfer, info);
998 	if (err)
999 		return err;
1000 
1001 	if (lo->lo_offset != info->lo_offset ||
1002 	    lo->lo_sizelimit != info->lo_sizelimit) {
1003 		lo->lo_offset = info->lo_offset;
1004 		lo->lo_sizelimit = info->lo_sizelimit;
1005 		if (figure_loop_size(lo))
1006 			return -EFBIG;
1007 	}
1008 
1009 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1010 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1011 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1012 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1013 
1014 	if (!xfer)
1015 		xfer = &none_funcs;
1016 	lo->transfer = xfer->transfer;
1017 	lo->ioctl = xfer->ioctl;
1018 
1019 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1020 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1021 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1022 
1023 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1024 	lo->lo_init[0] = info->lo_init[0];
1025 	lo->lo_init[1] = info->lo_init[1];
1026 	if (info->lo_encrypt_key_size) {
1027 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1028 		       info->lo_encrypt_key_size);
1029 		lo->lo_key_owner = uid;
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 static int
1036 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1037 {
1038 	struct file *file = lo->lo_backing_file;
1039 	struct kstat stat;
1040 	int error;
1041 
1042 	if (lo->lo_state != Lo_bound)
1043 		return -ENXIO;
1044 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1045 	if (error)
1046 		return error;
1047 	memset(info, 0, sizeof(*info));
1048 	info->lo_number = lo->lo_number;
1049 	info->lo_device = huge_encode_dev(stat.dev);
1050 	info->lo_inode = stat.ino;
1051 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1052 	info->lo_offset = lo->lo_offset;
1053 	info->lo_sizelimit = lo->lo_sizelimit;
1054 	info->lo_flags = lo->lo_flags;
1055 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1056 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1057 	info->lo_encrypt_type =
1058 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1059 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1060 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1061 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1062 		       lo->lo_encrypt_key_size);
1063 	}
1064 	return 0;
1065 }
1066 
1067 static void
1068 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1069 {
1070 	memset(info64, 0, sizeof(*info64));
1071 	info64->lo_number = info->lo_number;
1072 	info64->lo_device = info->lo_device;
1073 	info64->lo_inode = info->lo_inode;
1074 	info64->lo_rdevice = info->lo_rdevice;
1075 	info64->lo_offset = info->lo_offset;
1076 	info64->lo_sizelimit = 0;
1077 	info64->lo_encrypt_type = info->lo_encrypt_type;
1078 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1079 	info64->lo_flags = info->lo_flags;
1080 	info64->lo_init[0] = info->lo_init[0];
1081 	info64->lo_init[1] = info->lo_init[1];
1082 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1083 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1084 	else
1085 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1086 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1087 }
1088 
1089 static int
1090 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1091 {
1092 	memset(info, 0, sizeof(*info));
1093 	info->lo_number = info64->lo_number;
1094 	info->lo_device = info64->lo_device;
1095 	info->lo_inode = info64->lo_inode;
1096 	info->lo_rdevice = info64->lo_rdevice;
1097 	info->lo_offset = info64->lo_offset;
1098 	info->lo_encrypt_type = info64->lo_encrypt_type;
1099 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1100 	info->lo_flags = info64->lo_flags;
1101 	info->lo_init[0] = info64->lo_init[0];
1102 	info->lo_init[1] = info64->lo_init[1];
1103 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1104 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1105 	else
1106 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1107 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1108 
1109 	/* error in case values were truncated */
1110 	if (info->lo_device != info64->lo_device ||
1111 	    info->lo_rdevice != info64->lo_rdevice ||
1112 	    info->lo_inode != info64->lo_inode ||
1113 	    info->lo_offset != info64->lo_offset)
1114 		return -EOVERFLOW;
1115 
1116 	return 0;
1117 }
1118 
1119 static int
1120 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1121 {
1122 	struct loop_info info;
1123 	struct loop_info64 info64;
1124 
1125 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1126 		return -EFAULT;
1127 	loop_info64_from_old(&info, &info64);
1128 	return loop_set_status(lo, &info64);
1129 }
1130 
1131 static int
1132 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1133 {
1134 	struct loop_info64 info64;
1135 
1136 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1137 		return -EFAULT;
1138 	return loop_set_status(lo, &info64);
1139 }
1140 
1141 static int
1142 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1143 	struct loop_info info;
1144 	struct loop_info64 info64;
1145 	int err = 0;
1146 
1147 	if (!arg)
1148 		err = -EINVAL;
1149 	if (!err)
1150 		err = loop_get_status(lo, &info64);
1151 	if (!err)
1152 		err = loop_info64_to_old(&info64, &info);
1153 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1154 		err = -EFAULT;
1155 
1156 	return err;
1157 }
1158 
1159 static int
1160 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1161 	struct loop_info64 info64;
1162 	int err = 0;
1163 
1164 	if (!arg)
1165 		err = -EINVAL;
1166 	if (!err)
1167 		err = loop_get_status(lo, &info64);
1168 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1169 		err = -EFAULT;
1170 
1171 	return err;
1172 }
1173 
1174 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1175 {
1176 	int err;
1177 	sector_t sec;
1178 	loff_t sz;
1179 
1180 	err = -ENXIO;
1181 	if (unlikely(lo->lo_state != Lo_bound))
1182 		goto out;
1183 	err = figure_loop_size(lo);
1184 	if (unlikely(err))
1185 		goto out;
1186 	sec = get_capacity(lo->lo_disk);
1187 	/* the width of sector_t may be narrow for bit-shift */
1188 	sz = sec;
1189 	sz <<= 9;
1190 	mutex_lock(&bdev->bd_mutex);
1191 	bd_set_size(bdev, sz);
1192 	mutex_unlock(&bdev->bd_mutex);
1193 
1194  out:
1195 	return err;
1196 }
1197 
1198 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1199 	unsigned int cmd, unsigned long arg)
1200 {
1201 	struct loop_device *lo = bdev->bd_disk->private_data;
1202 	int err;
1203 
1204 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1205 	switch (cmd) {
1206 	case LOOP_SET_FD:
1207 		err = loop_set_fd(lo, mode, bdev, arg);
1208 		break;
1209 	case LOOP_CHANGE_FD:
1210 		err = loop_change_fd(lo, bdev, arg);
1211 		break;
1212 	case LOOP_CLR_FD:
1213 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1214 		err = loop_clr_fd(lo, bdev);
1215 		if (!err)
1216 			goto out_unlocked;
1217 		break;
1218 	case LOOP_SET_STATUS:
1219 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1220 		break;
1221 	case LOOP_GET_STATUS:
1222 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1223 		break;
1224 	case LOOP_SET_STATUS64:
1225 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1226 		break;
1227 	case LOOP_GET_STATUS64:
1228 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1229 		break;
1230 	case LOOP_SET_CAPACITY:
1231 		err = -EPERM;
1232 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1233 			err = loop_set_capacity(lo, bdev);
1234 		break;
1235 	default:
1236 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1237 	}
1238 	mutex_unlock(&lo->lo_ctl_mutex);
1239 
1240 out_unlocked:
1241 	return err;
1242 }
1243 
1244 #ifdef CONFIG_COMPAT
1245 struct compat_loop_info {
1246 	compat_int_t	lo_number;      /* ioctl r/o */
1247 	compat_dev_t	lo_device;      /* ioctl r/o */
1248 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1249 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1250 	compat_int_t	lo_offset;
1251 	compat_int_t	lo_encrypt_type;
1252 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1253 	compat_int_t	lo_flags;       /* ioctl r/o */
1254 	char		lo_name[LO_NAME_SIZE];
1255 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1256 	compat_ulong_t	lo_init[2];
1257 	char		reserved[4];
1258 };
1259 
1260 /*
1261  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1262  * - noinlined to reduce stack space usage in main part of driver
1263  */
1264 static noinline int
1265 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1266 			struct loop_info64 *info64)
1267 {
1268 	struct compat_loop_info info;
1269 
1270 	if (copy_from_user(&info, arg, sizeof(info)))
1271 		return -EFAULT;
1272 
1273 	memset(info64, 0, sizeof(*info64));
1274 	info64->lo_number = info.lo_number;
1275 	info64->lo_device = info.lo_device;
1276 	info64->lo_inode = info.lo_inode;
1277 	info64->lo_rdevice = info.lo_rdevice;
1278 	info64->lo_offset = info.lo_offset;
1279 	info64->lo_sizelimit = 0;
1280 	info64->lo_encrypt_type = info.lo_encrypt_type;
1281 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1282 	info64->lo_flags = info.lo_flags;
1283 	info64->lo_init[0] = info.lo_init[0];
1284 	info64->lo_init[1] = info.lo_init[1];
1285 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1286 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1287 	else
1288 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1289 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1290 	return 0;
1291 }
1292 
1293 /*
1294  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1295  * - noinlined to reduce stack space usage in main part of driver
1296  */
1297 static noinline int
1298 loop_info64_to_compat(const struct loop_info64 *info64,
1299 		      struct compat_loop_info __user *arg)
1300 {
1301 	struct compat_loop_info info;
1302 
1303 	memset(&info, 0, sizeof(info));
1304 	info.lo_number = info64->lo_number;
1305 	info.lo_device = info64->lo_device;
1306 	info.lo_inode = info64->lo_inode;
1307 	info.lo_rdevice = info64->lo_rdevice;
1308 	info.lo_offset = info64->lo_offset;
1309 	info.lo_encrypt_type = info64->lo_encrypt_type;
1310 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1311 	info.lo_flags = info64->lo_flags;
1312 	info.lo_init[0] = info64->lo_init[0];
1313 	info.lo_init[1] = info64->lo_init[1];
1314 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1315 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1316 	else
1317 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1318 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1319 
1320 	/* error in case values were truncated */
1321 	if (info.lo_device != info64->lo_device ||
1322 	    info.lo_rdevice != info64->lo_rdevice ||
1323 	    info.lo_inode != info64->lo_inode ||
1324 	    info.lo_offset != info64->lo_offset ||
1325 	    info.lo_init[0] != info64->lo_init[0] ||
1326 	    info.lo_init[1] != info64->lo_init[1])
1327 		return -EOVERFLOW;
1328 
1329 	if (copy_to_user(arg, &info, sizeof(info)))
1330 		return -EFAULT;
1331 	return 0;
1332 }
1333 
1334 static int
1335 loop_set_status_compat(struct loop_device *lo,
1336 		       const struct compat_loop_info __user *arg)
1337 {
1338 	struct loop_info64 info64;
1339 	int ret;
1340 
1341 	ret = loop_info64_from_compat(arg, &info64);
1342 	if (ret < 0)
1343 		return ret;
1344 	return loop_set_status(lo, &info64);
1345 }
1346 
1347 static int
1348 loop_get_status_compat(struct loop_device *lo,
1349 		       struct compat_loop_info __user *arg)
1350 {
1351 	struct loop_info64 info64;
1352 	int err = 0;
1353 
1354 	if (!arg)
1355 		err = -EINVAL;
1356 	if (!err)
1357 		err = loop_get_status(lo, &info64);
1358 	if (!err)
1359 		err = loop_info64_to_compat(&info64, arg);
1360 	return err;
1361 }
1362 
1363 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1364 			   unsigned int cmd, unsigned long arg)
1365 {
1366 	struct loop_device *lo = bdev->bd_disk->private_data;
1367 	int err;
1368 
1369 	switch(cmd) {
1370 	case LOOP_SET_STATUS:
1371 		mutex_lock(&lo->lo_ctl_mutex);
1372 		err = loop_set_status_compat(
1373 			lo, (const struct compat_loop_info __user *) arg);
1374 		mutex_unlock(&lo->lo_ctl_mutex);
1375 		break;
1376 	case LOOP_GET_STATUS:
1377 		mutex_lock(&lo->lo_ctl_mutex);
1378 		err = loop_get_status_compat(
1379 			lo, (struct compat_loop_info __user *) arg);
1380 		mutex_unlock(&lo->lo_ctl_mutex);
1381 		break;
1382 	case LOOP_SET_CAPACITY:
1383 	case LOOP_CLR_FD:
1384 	case LOOP_GET_STATUS64:
1385 	case LOOP_SET_STATUS64:
1386 		arg = (unsigned long) compat_ptr(arg);
1387 	case LOOP_SET_FD:
1388 	case LOOP_CHANGE_FD:
1389 		err = lo_ioctl(bdev, mode, cmd, arg);
1390 		break;
1391 	default:
1392 		err = -ENOIOCTLCMD;
1393 		break;
1394 	}
1395 	return err;
1396 }
1397 #endif
1398 
1399 static int lo_open(struct block_device *bdev, fmode_t mode)
1400 {
1401 	struct loop_device *lo = bdev->bd_disk->private_data;
1402 
1403 	mutex_lock(&lo->lo_ctl_mutex);
1404 	lo->lo_refcnt++;
1405 	mutex_unlock(&lo->lo_ctl_mutex);
1406 
1407 	return 0;
1408 }
1409 
1410 static int lo_release(struct gendisk *disk, fmode_t mode)
1411 {
1412 	struct loop_device *lo = disk->private_data;
1413 	int err;
1414 
1415 	mutex_lock(&lo->lo_ctl_mutex);
1416 
1417 	if (--lo->lo_refcnt)
1418 		goto out;
1419 
1420 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1421 		/*
1422 		 * In autoclear mode, stop the loop thread
1423 		 * and remove configuration after last close.
1424 		 */
1425 		err = loop_clr_fd(lo, NULL);
1426 		if (!err)
1427 			goto out_unlocked;
1428 	} else {
1429 		/*
1430 		 * Otherwise keep thread (if running) and config,
1431 		 * but flush possible ongoing bios in thread.
1432 		 */
1433 		loop_flush(lo);
1434 	}
1435 
1436 out:
1437 	mutex_unlock(&lo->lo_ctl_mutex);
1438 out_unlocked:
1439 	return 0;
1440 }
1441 
1442 static struct block_device_operations lo_fops = {
1443 	.owner =	THIS_MODULE,
1444 	.open =		lo_open,
1445 	.release =	lo_release,
1446 	.ioctl =	lo_ioctl,
1447 #ifdef CONFIG_COMPAT
1448 	.compat_ioctl =	lo_compat_ioctl,
1449 #endif
1450 };
1451 
1452 /*
1453  * And now the modules code and kernel interface.
1454  */
1455 static int max_loop;
1456 module_param(max_loop, int, 0);
1457 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1458 module_param(max_part, int, 0);
1459 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1460 MODULE_LICENSE("GPL");
1461 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1462 
1463 int loop_register_transfer(struct loop_func_table *funcs)
1464 {
1465 	unsigned int n = funcs->number;
1466 
1467 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1468 		return -EINVAL;
1469 	xfer_funcs[n] = funcs;
1470 	return 0;
1471 }
1472 
1473 int loop_unregister_transfer(int number)
1474 {
1475 	unsigned int n = number;
1476 	struct loop_device *lo;
1477 	struct loop_func_table *xfer;
1478 
1479 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1480 		return -EINVAL;
1481 
1482 	xfer_funcs[n] = NULL;
1483 
1484 	list_for_each_entry(lo, &loop_devices, lo_list) {
1485 		mutex_lock(&lo->lo_ctl_mutex);
1486 
1487 		if (lo->lo_encryption == xfer)
1488 			loop_release_xfer(lo);
1489 
1490 		mutex_unlock(&lo->lo_ctl_mutex);
1491 	}
1492 
1493 	return 0;
1494 }
1495 
1496 EXPORT_SYMBOL(loop_register_transfer);
1497 EXPORT_SYMBOL(loop_unregister_transfer);
1498 
1499 static struct loop_device *loop_alloc(int i)
1500 {
1501 	struct loop_device *lo;
1502 	struct gendisk *disk;
1503 
1504 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1505 	if (!lo)
1506 		goto out;
1507 
1508 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1509 	if (!lo->lo_queue)
1510 		goto out_free_dev;
1511 
1512 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1513 	if (!disk)
1514 		goto out_free_queue;
1515 
1516 	mutex_init(&lo->lo_ctl_mutex);
1517 	lo->lo_number		= i;
1518 	lo->lo_thread		= NULL;
1519 	init_waitqueue_head(&lo->lo_event);
1520 	spin_lock_init(&lo->lo_lock);
1521 	disk->major		= LOOP_MAJOR;
1522 	disk->first_minor	= i << part_shift;
1523 	disk->fops		= &lo_fops;
1524 	disk->private_data	= lo;
1525 	disk->queue		= lo->lo_queue;
1526 	sprintf(disk->disk_name, "loop%d", i);
1527 	return lo;
1528 
1529 out_free_queue:
1530 	blk_cleanup_queue(lo->lo_queue);
1531 out_free_dev:
1532 	kfree(lo);
1533 out:
1534 	return NULL;
1535 }
1536 
1537 static void loop_free(struct loop_device *lo)
1538 {
1539 	blk_cleanup_queue(lo->lo_queue);
1540 	put_disk(lo->lo_disk);
1541 	list_del(&lo->lo_list);
1542 	kfree(lo);
1543 }
1544 
1545 static struct loop_device *loop_init_one(int i)
1546 {
1547 	struct loop_device *lo;
1548 
1549 	list_for_each_entry(lo, &loop_devices, lo_list) {
1550 		if (lo->lo_number == i)
1551 			return lo;
1552 	}
1553 
1554 	lo = loop_alloc(i);
1555 	if (lo) {
1556 		add_disk(lo->lo_disk);
1557 		list_add_tail(&lo->lo_list, &loop_devices);
1558 	}
1559 	return lo;
1560 }
1561 
1562 static void loop_del_one(struct loop_device *lo)
1563 {
1564 	del_gendisk(lo->lo_disk);
1565 	loop_free(lo);
1566 }
1567 
1568 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1569 {
1570 	struct loop_device *lo;
1571 	struct kobject *kobj;
1572 
1573 	mutex_lock(&loop_devices_mutex);
1574 	lo = loop_init_one(dev & MINORMASK);
1575 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1576 	mutex_unlock(&loop_devices_mutex);
1577 
1578 	*part = 0;
1579 	return kobj;
1580 }
1581 
1582 static int __init loop_init(void)
1583 {
1584 	int i, nr;
1585 	unsigned long range;
1586 	struct loop_device *lo, *next;
1587 
1588 	/*
1589 	 * loop module now has a feature to instantiate underlying device
1590 	 * structure on-demand, provided that there is an access dev node.
1591 	 * However, this will not work well with user space tool that doesn't
1592 	 * know about such "feature".  In order to not break any existing
1593 	 * tool, we do the following:
1594 	 *
1595 	 * (1) if max_loop is specified, create that many upfront, and this
1596 	 *     also becomes a hard limit.
1597 	 * (2) if max_loop is not specified, create 8 loop device on module
1598 	 *     load, user can further extend loop device by create dev node
1599 	 *     themselves and have kernel automatically instantiate actual
1600 	 *     device on-demand.
1601 	 */
1602 
1603 	part_shift = 0;
1604 	if (max_part > 0)
1605 		part_shift = fls(max_part);
1606 
1607 	if (max_loop > 1UL << (MINORBITS - part_shift))
1608 		return -EINVAL;
1609 
1610 	if (max_loop) {
1611 		nr = max_loop;
1612 		range = max_loop;
1613 	} else {
1614 		nr = 8;
1615 		range = 1UL << (MINORBITS - part_shift);
1616 	}
1617 
1618 	if (register_blkdev(LOOP_MAJOR, "loop"))
1619 		return -EIO;
1620 
1621 	for (i = 0; i < nr; i++) {
1622 		lo = loop_alloc(i);
1623 		if (!lo)
1624 			goto Enomem;
1625 		list_add_tail(&lo->lo_list, &loop_devices);
1626 	}
1627 
1628 	/* point of no return */
1629 
1630 	list_for_each_entry(lo, &loop_devices, lo_list)
1631 		add_disk(lo->lo_disk);
1632 
1633 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1634 				  THIS_MODULE, loop_probe, NULL, NULL);
1635 
1636 	printk(KERN_INFO "loop: module loaded\n");
1637 	return 0;
1638 
1639 Enomem:
1640 	printk(KERN_INFO "loop: out of memory\n");
1641 
1642 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1643 		loop_free(lo);
1644 
1645 	unregister_blkdev(LOOP_MAJOR, "loop");
1646 	return -ENOMEM;
1647 }
1648 
1649 static void __exit loop_exit(void)
1650 {
1651 	unsigned long range;
1652 	struct loop_device *lo, *next;
1653 
1654 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1655 
1656 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1657 		loop_del_one(lo);
1658 
1659 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1660 	unregister_blkdev(LOOP_MAJOR, "loop");
1661 }
1662 
1663 module_init(loop_init);
1664 module_exit(loop_exit);
1665 
1666 #ifndef MODULE
1667 static int __init max_loop_setup(char *str)
1668 {
1669 	max_loop = simple_strtol(str, NULL, 0);
1670 	return 1;
1671 }
1672 
1673 __setup("max_loop=", max_loop_setup);
1674 #endif
1675