1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include "loop.h" 80 81 #include <asm/uaccess.h> 82 83 static DEFINE_IDR(loop_index_idr); 84 static DEFINE_MUTEX(loop_index_mutex); 85 86 static int max_part; 87 static int part_shift; 88 89 static int transfer_xor(struct loop_device *lo, int cmd, 90 struct page *raw_page, unsigned raw_off, 91 struct page *loop_page, unsigned loop_off, 92 int size, sector_t real_block) 93 { 94 char *raw_buf = kmap_atomic(raw_page) + raw_off; 95 char *loop_buf = kmap_atomic(loop_page) + loop_off; 96 char *in, *out, *key; 97 int i, keysize; 98 99 if (cmd == READ) { 100 in = raw_buf; 101 out = loop_buf; 102 } else { 103 in = loop_buf; 104 out = raw_buf; 105 } 106 107 key = lo->lo_encrypt_key; 108 keysize = lo->lo_encrypt_key_size; 109 for (i = 0; i < size; i++) 110 *out++ = *in++ ^ key[(i & 511) % keysize]; 111 112 kunmap_atomic(loop_buf); 113 kunmap_atomic(raw_buf); 114 cond_resched(); 115 return 0; 116 } 117 118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 119 { 120 if (unlikely(info->lo_encrypt_key_size <= 0)) 121 return -EINVAL; 122 return 0; 123 } 124 125 static struct loop_func_table none_funcs = { 126 .number = LO_CRYPT_NONE, 127 }; 128 129 static struct loop_func_table xor_funcs = { 130 .number = LO_CRYPT_XOR, 131 .transfer = transfer_xor, 132 .init = xor_init 133 }; 134 135 /* xfer_funcs[0] is special - its release function is never called */ 136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 137 &none_funcs, 138 &xor_funcs 139 }; 140 141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 142 { 143 loff_t loopsize; 144 145 /* Compute loopsize in bytes */ 146 loopsize = i_size_read(file->f_mapping->host); 147 if (offset > 0) 148 loopsize -= offset; 149 /* offset is beyond i_size, weird but possible */ 150 if (loopsize < 0) 151 return 0; 152 153 if (sizelimit > 0 && sizelimit < loopsize) 154 loopsize = sizelimit; 155 /* 156 * Unfortunately, if we want to do I/O on the device, 157 * the number of 512-byte sectors has to fit into a sector_t. 158 */ 159 return loopsize >> 9; 160 } 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 165 } 166 167 static void __loop_update_dio(struct loop_device *lo, bool dio) 168 { 169 struct file *file = lo->lo_backing_file; 170 struct address_space *mapping = file->f_mapping; 171 struct inode *inode = mapping->host; 172 unsigned short sb_bsize = 0; 173 unsigned dio_align = 0; 174 bool use_dio; 175 176 if (inode->i_sb->s_bdev) { 177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 178 dio_align = sb_bsize - 1; 179 } 180 181 /* 182 * We support direct I/O only if lo_offset is aligned with the 183 * logical I/O size of backing device, and the logical block 184 * size of loop is bigger than the backing device's and the loop 185 * needn't transform transfer. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane appplications should be PAGE_SIZE algined 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 mapping->a_ops->direct_IO && 195 !lo->transfer) 196 use_dio = true; 197 else 198 use_dio = false; 199 } else { 200 use_dio = false; 201 } 202 203 if (lo->use_dio == use_dio) 204 return; 205 206 /* flush dirty pages before changing direct IO */ 207 vfs_fsync(file, 0); 208 209 /* 210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 212 * will get updated by ioctl(LOOP_GET_STATUS) 213 */ 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) 217 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 218 else 219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 220 blk_mq_unfreeze_queue(lo->lo_queue); 221 } 222 223 static int 224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 225 { 226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 227 sector_t x = (sector_t)size; 228 struct block_device *bdev = lo->lo_device; 229 230 if (unlikely((loff_t)x != size)) 231 return -EFBIG; 232 if (lo->lo_offset != offset) 233 lo->lo_offset = offset; 234 if (lo->lo_sizelimit != sizelimit) 235 lo->lo_sizelimit = sizelimit; 236 set_capacity(lo->lo_disk, x); 237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 238 /* let user-space know about the new size */ 239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 240 return 0; 241 } 242 243 static inline int 244 lo_do_transfer(struct loop_device *lo, int cmd, 245 struct page *rpage, unsigned roffs, 246 struct page *lpage, unsigned loffs, 247 int size, sector_t rblock) 248 { 249 int ret; 250 251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 252 if (likely(!ret)) 253 return 0; 254 255 printk_ratelimited(KERN_ERR 256 "loop: Transfer error at byte offset %llu, length %i.\n", 257 (unsigned long long)rblock << 9, size); 258 return ret; 259 } 260 261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 262 { 263 struct iov_iter i; 264 ssize_t bw; 265 266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len); 267 268 file_start_write(file); 269 bw = vfs_iter_write(file, &i, ppos); 270 file_end_write(file); 271 272 if (likely(bw == bvec->bv_len)) 273 return 0; 274 275 printk_ratelimited(KERN_ERR 276 "loop: Write error at byte offset %llu, length %i.\n", 277 (unsigned long long)*ppos, bvec->bv_len); 278 if (bw >= 0) 279 bw = -EIO; 280 return bw; 281 } 282 283 static int lo_write_simple(struct loop_device *lo, struct request *rq, 284 loff_t pos) 285 { 286 struct bio_vec bvec; 287 struct req_iterator iter; 288 int ret = 0; 289 290 rq_for_each_segment(bvec, rq, iter) { 291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 292 if (ret < 0) 293 break; 294 cond_resched(); 295 } 296 297 return ret; 298 } 299 300 /* 301 * This is the slow, transforming version that needs to double buffer the 302 * data as it cannot do the transformations in place without having direct 303 * access to the destination pages of the backing file. 304 */ 305 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 306 loff_t pos) 307 { 308 struct bio_vec bvec, b; 309 struct req_iterator iter; 310 struct page *page; 311 int ret = 0; 312 313 page = alloc_page(GFP_NOIO); 314 if (unlikely(!page)) 315 return -ENOMEM; 316 317 rq_for_each_segment(bvec, rq, iter) { 318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 319 bvec.bv_offset, bvec.bv_len, pos >> 9); 320 if (unlikely(ret)) 321 break; 322 323 b.bv_page = page; 324 b.bv_offset = 0; 325 b.bv_len = bvec.bv_len; 326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 327 if (ret < 0) 328 break; 329 } 330 331 __free_page(page); 332 return ret; 333 } 334 335 static int lo_read_simple(struct loop_device *lo, struct request *rq, 336 loff_t pos) 337 { 338 struct bio_vec bvec; 339 struct req_iterator iter; 340 struct iov_iter i; 341 ssize_t len; 342 343 rq_for_each_segment(bvec, rq, iter) { 344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 346 if (len < 0) 347 return len; 348 349 flush_dcache_page(bvec.bv_page); 350 351 if (len != bvec.bv_len) { 352 struct bio *bio; 353 354 __rq_for_each_bio(bio, rq) 355 zero_fill_bio(bio); 356 break; 357 } 358 cond_resched(); 359 } 360 361 return 0; 362 } 363 364 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 365 loff_t pos) 366 { 367 struct bio_vec bvec, b; 368 struct req_iterator iter; 369 struct iov_iter i; 370 struct page *page; 371 ssize_t len; 372 int ret = 0; 373 374 page = alloc_page(GFP_NOIO); 375 if (unlikely(!page)) 376 return -ENOMEM; 377 378 rq_for_each_segment(bvec, rq, iter) { 379 loff_t offset = pos; 380 381 b.bv_page = page; 382 b.bv_offset = 0; 383 b.bv_len = bvec.bv_len; 384 385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 387 if (len < 0) { 388 ret = len; 389 goto out_free_page; 390 } 391 392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 393 bvec.bv_offset, len, offset >> 9); 394 if (ret) 395 goto out_free_page; 396 397 flush_dcache_page(bvec.bv_page); 398 399 if (len != bvec.bv_len) { 400 struct bio *bio; 401 402 __rq_for_each_bio(bio, rq) 403 zero_fill_bio(bio); 404 break; 405 } 406 } 407 408 ret = 0; 409 out_free_page: 410 __free_page(page); 411 return ret; 412 } 413 414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 415 { 416 /* 417 * We use punch hole to reclaim the free space used by the 418 * image a.k.a. discard. However we do not support discard if 419 * encryption is enabled, because it may give an attacker 420 * useful information. 421 */ 422 struct file *file = lo->lo_backing_file; 423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 424 int ret; 425 426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 427 ret = -EOPNOTSUPP; 428 goto out; 429 } 430 431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 433 ret = -EIO; 434 out: 435 return ret; 436 } 437 438 static int lo_req_flush(struct loop_device *lo, struct request *rq) 439 { 440 struct file *file = lo->lo_backing_file; 441 int ret = vfs_fsync(file, 0); 442 if (unlikely(ret && ret != -EINVAL)) 443 ret = -EIO; 444 445 return ret; 446 } 447 448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes) 449 { 450 if (bytes < 0 || (cmd->rq->cmd_flags & REQ_WRITE)) 451 return; 452 453 if (unlikely(bytes < blk_rq_bytes(cmd->rq))) { 454 struct bio *bio = cmd->rq->bio; 455 456 bio_advance(bio, bytes); 457 zero_fill_bio(bio); 458 } 459 } 460 461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 462 { 463 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 464 struct request *rq = cmd->rq; 465 466 handle_partial_read(cmd, ret); 467 468 if (ret > 0) 469 ret = 0; 470 else if (ret < 0) 471 ret = -EIO; 472 473 blk_mq_complete_request(rq, ret); 474 } 475 476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 477 loff_t pos, bool rw) 478 { 479 struct iov_iter iter; 480 struct bio_vec *bvec; 481 struct bio *bio = cmd->rq->bio; 482 struct file *file = lo->lo_backing_file; 483 int ret; 484 485 /* nomerge for loop request queue */ 486 WARN_ON(cmd->rq->bio != cmd->rq->biotail); 487 488 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 489 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 490 bio_segments(bio), blk_rq_bytes(cmd->rq)); 491 /* 492 * This bio may be started from the middle of the 'bvec' 493 * because of bio splitting, so offset from the bvec must 494 * be passed to iov iterator 495 */ 496 iter.iov_offset = bio->bi_iter.bi_bvec_done; 497 498 cmd->iocb.ki_pos = pos; 499 cmd->iocb.ki_filp = file; 500 cmd->iocb.ki_complete = lo_rw_aio_complete; 501 cmd->iocb.ki_flags = IOCB_DIRECT; 502 503 if (rw == WRITE) 504 ret = file->f_op->write_iter(&cmd->iocb, &iter); 505 else 506 ret = file->f_op->read_iter(&cmd->iocb, &iter); 507 508 if (ret != -EIOCBQUEUED) 509 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 510 return 0; 511 } 512 513 514 static inline int lo_rw_simple(struct loop_device *lo, 515 struct request *rq, loff_t pos, bool rw) 516 { 517 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 518 519 if (cmd->use_aio) 520 return lo_rw_aio(lo, cmd, pos, rw); 521 522 /* 523 * lo_write_simple and lo_read_simple should have been covered 524 * by io submit style function like lo_rw_aio(), one blocker 525 * is that lo_read_simple() need to call flush_dcache_page after 526 * the page is written from kernel, and it isn't easy to handle 527 * this in io submit style function which submits all segments 528 * of the req at one time. And direct read IO doesn't need to 529 * run flush_dcache_page(). 530 */ 531 if (rw == WRITE) 532 return lo_write_simple(lo, rq, pos); 533 else 534 return lo_read_simple(lo, rq, pos); 535 } 536 537 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 538 { 539 loff_t pos; 540 int ret; 541 542 pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 543 544 if (rq->cmd_flags & REQ_WRITE) { 545 if (rq->cmd_flags & REQ_FLUSH) 546 ret = lo_req_flush(lo, rq); 547 else if (rq->cmd_flags & REQ_DISCARD) 548 ret = lo_discard(lo, rq, pos); 549 else if (lo->transfer) 550 ret = lo_write_transfer(lo, rq, pos); 551 else 552 ret = lo_rw_simple(lo, rq, pos, WRITE); 553 554 } else { 555 if (lo->transfer) 556 ret = lo_read_transfer(lo, rq, pos); 557 else 558 ret = lo_rw_simple(lo, rq, pos, READ); 559 } 560 561 return ret; 562 } 563 564 struct switch_request { 565 struct file *file; 566 struct completion wait; 567 }; 568 569 static inline void loop_update_dio(struct loop_device *lo) 570 { 571 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 572 lo->use_dio); 573 } 574 575 /* 576 * Do the actual switch; called from the BIO completion routine 577 */ 578 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 579 { 580 struct file *file = p->file; 581 struct file *old_file = lo->lo_backing_file; 582 struct address_space *mapping; 583 584 /* if no new file, only flush of queued bios requested */ 585 if (!file) 586 return; 587 588 mapping = file->f_mapping; 589 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 590 lo->lo_backing_file = file; 591 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 592 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 593 lo->old_gfp_mask = mapping_gfp_mask(mapping); 594 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 595 loop_update_dio(lo); 596 } 597 598 /* 599 * loop_switch performs the hard work of switching a backing store. 600 * First it needs to flush existing IO, it does this by sending a magic 601 * BIO down the pipe. The completion of this BIO does the actual switch. 602 */ 603 static int loop_switch(struct loop_device *lo, struct file *file) 604 { 605 struct switch_request w; 606 607 w.file = file; 608 609 /* freeze queue and wait for completion of scheduled requests */ 610 blk_mq_freeze_queue(lo->lo_queue); 611 612 /* do the switch action */ 613 do_loop_switch(lo, &w); 614 615 /* unfreeze */ 616 blk_mq_unfreeze_queue(lo->lo_queue); 617 618 return 0; 619 } 620 621 /* 622 * Helper to flush the IOs in loop, but keeping loop thread running 623 */ 624 static int loop_flush(struct loop_device *lo) 625 { 626 return loop_switch(lo, NULL); 627 } 628 629 static void loop_reread_partitions(struct loop_device *lo, 630 struct block_device *bdev) 631 { 632 int rc; 633 634 /* 635 * bd_mutex has been held already in release path, so don't 636 * acquire it if this function is called in such case. 637 * 638 * If the reread partition isn't from release path, lo_refcnt 639 * must be at least one and it can only become zero when the 640 * current holder is released. 641 */ 642 if (!atomic_read(&lo->lo_refcnt)) 643 rc = __blkdev_reread_part(bdev); 644 else 645 rc = blkdev_reread_part(bdev); 646 if (rc) 647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 648 __func__, lo->lo_number, lo->lo_file_name, rc); 649 } 650 651 /* 652 * loop_change_fd switched the backing store of a loopback device to 653 * a new file. This is useful for operating system installers to free up 654 * the original file and in High Availability environments to switch to 655 * an alternative location for the content in case of server meltdown. 656 * This can only work if the loop device is used read-only, and if the 657 * new backing store is the same size and type as the old backing store. 658 */ 659 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 660 unsigned int arg) 661 { 662 struct file *file, *old_file; 663 struct inode *inode; 664 int error; 665 666 error = -ENXIO; 667 if (lo->lo_state != Lo_bound) 668 goto out; 669 670 /* the loop device has to be read-only */ 671 error = -EINVAL; 672 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 673 goto out; 674 675 error = -EBADF; 676 file = fget(arg); 677 if (!file) 678 goto out; 679 680 inode = file->f_mapping->host; 681 old_file = lo->lo_backing_file; 682 683 error = -EINVAL; 684 685 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 686 goto out_putf; 687 688 /* size of the new backing store needs to be the same */ 689 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 690 goto out_putf; 691 692 /* and ... switch */ 693 error = loop_switch(lo, file); 694 if (error) 695 goto out_putf; 696 697 fput(old_file); 698 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 699 loop_reread_partitions(lo, bdev); 700 return 0; 701 702 out_putf: 703 fput(file); 704 out: 705 return error; 706 } 707 708 static inline int is_loop_device(struct file *file) 709 { 710 struct inode *i = file->f_mapping->host; 711 712 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 713 } 714 715 /* loop sysfs attributes */ 716 717 static ssize_t loop_attr_show(struct device *dev, char *page, 718 ssize_t (*callback)(struct loop_device *, char *)) 719 { 720 struct gendisk *disk = dev_to_disk(dev); 721 struct loop_device *lo = disk->private_data; 722 723 return callback(lo, page); 724 } 725 726 #define LOOP_ATTR_RO(_name) \ 727 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 728 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 729 struct device_attribute *attr, char *b) \ 730 { \ 731 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 732 } \ 733 static struct device_attribute loop_attr_##_name = \ 734 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 735 736 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 737 { 738 ssize_t ret; 739 char *p = NULL; 740 741 spin_lock_irq(&lo->lo_lock); 742 if (lo->lo_backing_file) 743 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 744 spin_unlock_irq(&lo->lo_lock); 745 746 if (IS_ERR_OR_NULL(p)) 747 ret = PTR_ERR(p); 748 else { 749 ret = strlen(p); 750 memmove(buf, p, ret); 751 buf[ret++] = '\n'; 752 buf[ret] = 0; 753 } 754 755 return ret; 756 } 757 758 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 759 { 760 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 761 } 762 763 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 764 { 765 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 766 } 767 768 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 769 { 770 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 771 772 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 773 } 774 775 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 776 { 777 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 778 779 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 780 } 781 782 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 783 { 784 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 785 786 return sprintf(buf, "%s\n", dio ? "1" : "0"); 787 } 788 789 LOOP_ATTR_RO(backing_file); 790 LOOP_ATTR_RO(offset); 791 LOOP_ATTR_RO(sizelimit); 792 LOOP_ATTR_RO(autoclear); 793 LOOP_ATTR_RO(partscan); 794 LOOP_ATTR_RO(dio); 795 796 static struct attribute *loop_attrs[] = { 797 &loop_attr_backing_file.attr, 798 &loop_attr_offset.attr, 799 &loop_attr_sizelimit.attr, 800 &loop_attr_autoclear.attr, 801 &loop_attr_partscan.attr, 802 &loop_attr_dio.attr, 803 NULL, 804 }; 805 806 static struct attribute_group loop_attribute_group = { 807 .name = "loop", 808 .attrs= loop_attrs, 809 }; 810 811 static int loop_sysfs_init(struct loop_device *lo) 812 { 813 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 814 &loop_attribute_group); 815 } 816 817 static void loop_sysfs_exit(struct loop_device *lo) 818 { 819 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 820 &loop_attribute_group); 821 } 822 823 static void loop_config_discard(struct loop_device *lo) 824 { 825 struct file *file = lo->lo_backing_file; 826 struct inode *inode = file->f_mapping->host; 827 struct request_queue *q = lo->lo_queue; 828 829 /* 830 * We use punch hole to reclaim the free space used by the 831 * image a.k.a. discard. However we do not support discard if 832 * encryption is enabled, because it may give an attacker 833 * useful information. 834 */ 835 if ((!file->f_op->fallocate) || 836 lo->lo_encrypt_key_size) { 837 q->limits.discard_granularity = 0; 838 q->limits.discard_alignment = 0; 839 blk_queue_max_discard_sectors(q, 0); 840 q->limits.discard_zeroes_data = 0; 841 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 842 return; 843 } 844 845 q->limits.discard_granularity = inode->i_sb->s_blocksize; 846 q->limits.discard_alignment = 0; 847 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 848 q->limits.discard_zeroes_data = 1; 849 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 850 } 851 852 static void loop_unprepare_queue(struct loop_device *lo) 853 { 854 flush_kthread_worker(&lo->worker); 855 kthread_stop(lo->worker_task); 856 } 857 858 static int loop_prepare_queue(struct loop_device *lo) 859 { 860 init_kthread_worker(&lo->worker); 861 lo->worker_task = kthread_run(kthread_worker_fn, 862 &lo->worker, "loop%d", lo->lo_number); 863 if (IS_ERR(lo->worker_task)) 864 return -ENOMEM; 865 set_user_nice(lo->worker_task, MIN_NICE); 866 return 0; 867 } 868 869 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 870 struct block_device *bdev, unsigned int arg) 871 { 872 struct file *file, *f; 873 struct inode *inode; 874 struct address_space *mapping; 875 unsigned lo_blocksize; 876 int lo_flags = 0; 877 int error; 878 loff_t size; 879 880 /* This is safe, since we have a reference from open(). */ 881 __module_get(THIS_MODULE); 882 883 error = -EBADF; 884 file = fget(arg); 885 if (!file) 886 goto out; 887 888 error = -EBUSY; 889 if (lo->lo_state != Lo_unbound) 890 goto out_putf; 891 892 /* Avoid recursion */ 893 f = file; 894 while (is_loop_device(f)) { 895 struct loop_device *l; 896 897 if (f->f_mapping->host->i_bdev == bdev) 898 goto out_putf; 899 900 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 901 if (l->lo_state == Lo_unbound) { 902 error = -EINVAL; 903 goto out_putf; 904 } 905 f = l->lo_backing_file; 906 } 907 908 mapping = file->f_mapping; 909 inode = mapping->host; 910 911 error = -EINVAL; 912 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 913 goto out_putf; 914 915 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 916 !file->f_op->write_iter) 917 lo_flags |= LO_FLAGS_READ_ONLY; 918 919 lo_blocksize = S_ISBLK(inode->i_mode) ? 920 inode->i_bdev->bd_block_size : PAGE_SIZE; 921 922 error = -EFBIG; 923 size = get_loop_size(lo, file); 924 if ((loff_t)(sector_t)size != size) 925 goto out_putf; 926 error = loop_prepare_queue(lo); 927 if (error) 928 goto out_putf; 929 930 error = 0; 931 932 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 933 934 lo->use_dio = false; 935 lo->lo_blocksize = lo_blocksize; 936 lo->lo_device = bdev; 937 lo->lo_flags = lo_flags; 938 lo->lo_backing_file = file; 939 lo->transfer = NULL; 940 lo->ioctl = NULL; 941 lo->lo_sizelimit = 0; 942 lo->old_gfp_mask = mapping_gfp_mask(mapping); 943 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 944 945 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 946 blk_queue_write_cache(lo->lo_queue, true, false); 947 948 loop_update_dio(lo); 949 set_capacity(lo->lo_disk, size); 950 bd_set_size(bdev, size << 9); 951 loop_sysfs_init(lo); 952 /* let user-space know about the new size */ 953 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 954 955 set_blocksize(bdev, lo_blocksize); 956 957 lo->lo_state = Lo_bound; 958 if (part_shift) 959 lo->lo_flags |= LO_FLAGS_PARTSCAN; 960 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 961 loop_reread_partitions(lo, bdev); 962 963 /* Grab the block_device to prevent its destruction after we 964 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 965 */ 966 bdgrab(bdev); 967 return 0; 968 969 out_putf: 970 fput(file); 971 out: 972 /* This is safe: open() is still holding a reference. */ 973 module_put(THIS_MODULE); 974 return error; 975 } 976 977 static int 978 loop_release_xfer(struct loop_device *lo) 979 { 980 int err = 0; 981 struct loop_func_table *xfer = lo->lo_encryption; 982 983 if (xfer) { 984 if (xfer->release) 985 err = xfer->release(lo); 986 lo->transfer = NULL; 987 lo->lo_encryption = NULL; 988 module_put(xfer->owner); 989 } 990 return err; 991 } 992 993 static int 994 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 995 const struct loop_info64 *i) 996 { 997 int err = 0; 998 999 if (xfer) { 1000 struct module *owner = xfer->owner; 1001 1002 if (!try_module_get(owner)) 1003 return -EINVAL; 1004 if (xfer->init) 1005 err = xfer->init(lo, i); 1006 if (err) 1007 module_put(owner); 1008 else 1009 lo->lo_encryption = xfer; 1010 } 1011 return err; 1012 } 1013 1014 static int loop_clr_fd(struct loop_device *lo) 1015 { 1016 struct file *filp = lo->lo_backing_file; 1017 gfp_t gfp = lo->old_gfp_mask; 1018 struct block_device *bdev = lo->lo_device; 1019 1020 if (lo->lo_state != Lo_bound) 1021 return -ENXIO; 1022 1023 /* 1024 * If we've explicitly asked to tear down the loop device, 1025 * and it has an elevated reference count, set it for auto-teardown when 1026 * the last reference goes away. This stops $!~#$@ udev from 1027 * preventing teardown because it decided that it needs to run blkid on 1028 * the loopback device whenever they appear. xfstests is notorious for 1029 * failing tests because blkid via udev races with a losetup 1030 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1031 * command to fail with EBUSY. 1032 */ 1033 if (atomic_read(&lo->lo_refcnt) > 1) { 1034 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1035 mutex_unlock(&lo->lo_ctl_mutex); 1036 return 0; 1037 } 1038 1039 if (filp == NULL) 1040 return -EINVAL; 1041 1042 /* freeze request queue during the transition */ 1043 blk_mq_freeze_queue(lo->lo_queue); 1044 1045 spin_lock_irq(&lo->lo_lock); 1046 lo->lo_state = Lo_rundown; 1047 lo->lo_backing_file = NULL; 1048 spin_unlock_irq(&lo->lo_lock); 1049 1050 loop_release_xfer(lo); 1051 lo->transfer = NULL; 1052 lo->ioctl = NULL; 1053 lo->lo_device = NULL; 1054 lo->lo_encryption = NULL; 1055 lo->lo_offset = 0; 1056 lo->lo_sizelimit = 0; 1057 lo->lo_encrypt_key_size = 0; 1058 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1059 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1060 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1061 if (bdev) { 1062 bdput(bdev); 1063 invalidate_bdev(bdev); 1064 } 1065 set_capacity(lo->lo_disk, 0); 1066 loop_sysfs_exit(lo); 1067 if (bdev) { 1068 bd_set_size(bdev, 0); 1069 /* let user-space know about this change */ 1070 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1071 } 1072 mapping_set_gfp_mask(filp->f_mapping, gfp); 1073 lo->lo_state = Lo_unbound; 1074 /* This is safe: open() is still holding a reference. */ 1075 module_put(THIS_MODULE); 1076 blk_mq_unfreeze_queue(lo->lo_queue); 1077 1078 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1079 loop_reread_partitions(lo, bdev); 1080 lo->lo_flags = 0; 1081 if (!part_shift) 1082 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1083 loop_unprepare_queue(lo); 1084 mutex_unlock(&lo->lo_ctl_mutex); 1085 /* 1086 * Need not hold lo_ctl_mutex to fput backing file. 1087 * Calling fput holding lo_ctl_mutex triggers a circular 1088 * lock dependency possibility warning as fput can take 1089 * bd_mutex which is usually taken before lo_ctl_mutex. 1090 */ 1091 fput(filp); 1092 return 0; 1093 } 1094 1095 static int 1096 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1097 { 1098 int err; 1099 struct loop_func_table *xfer; 1100 kuid_t uid = current_uid(); 1101 1102 if (lo->lo_encrypt_key_size && 1103 !uid_eq(lo->lo_key_owner, uid) && 1104 !capable(CAP_SYS_ADMIN)) 1105 return -EPERM; 1106 if (lo->lo_state != Lo_bound) 1107 return -ENXIO; 1108 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1109 return -EINVAL; 1110 1111 err = loop_release_xfer(lo); 1112 if (err) 1113 return err; 1114 1115 if (info->lo_encrypt_type) { 1116 unsigned int type = info->lo_encrypt_type; 1117 1118 if (type >= MAX_LO_CRYPT) 1119 return -EINVAL; 1120 xfer = xfer_funcs[type]; 1121 if (xfer == NULL) 1122 return -EINVAL; 1123 } else 1124 xfer = NULL; 1125 1126 err = loop_init_xfer(lo, xfer, info); 1127 if (err) 1128 return err; 1129 1130 if (lo->lo_offset != info->lo_offset || 1131 lo->lo_sizelimit != info->lo_sizelimit) 1132 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1133 return -EFBIG; 1134 1135 loop_config_discard(lo); 1136 1137 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1138 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1139 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1140 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1141 1142 if (!xfer) 1143 xfer = &none_funcs; 1144 lo->transfer = xfer->transfer; 1145 lo->ioctl = xfer->ioctl; 1146 1147 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1148 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1149 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1150 1151 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1152 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1153 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1154 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1155 loop_reread_partitions(lo, lo->lo_device); 1156 } 1157 1158 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1159 lo->lo_init[0] = info->lo_init[0]; 1160 lo->lo_init[1] = info->lo_init[1]; 1161 if (info->lo_encrypt_key_size) { 1162 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1163 info->lo_encrypt_key_size); 1164 lo->lo_key_owner = uid; 1165 } 1166 1167 /* update dio if lo_offset or transfer is changed */ 1168 __loop_update_dio(lo, lo->use_dio); 1169 1170 return 0; 1171 } 1172 1173 static int 1174 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1175 { 1176 struct file *file = lo->lo_backing_file; 1177 struct kstat stat; 1178 int error; 1179 1180 if (lo->lo_state != Lo_bound) 1181 return -ENXIO; 1182 error = vfs_getattr(&file->f_path, &stat); 1183 if (error) 1184 return error; 1185 memset(info, 0, sizeof(*info)); 1186 info->lo_number = lo->lo_number; 1187 info->lo_device = huge_encode_dev(stat.dev); 1188 info->lo_inode = stat.ino; 1189 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1190 info->lo_offset = lo->lo_offset; 1191 info->lo_sizelimit = lo->lo_sizelimit; 1192 info->lo_flags = lo->lo_flags; 1193 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1194 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1195 info->lo_encrypt_type = 1196 lo->lo_encryption ? lo->lo_encryption->number : 0; 1197 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1198 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1199 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1200 lo->lo_encrypt_key_size); 1201 } 1202 return 0; 1203 } 1204 1205 static void 1206 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1207 { 1208 memset(info64, 0, sizeof(*info64)); 1209 info64->lo_number = info->lo_number; 1210 info64->lo_device = info->lo_device; 1211 info64->lo_inode = info->lo_inode; 1212 info64->lo_rdevice = info->lo_rdevice; 1213 info64->lo_offset = info->lo_offset; 1214 info64->lo_sizelimit = 0; 1215 info64->lo_encrypt_type = info->lo_encrypt_type; 1216 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1217 info64->lo_flags = info->lo_flags; 1218 info64->lo_init[0] = info->lo_init[0]; 1219 info64->lo_init[1] = info->lo_init[1]; 1220 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1221 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1222 else 1223 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1224 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1225 } 1226 1227 static int 1228 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1229 { 1230 memset(info, 0, sizeof(*info)); 1231 info->lo_number = info64->lo_number; 1232 info->lo_device = info64->lo_device; 1233 info->lo_inode = info64->lo_inode; 1234 info->lo_rdevice = info64->lo_rdevice; 1235 info->lo_offset = info64->lo_offset; 1236 info->lo_encrypt_type = info64->lo_encrypt_type; 1237 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1238 info->lo_flags = info64->lo_flags; 1239 info->lo_init[0] = info64->lo_init[0]; 1240 info->lo_init[1] = info64->lo_init[1]; 1241 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1242 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1243 else 1244 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1245 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1246 1247 /* error in case values were truncated */ 1248 if (info->lo_device != info64->lo_device || 1249 info->lo_rdevice != info64->lo_rdevice || 1250 info->lo_inode != info64->lo_inode || 1251 info->lo_offset != info64->lo_offset) 1252 return -EOVERFLOW; 1253 1254 return 0; 1255 } 1256 1257 static int 1258 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1259 { 1260 struct loop_info info; 1261 struct loop_info64 info64; 1262 1263 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1264 return -EFAULT; 1265 loop_info64_from_old(&info, &info64); 1266 return loop_set_status(lo, &info64); 1267 } 1268 1269 static int 1270 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1271 { 1272 struct loop_info64 info64; 1273 1274 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1275 return -EFAULT; 1276 return loop_set_status(lo, &info64); 1277 } 1278 1279 static int 1280 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1281 struct loop_info info; 1282 struct loop_info64 info64; 1283 int err = 0; 1284 1285 if (!arg) 1286 err = -EINVAL; 1287 if (!err) 1288 err = loop_get_status(lo, &info64); 1289 if (!err) 1290 err = loop_info64_to_old(&info64, &info); 1291 if (!err && copy_to_user(arg, &info, sizeof(info))) 1292 err = -EFAULT; 1293 1294 return err; 1295 } 1296 1297 static int 1298 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1299 struct loop_info64 info64; 1300 int err = 0; 1301 1302 if (!arg) 1303 err = -EINVAL; 1304 if (!err) 1305 err = loop_get_status(lo, &info64); 1306 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1307 err = -EFAULT; 1308 1309 return err; 1310 } 1311 1312 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1313 { 1314 if (unlikely(lo->lo_state != Lo_bound)) 1315 return -ENXIO; 1316 1317 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1318 } 1319 1320 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1321 { 1322 int error = -ENXIO; 1323 if (lo->lo_state != Lo_bound) 1324 goto out; 1325 1326 __loop_update_dio(lo, !!arg); 1327 if (lo->use_dio == !!arg) 1328 return 0; 1329 error = -EINVAL; 1330 out: 1331 return error; 1332 } 1333 1334 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1335 unsigned int cmd, unsigned long arg) 1336 { 1337 struct loop_device *lo = bdev->bd_disk->private_data; 1338 int err; 1339 1340 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1341 switch (cmd) { 1342 case LOOP_SET_FD: 1343 err = loop_set_fd(lo, mode, bdev, arg); 1344 break; 1345 case LOOP_CHANGE_FD: 1346 err = loop_change_fd(lo, bdev, arg); 1347 break; 1348 case LOOP_CLR_FD: 1349 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1350 err = loop_clr_fd(lo); 1351 if (!err) 1352 goto out_unlocked; 1353 break; 1354 case LOOP_SET_STATUS: 1355 err = -EPERM; 1356 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1357 err = loop_set_status_old(lo, 1358 (struct loop_info __user *)arg); 1359 break; 1360 case LOOP_GET_STATUS: 1361 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1362 break; 1363 case LOOP_SET_STATUS64: 1364 err = -EPERM; 1365 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1366 err = loop_set_status64(lo, 1367 (struct loop_info64 __user *) arg); 1368 break; 1369 case LOOP_GET_STATUS64: 1370 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1371 break; 1372 case LOOP_SET_CAPACITY: 1373 err = -EPERM; 1374 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1375 err = loop_set_capacity(lo, bdev); 1376 break; 1377 case LOOP_SET_DIRECT_IO: 1378 err = -EPERM; 1379 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1380 err = loop_set_dio(lo, arg); 1381 break; 1382 default: 1383 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1384 } 1385 mutex_unlock(&lo->lo_ctl_mutex); 1386 1387 out_unlocked: 1388 return err; 1389 } 1390 1391 #ifdef CONFIG_COMPAT 1392 struct compat_loop_info { 1393 compat_int_t lo_number; /* ioctl r/o */ 1394 compat_dev_t lo_device; /* ioctl r/o */ 1395 compat_ulong_t lo_inode; /* ioctl r/o */ 1396 compat_dev_t lo_rdevice; /* ioctl r/o */ 1397 compat_int_t lo_offset; 1398 compat_int_t lo_encrypt_type; 1399 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1400 compat_int_t lo_flags; /* ioctl r/o */ 1401 char lo_name[LO_NAME_SIZE]; 1402 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1403 compat_ulong_t lo_init[2]; 1404 char reserved[4]; 1405 }; 1406 1407 /* 1408 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1409 * - noinlined to reduce stack space usage in main part of driver 1410 */ 1411 static noinline int 1412 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1413 struct loop_info64 *info64) 1414 { 1415 struct compat_loop_info info; 1416 1417 if (copy_from_user(&info, arg, sizeof(info))) 1418 return -EFAULT; 1419 1420 memset(info64, 0, sizeof(*info64)); 1421 info64->lo_number = info.lo_number; 1422 info64->lo_device = info.lo_device; 1423 info64->lo_inode = info.lo_inode; 1424 info64->lo_rdevice = info.lo_rdevice; 1425 info64->lo_offset = info.lo_offset; 1426 info64->lo_sizelimit = 0; 1427 info64->lo_encrypt_type = info.lo_encrypt_type; 1428 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1429 info64->lo_flags = info.lo_flags; 1430 info64->lo_init[0] = info.lo_init[0]; 1431 info64->lo_init[1] = info.lo_init[1]; 1432 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1433 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1434 else 1435 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1436 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1437 return 0; 1438 } 1439 1440 /* 1441 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1442 * - noinlined to reduce stack space usage in main part of driver 1443 */ 1444 static noinline int 1445 loop_info64_to_compat(const struct loop_info64 *info64, 1446 struct compat_loop_info __user *arg) 1447 { 1448 struct compat_loop_info info; 1449 1450 memset(&info, 0, sizeof(info)); 1451 info.lo_number = info64->lo_number; 1452 info.lo_device = info64->lo_device; 1453 info.lo_inode = info64->lo_inode; 1454 info.lo_rdevice = info64->lo_rdevice; 1455 info.lo_offset = info64->lo_offset; 1456 info.lo_encrypt_type = info64->lo_encrypt_type; 1457 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1458 info.lo_flags = info64->lo_flags; 1459 info.lo_init[0] = info64->lo_init[0]; 1460 info.lo_init[1] = info64->lo_init[1]; 1461 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1462 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1463 else 1464 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1465 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1466 1467 /* error in case values were truncated */ 1468 if (info.lo_device != info64->lo_device || 1469 info.lo_rdevice != info64->lo_rdevice || 1470 info.lo_inode != info64->lo_inode || 1471 info.lo_offset != info64->lo_offset || 1472 info.lo_init[0] != info64->lo_init[0] || 1473 info.lo_init[1] != info64->lo_init[1]) 1474 return -EOVERFLOW; 1475 1476 if (copy_to_user(arg, &info, sizeof(info))) 1477 return -EFAULT; 1478 return 0; 1479 } 1480 1481 static int 1482 loop_set_status_compat(struct loop_device *lo, 1483 const struct compat_loop_info __user *arg) 1484 { 1485 struct loop_info64 info64; 1486 int ret; 1487 1488 ret = loop_info64_from_compat(arg, &info64); 1489 if (ret < 0) 1490 return ret; 1491 return loop_set_status(lo, &info64); 1492 } 1493 1494 static int 1495 loop_get_status_compat(struct loop_device *lo, 1496 struct compat_loop_info __user *arg) 1497 { 1498 struct loop_info64 info64; 1499 int err = 0; 1500 1501 if (!arg) 1502 err = -EINVAL; 1503 if (!err) 1504 err = loop_get_status(lo, &info64); 1505 if (!err) 1506 err = loop_info64_to_compat(&info64, arg); 1507 return err; 1508 } 1509 1510 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1511 unsigned int cmd, unsigned long arg) 1512 { 1513 struct loop_device *lo = bdev->bd_disk->private_data; 1514 int err; 1515 1516 switch(cmd) { 1517 case LOOP_SET_STATUS: 1518 mutex_lock(&lo->lo_ctl_mutex); 1519 err = loop_set_status_compat( 1520 lo, (const struct compat_loop_info __user *) arg); 1521 mutex_unlock(&lo->lo_ctl_mutex); 1522 break; 1523 case LOOP_GET_STATUS: 1524 mutex_lock(&lo->lo_ctl_mutex); 1525 err = loop_get_status_compat( 1526 lo, (struct compat_loop_info __user *) arg); 1527 mutex_unlock(&lo->lo_ctl_mutex); 1528 break; 1529 case LOOP_SET_CAPACITY: 1530 case LOOP_CLR_FD: 1531 case LOOP_GET_STATUS64: 1532 case LOOP_SET_STATUS64: 1533 arg = (unsigned long) compat_ptr(arg); 1534 case LOOP_SET_FD: 1535 case LOOP_CHANGE_FD: 1536 err = lo_ioctl(bdev, mode, cmd, arg); 1537 break; 1538 default: 1539 err = -ENOIOCTLCMD; 1540 break; 1541 } 1542 return err; 1543 } 1544 #endif 1545 1546 static int lo_open(struct block_device *bdev, fmode_t mode) 1547 { 1548 struct loop_device *lo; 1549 int err = 0; 1550 1551 mutex_lock(&loop_index_mutex); 1552 lo = bdev->bd_disk->private_data; 1553 if (!lo) { 1554 err = -ENXIO; 1555 goto out; 1556 } 1557 1558 atomic_inc(&lo->lo_refcnt); 1559 out: 1560 mutex_unlock(&loop_index_mutex); 1561 return err; 1562 } 1563 1564 static void lo_release(struct gendisk *disk, fmode_t mode) 1565 { 1566 struct loop_device *lo = disk->private_data; 1567 int err; 1568 1569 if (atomic_dec_return(&lo->lo_refcnt)) 1570 return; 1571 1572 mutex_lock(&lo->lo_ctl_mutex); 1573 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1574 /* 1575 * In autoclear mode, stop the loop thread 1576 * and remove configuration after last close. 1577 */ 1578 err = loop_clr_fd(lo); 1579 if (!err) 1580 return; 1581 } else { 1582 /* 1583 * Otherwise keep thread (if running) and config, 1584 * but flush possible ongoing bios in thread. 1585 */ 1586 loop_flush(lo); 1587 } 1588 1589 mutex_unlock(&lo->lo_ctl_mutex); 1590 } 1591 1592 static const struct block_device_operations lo_fops = { 1593 .owner = THIS_MODULE, 1594 .open = lo_open, 1595 .release = lo_release, 1596 .ioctl = lo_ioctl, 1597 #ifdef CONFIG_COMPAT 1598 .compat_ioctl = lo_compat_ioctl, 1599 #endif 1600 }; 1601 1602 /* 1603 * And now the modules code and kernel interface. 1604 */ 1605 static int max_loop; 1606 module_param(max_loop, int, S_IRUGO); 1607 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1608 module_param(max_part, int, S_IRUGO); 1609 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1610 MODULE_LICENSE("GPL"); 1611 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1612 1613 int loop_register_transfer(struct loop_func_table *funcs) 1614 { 1615 unsigned int n = funcs->number; 1616 1617 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1618 return -EINVAL; 1619 xfer_funcs[n] = funcs; 1620 return 0; 1621 } 1622 1623 static int unregister_transfer_cb(int id, void *ptr, void *data) 1624 { 1625 struct loop_device *lo = ptr; 1626 struct loop_func_table *xfer = data; 1627 1628 mutex_lock(&lo->lo_ctl_mutex); 1629 if (lo->lo_encryption == xfer) 1630 loop_release_xfer(lo); 1631 mutex_unlock(&lo->lo_ctl_mutex); 1632 return 0; 1633 } 1634 1635 int loop_unregister_transfer(int number) 1636 { 1637 unsigned int n = number; 1638 struct loop_func_table *xfer; 1639 1640 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1641 return -EINVAL; 1642 1643 xfer_funcs[n] = NULL; 1644 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1645 return 0; 1646 } 1647 1648 EXPORT_SYMBOL(loop_register_transfer); 1649 EXPORT_SYMBOL(loop_unregister_transfer); 1650 1651 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1652 const struct blk_mq_queue_data *bd) 1653 { 1654 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); 1655 struct loop_device *lo = cmd->rq->q->queuedata; 1656 1657 blk_mq_start_request(bd->rq); 1658 1659 if (lo->lo_state != Lo_bound) 1660 return -EIO; 1661 1662 if (lo->use_dio && !(cmd->rq->cmd_flags & (REQ_FLUSH | 1663 REQ_DISCARD))) 1664 cmd->use_aio = true; 1665 else 1666 cmd->use_aio = false; 1667 1668 queue_kthread_work(&lo->worker, &cmd->work); 1669 1670 return BLK_MQ_RQ_QUEUE_OK; 1671 } 1672 1673 static void loop_handle_cmd(struct loop_cmd *cmd) 1674 { 1675 const bool write = cmd->rq->cmd_flags & REQ_WRITE; 1676 struct loop_device *lo = cmd->rq->q->queuedata; 1677 int ret = 0; 1678 1679 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1680 ret = -EIO; 1681 goto failed; 1682 } 1683 1684 ret = do_req_filebacked(lo, cmd->rq); 1685 failed: 1686 /* complete non-aio request */ 1687 if (!cmd->use_aio || ret) 1688 blk_mq_complete_request(cmd->rq, ret ? -EIO : 0); 1689 } 1690 1691 static void loop_queue_work(struct kthread_work *work) 1692 { 1693 struct loop_cmd *cmd = 1694 container_of(work, struct loop_cmd, work); 1695 1696 loop_handle_cmd(cmd); 1697 } 1698 1699 static int loop_init_request(void *data, struct request *rq, 1700 unsigned int hctx_idx, unsigned int request_idx, 1701 unsigned int numa_node) 1702 { 1703 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1704 1705 cmd->rq = rq; 1706 init_kthread_work(&cmd->work, loop_queue_work); 1707 1708 return 0; 1709 } 1710 1711 static struct blk_mq_ops loop_mq_ops = { 1712 .queue_rq = loop_queue_rq, 1713 .map_queue = blk_mq_map_queue, 1714 .init_request = loop_init_request, 1715 }; 1716 1717 static int loop_add(struct loop_device **l, int i) 1718 { 1719 struct loop_device *lo; 1720 struct gendisk *disk; 1721 int err; 1722 1723 err = -ENOMEM; 1724 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1725 if (!lo) 1726 goto out; 1727 1728 lo->lo_state = Lo_unbound; 1729 1730 /* allocate id, if @id >= 0, we're requesting that specific id */ 1731 if (i >= 0) { 1732 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1733 if (err == -ENOSPC) 1734 err = -EEXIST; 1735 } else { 1736 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1737 } 1738 if (err < 0) 1739 goto out_free_dev; 1740 i = err; 1741 1742 err = -ENOMEM; 1743 lo->tag_set.ops = &loop_mq_ops; 1744 lo->tag_set.nr_hw_queues = 1; 1745 lo->tag_set.queue_depth = 128; 1746 lo->tag_set.numa_node = NUMA_NO_NODE; 1747 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1748 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1749 lo->tag_set.driver_data = lo; 1750 1751 err = blk_mq_alloc_tag_set(&lo->tag_set); 1752 if (err) 1753 goto out_free_idr; 1754 1755 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1756 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1757 err = PTR_ERR(lo->lo_queue); 1758 goto out_cleanup_tags; 1759 } 1760 lo->lo_queue->queuedata = lo; 1761 1762 /* 1763 * It doesn't make sense to enable merge because the I/O 1764 * submitted to backing file is handled page by page. 1765 */ 1766 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1767 1768 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1769 if (!disk) 1770 goto out_free_queue; 1771 1772 /* 1773 * Disable partition scanning by default. The in-kernel partition 1774 * scanning can be requested individually per-device during its 1775 * setup. Userspace can always add and remove partitions from all 1776 * devices. The needed partition minors are allocated from the 1777 * extended minor space, the main loop device numbers will continue 1778 * to match the loop minors, regardless of the number of partitions 1779 * used. 1780 * 1781 * If max_part is given, partition scanning is globally enabled for 1782 * all loop devices. The minors for the main loop devices will be 1783 * multiples of max_part. 1784 * 1785 * Note: Global-for-all-devices, set-only-at-init, read-only module 1786 * parameteters like 'max_loop' and 'max_part' make things needlessly 1787 * complicated, are too static, inflexible and may surprise 1788 * userspace tools. Parameters like this in general should be avoided. 1789 */ 1790 if (!part_shift) 1791 disk->flags |= GENHD_FL_NO_PART_SCAN; 1792 disk->flags |= GENHD_FL_EXT_DEVT; 1793 mutex_init(&lo->lo_ctl_mutex); 1794 atomic_set(&lo->lo_refcnt, 0); 1795 lo->lo_number = i; 1796 spin_lock_init(&lo->lo_lock); 1797 disk->major = LOOP_MAJOR; 1798 disk->first_minor = i << part_shift; 1799 disk->fops = &lo_fops; 1800 disk->private_data = lo; 1801 disk->queue = lo->lo_queue; 1802 sprintf(disk->disk_name, "loop%d", i); 1803 add_disk(disk); 1804 *l = lo; 1805 return lo->lo_number; 1806 1807 out_free_queue: 1808 blk_cleanup_queue(lo->lo_queue); 1809 out_cleanup_tags: 1810 blk_mq_free_tag_set(&lo->tag_set); 1811 out_free_idr: 1812 idr_remove(&loop_index_idr, i); 1813 out_free_dev: 1814 kfree(lo); 1815 out: 1816 return err; 1817 } 1818 1819 static void loop_remove(struct loop_device *lo) 1820 { 1821 blk_cleanup_queue(lo->lo_queue); 1822 del_gendisk(lo->lo_disk); 1823 blk_mq_free_tag_set(&lo->tag_set); 1824 put_disk(lo->lo_disk); 1825 kfree(lo); 1826 } 1827 1828 static int find_free_cb(int id, void *ptr, void *data) 1829 { 1830 struct loop_device *lo = ptr; 1831 struct loop_device **l = data; 1832 1833 if (lo->lo_state == Lo_unbound) { 1834 *l = lo; 1835 return 1; 1836 } 1837 return 0; 1838 } 1839 1840 static int loop_lookup(struct loop_device **l, int i) 1841 { 1842 struct loop_device *lo; 1843 int ret = -ENODEV; 1844 1845 if (i < 0) { 1846 int err; 1847 1848 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1849 if (err == 1) { 1850 *l = lo; 1851 ret = lo->lo_number; 1852 } 1853 goto out; 1854 } 1855 1856 /* lookup and return a specific i */ 1857 lo = idr_find(&loop_index_idr, i); 1858 if (lo) { 1859 *l = lo; 1860 ret = lo->lo_number; 1861 } 1862 out: 1863 return ret; 1864 } 1865 1866 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1867 { 1868 struct loop_device *lo; 1869 struct kobject *kobj; 1870 int err; 1871 1872 mutex_lock(&loop_index_mutex); 1873 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1874 if (err < 0) 1875 err = loop_add(&lo, MINOR(dev) >> part_shift); 1876 if (err < 0) 1877 kobj = NULL; 1878 else 1879 kobj = get_disk(lo->lo_disk); 1880 mutex_unlock(&loop_index_mutex); 1881 1882 *part = 0; 1883 return kobj; 1884 } 1885 1886 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1887 unsigned long parm) 1888 { 1889 struct loop_device *lo; 1890 int ret = -ENOSYS; 1891 1892 mutex_lock(&loop_index_mutex); 1893 switch (cmd) { 1894 case LOOP_CTL_ADD: 1895 ret = loop_lookup(&lo, parm); 1896 if (ret >= 0) { 1897 ret = -EEXIST; 1898 break; 1899 } 1900 ret = loop_add(&lo, parm); 1901 break; 1902 case LOOP_CTL_REMOVE: 1903 ret = loop_lookup(&lo, parm); 1904 if (ret < 0) 1905 break; 1906 mutex_lock(&lo->lo_ctl_mutex); 1907 if (lo->lo_state != Lo_unbound) { 1908 ret = -EBUSY; 1909 mutex_unlock(&lo->lo_ctl_mutex); 1910 break; 1911 } 1912 if (atomic_read(&lo->lo_refcnt) > 0) { 1913 ret = -EBUSY; 1914 mutex_unlock(&lo->lo_ctl_mutex); 1915 break; 1916 } 1917 lo->lo_disk->private_data = NULL; 1918 mutex_unlock(&lo->lo_ctl_mutex); 1919 idr_remove(&loop_index_idr, lo->lo_number); 1920 loop_remove(lo); 1921 break; 1922 case LOOP_CTL_GET_FREE: 1923 ret = loop_lookup(&lo, -1); 1924 if (ret >= 0) 1925 break; 1926 ret = loop_add(&lo, -1); 1927 } 1928 mutex_unlock(&loop_index_mutex); 1929 1930 return ret; 1931 } 1932 1933 static const struct file_operations loop_ctl_fops = { 1934 .open = nonseekable_open, 1935 .unlocked_ioctl = loop_control_ioctl, 1936 .compat_ioctl = loop_control_ioctl, 1937 .owner = THIS_MODULE, 1938 .llseek = noop_llseek, 1939 }; 1940 1941 static struct miscdevice loop_misc = { 1942 .minor = LOOP_CTRL_MINOR, 1943 .name = "loop-control", 1944 .fops = &loop_ctl_fops, 1945 }; 1946 1947 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1948 MODULE_ALIAS("devname:loop-control"); 1949 1950 static int __init loop_init(void) 1951 { 1952 int i, nr; 1953 unsigned long range; 1954 struct loop_device *lo; 1955 int err; 1956 1957 err = misc_register(&loop_misc); 1958 if (err < 0) 1959 return err; 1960 1961 part_shift = 0; 1962 if (max_part > 0) { 1963 part_shift = fls(max_part); 1964 1965 /* 1966 * Adjust max_part according to part_shift as it is exported 1967 * to user space so that user can decide correct minor number 1968 * if [s]he want to create more devices. 1969 * 1970 * Note that -1 is required because partition 0 is reserved 1971 * for the whole disk. 1972 */ 1973 max_part = (1UL << part_shift) - 1; 1974 } 1975 1976 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1977 err = -EINVAL; 1978 goto misc_out; 1979 } 1980 1981 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1982 err = -EINVAL; 1983 goto misc_out; 1984 } 1985 1986 /* 1987 * If max_loop is specified, create that many devices upfront. 1988 * This also becomes a hard limit. If max_loop is not specified, 1989 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1990 * init time. Loop devices can be requested on-demand with the 1991 * /dev/loop-control interface, or be instantiated by accessing 1992 * a 'dead' device node. 1993 */ 1994 if (max_loop) { 1995 nr = max_loop; 1996 range = max_loop << part_shift; 1997 } else { 1998 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1999 range = 1UL << MINORBITS; 2000 } 2001 2002 if (register_blkdev(LOOP_MAJOR, "loop")) { 2003 err = -EIO; 2004 goto misc_out; 2005 } 2006 2007 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2008 THIS_MODULE, loop_probe, NULL, NULL); 2009 2010 /* pre-create number of devices given by config or max_loop */ 2011 mutex_lock(&loop_index_mutex); 2012 for (i = 0; i < nr; i++) 2013 loop_add(&lo, i); 2014 mutex_unlock(&loop_index_mutex); 2015 2016 printk(KERN_INFO "loop: module loaded\n"); 2017 return 0; 2018 2019 misc_out: 2020 misc_deregister(&loop_misc); 2021 return err; 2022 } 2023 2024 static int loop_exit_cb(int id, void *ptr, void *data) 2025 { 2026 struct loop_device *lo = ptr; 2027 2028 loop_remove(lo); 2029 return 0; 2030 } 2031 2032 static void __exit loop_exit(void) 2033 { 2034 unsigned long range; 2035 2036 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2037 2038 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2039 idr_destroy(&loop_index_idr); 2040 2041 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2042 unregister_blkdev(LOOP_MAJOR, "loop"); 2043 2044 misc_deregister(&loop_misc); 2045 } 2046 2047 module_init(loop_init); 2048 module_exit(loop_exit); 2049 2050 #ifndef MODULE 2051 static int __init max_loop_setup(char *str) 2052 { 2053 max_loop = simple_strtol(str, NULL, 0); 2054 return 1; 2055 } 2056 2057 __setup("max_loop=", max_loop_setup); 2058 #endif 2059