1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include "loop.h" 79 80 #include <asm/uaccess.h> 81 82 static DEFINE_IDR(loop_index_idr); 83 static DEFINE_MUTEX(loop_index_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf); 105 kunmap_atomic(raw_buf); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf); 134 kunmap_atomic(raw_buf); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 164 { 165 loff_t loopsize; 166 167 /* Compute loopsize in bytes */ 168 loopsize = i_size_read(file->f_mapping->host); 169 if (offset > 0) 170 loopsize -= offset; 171 /* offset is beyond i_size, weird but possible */ 172 if (loopsize < 0) 173 return 0; 174 175 if (sizelimit > 0 && sizelimit < loopsize) 176 loopsize = sizelimit; 177 /* 178 * Unfortunately, if we want to do I/O on the device, 179 * the number of 512-byte sectors has to fit into a sector_t. 180 */ 181 return loopsize >> 9; 182 } 183 184 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 185 { 186 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 187 } 188 189 static int 190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 191 { 192 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 193 sector_t x = (sector_t)size; 194 struct block_device *bdev = lo->lo_device; 195 196 if (unlikely((loff_t)x != size)) 197 return -EFBIG; 198 if (lo->lo_offset != offset) 199 lo->lo_offset = offset; 200 if (lo->lo_sizelimit != sizelimit) 201 lo->lo_sizelimit = sizelimit; 202 set_capacity(lo->lo_disk, x); 203 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 204 /* let user-space know about the new size */ 205 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 206 return 0; 207 } 208 209 static inline int 210 lo_do_transfer(struct loop_device *lo, int cmd, 211 struct page *rpage, unsigned roffs, 212 struct page *lpage, unsigned loffs, 213 int size, sector_t rblock) 214 { 215 if (unlikely(!lo->transfer)) 216 return 0; 217 218 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 219 } 220 221 /** 222 * __do_lo_send_write - helper for writing data to a loop device 223 * 224 * This helper just factors out common code between do_lo_send_direct_write() 225 * and do_lo_send_write(). 226 */ 227 static int __do_lo_send_write(struct file *file, 228 u8 *buf, const int len, loff_t pos) 229 { 230 ssize_t bw; 231 mm_segment_t old_fs = get_fs(); 232 233 file_start_write(file); 234 set_fs(get_ds()); 235 bw = file->f_op->write(file, buf, len, &pos); 236 set_fs(old_fs); 237 file_end_write(file); 238 if (likely(bw == len)) 239 return 0; 240 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 241 (unsigned long long)pos, len); 242 if (bw >= 0) 243 bw = -EIO; 244 return bw; 245 } 246 247 /** 248 * do_lo_send_direct_write - helper for writing data to a loop device 249 * 250 * This is the fast, non-transforming version that does not need double 251 * buffering. 252 */ 253 static int do_lo_send_direct_write(struct loop_device *lo, 254 struct bio_vec *bvec, loff_t pos, struct page *page) 255 { 256 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 257 kmap(bvec->bv_page) + bvec->bv_offset, 258 bvec->bv_len, pos); 259 kunmap(bvec->bv_page); 260 cond_resched(); 261 return bw; 262 } 263 264 /** 265 * do_lo_send_write - helper for writing data to a loop device 266 * 267 * This is the slow, transforming version that needs to double buffer the 268 * data as it cannot do the transformations in place without having direct 269 * access to the destination pages of the backing file. 270 */ 271 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 272 loff_t pos, struct page *page) 273 { 274 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 275 bvec->bv_offset, bvec->bv_len, pos >> 9); 276 if (likely(!ret)) 277 return __do_lo_send_write(lo->lo_backing_file, 278 page_address(page), bvec->bv_len, 279 pos); 280 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 281 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 282 if (ret > 0) 283 ret = -EIO; 284 return ret; 285 } 286 287 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 288 { 289 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 290 struct page *page); 291 struct bio_vec *bvec; 292 struct page *page = NULL; 293 int i, ret = 0; 294 295 if (lo->transfer != transfer_none) { 296 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 297 if (unlikely(!page)) 298 goto fail; 299 kmap(page); 300 do_lo_send = do_lo_send_write; 301 } else { 302 do_lo_send = do_lo_send_direct_write; 303 } 304 305 bio_for_each_segment(bvec, bio, i) { 306 ret = do_lo_send(lo, bvec, pos, page); 307 if (ret < 0) 308 break; 309 pos += bvec->bv_len; 310 } 311 if (page) { 312 kunmap(page); 313 __free_page(page); 314 } 315 out: 316 return ret; 317 fail: 318 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 319 ret = -ENOMEM; 320 goto out; 321 } 322 323 struct lo_read_data { 324 struct loop_device *lo; 325 struct page *page; 326 unsigned offset; 327 int bsize; 328 }; 329 330 static int 331 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 332 struct splice_desc *sd) 333 { 334 struct lo_read_data *p = sd->u.data; 335 struct loop_device *lo = p->lo; 336 struct page *page = buf->page; 337 sector_t IV; 338 int size; 339 340 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 341 (buf->offset >> 9); 342 size = sd->len; 343 if (size > p->bsize) 344 size = p->bsize; 345 346 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 347 printk(KERN_ERR "loop: transfer error block %ld\n", 348 page->index); 349 size = -EINVAL; 350 } 351 352 flush_dcache_page(p->page); 353 354 if (size > 0) 355 p->offset += size; 356 357 return size; 358 } 359 360 static int 361 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 362 { 363 return __splice_from_pipe(pipe, sd, lo_splice_actor); 364 } 365 366 static ssize_t 367 do_lo_receive(struct loop_device *lo, 368 struct bio_vec *bvec, int bsize, loff_t pos) 369 { 370 struct lo_read_data cookie; 371 struct splice_desc sd; 372 struct file *file; 373 ssize_t retval; 374 375 cookie.lo = lo; 376 cookie.page = bvec->bv_page; 377 cookie.offset = bvec->bv_offset; 378 cookie.bsize = bsize; 379 380 sd.len = 0; 381 sd.total_len = bvec->bv_len; 382 sd.flags = 0; 383 sd.pos = pos; 384 sd.u.data = &cookie; 385 386 file = lo->lo_backing_file; 387 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 388 389 return retval; 390 } 391 392 static int 393 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 394 { 395 struct bio_vec *bvec; 396 ssize_t s; 397 int i; 398 399 bio_for_each_segment(bvec, bio, i) { 400 s = do_lo_receive(lo, bvec, bsize, pos); 401 if (s < 0) 402 return s; 403 404 if (s != bvec->bv_len) { 405 zero_fill_bio(bio); 406 break; 407 } 408 pos += bvec->bv_len; 409 } 410 return 0; 411 } 412 413 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 414 { 415 loff_t pos; 416 int ret; 417 418 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 419 420 if (bio_rw(bio) == WRITE) { 421 struct file *file = lo->lo_backing_file; 422 423 if (bio->bi_rw & REQ_FLUSH) { 424 ret = vfs_fsync(file, 0); 425 if (unlikely(ret && ret != -EINVAL)) { 426 ret = -EIO; 427 goto out; 428 } 429 } 430 431 /* 432 * We use punch hole to reclaim the free space used by the 433 * image a.k.a. discard. However we do not support discard if 434 * encryption is enabled, because it may give an attacker 435 * useful information. 436 */ 437 if (bio->bi_rw & REQ_DISCARD) { 438 struct file *file = lo->lo_backing_file; 439 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 440 441 if ((!file->f_op->fallocate) || 442 lo->lo_encrypt_key_size) { 443 ret = -EOPNOTSUPP; 444 goto out; 445 } 446 ret = file->f_op->fallocate(file, mode, pos, 447 bio->bi_size); 448 if (unlikely(ret && ret != -EINVAL && 449 ret != -EOPNOTSUPP)) 450 ret = -EIO; 451 goto out; 452 } 453 454 ret = lo_send(lo, bio, pos); 455 456 if ((bio->bi_rw & REQ_FUA) && !ret) { 457 ret = vfs_fsync(file, 0); 458 if (unlikely(ret && ret != -EINVAL)) 459 ret = -EIO; 460 } 461 } else 462 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 463 464 out: 465 return ret; 466 } 467 468 /* 469 * Add bio to back of pending list 470 */ 471 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 472 { 473 lo->lo_bio_count++; 474 bio_list_add(&lo->lo_bio_list, bio); 475 } 476 477 /* 478 * Grab first pending buffer 479 */ 480 static struct bio *loop_get_bio(struct loop_device *lo) 481 { 482 lo->lo_bio_count--; 483 return bio_list_pop(&lo->lo_bio_list); 484 } 485 486 static void loop_make_request(struct request_queue *q, struct bio *old_bio) 487 { 488 struct loop_device *lo = q->queuedata; 489 int rw = bio_rw(old_bio); 490 491 if (rw == READA) 492 rw = READ; 493 494 BUG_ON(!lo || (rw != READ && rw != WRITE)); 495 496 spin_lock_irq(&lo->lo_lock); 497 if (lo->lo_state != Lo_bound) 498 goto out; 499 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 500 goto out; 501 if (lo->lo_bio_count >= q->nr_congestion_on) 502 wait_event_lock_irq(lo->lo_req_wait, 503 lo->lo_bio_count < q->nr_congestion_off, 504 lo->lo_lock); 505 loop_add_bio(lo, old_bio); 506 wake_up(&lo->lo_event); 507 spin_unlock_irq(&lo->lo_lock); 508 return; 509 510 out: 511 spin_unlock_irq(&lo->lo_lock); 512 bio_io_error(old_bio); 513 } 514 515 struct switch_request { 516 struct file *file; 517 struct completion wait; 518 }; 519 520 static void do_loop_switch(struct loop_device *, struct switch_request *); 521 522 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 523 { 524 if (unlikely(!bio->bi_bdev)) { 525 do_loop_switch(lo, bio->bi_private); 526 bio_put(bio); 527 } else { 528 int ret = do_bio_filebacked(lo, bio); 529 bio_endio(bio, ret); 530 } 531 } 532 533 /* 534 * worker thread that handles reads/writes to file backed loop devices, 535 * to avoid blocking in our make_request_fn. it also does loop decrypting 536 * on reads for block backed loop, as that is too heavy to do from 537 * b_end_io context where irqs may be disabled. 538 * 539 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 540 * calling kthread_stop(). Therefore once kthread_should_stop() is 541 * true, make_request will not place any more requests. Therefore 542 * once kthread_should_stop() is true and lo_bio is NULL, we are 543 * done with the loop. 544 */ 545 static int loop_thread(void *data) 546 { 547 struct loop_device *lo = data; 548 struct bio *bio; 549 550 set_user_nice(current, -20); 551 552 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 553 554 wait_event_interruptible(lo->lo_event, 555 !bio_list_empty(&lo->lo_bio_list) || 556 kthread_should_stop()); 557 558 if (bio_list_empty(&lo->lo_bio_list)) 559 continue; 560 spin_lock_irq(&lo->lo_lock); 561 bio = loop_get_bio(lo); 562 if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off) 563 wake_up(&lo->lo_req_wait); 564 spin_unlock_irq(&lo->lo_lock); 565 566 BUG_ON(!bio); 567 loop_handle_bio(lo, bio); 568 } 569 570 return 0; 571 } 572 573 /* 574 * loop_switch performs the hard work of switching a backing store. 575 * First it needs to flush existing IO, it does this by sending a magic 576 * BIO down the pipe. The completion of this BIO does the actual switch. 577 */ 578 static int loop_switch(struct loop_device *lo, struct file *file) 579 { 580 struct switch_request w; 581 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 582 if (!bio) 583 return -ENOMEM; 584 init_completion(&w.wait); 585 w.file = file; 586 bio->bi_private = &w; 587 bio->bi_bdev = NULL; 588 loop_make_request(lo->lo_queue, bio); 589 wait_for_completion(&w.wait); 590 return 0; 591 } 592 593 /* 594 * Helper to flush the IOs in loop, but keeping loop thread running 595 */ 596 static int loop_flush(struct loop_device *lo) 597 { 598 /* loop not yet configured, no running thread, nothing to flush */ 599 if (!lo->lo_thread) 600 return 0; 601 602 return loop_switch(lo, NULL); 603 } 604 605 /* 606 * Do the actual switch; called from the BIO completion routine 607 */ 608 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 609 { 610 struct file *file = p->file; 611 struct file *old_file = lo->lo_backing_file; 612 struct address_space *mapping; 613 614 /* if no new file, only flush of queued bios requested */ 615 if (!file) 616 goto out; 617 618 mapping = file->f_mapping; 619 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 620 lo->lo_backing_file = file; 621 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 622 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 623 lo->old_gfp_mask = mapping_gfp_mask(mapping); 624 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 625 out: 626 complete(&p->wait); 627 } 628 629 630 /* 631 * loop_change_fd switched the backing store of a loopback device to 632 * a new file. This is useful for operating system installers to free up 633 * the original file and in High Availability environments to switch to 634 * an alternative location for the content in case of server meltdown. 635 * This can only work if the loop device is used read-only, and if the 636 * new backing store is the same size and type as the old backing store. 637 */ 638 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 639 unsigned int arg) 640 { 641 struct file *file, *old_file; 642 struct inode *inode; 643 int error; 644 645 error = -ENXIO; 646 if (lo->lo_state != Lo_bound) 647 goto out; 648 649 /* the loop device has to be read-only */ 650 error = -EINVAL; 651 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 652 goto out; 653 654 error = -EBADF; 655 file = fget(arg); 656 if (!file) 657 goto out; 658 659 inode = file->f_mapping->host; 660 old_file = lo->lo_backing_file; 661 662 error = -EINVAL; 663 664 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 665 goto out_putf; 666 667 /* size of the new backing store needs to be the same */ 668 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 669 goto out_putf; 670 671 /* and ... switch */ 672 error = loop_switch(lo, file); 673 if (error) 674 goto out_putf; 675 676 fput(old_file); 677 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 678 ioctl_by_bdev(bdev, BLKRRPART, 0); 679 return 0; 680 681 out_putf: 682 fput(file); 683 out: 684 return error; 685 } 686 687 static inline int is_loop_device(struct file *file) 688 { 689 struct inode *i = file->f_mapping->host; 690 691 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 692 } 693 694 /* loop sysfs attributes */ 695 696 static ssize_t loop_attr_show(struct device *dev, char *page, 697 ssize_t (*callback)(struct loop_device *, char *)) 698 { 699 struct gendisk *disk = dev_to_disk(dev); 700 struct loop_device *lo = disk->private_data; 701 702 return callback(lo, page); 703 } 704 705 #define LOOP_ATTR_RO(_name) \ 706 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 707 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 708 struct device_attribute *attr, char *b) \ 709 { \ 710 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 711 } \ 712 static struct device_attribute loop_attr_##_name = \ 713 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 714 715 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 716 { 717 ssize_t ret; 718 char *p = NULL; 719 720 spin_lock_irq(&lo->lo_lock); 721 if (lo->lo_backing_file) 722 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 723 spin_unlock_irq(&lo->lo_lock); 724 725 if (IS_ERR_OR_NULL(p)) 726 ret = PTR_ERR(p); 727 else { 728 ret = strlen(p); 729 memmove(buf, p, ret); 730 buf[ret++] = '\n'; 731 buf[ret] = 0; 732 } 733 734 return ret; 735 } 736 737 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 738 { 739 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 740 } 741 742 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 743 { 744 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 745 } 746 747 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 748 { 749 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 750 751 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 752 } 753 754 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 755 { 756 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 757 758 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 759 } 760 761 LOOP_ATTR_RO(backing_file); 762 LOOP_ATTR_RO(offset); 763 LOOP_ATTR_RO(sizelimit); 764 LOOP_ATTR_RO(autoclear); 765 LOOP_ATTR_RO(partscan); 766 767 static struct attribute *loop_attrs[] = { 768 &loop_attr_backing_file.attr, 769 &loop_attr_offset.attr, 770 &loop_attr_sizelimit.attr, 771 &loop_attr_autoclear.attr, 772 &loop_attr_partscan.attr, 773 NULL, 774 }; 775 776 static struct attribute_group loop_attribute_group = { 777 .name = "loop", 778 .attrs= loop_attrs, 779 }; 780 781 static int loop_sysfs_init(struct loop_device *lo) 782 { 783 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 784 &loop_attribute_group); 785 } 786 787 static void loop_sysfs_exit(struct loop_device *lo) 788 { 789 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 790 &loop_attribute_group); 791 } 792 793 static void loop_config_discard(struct loop_device *lo) 794 { 795 struct file *file = lo->lo_backing_file; 796 struct inode *inode = file->f_mapping->host; 797 struct request_queue *q = lo->lo_queue; 798 799 /* 800 * We use punch hole to reclaim the free space used by the 801 * image a.k.a. discard. However we do support discard if 802 * encryption is enabled, because it may give an attacker 803 * useful information. 804 */ 805 if ((!file->f_op->fallocate) || 806 lo->lo_encrypt_key_size) { 807 q->limits.discard_granularity = 0; 808 q->limits.discard_alignment = 0; 809 q->limits.max_discard_sectors = 0; 810 q->limits.discard_zeroes_data = 0; 811 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 812 return; 813 } 814 815 q->limits.discard_granularity = inode->i_sb->s_blocksize; 816 q->limits.discard_alignment = 0; 817 q->limits.max_discard_sectors = UINT_MAX >> 9; 818 q->limits.discard_zeroes_data = 1; 819 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 820 } 821 822 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 823 struct block_device *bdev, unsigned int arg) 824 { 825 struct file *file, *f; 826 struct inode *inode; 827 struct address_space *mapping; 828 unsigned lo_blocksize; 829 int lo_flags = 0; 830 int error; 831 loff_t size; 832 833 /* This is safe, since we have a reference from open(). */ 834 __module_get(THIS_MODULE); 835 836 error = -EBADF; 837 file = fget(arg); 838 if (!file) 839 goto out; 840 841 error = -EBUSY; 842 if (lo->lo_state != Lo_unbound) 843 goto out_putf; 844 845 /* Avoid recursion */ 846 f = file; 847 while (is_loop_device(f)) { 848 struct loop_device *l; 849 850 if (f->f_mapping->host->i_bdev == bdev) 851 goto out_putf; 852 853 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 854 if (l->lo_state == Lo_unbound) { 855 error = -EINVAL; 856 goto out_putf; 857 } 858 f = l->lo_backing_file; 859 } 860 861 mapping = file->f_mapping; 862 inode = mapping->host; 863 864 error = -EINVAL; 865 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 866 goto out_putf; 867 868 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 869 !file->f_op->write) 870 lo_flags |= LO_FLAGS_READ_ONLY; 871 872 lo_blocksize = S_ISBLK(inode->i_mode) ? 873 inode->i_bdev->bd_block_size : PAGE_SIZE; 874 875 error = -EFBIG; 876 size = get_loop_size(lo, file); 877 if ((loff_t)(sector_t)size != size) 878 goto out_putf; 879 880 error = 0; 881 882 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 883 884 lo->lo_blocksize = lo_blocksize; 885 lo->lo_device = bdev; 886 lo->lo_flags = lo_flags; 887 lo->lo_backing_file = file; 888 lo->transfer = transfer_none; 889 lo->ioctl = NULL; 890 lo->lo_sizelimit = 0; 891 lo->lo_bio_count = 0; 892 lo->old_gfp_mask = mapping_gfp_mask(mapping); 893 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 894 895 bio_list_init(&lo->lo_bio_list); 896 897 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 898 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 899 900 set_capacity(lo->lo_disk, size); 901 bd_set_size(bdev, size << 9); 902 loop_sysfs_init(lo); 903 /* let user-space know about the new size */ 904 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 905 906 set_blocksize(bdev, lo_blocksize); 907 908 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 909 lo->lo_number); 910 if (IS_ERR(lo->lo_thread)) { 911 error = PTR_ERR(lo->lo_thread); 912 goto out_clr; 913 } 914 lo->lo_state = Lo_bound; 915 wake_up_process(lo->lo_thread); 916 if (part_shift) 917 lo->lo_flags |= LO_FLAGS_PARTSCAN; 918 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 919 ioctl_by_bdev(bdev, BLKRRPART, 0); 920 921 /* Grab the block_device to prevent its destruction after we 922 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 923 */ 924 bdgrab(bdev); 925 return 0; 926 927 out_clr: 928 loop_sysfs_exit(lo); 929 lo->lo_thread = NULL; 930 lo->lo_device = NULL; 931 lo->lo_backing_file = NULL; 932 lo->lo_flags = 0; 933 set_capacity(lo->lo_disk, 0); 934 invalidate_bdev(bdev); 935 bd_set_size(bdev, 0); 936 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 937 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 938 lo->lo_state = Lo_unbound; 939 out_putf: 940 fput(file); 941 out: 942 /* This is safe: open() is still holding a reference. */ 943 module_put(THIS_MODULE); 944 return error; 945 } 946 947 static int 948 loop_release_xfer(struct loop_device *lo) 949 { 950 int err = 0; 951 struct loop_func_table *xfer = lo->lo_encryption; 952 953 if (xfer) { 954 if (xfer->release) 955 err = xfer->release(lo); 956 lo->transfer = NULL; 957 lo->lo_encryption = NULL; 958 module_put(xfer->owner); 959 } 960 return err; 961 } 962 963 static int 964 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 965 const struct loop_info64 *i) 966 { 967 int err = 0; 968 969 if (xfer) { 970 struct module *owner = xfer->owner; 971 972 if (!try_module_get(owner)) 973 return -EINVAL; 974 if (xfer->init) 975 err = xfer->init(lo, i); 976 if (err) 977 module_put(owner); 978 else 979 lo->lo_encryption = xfer; 980 } 981 return err; 982 } 983 984 static int loop_clr_fd(struct loop_device *lo) 985 { 986 struct file *filp = lo->lo_backing_file; 987 gfp_t gfp = lo->old_gfp_mask; 988 struct block_device *bdev = lo->lo_device; 989 990 if (lo->lo_state != Lo_bound) 991 return -ENXIO; 992 993 /* 994 * If we've explicitly asked to tear down the loop device, 995 * and it has an elevated reference count, set it for auto-teardown when 996 * the last reference goes away. This stops $!~#$@ udev from 997 * preventing teardown because it decided that it needs to run blkid on 998 * the loopback device whenever they appear. xfstests is notorious for 999 * failing tests because blkid via udev races with a losetup 1000 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1001 * command to fail with EBUSY. 1002 */ 1003 if (lo->lo_refcnt > 1) { 1004 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1005 mutex_unlock(&lo->lo_ctl_mutex); 1006 return 0; 1007 } 1008 1009 if (filp == NULL) 1010 return -EINVAL; 1011 1012 spin_lock_irq(&lo->lo_lock); 1013 lo->lo_state = Lo_rundown; 1014 spin_unlock_irq(&lo->lo_lock); 1015 1016 kthread_stop(lo->lo_thread); 1017 1018 spin_lock_irq(&lo->lo_lock); 1019 lo->lo_backing_file = NULL; 1020 spin_unlock_irq(&lo->lo_lock); 1021 1022 loop_release_xfer(lo); 1023 lo->transfer = NULL; 1024 lo->ioctl = NULL; 1025 lo->lo_device = NULL; 1026 lo->lo_encryption = NULL; 1027 lo->lo_offset = 0; 1028 lo->lo_sizelimit = 0; 1029 lo->lo_encrypt_key_size = 0; 1030 lo->lo_thread = NULL; 1031 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1032 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1033 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1034 if (bdev) { 1035 bdput(bdev); 1036 invalidate_bdev(bdev); 1037 } 1038 set_capacity(lo->lo_disk, 0); 1039 loop_sysfs_exit(lo); 1040 if (bdev) { 1041 bd_set_size(bdev, 0); 1042 /* let user-space know about this change */ 1043 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1044 } 1045 mapping_set_gfp_mask(filp->f_mapping, gfp); 1046 lo->lo_state = Lo_unbound; 1047 /* This is safe: open() is still holding a reference. */ 1048 module_put(THIS_MODULE); 1049 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1050 ioctl_by_bdev(bdev, BLKRRPART, 0); 1051 lo->lo_flags = 0; 1052 if (!part_shift) 1053 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1054 mutex_unlock(&lo->lo_ctl_mutex); 1055 /* 1056 * Need not hold lo_ctl_mutex to fput backing file. 1057 * Calling fput holding lo_ctl_mutex triggers a circular 1058 * lock dependency possibility warning as fput can take 1059 * bd_mutex which is usually taken before lo_ctl_mutex. 1060 */ 1061 fput(filp); 1062 return 0; 1063 } 1064 1065 static int 1066 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1067 { 1068 int err; 1069 struct loop_func_table *xfer; 1070 kuid_t uid = current_uid(); 1071 1072 if (lo->lo_encrypt_key_size && 1073 !uid_eq(lo->lo_key_owner, uid) && 1074 !capable(CAP_SYS_ADMIN)) 1075 return -EPERM; 1076 if (lo->lo_state != Lo_bound) 1077 return -ENXIO; 1078 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1079 return -EINVAL; 1080 1081 err = loop_release_xfer(lo); 1082 if (err) 1083 return err; 1084 1085 if (info->lo_encrypt_type) { 1086 unsigned int type = info->lo_encrypt_type; 1087 1088 if (type >= MAX_LO_CRYPT) 1089 return -EINVAL; 1090 xfer = xfer_funcs[type]; 1091 if (xfer == NULL) 1092 return -EINVAL; 1093 } else 1094 xfer = NULL; 1095 1096 err = loop_init_xfer(lo, xfer, info); 1097 if (err) 1098 return err; 1099 1100 if (lo->lo_offset != info->lo_offset || 1101 lo->lo_sizelimit != info->lo_sizelimit) 1102 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1103 return -EFBIG; 1104 1105 loop_config_discard(lo); 1106 1107 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1108 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1109 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1110 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1111 1112 if (!xfer) 1113 xfer = &none_funcs; 1114 lo->transfer = xfer->transfer; 1115 lo->ioctl = xfer->ioctl; 1116 1117 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1118 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1119 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1120 1121 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1122 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1123 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1124 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1125 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0); 1126 } 1127 1128 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1129 lo->lo_init[0] = info->lo_init[0]; 1130 lo->lo_init[1] = info->lo_init[1]; 1131 if (info->lo_encrypt_key_size) { 1132 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1133 info->lo_encrypt_key_size); 1134 lo->lo_key_owner = uid; 1135 } 1136 1137 return 0; 1138 } 1139 1140 static int 1141 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1142 { 1143 struct file *file = lo->lo_backing_file; 1144 struct kstat stat; 1145 int error; 1146 1147 if (lo->lo_state != Lo_bound) 1148 return -ENXIO; 1149 error = vfs_getattr(&file->f_path, &stat); 1150 if (error) 1151 return error; 1152 memset(info, 0, sizeof(*info)); 1153 info->lo_number = lo->lo_number; 1154 info->lo_device = huge_encode_dev(stat.dev); 1155 info->lo_inode = stat.ino; 1156 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1157 info->lo_offset = lo->lo_offset; 1158 info->lo_sizelimit = lo->lo_sizelimit; 1159 info->lo_flags = lo->lo_flags; 1160 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1161 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1162 info->lo_encrypt_type = 1163 lo->lo_encryption ? lo->lo_encryption->number : 0; 1164 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1165 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1166 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1167 lo->lo_encrypt_key_size); 1168 } 1169 return 0; 1170 } 1171 1172 static void 1173 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1174 { 1175 memset(info64, 0, sizeof(*info64)); 1176 info64->lo_number = info->lo_number; 1177 info64->lo_device = info->lo_device; 1178 info64->lo_inode = info->lo_inode; 1179 info64->lo_rdevice = info->lo_rdevice; 1180 info64->lo_offset = info->lo_offset; 1181 info64->lo_sizelimit = 0; 1182 info64->lo_encrypt_type = info->lo_encrypt_type; 1183 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1184 info64->lo_flags = info->lo_flags; 1185 info64->lo_init[0] = info->lo_init[0]; 1186 info64->lo_init[1] = info->lo_init[1]; 1187 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1188 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1189 else 1190 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1191 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1192 } 1193 1194 static int 1195 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1196 { 1197 memset(info, 0, sizeof(*info)); 1198 info->lo_number = info64->lo_number; 1199 info->lo_device = info64->lo_device; 1200 info->lo_inode = info64->lo_inode; 1201 info->lo_rdevice = info64->lo_rdevice; 1202 info->lo_offset = info64->lo_offset; 1203 info->lo_encrypt_type = info64->lo_encrypt_type; 1204 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1205 info->lo_flags = info64->lo_flags; 1206 info->lo_init[0] = info64->lo_init[0]; 1207 info->lo_init[1] = info64->lo_init[1]; 1208 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1209 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1210 else 1211 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1212 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1213 1214 /* error in case values were truncated */ 1215 if (info->lo_device != info64->lo_device || 1216 info->lo_rdevice != info64->lo_rdevice || 1217 info->lo_inode != info64->lo_inode || 1218 info->lo_offset != info64->lo_offset) 1219 return -EOVERFLOW; 1220 1221 return 0; 1222 } 1223 1224 static int 1225 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1226 { 1227 struct loop_info info; 1228 struct loop_info64 info64; 1229 1230 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1231 return -EFAULT; 1232 loop_info64_from_old(&info, &info64); 1233 return loop_set_status(lo, &info64); 1234 } 1235 1236 static int 1237 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1238 { 1239 struct loop_info64 info64; 1240 1241 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1242 return -EFAULT; 1243 return loop_set_status(lo, &info64); 1244 } 1245 1246 static int 1247 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1248 struct loop_info info; 1249 struct loop_info64 info64; 1250 int err = 0; 1251 1252 if (!arg) 1253 err = -EINVAL; 1254 if (!err) 1255 err = loop_get_status(lo, &info64); 1256 if (!err) 1257 err = loop_info64_to_old(&info64, &info); 1258 if (!err && copy_to_user(arg, &info, sizeof(info))) 1259 err = -EFAULT; 1260 1261 return err; 1262 } 1263 1264 static int 1265 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1266 struct loop_info64 info64; 1267 int err = 0; 1268 1269 if (!arg) 1270 err = -EINVAL; 1271 if (!err) 1272 err = loop_get_status(lo, &info64); 1273 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1274 err = -EFAULT; 1275 1276 return err; 1277 } 1278 1279 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1280 { 1281 if (unlikely(lo->lo_state != Lo_bound)) 1282 return -ENXIO; 1283 1284 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1285 } 1286 1287 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1288 unsigned int cmd, unsigned long arg) 1289 { 1290 struct loop_device *lo = bdev->bd_disk->private_data; 1291 int err; 1292 1293 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1294 switch (cmd) { 1295 case LOOP_SET_FD: 1296 err = loop_set_fd(lo, mode, bdev, arg); 1297 break; 1298 case LOOP_CHANGE_FD: 1299 err = loop_change_fd(lo, bdev, arg); 1300 break; 1301 case LOOP_CLR_FD: 1302 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1303 err = loop_clr_fd(lo); 1304 if (!err) 1305 goto out_unlocked; 1306 break; 1307 case LOOP_SET_STATUS: 1308 err = -EPERM; 1309 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1310 err = loop_set_status_old(lo, 1311 (struct loop_info __user *)arg); 1312 break; 1313 case LOOP_GET_STATUS: 1314 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1315 break; 1316 case LOOP_SET_STATUS64: 1317 err = -EPERM; 1318 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1319 err = loop_set_status64(lo, 1320 (struct loop_info64 __user *) arg); 1321 break; 1322 case LOOP_GET_STATUS64: 1323 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1324 break; 1325 case LOOP_SET_CAPACITY: 1326 err = -EPERM; 1327 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1328 err = loop_set_capacity(lo, bdev); 1329 break; 1330 default: 1331 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1332 } 1333 mutex_unlock(&lo->lo_ctl_mutex); 1334 1335 out_unlocked: 1336 return err; 1337 } 1338 1339 #ifdef CONFIG_COMPAT 1340 struct compat_loop_info { 1341 compat_int_t lo_number; /* ioctl r/o */ 1342 compat_dev_t lo_device; /* ioctl r/o */ 1343 compat_ulong_t lo_inode; /* ioctl r/o */ 1344 compat_dev_t lo_rdevice; /* ioctl r/o */ 1345 compat_int_t lo_offset; 1346 compat_int_t lo_encrypt_type; 1347 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1348 compat_int_t lo_flags; /* ioctl r/o */ 1349 char lo_name[LO_NAME_SIZE]; 1350 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1351 compat_ulong_t lo_init[2]; 1352 char reserved[4]; 1353 }; 1354 1355 /* 1356 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1357 * - noinlined to reduce stack space usage in main part of driver 1358 */ 1359 static noinline int 1360 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1361 struct loop_info64 *info64) 1362 { 1363 struct compat_loop_info info; 1364 1365 if (copy_from_user(&info, arg, sizeof(info))) 1366 return -EFAULT; 1367 1368 memset(info64, 0, sizeof(*info64)); 1369 info64->lo_number = info.lo_number; 1370 info64->lo_device = info.lo_device; 1371 info64->lo_inode = info.lo_inode; 1372 info64->lo_rdevice = info.lo_rdevice; 1373 info64->lo_offset = info.lo_offset; 1374 info64->lo_sizelimit = 0; 1375 info64->lo_encrypt_type = info.lo_encrypt_type; 1376 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1377 info64->lo_flags = info.lo_flags; 1378 info64->lo_init[0] = info.lo_init[0]; 1379 info64->lo_init[1] = info.lo_init[1]; 1380 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1381 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1382 else 1383 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1384 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1385 return 0; 1386 } 1387 1388 /* 1389 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1390 * - noinlined to reduce stack space usage in main part of driver 1391 */ 1392 static noinline int 1393 loop_info64_to_compat(const struct loop_info64 *info64, 1394 struct compat_loop_info __user *arg) 1395 { 1396 struct compat_loop_info info; 1397 1398 memset(&info, 0, sizeof(info)); 1399 info.lo_number = info64->lo_number; 1400 info.lo_device = info64->lo_device; 1401 info.lo_inode = info64->lo_inode; 1402 info.lo_rdevice = info64->lo_rdevice; 1403 info.lo_offset = info64->lo_offset; 1404 info.lo_encrypt_type = info64->lo_encrypt_type; 1405 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1406 info.lo_flags = info64->lo_flags; 1407 info.lo_init[0] = info64->lo_init[0]; 1408 info.lo_init[1] = info64->lo_init[1]; 1409 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1410 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1411 else 1412 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1413 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1414 1415 /* error in case values were truncated */ 1416 if (info.lo_device != info64->lo_device || 1417 info.lo_rdevice != info64->lo_rdevice || 1418 info.lo_inode != info64->lo_inode || 1419 info.lo_offset != info64->lo_offset || 1420 info.lo_init[0] != info64->lo_init[0] || 1421 info.lo_init[1] != info64->lo_init[1]) 1422 return -EOVERFLOW; 1423 1424 if (copy_to_user(arg, &info, sizeof(info))) 1425 return -EFAULT; 1426 return 0; 1427 } 1428 1429 static int 1430 loop_set_status_compat(struct loop_device *lo, 1431 const struct compat_loop_info __user *arg) 1432 { 1433 struct loop_info64 info64; 1434 int ret; 1435 1436 ret = loop_info64_from_compat(arg, &info64); 1437 if (ret < 0) 1438 return ret; 1439 return loop_set_status(lo, &info64); 1440 } 1441 1442 static int 1443 loop_get_status_compat(struct loop_device *lo, 1444 struct compat_loop_info __user *arg) 1445 { 1446 struct loop_info64 info64; 1447 int err = 0; 1448 1449 if (!arg) 1450 err = -EINVAL; 1451 if (!err) 1452 err = loop_get_status(lo, &info64); 1453 if (!err) 1454 err = loop_info64_to_compat(&info64, arg); 1455 return err; 1456 } 1457 1458 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1459 unsigned int cmd, unsigned long arg) 1460 { 1461 struct loop_device *lo = bdev->bd_disk->private_data; 1462 int err; 1463 1464 switch(cmd) { 1465 case LOOP_SET_STATUS: 1466 mutex_lock(&lo->lo_ctl_mutex); 1467 err = loop_set_status_compat( 1468 lo, (const struct compat_loop_info __user *) arg); 1469 mutex_unlock(&lo->lo_ctl_mutex); 1470 break; 1471 case LOOP_GET_STATUS: 1472 mutex_lock(&lo->lo_ctl_mutex); 1473 err = loop_get_status_compat( 1474 lo, (struct compat_loop_info __user *) arg); 1475 mutex_unlock(&lo->lo_ctl_mutex); 1476 break; 1477 case LOOP_SET_CAPACITY: 1478 case LOOP_CLR_FD: 1479 case LOOP_GET_STATUS64: 1480 case LOOP_SET_STATUS64: 1481 arg = (unsigned long) compat_ptr(arg); 1482 case LOOP_SET_FD: 1483 case LOOP_CHANGE_FD: 1484 err = lo_ioctl(bdev, mode, cmd, arg); 1485 break; 1486 default: 1487 err = -ENOIOCTLCMD; 1488 break; 1489 } 1490 return err; 1491 } 1492 #endif 1493 1494 static int lo_open(struct block_device *bdev, fmode_t mode) 1495 { 1496 struct loop_device *lo; 1497 int err = 0; 1498 1499 mutex_lock(&loop_index_mutex); 1500 lo = bdev->bd_disk->private_data; 1501 if (!lo) { 1502 err = -ENXIO; 1503 goto out; 1504 } 1505 1506 mutex_lock(&lo->lo_ctl_mutex); 1507 lo->lo_refcnt++; 1508 mutex_unlock(&lo->lo_ctl_mutex); 1509 out: 1510 mutex_unlock(&loop_index_mutex); 1511 return err; 1512 } 1513 1514 static void lo_release(struct gendisk *disk, fmode_t mode) 1515 { 1516 struct loop_device *lo = disk->private_data; 1517 int err; 1518 1519 mutex_lock(&lo->lo_ctl_mutex); 1520 1521 if (--lo->lo_refcnt) 1522 goto out; 1523 1524 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1525 /* 1526 * In autoclear mode, stop the loop thread 1527 * and remove configuration after last close. 1528 */ 1529 err = loop_clr_fd(lo); 1530 if (!err) 1531 return; 1532 } else { 1533 /* 1534 * Otherwise keep thread (if running) and config, 1535 * but flush possible ongoing bios in thread. 1536 */ 1537 loop_flush(lo); 1538 } 1539 1540 out: 1541 mutex_unlock(&lo->lo_ctl_mutex); 1542 } 1543 1544 static const struct block_device_operations lo_fops = { 1545 .owner = THIS_MODULE, 1546 .open = lo_open, 1547 .release = lo_release, 1548 .ioctl = lo_ioctl, 1549 #ifdef CONFIG_COMPAT 1550 .compat_ioctl = lo_compat_ioctl, 1551 #endif 1552 }; 1553 1554 /* 1555 * And now the modules code and kernel interface. 1556 */ 1557 static int max_loop; 1558 module_param(max_loop, int, S_IRUGO); 1559 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1560 module_param(max_part, int, S_IRUGO); 1561 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1562 MODULE_LICENSE("GPL"); 1563 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1564 1565 int loop_register_transfer(struct loop_func_table *funcs) 1566 { 1567 unsigned int n = funcs->number; 1568 1569 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1570 return -EINVAL; 1571 xfer_funcs[n] = funcs; 1572 return 0; 1573 } 1574 1575 static int unregister_transfer_cb(int id, void *ptr, void *data) 1576 { 1577 struct loop_device *lo = ptr; 1578 struct loop_func_table *xfer = data; 1579 1580 mutex_lock(&lo->lo_ctl_mutex); 1581 if (lo->lo_encryption == xfer) 1582 loop_release_xfer(lo); 1583 mutex_unlock(&lo->lo_ctl_mutex); 1584 return 0; 1585 } 1586 1587 int loop_unregister_transfer(int number) 1588 { 1589 unsigned int n = number; 1590 struct loop_func_table *xfer; 1591 1592 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1593 return -EINVAL; 1594 1595 xfer_funcs[n] = NULL; 1596 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1597 return 0; 1598 } 1599 1600 EXPORT_SYMBOL(loop_register_transfer); 1601 EXPORT_SYMBOL(loop_unregister_transfer); 1602 1603 static int loop_add(struct loop_device **l, int i) 1604 { 1605 struct loop_device *lo; 1606 struct gendisk *disk; 1607 int err; 1608 1609 err = -ENOMEM; 1610 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1611 if (!lo) 1612 goto out; 1613 1614 lo->lo_state = Lo_unbound; 1615 1616 /* allocate id, if @id >= 0, we're requesting that specific id */ 1617 if (i >= 0) { 1618 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1619 if (err == -ENOSPC) 1620 err = -EEXIST; 1621 } else { 1622 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1623 } 1624 if (err < 0) 1625 goto out_free_dev; 1626 i = err; 1627 1628 err = -ENOMEM; 1629 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1630 if (!lo->lo_queue) 1631 goto out_free_idr; 1632 1633 /* 1634 * set queue make_request_fn 1635 */ 1636 blk_queue_make_request(lo->lo_queue, loop_make_request); 1637 lo->lo_queue->queuedata = lo; 1638 1639 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1640 if (!disk) 1641 goto out_free_queue; 1642 1643 /* 1644 * Disable partition scanning by default. The in-kernel partition 1645 * scanning can be requested individually per-device during its 1646 * setup. Userspace can always add and remove partitions from all 1647 * devices. The needed partition minors are allocated from the 1648 * extended minor space, the main loop device numbers will continue 1649 * to match the loop minors, regardless of the number of partitions 1650 * used. 1651 * 1652 * If max_part is given, partition scanning is globally enabled for 1653 * all loop devices. The minors for the main loop devices will be 1654 * multiples of max_part. 1655 * 1656 * Note: Global-for-all-devices, set-only-at-init, read-only module 1657 * parameteters like 'max_loop' and 'max_part' make things needlessly 1658 * complicated, are too static, inflexible and may surprise 1659 * userspace tools. Parameters like this in general should be avoided. 1660 */ 1661 if (!part_shift) 1662 disk->flags |= GENHD_FL_NO_PART_SCAN; 1663 disk->flags |= GENHD_FL_EXT_DEVT; 1664 mutex_init(&lo->lo_ctl_mutex); 1665 lo->lo_number = i; 1666 lo->lo_thread = NULL; 1667 init_waitqueue_head(&lo->lo_event); 1668 init_waitqueue_head(&lo->lo_req_wait); 1669 spin_lock_init(&lo->lo_lock); 1670 disk->major = LOOP_MAJOR; 1671 disk->first_minor = i << part_shift; 1672 disk->fops = &lo_fops; 1673 disk->private_data = lo; 1674 disk->queue = lo->lo_queue; 1675 sprintf(disk->disk_name, "loop%d", i); 1676 add_disk(disk); 1677 *l = lo; 1678 return lo->lo_number; 1679 1680 out_free_queue: 1681 blk_cleanup_queue(lo->lo_queue); 1682 out_free_idr: 1683 idr_remove(&loop_index_idr, i); 1684 out_free_dev: 1685 kfree(lo); 1686 out: 1687 return err; 1688 } 1689 1690 static void loop_remove(struct loop_device *lo) 1691 { 1692 del_gendisk(lo->lo_disk); 1693 blk_cleanup_queue(lo->lo_queue); 1694 put_disk(lo->lo_disk); 1695 kfree(lo); 1696 } 1697 1698 static int find_free_cb(int id, void *ptr, void *data) 1699 { 1700 struct loop_device *lo = ptr; 1701 struct loop_device **l = data; 1702 1703 if (lo->lo_state == Lo_unbound) { 1704 *l = lo; 1705 return 1; 1706 } 1707 return 0; 1708 } 1709 1710 static int loop_lookup(struct loop_device **l, int i) 1711 { 1712 struct loop_device *lo; 1713 int ret = -ENODEV; 1714 1715 if (i < 0) { 1716 int err; 1717 1718 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1719 if (err == 1) { 1720 *l = lo; 1721 ret = lo->lo_number; 1722 } 1723 goto out; 1724 } 1725 1726 /* lookup and return a specific i */ 1727 lo = idr_find(&loop_index_idr, i); 1728 if (lo) { 1729 *l = lo; 1730 ret = lo->lo_number; 1731 } 1732 out: 1733 return ret; 1734 } 1735 1736 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1737 { 1738 struct loop_device *lo; 1739 struct kobject *kobj; 1740 int err; 1741 1742 mutex_lock(&loop_index_mutex); 1743 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1744 if (err < 0) 1745 err = loop_add(&lo, MINOR(dev) >> part_shift); 1746 if (err < 0) 1747 kobj = NULL; 1748 else 1749 kobj = get_disk(lo->lo_disk); 1750 mutex_unlock(&loop_index_mutex); 1751 1752 *part = 0; 1753 return kobj; 1754 } 1755 1756 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1757 unsigned long parm) 1758 { 1759 struct loop_device *lo; 1760 int ret = -ENOSYS; 1761 1762 mutex_lock(&loop_index_mutex); 1763 switch (cmd) { 1764 case LOOP_CTL_ADD: 1765 ret = loop_lookup(&lo, parm); 1766 if (ret >= 0) { 1767 ret = -EEXIST; 1768 break; 1769 } 1770 ret = loop_add(&lo, parm); 1771 break; 1772 case LOOP_CTL_REMOVE: 1773 ret = loop_lookup(&lo, parm); 1774 if (ret < 0) 1775 break; 1776 mutex_lock(&lo->lo_ctl_mutex); 1777 if (lo->lo_state != Lo_unbound) { 1778 ret = -EBUSY; 1779 mutex_unlock(&lo->lo_ctl_mutex); 1780 break; 1781 } 1782 if (lo->lo_refcnt > 0) { 1783 ret = -EBUSY; 1784 mutex_unlock(&lo->lo_ctl_mutex); 1785 break; 1786 } 1787 lo->lo_disk->private_data = NULL; 1788 mutex_unlock(&lo->lo_ctl_mutex); 1789 idr_remove(&loop_index_idr, lo->lo_number); 1790 loop_remove(lo); 1791 break; 1792 case LOOP_CTL_GET_FREE: 1793 ret = loop_lookup(&lo, -1); 1794 if (ret >= 0) 1795 break; 1796 ret = loop_add(&lo, -1); 1797 } 1798 mutex_unlock(&loop_index_mutex); 1799 1800 return ret; 1801 } 1802 1803 static const struct file_operations loop_ctl_fops = { 1804 .open = nonseekable_open, 1805 .unlocked_ioctl = loop_control_ioctl, 1806 .compat_ioctl = loop_control_ioctl, 1807 .owner = THIS_MODULE, 1808 .llseek = noop_llseek, 1809 }; 1810 1811 static struct miscdevice loop_misc = { 1812 .minor = LOOP_CTRL_MINOR, 1813 .name = "loop-control", 1814 .fops = &loop_ctl_fops, 1815 }; 1816 1817 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1818 MODULE_ALIAS("devname:loop-control"); 1819 1820 static int __init loop_init(void) 1821 { 1822 int i, nr; 1823 unsigned long range; 1824 struct loop_device *lo; 1825 int err; 1826 1827 err = misc_register(&loop_misc); 1828 if (err < 0) 1829 return err; 1830 1831 part_shift = 0; 1832 if (max_part > 0) { 1833 part_shift = fls(max_part); 1834 1835 /* 1836 * Adjust max_part according to part_shift as it is exported 1837 * to user space so that user can decide correct minor number 1838 * if [s]he want to create more devices. 1839 * 1840 * Note that -1 is required because partition 0 is reserved 1841 * for the whole disk. 1842 */ 1843 max_part = (1UL << part_shift) - 1; 1844 } 1845 1846 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1847 err = -EINVAL; 1848 goto misc_out; 1849 } 1850 1851 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1852 err = -EINVAL; 1853 goto misc_out; 1854 } 1855 1856 /* 1857 * If max_loop is specified, create that many devices upfront. 1858 * This also becomes a hard limit. If max_loop is not specified, 1859 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1860 * init time. Loop devices can be requested on-demand with the 1861 * /dev/loop-control interface, or be instantiated by accessing 1862 * a 'dead' device node. 1863 */ 1864 if (max_loop) { 1865 nr = max_loop; 1866 range = max_loop << part_shift; 1867 } else { 1868 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1869 range = 1UL << MINORBITS; 1870 } 1871 1872 if (register_blkdev(LOOP_MAJOR, "loop")) { 1873 err = -EIO; 1874 goto misc_out; 1875 } 1876 1877 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1878 THIS_MODULE, loop_probe, NULL, NULL); 1879 1880 /* pre-create number of devices given by config or max_loop */ 1881 mutex_lock(&loop_index_mutex); 1882 for (i = 0; i < nr; i++) 1883 loop_add(&lo, i); 1884 mutex_unlock(&loop_index_mutex); 1885 1886 printk(KERN_INFO "loop: module loaded\n"); 1887 return 0; 1888 1889 misc_out: 1890 misc_deregister(&loop_misc); 1891 return err; 1892 } 1893 1894 static int loop_exit_cb(int id, void *ptr, void *data) 1895 { 1896 struct loop_device *lo = ptr; 1897 1898 loop_remove(lo); 1899 return 0; 1900 } 1901 1902 static void __exit loop_exit(void) 1903 { 1904 unsigned long range; 1905 1906 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 1907 1908 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 1909 idr_destroy(&loop_index_idr); 1910 1911 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1912 unregister_blkdev(LOOP_MAJOR, "loop"); 1913 1914 misc_deregister(&loop_misc); 1915 } 1916 1917 module_init(loop_init); 1918 module_exit(loop_exit); 1919 1920 #ifndef MODULE 1921 static int __init max_loop_setup(char *str) 1922 { 1923 max_loop = simple_strtol(str, NULL, 0); 1924 return 1; 1925 } 1926 1927 __setup("max_loop=", max_loop_setup); 1928 #endif 1929