xref: /openbmc/linux/drivers/block/loop.c (revision 6ee73861)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/writeback.h>
71 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/gfp.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 
78 #include <asm/uaccess.h>
79 
80 static LIST_HEAD(loop_devices);
81 static DEFINE_MUTEX(loop_devices_mutex);
82 
83 static int max_part;
84 static int part_shift;
85 
86 /*
87  * Transfer functions
88  */
89 static int transfer_none(struct loop_device *lo, int cmd,
90 			 struct page *raw_page, unsigned raw_off,
91 			 struct page *loop_page, unsigned loop_off,
92 			 int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
96 
97 	if (cmd == READ)
98 		memcpy(loop_buf, raw_buf, size);
99 	else
100 		memcpy(raw_buf, loop_buf, size);
101 
102 	kunmap_atomic(raw_buf, KM_USER0);
103 	kunmap_atomic(loop_buf, KM_USER1);
104 	cond_resched();
105 	return 0;
106 }
107 
108 static int transfer_xor(struct loop_device *lo, int cmd,
109 			struct page *raw_page, unsigned raw_off,
110 			struct page *loop_page, unsigned loop_off,
111 			int size, sector_t real_block)
112 {
113 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
114 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
115 	char *in, *out, *key;
116 	int i, keysize;
117 
118 	if (cmd == READ) {
119 		in = raw_buf;
120 		out = loop_buf;
121 	} else {
122 		in = loop_buf;
123 		out = raw_buf;
124 	}
125 
126 	key = lo->lo_encrypt_key;
127 	keysize = lo->lo_encrypt_key_size;
128 	for (i = 0; i < size; i++)
129 		*out++ = *in++ ^ key[(i & 511) % keysize];
130 
131 	kunmap_atomic(raw_buf, KM_USER0);
132 	kunmap_atomic(loop_buf, KM_USER1);
133 	cond_resched();
134 	return 0;
135 }
136 
137 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
138 {
139 	if (unlikely(info->lo_encrypt_key_size <= 0))
140 		return -EINVAL;
141 	return 0;
142 }
143 
144 static struct loop_func_table none_funcs = {
145 	.number = LO_CRYPT_NONE,
146 	.transfer = transfer_none,
147 };
148 
149 static struct loop_func_table xor_funcs = {
150 	.number = LO_CRYPT_XOR,
151 	.transfer = transfer_xor,
152 	.init = xor_init
153 };
154 
155 /* xfer_funcs[0] is special - its release function is never called */
156 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
157 	&none_funcs,
158 	&xor_funcs
159 };
160 
161 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
162 {
163 	loff_t size, offset, loopsize;
164 
165 	/* Compute loopsize in bytes */
166 	size = i_size_read(file->f_mapping->host);
167 	offset = lo->lo_offset;
168 	loopsize = size - offset;
169 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
170 		loopsize = lo->lo_sizelimit;
171 
172 	/*
173 	 * Unfortunately, if we want to do I/O on the device,
174 	 * the number of 512-byte sectors has to fit into a sector_t.
175 	 */
176 	return loopsize >> 9;
177 }
178 
179 static int
180 figure_loop_size(struct loop_device *lo)
181 {
182 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
183 	sector_t x = (sector_t)size;
184 
185 	if (unlikely((loff_t)x != size))
186 		return -EFBIG;
187 
188 	set_capacity(lo->lo_disk, x);
189 	return 0;
190 }
191 
192 static inline int
193 lo_do_transfer(struct loop_device *lo, int cmd,
194 	       struct page *rpage, unsigned roffs,
195 	       struct page *lpage, unsigned loffs,
196 	       int size, sector_t rblock)
197 {
198 	if (unlikely(!lo->transfer))
199 		return 0;
200 
201 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
202 }
203 
204 /**
205  * do_lo_send_aops - helper for writing data to a loop device
206  *
207  * This is the fast version for backing filesystems which implement the address
208  * space operations write_begin and write_end.
209  */
210 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
211 		loff_t pos, struct page *unused)
212 {
213 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
214 	struct address_space *mapping = file->f_mapping;
215 	pgoff_t index;
216 	unsigned offset, bv_offs;
217 	int len, ret;
218 
219 	mutex_lock(&mapping->host->i_mutex);
220 	index = pos >> PAGE_CACHE_SHIFT;
221 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
222 	bv_offs = bvec->bv_offset;
223 	len = bvec->bv_len;
224 	while (len > 0) {
225 		sector_t IV;
226 		unsigned size, copied;
227 		int transfer_result;
228 		struct page *page;
229 		void *fsdata;
230 
231 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
232 		size = PAGE_CACHE_SIZE - offset;
233 		if (size > len)
234 			size = len;
235 
236 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
237 							&page, &fsdata);
238 		if (ret)
239 			goto fail;
240 
241 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
242 				bvec->bv_page, bv_offs, size, IV);
243 		copied = size;
244 		if (unlikely(transfer_result))
245 			copied = 0;
246 
247 		ret = pagecache_write_end(file, mapping, pos, size, copied,
248 							page, fsdata);
249 		if (ret < 0 || ret != copied)
250 			goto fail;
251 
252 		if (unlikely(transfer_result))
253 			goto fail;
254 
255 		bv_offs += copied;
256 		len -= copied;
257 		offset = 0;
258 		index++;
259 		pos += copied;
260 	}
261 	ret = 0;
262 out:
263 	mutex_unlock(&mapping->host->i_mutex);
264 	return ret;
265 fail:
266 	ret = -1;
267 	goto out;
268 }
269 
270 /**
271  * __do_lo_send_write - helper for writing data to a loop device
272  *
273  * This helper just factors out common code between do_lo_send_direct_write()
274  * and do_lo_send_write().
275  */
276 static int __do_lo_send_write(struct file *file,
277 		u8 *buf, const int len, loff_t pos)
278 {
279 	ssize_t bw;
280 	mm_segment_t old_fs = get_fs();
281 
282 	set_fs(get_ds());
283 	bw = file->f_op->write(file, buf, len, &pos);
284 	set_fs(old_fs);
285 	if (likely(bw == len))
286 		return 0;
287 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
288 			(unsigned long long)pos, len);
289 	if (bw >= 0)
290 		bw = -EIO;
291 	return bw;
292 }
293 
294 /**
295  * do_lo_send_direct_write - helper for writing data to a loop device
296  *
297  * This is the fast, non-transforming version for backing filesystems which do
298  * not implement the address space operations write_begin and write_end.
299  * It uses the write file operation which should be present on all writeable
300  * filesystems.
301  */
302 static int do_lo_send_direct_write(struct loop_device *lo,
303 		struct bio_vec *bvec, loff_t pos, struct page *page)
304 {
305 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
306 			kmap(bvec->bv_page) + bvec->bv_offset,
307 			bvec->bv_len, pos);
308 	kunmap(bvec->bv_page);
309 	cond_resched();
310 	return bw;
311 }
312 
313 /**
314  * do_lo_send_write - helper for writing data to a loop device
315  *
316  * This is the slow, transforming version for filesystems which do not
317  * implement the address space operations write_begin and write_end.  It
318  * uses the write file operation which should be present on all writeable
319  * filesystems.
320  *
321  * Using fops->write is slower than using aops->{prepare,commit}_write in the
322  * transforming case because we need to double buffer the data as we cannot do
323  * the transformations in place as we do not have direct access to the
324  * destination pages of the backing file.
325  */
326 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
327 		loff_t pos, struct page *page)
328 {
329 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
330 			bvec->bv_offset, bvec->bv_len, pos >> 9);
331 	if (likely(!ret))
332 		return __do_lo_send_write(lo->lo_backing_file,
333 				page_address(page), bvec->bv_len,
334 				pos);
335 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
336 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
337 	if (ret > 0)
338 		ret = -EIO;
339 	return ret;
340 }
341 
342 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
343 {
344 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
345 			struct page *page);
346 	struct bio_vec *bvec;
347 	struct page *page = NULL;
348 	int i, ret = 0;
349 
350 	do_lo_send = do_lo_send_aops;
351 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
352 		do_lo_send = do_lo_send_direct_write;
353 		if (lo->transfer != transfer_none) {
354 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
355 			if (unlikely(!page))
356 				goto fail;
357 			kmap(page);
358 			do_lo_send = do_lo_send_write;
359 		}
360 	}
361 	bio_for_each_segment(bvec, bio, i) {
362 		ret = do_lo_send(lo, bvec, pos, page);
363 		if (ret < 0)
364 			break;
365 		pos += bvec->bv_len;
366 	}
367 	if (page) {
368 		kunmap(page);
369 		__free_page(page);
370 	}
371 out:
372 	return ret;
373 fail:
374 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
375 	ret = -ENOMEM;
376 	goto out;
377 }
378 
379 struct lo_read_data {
380 	struct loop_device *lo;
381 	struct page *page;
382 	unsigned offset;
383 	int bsize;
384 };
385 
386 static int
387 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
388 		struct splice_desc *sd)
389 {
390 	struct lo_read_data *p = sd->u.data;
391 	struct loop_device *lo = p->lo;
392 	struct page *page = buf->page;
393 	sector_t IV;
394 	int size, ret;
395 
396 	ret = buf->ops->confirm(pipe, buf);
397 	if (unlikely(ret))
398 		return ret;
399 
400 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
401 							(buf->offset >> 9);
402 	size = sd->len;
403 	if (size > p->bsize)
404 		size = p->bsize;
405 
406 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
407 		printk(KERN_ERR "loop: transfer error block %ld\n",
408 		       page->index);
409 		size = -EINVAL;
410 	}
411 
412 	flush_dcache_page(p->page);
413 
414 	if (size > 0)
415 		p->offset += size;
416 
417 	return size;
418 }
419 
420 static int
421 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
422 {
423 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
424 }
425 
426 static int
427 do_lo_receive(struct loop_device *lo,
428 	      struct bio_vec *bvec, int bsize, loff_t pos)
429 {
430 	struct lo_read_data cookie;
431 	struct splice_desc sd;
432 	struct file *file;
433 	long retval;
434 
435 	cookie.lo = lo;
436 	cookie.page = bvec->bv_page;
437 	cookie.offset = bvec->bv_offset;
438 	cookie.bsize = bsize;
439 
440 	sd.len = 0;
441 	sd.total_len = bvec->bv_len;
442 	sd.flags = 0;
443 	sd.pos = pos;
444 	sd.u.data = &cookie;
445 
446 	file = lo->lo_backing_file;
447 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
448 
449 	if (retval < 0)
450 		return retval;
451 
452 	return 0;
453 }
454 
455 static int
456 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
457 {
458 	struct bio_vec *bvec;
459 	int i, ret = 0;
460 
461 	bio_for_each_segment(bvec, bio, i) {
462 		ret = do_lo_receive(lo, bvec, bsize, pos);
463 		if (ret < 0)
464 			break;
465 		pos += bvec->bv_len;
466 	}
467 	return ret;
468 }
469 
470 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
471 {
472 	loff_t pos;
473 	int ret;
474 
475 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
476 
477 	if (bio_rw(bio) == WRITE) {
478 		bool barrier = bio_rw_flagged(bio, BIO_RW_BARRIER);
479 		struct file *file = lo->lo_backing_file;
480 
481 		if (barrier) {
482 			if (unlikely(!file->f_op->fsync)) {
483 				ret = -EOPNOTSUPP;
484 				goto out;
485 			}
486 
487 			ret = vfs_fsync(file, file->f_path.dentry, 0);
488 			if (unlikely(ret)) {
489 				ret = -EIO;
490 				goto out;
491 			}
492 		}
493 
494 		ret = lo_send(lo, bio, pos);
495 
496 		if (barrier && !ret) {
497 			ret = vfs_fsync(file, file->f_path.dentry, 0);
498 			if (unlikely(ret))
499 				ret = -EIO;
500 		}
501 	} else
502 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
503 
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Add bio to back of pending list
510  */
511 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
512 {
513 	bio_list_add(&lo->lo_bio_list, bio);
514 }
515 
516 /*
517  * Grab first pending buffer
518  */
519 static struct bio *loop_get_bio(struct loop_device *lo)
520 {
521 	return bio_list_pop(&lo->lo_bio_list);
522 }
523 
524 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
525 {
526 	struct loop_device *lo = q->queuedata;
527 	int rw = bio_rw(old_bio);
528 
529 	if (rw == READA)
530 		rw = READ;
531 
532 	BUG_ON(!lo || (rw != READ && rw != WRITE));
533 
534 	spin_lock_irq(&lo->lo_lock);
535 	if (lo->lo_state != Lo_bound)
536 		goto out;
537 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
538 		goto out;
539 	loop_add_bio(lo, old_bio);
540 	wake_up(&lo->lo_event);
541 	spin_unlock_irq(&lo->lo_lock);
542 	return 0;
543 
544 out:
545 	spin_unlock_irq(&lo->lo_lock);
546 	bio_io_error(old_bio);
547 	return 0;
548 }
549 
550 /*
551  * kick off io on the underlying address space
552  */
553 static void loop_unplug(struct request_queue *q)
554 {
555 	struct loop_device *lo = q->queuedata;
556 
557 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
558 	blk_run_address_space(lo->lo_backing_file->f_mapping);
559 }
560 
561 struct switch_request {
562 	struct file *file;
563 	struct completion wait;
564 };
565 
566 static void do_loop_switch(struct loop_device *, struct switch_request *);
567 
568 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
569 {
570 	if (unlikely(!bio->bi_bdev)) {
571 		do_loop_switch(lo, bio->bi_private);
572 		bio_put(bio);
573 	} else {
574 		int ret = do_bio_filebacked(lo, bio);
575 		bio_endio(bio, ret);
576 	}
577 }
578 
579 /*
580  * worker thread that handles reads/writes to file backed loop devices,
581  * to avoid blocking in our make_request_fn. it also does loop decrypting
582  * on reads for block backed loop, as that is too heavy to do from
583  * b_end_io context where irqs may be disabled.
584  *
585  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
586  * calling kthread_stop().  Therefore once kthread_should_stop() is
587  * true, make_request will not place any more requests.  Therefore
588  * once kthread_should_stop() is true and lo_bio is NULL, we are
589  * done with the loop.
590  */
591 static int loop_thread(void *data)
592 {
593 	struct loop_device *lo = data;
594 	struct bio *bio;
595 
596 	set_user_nice(current, -20);
597 
598 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
599 
600 		wait_event_interruptible(lo->lo_event,
601 				!bio_list_empty(&lo->lo_bio_list) ||
602 				kthread_should_stop());
603 
604 		if (bio_list_empty(&lo->lo_bio_list))
605 			continue;
606 		spin_lock_irq(&lo->lo_lock);
607 		bio = loop_get_bio(lo);
608 		spin_unlock_irq(&lo->lo_lock);
609 
610 		BUG_ON(!bio);
611 		loop_handle_bio(lo, bio);
612 	}
613 
614 	return 0;
615 }
616 
617 /*
618  * loop_switch performs the hard work of switching a backing store.
619  * First it needs to flush existing IO, it does this by sending a magic
620  * BIO down the pipe. The completion of this BIO does the actual switch.
621  */
622 static int loop_switch(struct loop_device *lo, struct file *file)
623 {
624 	struct switch_request w;
625 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
626 	if (!bio)
627 		return -ENOMEM;
628 	init_completion(&w.wait);
629 	w.file = file;
630 	bio->bi_private = &w;
631 	bio->bi_bdev = NULL;
632 	loop_make_request(lo->lo_queue, bio);
633 	wait_for_completion(&w.wait);
634 	return 0;
635 }
636 
637 /*
638  * Helper to flush the IOs in loop, but keeping loop thread running
639  */
640 static int loop_flush(struct loop_device *lo)
641 {
642 	/* loop not yet configured, no running thread, nothing to flush */
643 	if (!lo->lo_thread)
644 		return 0;
645 
646 	return loop_switch(lo, NULL);
647 }
648 
649 /*
650  * Do the actual switch; called from the BIO completion routine
651  */
652 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
653 {
654 	struct file *file = p->file;
655 	struct file *old_file = lo->lo_backing_file;
656 	struct address_space *mapping;
657 
658 	/* if no new file, only flush of queued bios requested */
659 	if (!file)
660 		goto out;
661 
662 	mapping = file->f_mapping;
663 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
664 	lo->lo_backing_file = file;
665 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
666 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
667 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
668 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
669 out:
670 	complete(&p->wait);
671 }
672 
673 
674 /*
675  * loop_change_fd switched the backing store of a loopback device to
676  * a new file. This is useful for operating system installers to free up
677  * the original file and in High Availability environments to switch to
678  * an alternative location for the content in case of server meltdown.
679  * This can only work if the loop device is used read-only, and if the
680  * new backing store is the same size and type as the old backing store.
681  */
682 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
683 			  unsigned int arg)
684 {
685 	struct file	*file, *old_file;
686 	struct inode	*inode;
687 	int		error;
688 
689 	error = -ENXIO;
690 	if (lo->lo_state != Lo_bound)
691 		goto out;
692 
693 	/* the loop device has to be read-only */
694 	error = -EINVAL;
695 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
696 		goto out;
697 
698 	error = -EBADF;
699 	file = fget(arg);
700 	if (!file)
701 		goto out;
702 
703 	inode = file->f_mapping->host;
704 	old_file = lo->lo_backing_file;
705 
706 	error = -EINVAL;
707 
708 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
709 		goto out_putf;
710 
711 	/* size of the new backing store needs to be the same */
712 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
713 		goto out_putf;
714 
715 	/* and ... switch */
716 	error = loop_switch(lo, file);
717 	if (error)
718 		goto out_putf;
719 
720 	fput(old_file);
721 	if (max_part > 0)
722 		ioctl_by_bdev(bdev, BLKRRPART, 0);
723 	return 0;
724 
725  out_putf:
726 	fput(file);
727  out:
728 	return error;
729 }
730 
731 static inline int is_loop_device(struct file *file)
732 {
733 	struct inode *i = file->f_mapping->host;
734 
735 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
736 }
737 
738 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
739 		       struct block_device *bdev, unsigned int arg)
740 {
741 	struct file	*file, *f;
742 	struct inode	*inode;
743 	struct address_space *mapping;
744 	unsigned lo_blocksize;
745 	int		lo_flags = 0;
746 	int		error;
747 	loff_t		size;
748 
749 	/* This is safe, since we have a reference from open(). */
750 	__module_get(THIS_MODULE);
751 
752 	error = -EBADF;
753 	file = fget(arg);
754 	if (!file)
755 		goto out;
756 
757 	error = -EBUSY;
758 	if (lo->lo_state != Lo_unbound)
759 		goto out_putf;
760 
761 	/* Avoid recursion */
762 	f = file;
763 	while (is_loop_device(f)) {
764 		struct loop_device *l;
765 
766 		if (f->f_mapping->host->i_bdev == bdev)
767 			goto out_putf;
768 
769 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
770 		if (l->lo_state == Lo_unbound) {
771 			error = -EINVAL;
772 			goto out_putf;
773 		}
774 		f = l->lo_backing_file;
775 	}
776 
777 	mapping = file->f_mapping;
778 	inode = mapping->host;
779 
780 	if (!(file->f_mode & FMODE_WRITE))
781 		lo_flags |= LO_FLAGS_READ_ONLY;
782 
783 	error = -EINVAL;
784 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
785 		const struct address_space_operations *aops = mapping->a_ops;
786 
787 		if (aops->write_begin)
788 			lo_flags |= LO_FLAGS_USE_AOPS;
789 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
790 			lo_flags |= LO_FLAGS_READ_ONLY;
791 
792 		lo_blocksize = S_ISBLK(inode->i_mode) ?
793 			inode->i_bdev->bd_block_size : PAGE_SIZE;
794 
795 		error = 0;
796 	} else {
797 		goto out_putf;
798 	}
799 
800 	size = get_loop_size(lo, file);
801 
802 	if ((loff_t)(sector_t)size != size) {
803 		error = -EFBIG;
804 		goto out_putf;
805 	}
806 
807 	if (!(mode & FMODE_WRITE))
808 		lo_flags |= LO_FLAGS_READ_ONLY;
809 
810 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
811 
812 	lo->lo_blocksize = lo_blocksize;
813 	lo->lo_device = bdev;
814 	lo->lo_flags = lo_flags;
815 	lo->lo_backing_file = file;
816 	lo->transfer = transfer_none;
817 	lo->ioctl = NULL;
818 	lo->lo_sizelimit = 0;
819 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
820 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
821 
822 	bio_list_init(&lo->lo_bio_list);
823 
824 	/*
825 	 * set queue make_request_fn, and add limits based on lower level
826 	 * device
827 	 */
828 	blk_queue_make_request(lo->lo_queue, loop_make_request);
829 	lo->lo_queue->queuedata = lo;
830 	lo->lo_queue->unplug_fn = loop_unplug;
831 
832 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
833 		blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN, NULL);
834 
835 	set_capacity(lo->lo_disk, size);
836 	bd_set_size(bdev, size << 9);
837 
838 	set_blocksize(bdev, lo_blocksize);
839 
840 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
841 						lo->lo_number);
842 	if (IS_ERR(lo->lo_thread)) {
843 		error = PTR_ERR(lo->lo_thread);
844 		goto out_clr;
845 	}
846 	lo->lo_state = Lo_bound;
847 	wake_up_process(lo->lo_thread);
848 	if (max_part > 0)
849 		ioctl_by_bdev(bdev, BLKRRPART, 0);
850 	return 0;
851 
852 out_clr:
853 	lo->lo_thread = NULL;
854 	lo->lo_device = NULL;
855 	lo->lo_backing_file = NULL;
856 	lo->lo_flags = 0;
857 	set_capacity(lo->lo_disk, 0);
858 	invalidate_bdev(bdev);
859 	bd_set_size(bdev, 0);
860 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
861 	lo->lo_state = Lo_unbound;
862  out_putf:
863 	fput(file);
864  out:
865 	/* This is safe: open() is still holding a reference. */
866 	module_put(THIS_MODULE);
867 	return error;
868 }
869 
870 static int
871 loop_release_xfer(struct loop_device *lo)
872 {
873 	int err = 0;
874 	struct loop_func_table *xfer = lo->lo_encryption;
875 
876 	if (xfer) {
877 		if (xfer->release)
878 			err = xfer->release(lo);
879 		lo->transfer = NULL;
880 		lo->lo_encryption = NULL;
881 		module_put(xfer->owner);
882 	}
883 	return err;
884 }
885 
886 static int
887 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
888 	       const struct loop_info64 *i)
889 {
890 	int err = 0;
891 
892 	if (xfer) {
893 		struct module *owner = xfer->owner;
894 
895 		if (!try_module_get(owner))
896 			return -EINVAL;
897 		if (xfer->init)
898 			err = xfer->init(lo, i);
899 		if (err)
900 			module_put(owner);
901 		else
902 			lo->lo_encryption = xfer;
903 	}
904 	return err;
905 }
906 
907 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
908 {
909 	struct file *filp = lo->lo_backing_file;
910 	gfp_t gfp = lo->old_gfp_mask;
911 
912 	if (lo->lo_state != Lo_bound)
913 		return -ENXIO;
914 
915 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
916 		return -EBUSY;
917 
918 	if (filp == NULL)
919 		return -EINVAL;
920 
921 	spin_lock_irq(&lo->lo_lock);
922 	lo->lo_state = Lo_rundown;
923 	spin_unlock_irq(&lo->lo_lock);
924 
925 	kthread_stop(lo->lo_thread);
926 
927 	lo->lo_queue->unplug_fn = NULL;
928 	lo->lo_backing_file = NULL;
929 
930 	loop_release_xfer(lo);
931 	lo->transfer = NULL;
932 	lo->ioctl = NULL;
933 	lo->lo_device = NULL;
934 	lo->lo_encryption = NULL;
935 	lo->lo_offset = 0;
936 	lo->lo_sizelimit = 0;
937 	lo->lo_encrypt_key_size = 0;
938 	lo->lo_flags = 0;
939 	lo->lo_thread = NULL;
940 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
941 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
942 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
943 	if (bdev)
944 		invalidate_bdev(bdev);
945 	set_capacity(lo->lo_disk, 0);
946 	if (bdev)
947 		bd_set_size(bdev, 0);
948 	mapping_set_gfp_mask(filp->f_mapping, gfp);
949 	lo->lo_state = Lo_unbound;
950 	/* This is safe: open() is still holding a reference. */
951 	module_put(THIS_MODULE);
952 	if (max_part > 0 && bdev)
953 		ioctl_by_bdev(bdev, BLKRRPART, 0);
954 	mutex_unlock(&lo->lo_ctl_mutex);
955 	/*
956 	 * Need not hold lo_ctl_mutex to fput backing file.
957 	 * Calling fput holding lo_ctl_mutex triggers a circular
958 	 * lock dependency possibility warning as fput can take
959 	 * bd_mutex which is usually taken before lo_ctl_mutex.
960 	 */
961 	fput(filp);
962 	return 0;
963 }
964 
965 static int
966 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
967 {
968 	int err;
969 	struct loop_func_table *xfer;
970 	uid_t uid = current_uid();
971 
972 	if (lo->lo_encrypt_key_size &&
973 	    lo->lo_key_owner != uid &&
974 	    !capable(CAP_SYS_ADMIN))
975 		return -EPERM;
976 	if (lo->lo_state != Lo_bound)
977 		return -ENXIO;
978 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
979 		return -EINVAL;
980 
981 	err = loop_release_xfer(lo);
982 	if (err)
983 		return err;
984 
985 	if (info->lo_encrypt_type) {
986 		unsigned int type = info->lo_encrypt_type;
987 
988 		if (type >= MAX_LO_CRYPT)
989 			return -EINVAL;
990 		xfer = xfer_funcs[type];
991 		if (xfer == NULL)
992 			return -EINVAL;
993 	} else
994 		xfer = NULL;
995 
996 	err = loop_init_xfer(lo, xfer, info);
997 	if (err)
998 		return err;
999 
1000 	if (lo->lo_offset != info->lo_offset ||
1001 	    lo->lo_sizelimit != info->lo_sizelimit) {
1002 		lo->lo_offset = info->lo_offset;
1003 		lo->lo_sizelimit = info->lo_sizelimit;
1004 		if (figure_loop_size(lo))
1005 			return -EFBIG;
1006 	}
1007 
1008 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1009 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1010 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1011 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1012 
1013 	if (!xfer)
1014 		xfer = &none_funcs;
1015 	lo->transfer = xfer->transfer;
1016 	lo->ioctl = xfer->ioctl;
1017 
1018 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1019 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1020 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1021 
1022 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1023 	lo->lo_init[0] = info->lo_init[0];
1024 	lo->lo_init[1] = info->lo_init[1];
1025 	if (info->lo_encrypt_key_size) {
1026 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1027 		       info->lo_encrypt_key_size);
1028 		lo->lo_key_owner = uid;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static int
1035 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1036 {
1037 	struct file *file = lo->lo_backing_file;
1038 	struct kstat stat;
1039 	int error;
1040 
1041 	if (lo->lo_state != Lo_bound)
1042 		return -ENXIO;
1043 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1044 	if (error)
1045 		return error;
1046 	memset(info, 0, sizeof(*info));
1047 	info->lo_number = lo->lo_number;
1048 	info->lo_device = huge_encode_dev(stat.dev);
1049 	info->lo_inode = stat.ino;
1050 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1051 	info->lo_offset = lo->lo_offset;
1052 	info->lo_sizelimit = lo->lo_sizelimit;
1053 	info->lo_flags = lo->lo_flags;
1054 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1055 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1056 	info->lo_encrypt_type =
1057 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1058 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1059 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1060 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1061 		       lo->lo_encrypt_key_size);
1062 	}
1063 	return 0;
1064 }
1065 
1066 static void
1067 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1068 {
1069 	memset(info64, 0, sizeof(*info64));
1070 	info64->lo_number = info->lo_number;
1071 	info64->lo_device = info->lo_device;
1072 	info64->lo_inode = info->lo_inode;
1073 	info64->lo_rdevice = info->lo_rdevice;
1074 	info64->lo_offset = info->lo_offset;
1075 	info64->lo_sizelimit = 0;
1076 	info64->lo_encrypt_type = info->lo_encrypt_type;
1077 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1078 	info64->lo_flags = info->lo_flags;
1079 	info64->lo_init[0] = info->lo_init[0];
1080 	info64->lo_init[1] = info->lo_init[1];
1081 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1082 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1083 	else
1084 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1085 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1086 }
1087 
1088 static int
1089 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1090 {
1091 	memset(info, 0, sizeof(*info));
1092 	info->lo_number = info64->lo_number;
1093 	info->lo_device = info64->lo_device;
1094 	info->lo_inode = info64->lo_inode;
1095 	info->lo_rdevice = info64->lo_rdevice;
1096 	info->lo_offset = info64->lo_offset;
1097 	info->lo_encrypt_type = info64->lo_encrypt_type;
1098 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1099 	info->lo_flags = info64->lo_flags;
1100 	info->lo_init[0] = info64->lo_init[0];
1101 	info->lo_init[1] = info64->lo_init[1];
1102 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1103 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1104 	else
1105 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1106 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1107 
1108 	/* error in case values were truncated */
1109 	if (info->lo_device != info64->lo_device ||
1110 	    info->lo_rdevice != info64->lo_rdevice ||
1111 	    info->lo_inode != info64->lo_inode ||
1112 	    info->lo_offset != info64->lo_offset)
1113 		return -EOVERFLOW;
1114 
1115 	return 0;
1116 }
1117 
1118 static int
1119 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1120 {
1121 	struct loop_info info;
1122 	struct loop_info64 info64;
1123 
1124 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1125 		return -EFAULT;
1126 	loop_info64_from_old(&info, &info64);
1127 	return loop_set_status(lo, &info64);
1128 }
1129 
1130 static int
1131 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1132 {
1133 	struct loop_info64 info64;
1134 
1135 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1136 		return -EFAULT;
1137 	return loop_set_status(lo, &info64);
1138 }
1139 
1140 static int
1141 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1142 	struct loop_info info;
1143 	struct loop_info64 info64;
1144 	int err = 0;
1145 
1146 	if (!arg)
1147 		err = -EINVAL;
1148 	if (!err)
1149 		err = loop_get_status(lo, &info64);
1150 	if (!err)
1151 		err = loop_info64_to_old(&info64, &info);
1152 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1153 		err = -EFAULT;
1154 
1155 	return err;
1156 }
1157 
1158 static int
1159 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1160 	struct loop_info64 info64;
1161 	int err = 0;
1162 
1163 	if (!arg)
1164 		err = -EINVAL;
1165 	if (!err)
1166 		err = loop_get_status(lo, &info64);
1167 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1168 		err = -EFAULT;
1169 
1170 	return err;
1171 }
1172 
1173 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1174 {
1175 	int err;
1176 	sector_t sec;
1177 	loff_t sz;
1178 
1179 	err = -ENXIO;
1180 	if (unlikely(lo->lo_state != Lo_bound))
1181 		goto out;
1182 	err = figure_loop_size(lo);
1183 	if (unlikely(err))
1184 		goto out;
1185 	sec = get_capacity(lo->lo_disk);
1186 	/* the width of sector_t may be narrow for bit-shift */
1187 	sz = sec;
1188 	sz <<= 9;
1189 	mutex_lock(&bdev->bd_mutex);
1190 	bd_set_size(bdev, sz);
1191 	mutex_unlock(&bdev->bd_mutex);
1192 
1193  out:
1194 	return err;
1195 }
1196 
1197 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1198 	unsigned int cmd, unsigned long arg)
1199 {
1200 	struct loop_device *lo = bdev->bd_disk->private_data;
1201 	int err;
1202 
1203 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1204 	switch (cmd) {
1205 	case LOOP_SET_FD:
1206 		err = loop_set_fd(lo, mode, bdev, arg);
1207 		break;
1208 	case LOOP_CHANGE_FD:
1209 		err = loop_change_fd(lo, bdev, arg);
1210 		break;
1211 	case LOOP_CLR_FD:
1212 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1213 		err = loop_clr_fd(lo, bdev);
1214 		if (!err)
1215 			goto out_unlocked;
1216 		break;
1217 	case LOOP_SET_STATUS:
1218 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1219 		break;
1220 	case LOOP_GET_STATUS:
1221 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1222 		break;
1223 	case LOOP_SET_STATUS64:
1224 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1225 		break;
1226 	case LOOP_GET_STATUS64:
1227 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1228 		break;
1229 	case LOOP_SET_CAPACITY:
1230 		err = -EPERM;
1231 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1232 			err = loop_set_capacity(lo, bdev);
1233 		break;
1234 	default:
1235 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1236 	}
1237 	mutex_unlock(&lo->lo_ctl_mutex);
1238 
1239 out_unlocked:
1240 	return err;
1241 }
1242 
1243 #ifdef CONFIG_COMPAT
1244 struct compat_loop_info {
1245 	compat_int_t	lo_number;      /* ioctl r/o */
1246 	compat_dev_t	lo_device;      /* ioctl r/o */
1247 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1248 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1249 	compat_int_t	lo_offset;
1250 	compat_int_t	lo_encrypt_type;
1251 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1252 	compat_int_t	lo_flags;       /* ioctl r/o */
1253 	char		lo_name[LO_NAME_SIZE];
1254 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1255 	compat_ulong_t	lo_init[2];
1256 	char		reserved[4];
1257 };
1258 
1259 /*
1260  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1261  * - noinlined to reduce stack space usage in main part of driver
1262  */
1263 static noinline int
1264 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1265 			struct loop_info64 *info64)
1266 {
1267 	struct compat_loop_info info;
1268 
1269 	if (copy_from_user(&info, arg, sizeof(info)))
1270 		return -EFAULT;
1271 
1272 	memset(info64, 0, sizeof(*info64));
1273 	info64->lo_number = info.lo_number;
1274 	info64->lo_device = info.lo_device;
1275 	info64->lo_inode = info.lo_inode;
1276 	info64->lo_rdevice = info.lo_rdevice;
1277 	info64->lo_offset = info.lo_offset;
1278 	info64->lo_sizelimit = 0;
1279 	info64->lo_encrypt_type = info.lo_encrypt_type;
1280 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1281 	info64->lo_flags = info.lo_flags;
1282 	info64->lo_init[0] = info.lo_init[0];
1283 	info64->lo_init[1] = info.lo_init[1];
1284 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1285 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1286 	else
1287 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1288 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1289 	return 0;
1290 }
1291 
1292 /*
1293  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1294  * - noinlined to reduce stack space usage in main part of driver
1295  */
1296 static noinline int
1297 loop_info64_to_compat(const struct loop_info64 *info64,
1298 		      struct compat_loop_info __user *arg)
1299 {
1300 	struct compat_loop_info info;
1301 
1302 	memset(&info, 0, sizeof(info));
1303 	info.lo_number = info64->lo_number;
1304 	info.lo_device = info64->lo_device;
1305 	info.lo_inode = info64->lo_inode;
1306 	info.lo_rdevice = info64->lo_rdevice;
1307 	info.lo_offset = info64->lo_offset;
1308 	info.lo_encrypt_type = info64->lo_encrypt_type;
1309 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1310 	info.lo_flags = info64->lo_flags;
1311 	info.lo_init[0] = info64->lo_init[0];
1312 	info.lo_init[1] = info64->lo_init[1];
1313 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1314 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1315 	else
1316 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1317 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1318 
1319 	/* error in case values were truncated */
1320 	if (info.lo_device != info64->lo_device ||
1321 	    info.lo_rdevice != info64->lo_rdevice ||
1322 	    info.lo_inode != info64->lo_inode ||
1323 	    info.lo_offset != info64->lo_offset ||
1324 	    info.lo_init[0] != info64->lo_init[0] ||
1325 	    info.lo_init[1] != info64->lo_init[1])
1326 		return -EOVERFLOW;
1327 
1328 	if (copy_to_user(arg, &info, sizeof(info)))
1329 		return -EFAULT;
1330 	return 0;
1331 }
1332 
1333 static int
1334 loop_set_status_compat(struct loop_device *lo,
1335 		       const struct compat_loop_info __user *arg)
1336 {
1337 	struct loop_info64 info64;
1338 	int ret;
1339 
1340 	ret = loop_info64_from_compat(arg, &info64);
1341 	if (ret < 0)
1342 		return ret;
1343 	return loop_set_status(lo, &info64);
1344 }
1345 
1346 static int
1347 loop_get_status_compat(struct loop_device *lo,
1348 		       struct compat_loop_info __user *arg)
1349 {
1350 	struct loop_info64 info64;
1351 	int err = 0;
1352 
1353 	if (!arg)
1354 		err = -EINVAL;
1355 	if (!err)
1356 		err = loop_get_status(lo, &info64);
1357 	if (!err)
1358 		err = loop_info64_to_compat(&info64, arg);
1359 	return err;
1360 }
1361 
1362 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1363 			   unsigned int cmd, unsigned long arg)
1364 {
1365 	struct loop_device *lo = bdev->bd_disk->private_data;
1366 	int err;
1367 
1368 	switch(cmd) {
1369 	case LOOP_SET_STATUS:
1370 		mutex_lock(&lo->lo_ctl_mutex);
1371 		err = loop_set_status_compat(
1372 			lo, (const struct compat_loop_info __user *) arg);
1373 		mutex_unlock(&lo->lo_ctl_mutex);
1374 		break;
1375 	case LOOP_GET_STATUS:
1376 		mutex_lock(&lo->lo_ctl_mutex);
1377 		err = loop_get_status_compat(
1378 			lo, (struct compat_loop_info __user *) arg);
1379 		mutex_unlock(&lo->lo_ctl_mutex);
1380 		break;
1381 	case LOOP_SET_CAPACITY:
1382 	case LOOP_CLR_FD:
1383 	case LOOP_GET_STATUS64:
1384 	case LOOP_SET_STATUS64:
1385 		arg = (unsigned long) compat_ptr(arg);
1386 	case LOOP_SET_FD:
1387 	case LOOP_CHANGE_FD:
1388 		err = lo_ioctl(bdev, mode, cmd, arg);
1389 		break;
1390 	default:
1391 		err = -ENOIOCTLCMD;
1392 		break;
1393 	}
1394 	return err;
1395 }
1396 #endif
1397 
1398 static int lo_open(struct block_device *bdev, fmode_t mode)
1399 {
1400 	struct loop_device *lo = bdev->bd_disk->private_data;
1401 
1402 	mutex_lock(&lo->lo_ctl_mutex);
1403 	lo->lo_refcnt++;
1404 	mutex_unlock(&lo->lo_ctl_mutex);
1405 
1406 	return 0;
1407 }
1408 
1409 static int lo_release(struct gendisk *disk, fmode_t mode)
1410 {
1411 	struct loop_device *lo = disk->private_data;
1412 	int err;
1413 
1414 	mutex_lock(&lo->lo_ctl_mutex);
1415 
1416 	if (--lo->lo_refcnt)
1417 		goto out;
1418 
1419 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1420 		/*
1421 		 * In autoclear mode, stop the loop thread
1422 		 * and remove configuration after last close.
1423 		 */
1424 		err = loop_clr_fd(lo, NULL);
1425 		if (!err)
1426 			goto out_unlocked;
1427 	} else {
1428 		/*
1429 		 * Otherwise keep thread (if running) and config,
1430 		 * but flush possible ongoing bios in thread.
1431 		 */
1432 		loop_flush(lo);
1433 	}
1434 
1435 out:
1436 	mutex_unlock(&lo->lo_ctl_mutex);
1437 out_unlocked:
1438 	return 0;
1439 }
1440 
1441 static const struct block_device_operations lo_fops = {
1442 	.owner =	THIS_MODULE,
1443 	.open =		lo_open,
1444 	.release =	lo_release,
1445 	.ioctl =	lo_ioctl,
1446 #ifdef CONFIG_COMPAT
1447 	.compat_ioctl =	lo_compat_ioctl,
1448 #endif
1449 };
1450 
1451 /*
1452  * And now the modules code and kernel interface.
1453  */
1454 static int max_loop;
1455 module_param(max_loop, int, 0);
1456 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1457 module_param(max_part, int, 0);
1458 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1459 MODULE_LICENSE("GPL");
1460 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1461 
1462 int loop_register_transfer(struct loop_func_table *funcs)
1463 {
1464 	unsigned int n = funcs->number;
1465 
1466 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1467 		return -EINVAL;
1468 	xfer_funcs[n] = funcs;
1469 	return 0;
1470 }
1471 
1472 int loop_unregister_transfer(int number)
1473 {
1474 	unsigned int n = number;
1475 	struct loop_device *lo;
1476 	struct loop_func_table *xfer;
1477 
1478 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1479 		return -EINVAL;
1480 
1481 	xfer_funcs[n] = NULL;
1482 
1483 	list_for_each_entry(lo, &loop_devices, lo_list) {
1484 		mutex_lock(&lo->lo_ctl_mutex);
1485 
1486 		if (lo->lo_encryption == xfer)
1487 			loop_release_xfer(lo);
1488 
1489 		mutex_unlock(&lo->lo_ctl_mutex);
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 EXPORT_SYMBOL(loop_register_transfer);
1496 EXPORT_SYMBOL(loop_unregister_transfer);
1497 
1498 static struct loop_device *loop_alloc(int i)
1499 {
1500 	struct loop_device *lo;
1501 	struct gendisk *disk;
1502 
1503 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1504 	if (!lo)
1505 		goto out;
1506 
1507 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1508 	if (!lo->lo_queue)
1509 		goto out_free_dev;
1510 
1511 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1512 	if (!disk)
1513 		goto out_free_queue;
1514 
1515 	mutex_init(&lo->lo_ctl_mutex);
1516 	lo->lo_number		= i;
1517 	lo->lo_thread		= NULL;
1518 	init_waitqueue_head(&lo->lo_event);
1519 	spin_lock_init(&lo->lo_lock);
1520 	disk->major		= LOOP_MAJOR;
1521 	disk->first_minor	= i << part_shift;
1522 	disk->fops		= &lo_fops;
1523 	disk->private_data	= lo;
1524 	disk->queue		= lo->lo_queue;
1525 	sprintf(disk->disk_name, "loop%d", i);
1526 	return lo;
1527 
1528 out_free_queue:
1529 	blk_cleanup_queue(lo->lo_queue);
1530 out_free_dev:
1531 	kfree(lo);
1532 out:
1533 	return NULL;
1534 }
1535 
1536 static void loop_free(struct loop_device *lo)
1537 {
1538 	blk_cleanup_queue(lo->lo_queue);
1539 	put_disk(lo->lo_disk);
1540 	list_del(&lo->lo_list);
1541 	kfree(lo);
1542 }
1543 
1544 static struct loop_device *loop_init_one(int i)
1545 {
1546 	struct loop_device *lo;
1547 
1548 	list_for_each_entry(lo, &loop_devices, lo_list) {
1549 		if (lo->lo_number == i)
1550 			return lo;
1551 	}
1552 
1553 	lo = loop_alloc(i);
1554 	if (lo) {
1555 		add_disk(lo->lo_disk);
1556 		list_add_tail(&lo->lo_list, &loop_devices);
1557 	}
1558 	return lo;
1559 }
1560 
1561 static void loop_del_one(struct loop_device *lo)
1562 {
1563 	del_gendisk(lo->lo_disk);
1564 	loop_free(lo);
1565 }
1566 
1567 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1568 {
1569 	struct loop_device *lo;
1570 	struct kobject *kobj;
1571 
1572 	mutex_lock(&loop_devices_mutex);
1573 	lo = loop_init_one(dev & MINORMASK);
1574 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1575 	mutex_unlock(&loop_devices_mutex);
1576 
1577 	*part = 0;
1578 	return kobj;
1579 }
1580 
1581 static int __init loop_init(void)
1582 {
1583 	int i, nr;
1584 	unsigned long range;
1585 	struct loop_device *lo, *next;
1586 
1587 	/*
1588 	 * loop module now has a feature to instantiate underlying device
1589 	 * structure on-demand, provided that there is an access dev node.
1590 	 * However, this will not work well with user space tool that doesn't
1591 	 * know about such "feature".  In order to not break any existing
1592 	 * tool, we do the following:
1593 	 *
1594 	 * (1) if max_loop is specified, create that many upfront, and this
1595 	 *     also becomes a hard limit.
1596 	 * (2) if max_loop is not specified, create 8 loop device on module
1597 	 *     load, user can further extend loop device by create dev node
1598 	 *     themselves and have kernel automatically instantiate actual
1599 	 *     device on-demand.
1600 	 */
1601 
1602 	part_shift = 0;
1603 	if (max_part > 0)
1604 		part_shift = fls(max_part);
1605 
1606 	if (max_loop > 1UL << (MINORBITS - part_shift))
1607 		return -EINVAL;
1608 
1609 	if (max_loop) {
1610 		nr = max_loop;
1611 		range = max_loop;
1612 	} else {
1613 		nr = 8;
1614 		range = 1UL << (MINORBITS - part_shift);
1615 	}
1616 
1617 	if (register_blkdev(LOOP_MAJOR, "loop"))
1618 		return -EIO;
1619 
1620 	for (i = 0; i < nr; i++) {
1621 		lo = loop_alloc(i);
1622 		if (!lo)
1623 			goto Enomem;
1624 		list_add_tail(&lo->lo_list, &loop_devices);
1625 	}
1626 
1627 	/* point of no return */
1628 
1629 	list_for_each_entry(lo, &loop_devices, lo_list)
1630 		add_disk(lo->lo_disk);
1631 
1632 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1633 				  THIS_MODULE, loop_probe, NULL, NULL);
1634 
1635 	printk(KERN_INFO "loop: module loaded\n");
1636 	return 0;
1637 
1638 Enomem:
1639 	printk(KERN_INFO "loop: out of memory\n");
1640 
1641 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1642 		loop_free(lo);
1643 
1644 	unregister_blkdev(LOOP_MAJOR, "loop");
1645 	return -ENOMEM;
1646 }
1647 
1648 static void __exit loop_exit(void)
1649 {
1650 	unsigned long range;
1651 	struct loop_device *lo, *next;
1652 
1653 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1654 
1655 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1656 		loop_del_one(lo);
1657 
1658 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1659 	unregister_blkdev(LOOP_MAJOR, "loop");
1660 }
1661 
1662 module_init(loop_init);
1663 module_exit(loop_exit);
1664 
1665 #ifndef MODULE
1666 static int __init max_loop_setup(char *str)
1667 {
1668 	max_loop = simple_strtol(str, NULL, 0);
1669 	return 1;
1670 }
1671 
1672 __setup("max_loop=", max_loop_setup);
1673 #endif
1674