1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 blk_mq_freeze_queue(lo->lo_queue); 218 lo->use_dio = use_dio; 219 if (use_dio) { 220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 221 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 222 } else { 223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 224 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 225 } 226 blk_mq_unfreeze_queue(lo->lo_queue); 227 } 228 229 static int 230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 231 { 232 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 233 sector_t x = (sector_t)size; 234 struct block_device *bdev = lo->lo_device; 235 236 if (unlikely((loff_t)x != size)) 237 return -EFBIG; 238 if (lo->lo_offset != offset) 239 lo->lo_offset = offset; 240 if (lo->lo_sizelimit != sizelimit) 241 lo->lo_sizelimit = sizelimit; 242 set_capacity(lo->lo_disk, x); 243 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 244 /* let user-space know about the new size */ 245 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 246 return 0; 247 } 248 249 static inline int 250 lo_do_transfer(struct loop_device *lo, int cmd, 251 struct page *rpage, unsigned roffs, 252 struct page *lpage, unsigned loffs, 253 int size, sector_t rblock) 254 { 255 int ret; 256 257 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 258 if (likely(!ret)) 259 return 0; 260 261 printk_ratelimited(KERN_ERR 262 "loop: Transfer error at byte offset %llu, length %i.\n", 263 (unsigned long long)rblock << 9, size); 264 return ret; 265 } 266 267 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 268 { 269 struct iov_iter i; 270 ssize_t bw; 271 272 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 273 274 file_start_write(file); 275 bw = vfs_iter_write(file, &i, ppos, 0); 276 file_end_write(file); 277 278 if (likely(bw == bvec->bv_len)) 279 return 0; 280 281 printk_ratelimited(KERN_ERR 282 "loop: Write error at byte offset %llu, length %i.\n", 283 (unsigned long long)*ppos, bvec->bv_len); 284 if (bw >= 0) 285 bw = -EIO; 286 return bw; 287 } 288 289 static int lo_write_simple(struct loop_device *lo, struct request *rq, 290 loff_t pos) 291 { 292 struct bio_vec bvec; 293 struct req_iterator iter; 294 int ret = 0; 295 296 rq_for_each_segment(bvec, rq, iter) { 297 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 298 if (ret < 0) 299 break; 300 cond_resched(); 301 } 302 303 return ret; 304 } 305 306 /* 307 * This is the slow, transforming version that needs to double buffer the 308 * data as it cannot do the transformations in place without having direct 309 * access to the destination pages of the backing file. 310 */ 311 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 312 loff_t pos) 313 { 314 struct bio_vec bvec, b; 315 struct req_iterator iter; 316 struct page *page; 317 int ret = 0; 318 319 page = alloc_page(GFP_NOIO); 320 if (unlikely(!page)) 321 return -ENOMEM; 322 323 rq_for_each_segment(bvec, rq, iter) { 324 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 325 bvec.bv_offset, bvec.bv_len, pos >> 9); 326 if (unlikely(ret)) 327 break; 328 329 b.bv_page = page; 330 b.bv_offset = 0; 331 b.bv_len = bvec.bv_len; 332 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 333 if (ret < 0) 334 break; 335 } 336 337 __free_page(page); 338 return ret; 339 } 340 341 static int lo_read_simple(struct loop_device *lo, struct request *rq, 342 loff_t pos) 343 { 344 struct bio_vec bvec; 345 struct req_iterator iter; 346 struct iov_iter i; 347 ssize_t len; 348 349 rq_for_each_segment(bvec, rq, iter) { 350 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 351 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 352 if (len < 0) 353 return len; 354 355 flush_dcache_page(bvec.bv_page); 356 357 if (len != bvec.bv_len) { 358 struct bio *bio; 359 360 __rq_for_each_bio(bio, rq) 361 zero_fill_bio(bio); 362 break; 363 } 364 cond_resched(); 365 } 366 367 return 0; 368 } 369 370 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 371 loff_t pos) 372 { 373 struct bio_vec bvec, b; 374 struct req_iterator iter; 375 struct iov_iter i; 376 struct page *page; 377 ssize_t len; 378 int ret = 0; 379 380 page = alloc_page(GFP_NOIO); 381 if (unlikely(!page)) 382 return -ENOMEM; 383 384 rq_for_each_segment(bvec, rq, iter) { 385 loff_t offset = pos; 386 387 b.bv_page = page; 388 b.bv_offset = 0; 389 b.bv_len = bvec.bv_len; 390 391 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 392 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 393 if (len < 0) { 394 ret = len; 395 goto out_free_page; 396 } 397 398 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 399 bvec.bv_offset, len, offset >> 9); 400 if (ret) 401 goto out_free_page; 402 403 flush_dcache_page(bvec.bv_page); 404 405 if (len != bvec.bv_len) { 406 struct bio *bio; 407 408 __rq_for_each_bio(bio, rq) 409 zero_fill_bio(bio); 410 break; 411 } 412 } 413 414 ret = 0; 415 out_free_page: 416 __free_page(page); 417 return ret; 418 } 419 420 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 421 int mode) 422 { 423 /* 424 * We use fallocate to manipulate the space mappings used by the image 425 * a.k.a. discard/zerorange. However we do not support this if 426 * encryption is enabled, because it may give an attacker useful 427 * information. 428 */ 429 struct file *file = lo->lo_backing_file; 430 int ret; 431 432 mode |= FALLOC_FL_KEEP_SIZE; 433 434 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 435 ret = -EOPNOTSUPP; 436 goto out; 437 } 438 439 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 440 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 441 ret = -EIO; 442 out: 443 return ret; 444 } 445 446 static int lo_req_flush(struct loop_device *lo, struct request *rq) 447 { 448 struct file *file = lo->lo_backing_file; 449 int ret = vfs_fsync(file, 0); 450 if (unlikely(ret && ret != -EINVAL)) 451 ret = -EIO; 452 453 return ret; 454 } 455 456 static void lo_complete_rq(struct request *rq) 457 { 458 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 459 blk_status_t ret = BLK_STS_OK; 460 461 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 462 req_op(rq) != REQ_OP_READ) { 463 if (cmd->ret < 0) 464 ret = BLK_STS_IOERR; 465 goto end_io; 466 } 467 468 /* 469 * Short READ - if we got some data, advance our request and 470 * retry it. If we got no data, end the rest with EIO. 471 */ 472 if (cmd->ret) { 473 blk_update_request(rq, BLK_STS_OK, cmd->ret); 474 cmd->ret = 0; 475 blk_mq_requeue_request(rq, true); 476 } else { 477 if (cmd->use_aio) { 478 struct bio *bio = rq->bio; 479 480 while (bio) { 481 zero_fill_bio(bio); 482 bio = bio->bi_next; 483 } 484 } 485 ret = BLK_STS_IOERR; 486 end_io: 487 blk_mq_end_request(rq, ret); 488 } 489 } 490 491 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 492 { 493 struct request *rq = blk_mq_rq_from_pdu(cmd); 494 495 if (!atomic_dec_and_test(&cmd->ref)) 496 return; 497 kfree(cmd->bvec); 498 cmd->bvec = NULL; 499 blk_mq_complete_request(rq); 500 } 501 502 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 503 { 504 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 505 506 if (cmd->css) 507 css_put(cmd->css); 508 cmd->ret = ret; 509 lo_rw_aio_do_completion(cmd); 510 } 511 512 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 513 loff_t pos, bool rw) 514 { 515 struct iov_iter iter; 516 struct req_iterator rq_iter; 517 struct bio_vec *bvec; 518 struct request *rq = blk_mq_rq_from_pdu(cmd); 519 struct bio *bio = rq->bio; 520 struct file *file = lo->lo_backing_file; 521 struct bio_vec tmp; 522 unsigned int offset; 523 int nr_bvec = 0; 524 int ret; 525 526 rq_for_each_bvec(tmp, rq, rq_iter) 527 nr_bvec++; 528 529 if (rq->bio != rq->biotail) { 530 531 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 532 GFP_NOIO); 533 if (!bvec) 534 return -EIO; 535 cmd->bvec = bvec; 536 537 /* 538 * The bios of the request may be started from the middle of 539 * the 'bvec' because of bio splitting, so we can't directly 540 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 541 * API will take care of all details for us. 542 */ 543 rq_for_each_bvec(tmp, rq, rq_iter) { 544 *bvec = tmp; 545 bvec++; 546 } 547 bvec = cmd->bvec; 548 offset = 0; 549 } else { 550 /* 551 * Same here, this bio may be started from the middle of the 552 * 'bvec' because of bio splitting, so offset from the bvec 553 * must be passed to iov iterator 554 */ 555 offset = bio->bi_iter.bi_bvec_done; 556 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 557 } 558 atomic_set(&cmd->ref, 2); 559 560 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 561 iter.iov_offset = offset; 562 563 cmd->iocb.ki_pos = pos; 564 cmd->iocb.ki_filp = file; 565 cmd->iocb.ki_complete = lo_rw_aio_complete; 566 cmd->iocb.ki_flags = IOCB_DIRECT; 567 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 568 if (cmd->css) 569 kthread_associate_blkcg(cmd->css); 570 571 if (rw == WRITE) 572 ret = call_write_iter(file, &cmd->iocb, &iter); 573 else 574 ret = call_read_iter(file, &cmd->iocb, &iter); 575 576 lo_rw_aio_do_completion(cmd); 577 kthread_associate_blkcg(NULL); 578 579 if (ret != -EIOCBQUEUED) 580 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 581 return 0; 582 } 583 584 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 585 { 586 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 587 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 588 589 /* 590 * lo_write_simple and lo_read_simple should have been covered 591 * by io submit style function like lo_rw_aio(), one blocker 592 * is that lo_read_simple() need to call flush_dcache_page after 593 * the page is written from kernel, and it isn't easy to handle 594 * this in io submit style function which submits all segments 595 * of the req at one time. And direct read IO doesn't need to 596 * run flush_dcache_page(). 597 */ 598 switch (req_op(rq)) { 599 case REQ_OP_FLUSH: 600 return lo_req_flush(lo, rq); 601 case REQ_OP_WRITE_ZEROES: 602 /* 603 * If the caller doesn't want deallocation, call zeroout to 604 * write zeroes the range. Otherwise, punch them out. 605 */ 606 return lo_fallocate(lo, rq, pos, 607 (rq->cmd_flags & REQ_NOUNMAP) ? 608 FALLOC_FL_ZERO_RANGE : 609 FALLOC_FL_PUNCH_HOLE); 610 case REQ_OP_DISCARD: 611 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 612 case REQ_OP_WRITE: 613 if (lo->transfer) 614 return lo_write_transfer(lo, rq, pos); 615 else if (cmd->use_aio) 616 return lo_rw_aio(lo, cmd, pos, WRITE); 617 else 618 return lo_write_simple(lo, rq, pos); 619 case REQ_OP_READ: 620 if (lo->transfer) 621 return lo_read_transfer(lo, rq, pos); 622 else if (cmd->use_aio) 623 return lo_rw_aio(lo, cmd, pos, READ); 624 else 625 return lo_read_simple(lo, rq, pos); 626 default: 627 WARN_ON_ONCE(1); 628 return -EIO; 629 } 630 } 631 632 static inline void loop_update_dio(struct loop_device *lo) 633 { 634 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 635 lo->use_dio); 636 } 637 638 static void loop_reread_partitions(struct loop_device *lo, 639 struct block_device *bdev) 640 { 641 int rc; 642 643 mutex_lock(&bdev->bd_mutex); 644 rc = bdev_disk_changed(bdev, false); 645 mutex_unlock(&bdev->bd_mutex); 646 if (rc) 647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 648 __func__, lo->lo_number, lo->lo_file_name, rc); 649 } 650 651 static inline int is_loop_device(struct file *file) 652 { 653 struct inode *i = file->f_mapping->host; 654 655 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 656 } 657 658 static int loop_validate_file(struct file *file, struct block_device *bdev) 659 { 660 struct inode *inode = file->f_mapping->host; 661 struct file *f = file; 662 663 /* Avoid recursion */ 664 while (is_loop_device(f)) { 665 struct loop_device *l; 666 667 if (f->f_mapping->host->i_bdev == bdev) 668 return -EBADF; 669 670 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 671 if (l->lo_state != Lo_bound) { 672 return -EINVAL; 673 } 674 f = l->lo_backing_file; 675 } 676 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 677 return -EINVAL; 678 return 0; 679 } 680 681 /* 682 * loop_change_fd switched the backing store of a loopback device to 683 * a new file. This is useful for operating system installers to free up 684 * the original file and in High Availability environments to switch to 685 * an alternative location for the content in case of server meltdown. 686 * This can only work if the loop device is used read-only, and if the 687 * new backing store is the same size and type as the old backing store. 688 */ 689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 690 unsigned int arg) 691 { 692 struct file *file = NULL, *old_file; 693 int error; 694 bool partscan; 695 696 error = mutex_lock_killable(&loop_ctl_mutex); 697 if (error) 698 return error; 699 error = -ENXIO; 700 if (lo->lo_state != Lo_bound) 701 goto out_err; 702 703 /* the loop device has to be read-only */ 704 error = -EINVAL; 705 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 706 goto out_err; 707 708 error = -EBADF; 709 file = fget(arg); 710 if (!file) 711 goto out_err; 712 713 error = loop_validate_file(file, bdev); 714 if (error) 715 goto out_err; 716 717 old_file = lo->lo_backing_file; 718 719 error = -EINVAL; 720 721 /* size of the new backing store needs to be the same */ 722 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 723 goto out_err; 724 725 /* and ... switch */ 726 blk_mq_freeze_queue(lo->lo_queue); 727 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 728 lo->lo_backing_file = file; 729 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 730 mapping_set_gfp_mask(file->f_mapping, 731 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 732 loop_update_dio(lo); 733 blk_mq_unfreeze_queue(lo->lo_queue); 734 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 735 mutex_unlock(&loop_ctl_mutex); 736 /* 737 * We must drop file reference outside of loop_ctl_mutex as dropping 738 * the file ref can take bd_mutex which creates circular locking 739 * dependency. 740 */ 741 fput(old_file); 742 if (partscan) 743 loop_reread_partitions(lo, bdev); 744 return 0; 745 746 out_err: 747 mutex_unlock(&loop_ctl_mutex); 748 if (file) 749 fput(file); 750 return error; 751 } 752 753 /* loop sysfs attributes */ 754 755 static ssize_t loop_attr_show(struct device *dev, char *page, 756 ssize_t (*callback)(struct loop_device *, char *)) 757 { 758 struct gendisk *disk = dev_to_disk(dev); 759 struct loop_device *lo = disk->private_data; 760 761 return callback(lo, page); 762 } 763 764 #define LOOP_ATTR_RO(_name) \ 765 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 766 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 767 struct device_attribute *attr, char *b) \ 768 { \ 769 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 770 } \ 771 static struct device_attribute loop_attr_##_name = \ 772 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 773 774 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 775 { 776 ssize_t ret; 777 char *p = NULL; 778 779 spin_lock_irq(&lo->lo_lock); 780 if (lo->lo_backing_file) 781 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 782 spin_unlock_irq(&lo->lo_lock); 783 784 if (IS_ERR_OR_NULL(p)) 785 ret = PTR_ERR(p); 786 else { 787 ret = strlen(p); 788 memmove(buf, p, ret); 789 buf[ret++] = '\n'; 790 buf[ret] = 0; 791 } 792 793 return ret; 794 } 795 796 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 797 { 798 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 799 } 800 801 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 802 { 803 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 804 } 805 806 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 807 { 808 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 809 810 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 811 } 812 813 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 814 { 815 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 816 817 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 818 } 819 820 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 821 { 822 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 823 824 return sprintf(buf, "%s\n", dio ? "1" : "0"); 825 } 826 827 LOOP_ATTR_RO(backing_file); 828 LOOP_ATTR_RO(offset); 829 LOOP_ATTR_RO(sizelimit); 830 LOOP_ATTR_RO(autoclear); 831 LOOP_ATTR_RO(partscan); 832 LOOP_ATTR_RO(dio); 833 834 static struct attribute *loop_attrs[] = { 835 &loop_attr_backing_file.attr, 836 &loop_attr_offset.attr, 837 &loop_attr_sizelimit.attr, 838 &loop_attr_autoclear.attr, 839 &loop_attr_partscan.attr, 840 &loop_attr_dio.attr, 841 NULL, 842 }; 843 844 static struct attribute_group loop_attribute_group = { 845 .name = "loop", 846 .attrs= loop_attrs, 847 }; 848 849 static void loop_sysfs_init(struct loop_device *lo) 850 { 851 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 852 &loop_attribute_group); 853 } 854 855 static void loop_sysfs_exit(struct loop_device *lo) 856 { 857 if (lo->sysfs_inited) 858 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 859 &loop_attribute_group); 860 } 861 862 static void loop_config_discard(struct loop_device *lo) 863 { 864 struct file *file = lo->lo_backing_file; 865 struct inode *inode = file->f_mapping->host; 866 struct request_queue *q = lo->lo_queue; 867 868 /* 869 * We use punch hole to reclaim the free space used by the 870 * image a.k.a. discard. However we do not support discard if 871 * encryption is enabled, because it may give an attacker 872 * useful information. 873 */ 874 if ((!file->f_op->fallocate) || 875 lo->lo_encrypt_key_size) { 876 q->limits.discard_granularity = 0; 877 q->limits.discard_alignment = 0; 878 blk_queue_max_discard_sectors(q, 0); 879 blk_queue_max_write_zeroes_sectors(q, 0); 880 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 881 return; 882 } 883 884 q->limits.discard_granularity = inode->i_sb->s_blocksize; 885 q->limits.discard_alignment = 0; 886 887 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 888 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 889 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 890 } 891 892 static void loop_unprepare_queue(struct loop_device *lo) 893 { 894 kthread_flush_worker(&lo->worker); 895 kthread_stop(lo->worker_task); 896 } 897 898 static int loop_kthread_worker_fn(void *worker_ptr) 899 { 900 current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO; 901 return kthread_worker_fn(worker_ptr); 902 } 903 904 static int loop_prepare_queue(struct loop_device *lo) 905 { 906 kthread_init_worker(&lo->worker); 907 lo->worker_task = kthread_run(loop_kthread_worker_fn, 908 &lo->worker, "loop%d", lo->lo_number); 909 if (IS_ERR(lo->worker_task)) 910 return -ENOMEM; 911 set_user_nice(lo->worker_task, MIN_NICE); 912 return 0; 913 } 914 915 static void loop_update_rotational(struct loop_device *lo) 916 { 917 struct file *file = lo->lo_backing_file; 918 struct inode *file_inode = file->f_mapping->host; 919 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 920 struct request_queue *q = lo->lo_queue; 921 bool nonrot = true; 922 923 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 924 if (file_bdev) 925 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 926 927 if (nonrot) 928 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 929 else 930 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 931 } 932 933 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 934 struct block_device *bdev, unsigned int arg) 935 { 936 struct file *file; 937 struct inode *inode; 938 struct address_space *mapping; 939 struct block_device *claimed_bdev = NULL; 940 int lo_flags = 0; 941 int error; 942 loff_t size; 943 bool partscan; 944 945 /* This is safe, since we have a reference from open(). */ 946 __module_get(THIS_MODULE); 947 948 error = -EBADF; 949 file = fget(arg); 950 if (!file) 951 goto out; 952 953 /* 954 * If we don't hold exclusive handle for the device, upgrade to it 955 * here to avoid changing device under exclusive owner. 956 */ 957 if (!(mode & FMODE_EXCL)) { 958 claimed_bdev = bd_start_claiming(bdev, loop_set_fd); 959 if (IS_ERR(claimed_bdev)) { 960 error = PTR_ERR(claimed_bdev); 961 goto out_putf; 962 } 963 } 964 965 error = mutex_lock_killable(&loop_ctl_mutex); 966 if (error) 967 goto out_bdev; 968 969 error = -EBUSY; 970 if (lo->lo_state != Lo_unbound) 971 goto out_unlock; 972 973 error = loop_validate_file(file, bdev); 974 if (error) 975 goto out_unlock; 976 977 mapping = file->f_mapping; 978 inode = mapping->host; 979 980 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 981 !file->f_op->write_iter) 982 lo_flags |= LO_FLAGS_READ_ONLY; 983 984 error = -EFBIG; 985 size = get_loop_size(lo, file); 986 if ((loff_t)(sector_t)size != size) 987 goto out_unlock; 988 error = loop_prepare_queue(lo); 989 if (error) 990 goto out_unlock; 991 992 error = 0; 993 994 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 995 996 lo->use_dio = false; 997 lo->lo_device = bdev; 998 lo->lo_flags = lo_flags; 999 lo->lo_backing_file = file; 1000 lo->transfer = NULL; 1001 lo->ioctl = NULL; 1002 lo->lo_sizelimit = 0; 1003 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1004 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1005 1006 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1007 blk_queue_write_cache(lo->lo_queue, true, false); 1008 1009 if (io_is_direct(lo->lo_backing_file) && inode->i_sb->s_bdev) { 1010 /* In case of direct I/O, match underlying block size */ 1011 unsigned short bsize = bdev_logical_block_size( 1012 inode->i_sb->s_bdev); 1013 1014 blk_queue_logical_block_size(lo->lo_queue, bsize); 1015 blk_queue_physical_block_size(lo->lo_queue, bsize); 1016 blk_queue_io_min(lo->lo_queue, bsize); 1017 } 1018 1019 loop_update_rotational(lo); 1020 loop_update_dio(lo); 1021 set_capacity(lo->lo_disk, size); 1022 bd_set_size(bdev, size << 9); 1023 loop_sysfs_init(lo); 1024 /* let user-space know about the new size */ 1025 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1026 1027 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1028 block_size(inode->i_bdev) : PAGE_SIZE); 1029 1030 lo->lo_state = Lo_bound; 1031 if (part_shift) 1032 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1033 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1034 1035 /* Grab the block_device to prevent its destruction after we 1036 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1037 */ 1038 bdgrab(bdev); 1039 mutex_unlock(&loop_ctl_mutex); 1040 if (partscan) 1041 loop_reread_partitions(lo, bdev); 1042 if (claimed_bdev) 1043 bd_abort_claiming(bdev, claimed_bdev, loop_set_fd); 1044 return 0; 1045 1046 out_unlock: 1047 mutex_unlock(&loop_ctl_mutex); 1048 out_bdev: 1049 if (claimed_bdev) 1050 bd_abort_claiming(bdev, claimed_bdev, loop_set_fd); 1051 out_putf: 1052 fput(file); 1053 out: 1054 /* This is safe: open() is still holding a reference. */ 1055 module_put(THIS_MODULE); 1056 return error; 1057 } 1058 1059 static int 1060 loop_release_xfer(struct loop_device *lo) 1061 { 1062 int err = 0; 1063 struct loop_func_table *xfer = lo->lo_encryption; 1064 1065 if (xfer) { 1066 if (xfer->release) 1067 err = xfer->release(lo); 1068 lo->transfer = NULL; 1069 lo->lo_encryption = NULL; 1070 module_put(xfer->owner); 1071 } 1072 return err; 1073 } 1074 1075 static int 1076 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1077 const struct loop_info64 *i) 1078 { 1079 int err = 0; 1080 1081 if (xfer) { 1082 struct module *owner = xfer->owner; 1083 1084 if (!try_module_get(owner)) 1085 return -EINVAL; 1086 if (xfer->init) 1087 err = xfer->init(lo, i); 1088 if (err) 1089 module_put(owner); 1090 else 1091 lo->lo_encryption = xfer; 1092 } 1093 return err; 1094 } 1095 1096 static int __loop_clr_fd(struct loop_device *lo, bool release) 1097 { 1098 struct file *filp = NULL; 1099 gfp_t gfp = lo->old_gfp_mask; 1100 struct block_device *bdev = lo->lo_device; 1101 int err = 0; 1102 bool partscan = false; 1103 int lo_number; 1104 1105 mutex_lock(&loop_ctl_mutex); 1106 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1107 err = -ENXIO; 1108 goto out_unlock; 1109 } 1110 1111 filp = lo->lo_backing_file; 1112 if (filp == NULL) { 1113 err = -EINVAL; 1114 goto out_unlock; 1115 } 1116 1117 /* freeze request queue during the transition */ 1118 blk_mq_freeze_queue(lo->lo_queue); 1119 1120 spin_lock_irq(&lo->lo_lock); 1121 lo->lo_backing_file = NULL; 1122 spin_unlock_irq(&lo->lo_lock); 1123 1124 loop_release_xfer(lo); 1125 lo->transfer = NULL; 1126 lo->ioctl = NULL; 1127 lo->lo_device = NULL; 1128 lo->lo_encryption = NULL; 1129 lo->lo_offset = 0; 1130 lo->lo_sizelimit = 0; 1131 lo->lo_encrypt_key_size = 0; 1132 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1133 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1134 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1135 blk_queue_logical_block_size(lo->lo_queue, 512); 1136 blk_queue_physical_block_size(lo->lo_queue, 512); 1137 blk_queue_io_min(lo->lo_queue, 512); 1138 if (bdev) { 1139 bdput(bdev); 1140 invalidate_bdev(bdev); 1141 bdev->bd_inode->i_mapping->wb_err = 0; 1142 } 1143 set_capacity(lo->lo_disk, 0); 1144 loop_sysfs_exit(lo); 1145 if (bdev) { 1146 bd_set_size(bdev, 0); 1147 /* let user-space know about this change */ 1148 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1149 } 1150 mapping_set_gfp_mask(filp->f_mapping, gfp); 1151 /* This is safe: open() is still holding a reference. */ 1152 module_put(THIS_MODULE); 1153 blk_mq_unfreeze_queue(lo->lo_queue); 1154 1155 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1156 lo_number = lo->lo_number; 1157 loop_unprepare_queue(lo); 1158 out_unlock: 1159 mutex_unlock(&loop_ctl_mutex); 1160 if (partscan) { 1161 /* 1162 * bd_mutex has been held already in release path, so don't 1163 * acquire it if this function is called in such case. 1164 * 1165 * If the reread partition isn't from release path, lo_refcnt 1166 * must be at least one and it can only become zero when the 1167 * current holder is released. 1168 */ 1169 if (!release) 1170 mutex_lock(&bdev->bd_mutex); 1171 err = bdev_disk_changed(bdev, false); 1172 if (!release) 1173 mutex_unlock(&bdev->bd_mutex); 1174 if (err) 1175 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1176 __func__, lo_number, err); 1177 /* Device is gone, no point in returning error */ 1178 err = 0; 1179 } 1180 1181 /* 1182 * lo->lo_state is set to Lo_unbound here after above partscan has 1183 * finished. 1184 * 1185 * There cannot be anybody else entering __loop_clr_fd() as 1186 * lo->lo_backing_file is already cleared and Lo_rundown state 1187 * protects us from all the other places trying to change the 'lo' 1188 * device. 1189 */ 1190 mutex_lock(&loop_ctl_mutex); 1191 lo->lo_flags = 0; 1192 if (!part_shift) 1193 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1194 lo->lo_state = Lo_unbound; 1195 mutex_unlock(&loop_ctl_mutex); 1196 1197 /* 1198 * Need not hold loop_ctl_mutex to fput backing file. 1199 * Calling fput holding loop_ctl_mutex triggers a circular 1200 * lock dependency possibility warning as fput can take 1201 * bd_mutex which is usually taken before loop_ctl_mutex. 1202 */ 1203 if (filp) 1204 fput(filp); 1205 return err; 1206 } 1207 1208 static int loop_clr_fd(struct loop_device *lo) 1209 { 1210 int err; 1211 1212 err = mutex_lock_killable(&loop_ctl_mutex); 1213 if (err) 1214 return err; 1215 if (lo->lo_state != Lo_bound) { 1216 mutex_unlock(&loop_ctl_mutex); 1217 return -ENXIO; 1218 } 1219 /* 1220 * If we've explicitly asked to tear down the loop device, 1221 * and it has an elevated reference count, set it for auto-teardown when 1222 * the last reference goes away. This stops $!~#$@ udev from 1223 * preventing teardown because it decided that it needs to run blkid on 1224 * the loopback device whenever they appear. xfstests is notorious for 1225 * failing tests because blkid via udev races with a losetup 1226 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1227 * command to fail with EBUSY. 1228 */ 1229 if (atomic_read(&lo->lo_refcnt) > 1) { 1230 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1231 mutex_unlock(&loop_ctl_mutex); 1232 return 0; 1233 } 1234 lo->lo_state = Lo_rundown; 1235 mutex_unlock(&loop_ctl_mutex); 1236 1237 return __loop_clr_fd(lo, false); 1238 } 1239 1240 static int 1241 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1242 { 1243 int err; 1244 struct loop_func_table *xfer; 1245 kuid_t uid = current_uid(); 1246 struct block_device *bdev; 1247 bool partscan = false; 1248 1249 err = mutex_lock_killable(&loop_ctl_mutex); 1250 if (err) 1251 return err; 1252 if (lo->lo_encrypt_key_size && 1253 !uid_eq(lo->lo_key_owner, uid) && 1254 !capable(CAP_SYS_ADMIN)) { 1255 err = -EPERM; 1256 goto out_unlock; 1257 } 1258 if (lo->lo_state != Lo_bound) { 1259 err = -ENXIO; 1260 goto out_unlock; 1261 } 1262 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) { 1263 err = -EINVAL; 1264 goto out_unlock; 1265 } 1266 1267 if (lo->lo_offset != info->lo_offset || 1268 lo->lo_sizelimit != info->lo_sizelimit) { 1269 sync_blockdev(lo->lo_device); 1270 kill_bdev(lo->lo_device); 1271 } 1272 1273 /* I/O need to be drained during transfer transition */ 1274 blk_mq_freeze_queue(lo->lo_queue); 1275 1276 err = loop_release_xfer(lo); 1277 if (err) 1278 goto out_unfreeze; 1279 1280 if (info->lo_encrypt_type) { 1281 unsigned int type = info->lo_encrypt_type; 1282 1283 if (type >= MAX_LO_CRYPT) { 1284 err = -EINVAL; 1285 goto out_unfreeze; 1286 } 1287 xfer = xfer_funcs[type]; 1288 if (xfer == NULL) { 1289 err = -EINVAL; 1290 goto out_unfreeze; 1291 } 1292 } else 1293 xfer = NULL; 1294 1295 err = loop_init_xfer(lo, xfer, info); 1296 if (err) 1297 goto out_unfreeze; 1298 1299 if (lo->lo_offset != info->lo_offset || 1300 lo->lo_sizelimit != info->lo_sizelimit) { 1301 /* kill_bdev should have truncated all the pages */ 1302 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1303 err = -EAGAIN; 1304 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1305 __func__, lo->lo_number, lo->lo_file_name, 1306 lo->lo_device->bd_inode->i_mapping->nrpages); 1307 goto out_unfreeze; 1308 } 1309 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1310 err = -EFBIG; 1311 goto out_unfreeze; 1312 } 1313 } 1314 1315 loop_config_discard(lo); 1316 1317 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1318 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1319 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1320 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1321 1322 if (!xfer) 1323 xfer = &none_funcs; 1324 lo->transfer = xfer->transfer; 1325 lo->ioctl = xfer->ioctl; 1326 1327 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1328 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1329 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1330 1331 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1332 lo->lo_init[0] = info->lo_init[0]; 1333 lo->lo_init[1] = info->lo_init[1]; 1334 if (info->lo_encrypt_key_size) { 1335 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1336 info->lo_encrypt_key_size); 1337 lo->lo_key_owner = uid; 1338 } 1339 1340 /* update dio if lo_offset or transfer is changed */ 1341 __loop_update_dio(lo, lo->use_dio); 1342 1343 out_unfreeze: 1344 blk_mq_unfreeze_queue(lo->lo_queue); 1345 1346 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1347 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1348 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1349 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1350 bdev = lo->lo_device; 1351 partscan = true; 1352 } 1353 out_unlock: 1354 mutex_unlock(&loop_ctl_mutex); 1355 if (partscan) 1356 loop_reread_partitions(lo, bdev); 1357 1358 return err; 1359 } 1360 1361 static int 1362 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1363 { 1364 struct path path; 1365 struct kstat stat; 1366 int ret; 1367 1368 ret = mutex_lock_killable(&loop_ctl_mutex); 1369 if (ret) 1370 return ret; 1371 if (lo->lo_state != Lo_bound) { 1372 mutex_unlock(&loop_ctl_mutex); 1373 return -ENXIO; 1374 } 1375 1376 memset(info, 0, sizeof(*info)); 1377 info->lo_number = lo->lo_number; 1378 info->lo_offset = lo->lo_offset; 1379 info->lo_sizelimit = lo->lo_sizelimit; 1380 info->lo_flags = lo->lo_flags; 1381 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1382 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1383 info->lo_encrypt_type = 1384 lo->lo_encryption ? lo->lo_encryption->number : 0; 1385 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1386 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1387 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1388 lo->lo_encrypt_key_size); 1389 } 1390 1391 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1392 path = lo->lo_backing_file->f_path; 1393 path_get(&path); 1394 mutex_unlock(&loop_ctl_mutex); 1395 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1396 if (!ret) { 1397 info->lo_device = huge_encode_dev(stat.dev); 1398 info->lo_inode = stat.ino; 1399 info->lo_rdevice = huge_encode_dev(stat.rdev); 1400 } 1401 path_put(&path); 1402 return ret; 1403 } 1404 1405 static void 1406 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1407 { 1408 memset(info64, 0, sizeof(*info64)); 1409 info64->lo_number = info->lo_number; 1410 info64->lo_device = info->lo_device; 1411 info64->lo_inode = info->lo_inode; 1412 info64->lo_rdevice = info->lo_rdevice; 1413 info64->lo_offset = info->lo_offset; 1414 info64->lo_sizelimit = 0; 1415 info64->lo_encrypt_type = info->lo_encrypt_type; 1416 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1417 info64->lo_flags = info->lo_flags; 1418 info64->lo_init[0] = info->lo_init[0]; 1419 info64->lo_init[1] = info->lo_init[1]; 1420 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1421 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1422 else 1423 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1424 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1425 } 1426 1427 static int 1428 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1429 { 1430 memset(info, 0, sizeof(*info)); 1431 info->lo_number = info64->lo_number; 1432 info->lo_device = info64->lo_device; 1433 info->lo_inode = info64->lo_inode; 1434 info->lo_rdevice = info64->lo_rdevice; 1435 info->lo_offset = info64->lo_offset; 1436 info->lo_encrypt_type = info64->lo_encrypt_type; 1437 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1438 info->lo_flags = info64->lo_flags; 1439 info->lo_init[0] = info64->lo_init[0]; 1440 info->lo_init[1] = info64->lo_init[1]; 1441 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1442 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1443 else 1444 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1445 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1446 1447 /* error in case values were truncated */ 1448 if (info->lo_device != info64->lo_device || 1449 info->lo_rdevice != info64->lo_rdevice || 1450 info->lo_inode != info64->lo_inode || 1451 info->lo_offset != info64->lo_offset) 1452 return -EOVERFLOW; 1453 1454 return 0; 1455 } 1456 1457 static int 1458 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1459 { 1460 struct loop_info info; 1461 struct loop_info64 info64; 1462 1463 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1464 return -EFAULT; 1465 loop_info64_from_old(&info, &info64); 1466 return loop_set_status(lo, &info64); 1467 } 1468 1469 static int 1470 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1471 { 1472 struct loop_info64 info64; 1473 1474 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1475 return -EFAULT; 1476 return loop_set_status(lo, &info64); 1477 } 1478 1479 static int 1480 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1481 struct loop_info info; 1482 struct loop_info64 info64; 1483 int err; 1484 1485 if (!arg) 1486 return -EINVAL; 1487 err = loop_get_status(lo, &info64); 1488 if (!err) 1489 err = loop_info64_to_old(&info64, &info); 1490 if (!err && copy_to_user(arg, &info, sizeof(info))) 1491 err = -EFAULT; 1492 1493 return err; 1494 } 1495 1496 static int 1497 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1498 struct loop_info64 info64; 1499 int err; 1500 1501 if (!arg) 1502 return -EINVAL; 1503 err = loop_get_status(lo, &info64); 1504 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1505 err = -EFAULT; 1506 1507 return err; 1508 } 1509 1510 static int loop_set_capacity(struct loop_device *lo) 1511 { 1512 if (unlikely(lo->lo_state != Lo_bound)) 1513 return -ENXIO; 1514 1515 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1516 } 1517 1518 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1519 { 1520 int error = -ENXIO; 1521 if (lo->lo_state != Lo_bound) 1522 goto out; 1523 1524 __loop_update_dio(lo, !!arg); 1525 if (lo->use_dio == !!arg) 1526 return 0; 1527 error = -EINVAL; 1528 out: 1529 return error; 1530 } 1531 1532 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1533 { 1534 int err = 0; 1535 1536 if (lo->lo_state != Lo_bound) 1537 return -ENXIO; 1538 1539 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1540 return -EINVAL; 1541 1542 if (lo->lo_queue->limits.logical_block_size != arg) { 1543 sync_blockdev(lo->lo_device); 1544 kill_bdev(lo->lo_device); 1545 } 1546 1547 blk_mq_freeze_queue(lo->lo_queue); 1548 1549 /* kill_bdev should have truncated all the pages */ 1550 if (lo->lo_queue->limits.logical_block_size != arg && 1551 lo->lo_device->bd_inode->i_mapping->nrpages) { 1552 err = -EAGAIN; 1553 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1554 __func__, lo->lo_number, lo->lo_file_name, 1555 lo->lo_device->bd_inode->i_mapping->nrpages); 1556 goto out_unfreeze; 1557 } 1558 1559 blk_queue_logical_block_size(lo->lo_queue, arg); 1560 blk_queue_physical_block_size(lo->lo_queue, arg); 1561 blk_queue_io_min(lo->lo_queue, arg); 1562 loop_update_dio(lo); 1563 out_unfreeze: 1564 blk_mq_unfreeze_queue(lo->lo_queue); 1565 1566 return err; 1567 } 1568 1569 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1570 unsigned long arg) 1571 { 1572 int err; 1573 1574 err = mutex_lock_killable(&loop_ctl_mutex); 1575 if (err) 1576 return err; 1577 switch (cmd) { 1578 case LOOP_SET_CAPACITY: 1579 err = loop_set_capacity(lo); 1580 break; 1581 case LOOP_SET_DIRECT_IO: 1582 err = loop_set_dio(lo, arg); 1583 break; 1584 case LOOP_SET_BLOCK_SIZE: 1585 err = loop_set_block_size(lo, arg); 1586 break; 1587 default: 1588 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1589 } 1590 mutex_unlock(&loop_ctl_mutex); 1591 return err; 1592 } 1593 1594 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1595 unsigned int cmd, unsigned long arg) 1596 { 1597 struct loop_device *lo = bdev->bd_disk->private_data; 1598 int err; 1599 1600 switch (cmd) { 1601 case LOOP_SET_FD: 1602 return loop_set_fd(lo, mode, bdev, arg); 1603 case LOOP_CHANGE_FD: 1604 return loop_change_fd(lo, bdev, arg); 1605 case LOOP_CLR_FD: 1606 return loop_clr_fd(lo); 1607 case LOOP_SET_STATUS: 1608 err = -EPERM; 1609 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1610 err = loop_set_status_old(lo, 1611 (struct loop_info __user *)arg); 1612 } 1613 break; 1614 case LOOP_GET_STATUS: 1615 return loop_get_status_old(lo, (struct loop_info __user *) arg); 1616 case LOOP_SET_STATUS64: 1617 err = -EPERM; 1618 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1619 err = loop_set_status64(lo, 1620 (struct loop_info64 __user *) arg); 1621 } 1622 break; 1623 case LOOP_GET_STATUS64: 1624 return loop_get_status64(lo, (struct loop_info64 __user *) arg); 1625 case LOOP_SET_CAPACITY: 1626 case LOOP_SET_DIRECT_IO: 1627 case LOOP_SET_BLOCK_SIZE: 1628 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1629 return -EPERM; 1630 /* Fall through */ 1631 default: 1632 err = lo_simple_ioctl(lo, cmd, arg); 1633 break; 1634 } 1635 1636 return err; 1637 } 1638 1639 #ifdef CONFIG_COMPAT 1640 struct compat_loop_info { 1641 compat_int_t lo_number; /* ioctl r/o */ 1642 compat_dev_t lo_device; /* ioctl r/o */ 1643 compat_ulong_t lo_inode; /* ioctl r/o */ 1644 compat_dev_t lo_rdevice; /* ioctl r/o */ 1645 compat_int_t lo_offset; 1646 compat_int_t lo_encrypt_type; 1647 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1648 compat_int_t lo_flags; /* ioctl r/o */ 1649 char lo_name[LO_NAME_SIZE]; 1650 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1651 compat_ulong_t lo_init[2]; 1652 char reserved[4]; 1653 }; 1654 1655 /* 1656 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1657 * - noinlined to reduce stack space usage in main part of driver 1658 */ 1659 static noinline int 1660 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1661 struct loop_info64 *info64) 1662 { 1663 struct compat_loop_info info; 1664 1665 if (copy_from_user(&info, arg, sizeof(info))) 1666 return -EFAULT; 1667 1668 memset(info64, 0, sizeof(*info64)); 1669 info64->lo_number = info.lo_number; 1670 info64->lo_device = info.lo_device; 1671 info64->lo_inode = info.lo_inode; 1672 info64->lo_rdevice = info.lo_rdevice; 1673 info64->lo_offset = info.lo_offset; 1674 info64->lo_sizelimit = 0; 1675 info64->lo_encrypt_type = info.lo_encrypt_type; 1676 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1677 info64->lo_flags = info.lo_flags; 1678 info64->lo_init[0] = info.lo_init[0]; 1679 info64->lo_init[1] = info.lo_init[1]; 1680 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1681 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1682 else 1683 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1684 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1685 return 0; 1686 } 1687 1688 /* 1689 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1690 * - noinlined to reduce stack space usage in main part of driver 1691 */ 1692 static noinline int 1693 loop_info64_to_compat(const struct loop_info64 *info64, 1694 struct compat_loop_info __user *arg) 1695 { 1696 struct compat_loop_info info; 1697 1698 memset(&info, 0, sizeof(info)); 1699 info.lo_number = info64->lo_number; 1700 info.lo_device = info64->lo_device; 1701 info.lo_inode = info64->lo_inode; 1702 info.lo_rdevice = info64->lo_rdevice; 1703 info.lo_offset = info64->lo_offset; 1704 info.lo_encrypt_type = info64->lo_encrypt_type; 1705 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1706 info.lo_flags = info64->lo_flags; 1707 info.lo_init[0] = info64->lo_init[0]; 1708 info.lo_init[1] = info64->lo_init[1]; 1709 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1710 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1711 else 1712 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1713 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1714 1715 /* error in case values were truncated */ 1716 if (info.lo_device != info64->lo_device || 1717 info.lo_rdevice != info64->lo_rdevice || 1718 info.lo_inode != info64->lo_inode || 1719 info.lo_offset != info64->lo_offset || 1720 info.lo_init[0] != info64->lo_init[0] || 1721 info.lo_init[1] != info64->lo_init[1]) 1722 return -EOVERFLOW; 1723 1724 if (copy_to_user(arg, &info, sizeof(info))) 1725 return -EFAULT; 1726 return 0; 1727 } 1728 1729 static int 1730 loop_set_status_compat(struct loop_device *lo, 1731 const struct compat_loop_info __user *arg) 1732 { 1733 struct loop_info64 info64; 1734 int ret; 1735 1736 ret = loop_info64_from_compat(arg, &info64); 1737 if (ret < 0) 1738 return ret; 1739 return loop_set_status(lo, &info64); 1740 } 1741 1742 static int 1743 loop_get_status_compat(struct loop_device *lo, 1744 struct compat_loop_info __user *arg) 1745 { 1746 struct loop_info64 info64; 1747 int err; 1748 1749 if (!arg) 1750 return -EINVAL; 1751 err = loop_get_status(lo, &info64); 1752 if (!err) 1753 err = loop_info64_to_compat(&info64, arg); 1754 return err; 1755 } 1756 1757 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1758 unsigned int cmd, unsigned long arg) 1759 { 1760 struct loop_device *lo = bdev->bd_disk->private_data; 1761 int err; 1762 1763 switch(cmd) { 1764 case LOOP_SET_STATUS: 1765 err = loop_set_status_compat(lo, 1766 (const struct compat_loop_info __user *)arg); 1767 break; 1768 case LOOP_GET_STATUS: 1769 err = loop_get_status_compat(lo, 1770 (struct compat_loop_info __user *)arg); 1771 break; 1772 case LOOP_SET_CAPACITY: 1773 case LOOP_CLR_FD: 1774 case LOOP_GET_STATUS64: 1775 case LOOP_SET_STATUS64: 1776 arg = (unsigned long) compat_ptr(arg); 1777 /* fall through */ 1778 case LOOP_SET_FD: 1779 case LOOP_CHANGE_FD: 1780 case LOOP_SET_BLOCK_SIZE: 1781 case LOOP_SET_DIRECT_IO: 1782 err = lo_ioctl(bdev, mode, cmd, arg); 1783 break; 1784 default: 1785 err = -ENOIOCTLCMD; 1786 break; 1787 } 1788 return err; 1789 } 1790 #endif 1791 1792 static int lo_open(struct block_device *bdev, fmode_t mode) 1793 { 1794 struct loop_device *lo; 1795 int err; 1796 1797 err = mutex_lock_killable(&loop_ctl_mutex); 1798 if (err) 1799 return err; 1800 lo = bdev->bd_disk->private_data; 1801 if (!lo) { 1802 err = -ENXIO; 1803 goto out; 1804 } 1805 1806 atomic_inc(&lo->lo_refcnt); 1807 out: 1808 mutex_unlock(&loop_ctl_mutex); 1809 return err; 1810 } 1811 1812 static void lo_release(struct gendisk *disk, fmode_t mode) 1813 { 1814 struct loop_device *lo; 1815 1816 mutex_lock(&loop_ctl_mutex); 1817 lo = disk->private_data; 1818 if (atomic_dec_return(&lo->lo_refcnt)) 1819 goto out_unlock; 1820 1821 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1822 if (lo->lo_state != Lo_bound) 1823 goto out_unlock; 1824 lo->lo_state = Lo_rundown; 1825 mutex_unlock(&loop_ctl_mutex); 1826 /* 1827 * In autoclear mode, stop the loop thread 1828 * and remove configuration after last close. 1829 */ 1830 __loop_clr_fd(lo, true); 1831 return; 1832 } else if (lo->lo_state == Lo_bound) { 1833 /* 1834 * Otherwise keep thread (if running) and config, 1835 * but flush possible ongoing bios in thread. 1836 */ 1837 blk_mq_freeze_queue(lo->lo_queue); 1838 blk_mq_unfreeze_queue(lo->lo_queue); 1839 } 1840 1841 out_unlock: 1842 mutex_unlock(&loop_ctl_mutex); 1843 } 1844 1845 static const struct block_device_operations lo_fops = { 1846 .owner = THIS_MODULE, 1847 .open = lo_open, 1848 .release = lo_release, 1849 .ioctl = lo_ioctl, 1850 #ifdef CONFIG_COMPAT 1851 .compat_ioctl = lo_compat_ioctl, 1852 #endif 1853 }; 1854 1855 /* 1856 * And now the modules code and kernel interface. 1857 */ 1858 static int max_loop; 1859 module_param(max_loop, int, 0444); 1860 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1861 module_param(max_part, int, 0444); 1862 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1863 MODULE_LICENSE("GPL"); 1864 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1865 1866 int loop_register_transfer(struct loop_func_table *funcs) 1867 { 1868 unsigned int n = funcs->number; 1869 1870 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1871 return -EINVAL; 1872 xfer_funcs[n] = funcs; 1873 return 0; 1874 } 1875 1876 static int unregister_transfer_cb(int id, void *ptr, void *data) 1877 { 1878 struct loop_device *lo = ptr; 1879 struct loop_func_table *xfer = data; 1880 1881 mutex_lock(&loop_ctl_mutex); 1882 if (lo->lo_encryption == xfer) 1883 loop_release_xfer(lo); 1884 mutex_unlock(&loop_ctl_mutex); 1885 return 0; 1886 } 1887 1888 int loop_unregister_transfer(int number) 1889 { 1890 unsigned int n = number; 1891 struct loop_func_table *xfer; 1892 1893 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1894 return -EINVAL; 1895 1896 xfer_funcs[n] = NULL; 1897 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1898 return 0; 1899 } 1900 1901 EXPORT_SYMBOL(loop_register_transfer); 1902 EXPORT_SYMBOL(loop_unregister_transfer); 1903 1904 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1905 const struct blk_mq_queue_data *bd) 1906 { 1907 struct request *rq = bd->rq; 1908 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1909 struct loop_device *lo = rq->q->queuedata; 1910 1911 blk_mq_start_request(rq); 1912 1913 if (lo->lo_state != Lo_bound) 1914 return BLK_STS_IOERR; 1915 1916 switch (req_op(rq)) { 1917 case REQ_OP_FLUSH: 1918 case REQ_OP_DISCARD: 1919 case REQ_OP_WRITE_ZEROES: 1920 cmd->use_aio = false; 1921 break; 1922 default: 1923 cmd->use_aio = lo->use_dio; 1924 break; 1925 } 1926 1927 /* always use the first bio's css */ 1928 #ifdef CONFIG_BLK_CGROUP 1929 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 1930 cmd->css = &bio_blkcg(rq->bio)->css; 1931 css_get(cmd->css); 1932 } else 1933 #endif 1934 cmd->css = NULL; 1935 kthread_queue_work(&lo->worker, &cmd->work); 1936 1937 return BLK_STS_OK; 1938 } 1939 1940 static void loop_handle_cmd(struct loop_cmd *cmd) 1941 { 1942 struct request *rq = blk_mq_rq_from_pdu(cmd); 1943 const bool write = op_is_write(req_op(rq)); 1944 struct loop_device *lo = rq->q->queuedata; 1945 int ret = 0; 1946 1947 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1948 ret = -EIO; 1949 goto failed; 1950 } 1951 1952 ret = do_req_filebacked(lo, rq); 1953 failed: 1954 /* complete non-aio request */ 1955 if (!cmd->use_aio || ret) { 1956 cmd->ret = ret ? -EIO : 0; 1957 blk_mq_complete_request(rq); 1958 } 1959 } 1960 1961 static void loop_queue_work(struct kthread_work *work) 1962 { 1963 struct loop_cmd *cmd = 1964 container_of(work, struct loop_cmd, work); 1965 1966 loop_handle_cmd(cmd); 1967 } 1968 1969 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1970 unsigned int hctx_idx, unsigned int numa_node) 1971 { 1972 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1973 1974 kthread_init_work(&cmd->work, loop_queue_work); 1975 return 0; 1976 } 1977 1978 static const struct blk_mq_ops loop_mq_ops = { 1979 .queue_rq = loop_queue_rq, 1980 .init_request = loop_init_request, 1981 .complete = lo_complete_rq, 1982 }; 1983 1984 static int loop_add(struct loop_device **l, int i) 1985 { 1986 struct loop_device *lo; 1987 struct gendisk *disk; 1988 int err; 1989 1990 err = -ENOMEM; 1991 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1992 if (!lo) 1993 goto out; 1994 1995 lo->lo_state = Lo_unbound; 1996 1997 /* allocate id, if @id >= 0, we're requesting that specific id */ 1998 if (i >= 0) { 1999 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2000 if (err == -ENOSPC) 2001 err = -EEXIST; 2002 } else { 2003 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2004 } 2005 if (err < 0) 2006 goto out_free_dev; 2007 i = err; 2008 2009 err = -ENOMEM; 2010 lo->tag_set.ops = &loop_mq_ops; 2011 lo->tag_set.nr_hw_queues = 1; 2012 lo->tag_set.queue_depth = 128; 2013 lo->tag_set.numa_node = NUMA_NO_NODE; 2014 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2015 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2016 lo->tag_set.driver_data = lo; 2017 2018 err = blk_mq_alloc_tag_set(&lo->tag_set); 2019 if (err) 2020 goto out_free_idr; 2021 2022 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2023 if (IS_ERR(lo->lo_queue)) { 2024 err = PTR_ERR(lo->lo_queue); 2025 goto out_cleanup_tags; 2026 } 2027 lo->lo_queue->queuedata = lo; 2028 2029 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2030 2031 /* 2032 * By default, we do buffer IO, so it doesn't make sense to enable 2033 * merge because the I/O submitted to backing file is handled page by 2034 * page. For directio mode, merge does help to dispatch bigger request 2035 * to underlayer disk. We will enable merge once directio is enabled. 2036 */ 2037 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2038 2039 err = -ENOMEM; 2040 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2041 if (!disk) 2042 goto out_free_queue; 2043 2044 /* 2045 * Disable partition scanning by default. The in-kernel partition 2046 * scanning can be requested individually per-device during its 2047 * setup. Userspace can always add and remove partitions from all 2048 * devices. The needed partition minors are allocated from the 2049 * extended minor space, the main loop device numbers will continue 2050 * to match the loop minors, regardless of the number of partitions 2051 * used. 2052 * 2053 * If max_part is given, partition scanning is globally enabled for 2054 * all loop devices. The minors for the main loop devices will be 2055 * multiples of max_part. 2056 * 2057 * Note: Global-for-all-devices, set-only-at-init, read-only module 2058 * parameteters like 'max_loop' and 'max_part' make things needlessly 2059 * complicated, are too static, inflexible and may surprise 2060 * userspace tools. Parameters like this in general should be avoided. 2061 */ 2062 if (!part_shift) 2063 disk->flags |= GENHD_FL_NO_PART_SCAN; 2064 disk->flags |= GENHD_FL_EXT_DEVT; 2065 atomic_set(&lo->lo_refcnt, 0); 2066 lo->lo_number = i; 2067 spin_lock_init(&lo->lo_lock); 2068 disk->major = LOOP_MAJOR; 2069 disk->first_minor = i << part_shift; 2070 disk->fops = &lo_fops; 2071 disk->private_data = lo; 2072 disk->queue = lo->lo_queue; 2073 sprintf(disk->disk_name, "loop%d", i); 2074 add_disk(disk); 2075 *l = lo; 2076 return lo->lo_number; 2077 2078 out_free_queue: 2079 blk_cleanup_queue(lo->lo_queue); 2080 out_cleanup_tags: 2081 blk_mq_free_tag_set(&lo->tag_set); 2082 out_free_idr: 2083 idr_remove(&loop_index_idr, i); 2084 out_free_dev: 2085 kfree(lo); 2086 out: 2087 return err; 2088 } 2089 2090 static void loop_remove(struct loop_device *lo) 2091 { 2092 del_gendisk(lo->lo_disk); 2093 blk_cleanup_queue(lo->lo_queue); 2094 blk_mq_free_tag_set(&lo->tag_set); 2095 put_disk(lo->lo_disk); 2096 kfree(lo); 2097 } 2098 2099 static int find_free_cb(int id, void *ptr, void *data) 2100 { 2101 struct loop_device *lo = ptr; 2102 struct loop_device **l = data; 2103 2104 if (lo->lo_state == Lo_unbound) { 2105 *l = lo; 2106 return 1; 2107 } 2108 return 0; 2109 } 2110 2111 static int loop_lookup(struct loop_device **l, int i) 2112 { 2113 struct loop_device *lo; 2114 int ret = -ENODEV; 2115 2116 if (i < 0) { 2117 int err; 2118 2119 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2120 if (err == 1) { 2121 *l = lo; 2122 ret = lo->lo_number; 2123 } 2124 goto out; 2125 } 2126 2127 /* lookup and return a specific i */ 2128 lo = idr_find(&loop_index_idr, i); 2129 if (lo) { 2130 *l = lo; 2131 ret = lo->lo_number; 2132 } 2133 out: 2134 return ret; 2135 } 2136 2137 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2138 { 2139 struct loop_device *lo; 2140 struct kobject *kobj; 2141 int err; 2142 2143 mutex_lock(&loop_ctl_mutex); 2144 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2145 if (err < 0) 2146 err = loop_add(&lo, MINOR(dev) >> part_shift); 2147 if (err < 0) 2148 kobj = NULL; 2149 else 2150 kobj = get_disk_and_module(lo->lo_disk); 2151 mutex_unlock(&loop_ctl_mutex); 2152 2153 *part = 0; 2154 return kobj; 2155 } 2156 2157 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2158 unsigned long parm) 2159 { 2160 struct loop_device *lo; 2161 int ret; 2162 2163 ret = mutex_lock_killable(&loop_ctl_mutex); 2164 if (ret) 2165 return ret; 2166 2167 ret = -ENOSYS; 2168 switch (cmd) { 2169 case LOOP_CTL_ADD: 2170 ret = loop_lookup(&lo, parm); 2171 if (ret >= 0) { 2172 ret = -EEXIST; 2173 break; 2174 } 2175 ret = loop_add(&lo, parm); 2176 break; 2177 case LOOP_CTL_REMOVE: 2178 ret = loop_lookup(&lo, parm); 2179 if (ret < 0) 2180 break; 2181 if (lo->lo_state != Lo_unbound) { 2182 ret = -EBUSY; 2183 break; 2184 } 2185 if (atomic_read(&lo->lo_refcnt) > 0) { 2186 ret = -EBUSY; 2187 break; 2188 } 2189 lo->lo_disk->private_data = NULL; 2190 idr_remove(&loop_index_idr, lo->lo_number); 2191 loop_remove(lo); 2192 break; 2193 case LOOP_CTL_GET_FREE: 2194 ret = loop_lookup(&lo, -1); 2195 if (ret >= 0) 2196 break; 2197 ret = loop_add(&lo, -1); 2198 } 2199 mutex_unlock(&loop_ctl_mutex); 2200 2201 return ret; 2202 } 2203 2204 static const struct file_operations loop_ctl_fops = { 2205 .open = nonseekable_open, 2206 .unlocked_ioctl = loop_control_ioctl, 2207 .compat_ioctl = loop_control_ioctl, 2208 .owner = THIS_MODULE, 2209 .llseek = noop_llseek, 2210 }; 2211 2212 static struct miscdevice loop_misc = { 2213 .minor = LOOP_CTRL_MINOR, 2214 .name = "loop-control", 2215 .fops = &loop_ctl_fops, 2216 }; 2217 2218 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2219 MODULE_ALIAS("devname:loop-control"); 2220 2221 static int __init loop_init(void) 2222 { 2223 int i, nr; 2224 unsigned long range; 2225 struct loop_device *lo; 2226 int err; 2227 2228 part_shift = 0; 2229 if (max_part > 0) { 2230 part_shift = fls(max_part); 2231 2232 /* 2233 * Adjust max_part according to part_shift as it is exported 2234 * to user space so that user can decide correct minor number 2235 * if [s]he want to create more devices. 2236 * 2237 * Note that -1 is required because partition 0 is reserved 2238 * for the whole disk. 2239 */ 2240 max_part = (1UL << part_shift) - 1; 2241 } 2242 2243 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2244 err = -EINVAL; 2245 goto err_out; 2246 } 2247 2248 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2249 err = -EINVAL; 2250 goto err_out; 2251 } 2252 2253 /* 2254 * If max_loop is specified, create that many devices upfront. 2255 * This also becomes a hard limit. If max_loop is not specified, 2256 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2257 * init time. Loop devices can be requested on-demand with the 2258 * /dev/loop-control interface, or be instantiated by accessing 2259 * a 'dead' device node. 2260 */ 2261 if (max_loop) { 2262 nr = max_loop; 2263 range = max_loop << part_shift; 2264 } else { 2265 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2266 range = 1UL << MINORBITS; 2267 } 2268 2269 err = misc_register(&loop_misc); 2270 if (err < 0) 2271 goto err_out; 2272 2273 2274 if (register_blkdev(LOOP_MAJOR, "loop")) { 2275 err = -EIO; 2276 goto misc_out; 2277 } 2278 2279 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2280 THIS_MODULE, loop_probe, NULL, NULL); 2281 2282 /* pre-create number of devices given by config or max_loop */ 2283 mutex_lock(&loop_ctl_mutex); 2284 for (i = 0; i < nr; i++) 2285 loop_add(&lo, i); 2286 mutex_unlock(&loop_ctl_mutex); 2287 2288 printk(KERN_INFO "loop: module loaded\n"); 2289 return 0; 2290 2291 misc_out: 2292 misc_deregister(&loop_misc); 2293 err_out: 2294 return err; 2295 } 2296 2297 static int loop_exit_cb(int id, void *ptr, void *data) 2298 { 2299 struct loop_device *lo = ptr; 2300 2301 loop_remove(lo); 2302 return 0; 2303 } 2304 2305 static void __exit loop_exit(void) 2306 { 2307 unsigned long range; 2308 2309 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2310 2311 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2312 idr_destroy(&loop_index_idr); 2313 2314 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2315 unregister_blkdev(LOOP_MAJOR, "loop"); 2316 2317 misc_deregister(&loop_misc); 2318 } 2319 2320 module_init(loop_init); 2321 module_exit(loop_exit); 2322 2323 #ifndef MODULE 2324 static int __init max_loop_setup(char *str) 2325 { 2326 max_loop = simple_strtol(str, NULL, 0); 2327 return 1; 2328 } 2329 2330 __setup("max_loop=", max_loop_setup); 2331 #endif 2332