xref: /openbmc/linux/drivers/block/loop.c (revision 64604957)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <linux/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane applications should be PAGE_SIZE aligned
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio)
217 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 	else
219 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 	blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222 
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 	sector_t x = (sector_t)size;
228 	struct block_device *bdev = lo->lo_device;
229 
230 	if (unlikely((loff_t)x != size))
231 		return -EFBIG;
232 	if (lo->lo_offset != offset)
233 		lo->lo_offset = offset;
234 	if (lo->lo_sizelimit != sizelimit)
235 		lo->lo_sizelimit = sizelimit;
236 	set_capacity(lo->lo_disk, x);
237 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 	/* let user-space know about the new size */
239 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 	return 0;
241 }
242 
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 	       struct page *rpage, unsigned roffs,
246 	       struct page *lpage, unsigned loffs,
247 	       int size, sector_t rblock)
248 {
249 	int ret;
250 
251 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 	if (likely(!ret))
253 		return 0;
254 
255 	printk_ratelimited(KERN_ERR
256 		"loop: Transfer error at byte offset %llu, length %i.\n",
257 		(unsigned long long)rblock << 9, size);
258 	return ret;
259 }
260 
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 	struct iov_iter i;
264 	ssize_t bw;
265 
266 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267 
268 	file_start_write(file);
269 	bw = vfs_iter_write(file, &i, ppos);
270 	file_end_write(file);
271 
272 	if (likely(bw ==  bvec->bv_len))
273 		return 0;
274 
275 	printk_ratelimited(KERN_ERR
276 		"loop: Write error at byte offset %llu, length %i.\n",
277 		(unsigned long long)*ppos, bvec->bv_len);
278 	if (bw >= 0)
279 		bw = -EIO;
280 	return bw;
281 }
282 
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 		loff_t pos)
285 {
286 	struct bio_vec bvec;
287 	struct req_iterator iter;
288 	int ret = 0;
289 
290 	rq_for_each_segment(bvec, rq, iter) {
291 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 		if (ret < 0)
293 			break;
294 		cond_resched();
295 	}
296 
297 	return ret;
298 }
299 
300 /*
301  * This is the slow, transforming version that needs to double buffer the
302  * data as it cannot do the transformations in place without having direct
303  * access to the destination pages of the backing file.
304  */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 		loff_t pos)
307 {
308 	struct bio_vec bvec, b;
309 	struct req_iterator iter;
310 	struct page *page;
311 	int ret = 0;
312 
313 	page = alloc_page(GFP_NOIO);
314 	if (unlikely(!page))
315 		return -ENOMEM;
316 
317 	rq_for_each_segment(bvec, rq, iter) {
318 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 			bvec.bv_offset, bvec.bv_len, pos >> 9);
320 		if (unlikely(ret))
321 			break;
322 
323 		b.bv_page = page;
324 		b.bv_offset = 0;
325 		b.bv_len = bvec.bv_len;
326 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 		if (ret < 0)
328 			break;
329 	}
330 
331 	__free_page(page);
332 	return ret;
333 }
334 
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 		loff_t pos)
337 {
338 	struct bio_vec bvec;
339 	struct req_iterator iter;
340 	struct iov_iter i;
341 	ssize_t len;
342 
343 	rq_for_each_segment(bvec, rq, iter) {
344 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 		if (len < 0)
347 			return len;
348 
349 		flush_dcache_page(bvec.bv_page);
350 
351 		if (len != bvec.bv_len) {
352 			struct bio *bio;
353 
354 			__rq_for_each_bio(bio, rq)
355 				zero_fill_bio(bio);
356 			break;
357 		}
358 		cond_resched();
359 	}
360 
361 	return 0;
362 }
363 
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 		loff_t pos)
366 {
367 	struct bio_vec bvec, b;
368 	struct req_iterator iter;
369 	struct iov_iter i;
370 	struct page *page;
371 	ssize_t len;
372 	int ret = 0;
373 
374 	page = alloc_page(GFP_NOIO);
375 	if (unlikely(!page))
376 		return -ENOMEM;
377 
378 	rq_for_each_segment(bvec, rq, iter) {
379 		loff_t offset = pos;
380 
381 		b.bv_page = page;
382 		b.bv_offset = 0;
383 		b.bv_len = bvec.bv_len;
384 
385 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 		if (len < 0) {
388 			ret = len;
389 			goto out_free_page;
390 		}
391 
392 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 			bvec.bv_offset, len, offset >> 9);
394 		if (ret)
395 			goto out_free_page;
396 
397 		flush_dcache_page(bvec.bv_page);
398 
399 		if (len != bvec.bv_len) {
400 			struct bio *bio;
401 
402 			__rq_for_each_bio(bio, rq)
403 				zero_fill_bio(bio);
404 			break;
405 		}
406 	}
407 
408 	ret = 0;
409 out_free_page:
410 	__free_page(page);
411 	return ret;
412 }
413 
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 	/*
417 	 * We use punch hole to reclaim the free space used by the
418 	 * image a.k.a. discard. However we do not support discard if
419 	 * encryption is enabled, because it may give an attacker
420 	 * useful information.
421 	 */
422 	struct file *file = lo->lo_backing_file;
423 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 	int ret;
425 
426 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 		ret = -EOPNOTSUPP;
428 		goto out;
429 	}
430 
431 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 		ret = -EIO;
434  out:
435 	return ret;
436 }
437 
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 	struct file *file = lo->lo_backing_file;
441 	int ret = vfs_fsync(file, 0);
442 	if (unlikely(ret && ret != -EINVAL))
443 		ret = -EIO;
444 
445 	return ret;
446 }
447 
448 static void lo_complete_rq(struct request *rq)
449 {
450 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
451 
452 	if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
453 		     cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
454 		struct bio *bio = cmd->rq->bio;
455 
456 		bio_advance(bio, cmd->ret);
457 		zero_fill_bio(bio);
458 	}
459 
460 	blk_mq_end_request(rq, cmd->ret < 0 ? -EIO : 0);
461 }
462 
463 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
464 {
465 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
466 
467 	cmd->ret = ret;
468 	blk_mq_complete_request(cmd->rq);
469 }
470 
471 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
472 		     loff_t pos, bool rw)
473 {
474 	struct iov_iter iter;
475 	struct bio_vec *bvec;
476 	struct bio *bio = cmd->rq->bio;
477 	struct file *file = lo->lo_backing_file;
478 	int ret;
479 
480 	/* nomerge for loop request queue */
481 	WARN_ON(cmd->rq->bio != cmd->rq->biotail);
482 
483 	bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
484 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
485 		      bio_segments(bio), blk_rq_bytes(cmd->rq));
486 	/*
487 	 * This bio may be started from the middle of the 'bvec'
488 	 * because of bio splitting, so offset from the bvec must
489 	 * be passed to iov iterator
490 	 */
491 	iter.iov_offset = bio->bi_iter.bi_bvec_done;
492 
493 	cmd->iocb.ki_pos = pos;
494 	cmd->iocb.ki_filp = file;
495 	cmd->iocb.ki_complete = lo_rw_aio_complete;
496 	cmd->iocb.ki_flags = IOCB_DIRECT;
497 
498 	if (rw == WRITE)
499 		ret = call_write_iter(file, &cmd->iocb, &iter);
500 	else
501 		ret = call_read_iter(file, &cmd->iocb, &iter);
502 
503 	if (ret != -EIOCBQUEUED)
504 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
505 	return 0;
506 }
507 
508 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
509 {
510 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
511 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
512 
513 	/*
514 	 * lo_write_simple and lo_read_simple should have been covered
515 	 * by io submit style function like lo_rw_aio(), one blocker
516 	 * is that lo_read_simple() need to call flush_dcache_page after
517 	 * the page is written from kernel, and it isn't easy to handle
518 	 * this in io submit style function which submits all segments
519 	 * of the req at one time. And direct read IO doesn't need to
520 	 * run flush_dcache_page().
521 	 */
522 	switch (req_op(rq)) {
523 	case REQ_OP_FLUSH:
524 		return lo_req_flush(lo, rq);
525 	case REQ_OP_DISCARD:
526 	case REQ_OP_WRITE_ZEROES:
527 		return lo_discard(lo, rq, pos);
528 	case REQ_OP_WRITE:
529 		if (lo->transfer)
530 			return lo_write_transfer(lo, rq, pos);
531 		else if (cmd->use_aio)
532 			return lo_rw_aio(lo, cmd, pos, WRITE);
533 		else
534 			return lo_write_simple(lo, rq, pos);
535 	case REQ_OP_READ:
536 		if (lo->transfer)
537 			return lo_read_transfer(lo, rq, pos);
538 		else if (cmd->use_aio)
539 			return lo_rw_aio(lo, cmd, pos, READ);
540 		else
541 			return lo_read_simple(lo, rq, pos);
542 	default:
543 		WARN_ON_ONCE(1);
544 		return -EIO;
545 		break;
546 	}
547 }
548 
549 struct switch_request {
550 	struct file *file;
551 	struct completion wait;
552 };
553 
554 static inline void loop_update_dio(struct loop_device *lo)
555 {
556 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
557 			lo->use_dio);
558 }
559 
560 /*
561  * Do the actual switch; called from the BIO completion routine
562  */
563 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
564 {
565 	struct file *file = p->file;
566 	struct file *old_file = lo->lo_backing_file;
567 	struct address_space *mapping;
568 
569 	/* if no new file, only flush of queued bios requested */
570 	if (!file)
571 		return;
572 
573 	mapping = file->f_mapping;
574 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
575 	lo->lo_backing_file = file;
576 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
577 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
578 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
579 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
580 	loop_update_dio(lo);
581 }
582 
583 /*
584  * loop_switch performs the hard work of switching a backing store.
585  * First it needs to flush existing IO, it does this by sending a magic
586  * BIO down the pipe. The completion of this BIO does the actual switch.
587  */
588 static int loop_switch(struct loop_device *lo, struct file *file)
589 {
590 	struct switch_request w;
591 
592 	w.file = file;
593 
594 	/* freeze queue and wait for completion of scheduled requests */
595 	blk_mq_freeze_queue(lo->lo_queue);
596 
597 	/* do the switch action */
598 	do_loop_switch(lo, &w);
599 
600 	/* unfreeze */
601 	blk_mq_unfreeze_queue(lo->lo_queue);
602 
603 	return 0;
604 }
605 
606 /*
607  * Helper to flush the IOs in loop, but keeping loop thread running
608  */
609 static int loop_flush(struct loop_device *lo)
610 {
611 	/* loop not yet configured, no running thread, nothing to flush */
612 	if (lo->lo_state != Lo_bound)
613 		return 0;
614 	return loop_switch(lo, NULL);
615 }
616 
617 static void loop_reread_partitions(struct loop_device *lo,
618 				   struct block_device *bdev)
619 {
620 	int rc;
621 
622 	/*
623 	 * bd_mutex has been held already in release path, so don't
624 	 * acquire it if this function is called in such case.
625 	 *
626 	 * If the reread partition isn't from release path, lo_refcnt
627 	 * must be at least one and it can only become zero when the
628 	 * current holder is released.
629 	 */
630 	if (!atomic_read(&lo->lo_refcnt))
631 		rc = __blkdev_reread_part(bdev);
632 	else
633 		rc = blkdev_reread_part(bdev);
634 	if (rc)
635 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
636 			__func__, lo->lo_number, lo->lo_file_name, rc);
637 }
638 
639 /*
640  * loop_change_fd switched the backing store of a loopback device to
641  * a new file. This is useful for operating system installers to free up
642  * the original file and in High Availability environments to switch to
643  * an alternative location for the content in case of server meltdown.
644  * This can only work if the loop device is used read-only, and if the
645  * new backing store is the same size and type as the old backing store.
646  */
647 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
648 			  unsigned int arg)
649 {
650 	struct file	*file, *old_file;
651 	struct inode	*inode;
652 	int		error;
653 
654 	error = -ENXIO;
655 	if (lo->lo_state != Lo_bound)
656 		goto out;
657 
658 	/* the loop device has to be read-only */
659 	error = -EINVAL;
660 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
661 		goto out;
662 
663 	error = -EBADF;
664 	file = fget(arg);
665 	if (!file)
666 		goto out;
667 
668 	inode = file->f_mapping->host;
669 	old_file = lo->lo_backing_file;
670 
671 	error = -EINVAL;
672 
673 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
674 		goto out_putf;
675 
676 	/* size of the new backing store needs to be the same */
677 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
678 		goto out_putf;
679 
680 	/* and ... switch */
681 	error = loop_switch(lo, file);
682 	if (error)
683 		goto out_putf;
684 
685 	fput(old_file);
686 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
687 		loop_reread_partitions(lo, bdev);
688 	return 0;
689 
690  out_putf:
691 	fput(file);
692  out:
693 	return error;
694 }
695 
696 static inline int is_loop_device(struct file *file)
697 {
698 	struct inode *i = file->f_mapping->host;
699 
700 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
701 }
702 
703 /* loop sysfs attributes */
704 
705 static ssize_t loop_attr_show(struct device *dev, char *page,
706 			      ssize_t (*callback)(struct loop_device *, char *))
707 {
708 	struct gendisk *disk = dev_to_disk(dev);
709 	struct loop_device *lo = disk->private_data;
710 
711 	return callback(lo, page);
712 }
713 
714 #define LOOP_ATTR_RO(_name)						\
715 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
716 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
717 				struct device_attribute *attr, char *b)	\
718 {									\
719 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
720 }									\
721 static struct device_attribute loop_attr_##_name =			\
722 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
723 
724 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
725 {
726 	ssize_t ret;
727 	char *p = NULL;
728 
729 	spin_lock_irq(&lo->lo_lock);
730 	if (lo->lo_backing_file)
731 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
732 	spin_unlock_irq(&lo->lo_lock);
733 
734 	if (IS_ERR_OR_NULL(p))
735 		ret = PTR_ERR(p);
736 	else {
737 		ret = strlen(p);
738 		memmove(buf, p, ret);
739 		buf[ret++] = '\n';
740 		buf[ret] = 0;
741 	}
742 
743 	return ret;
744 }
745 
746 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
747 {
748 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
749 }
750 
751 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
752 {
753 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
754 }
755 
756 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
757 {
758 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
759 
760 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
761 }
762 
763 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
764 {
765 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
766 
767 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
768 }
769 
770 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
771 {
772 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
773 
774 	return sprintf(buf, "%s\n", dio ? "1" : "0");
775 }
776 
777 LOOP_ATTR_RO(backing_file);
778 LOOP_ATTR_RO(offset);
779 LOOP_ATTR_RO(sizelimit);
780 LOOP_ATTR_RO(autoclear);
781 LOOP_ATTR_RO(partscan);
782 LOOP_ATTR_RO(dio);
783 
784 static struct attribute *loop_attrs[] = {
785 	&loop_attr_backing_file.attr,
786 	&loop_attr_offset.attr,
787 	&loop_attr_sizelimit.attr,
788 	&loop_attr_autoclear.attr,
789 	&loop_attr_partscan.attr,
790 	&loop_attr_dio.attr,
791 	NULL,
792 };
793 
794 static struct attribute_group loop_attribute_group = {
795 	.name = "loop",
796 	.attrs= loop_attrs,
797 };
798 
799 static int loop_sysfs_init(struct loop_device *lo)
800 {
801 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
802 				  &loop_attribute_group);
803 }
804 
805 static void loop_sysfs_exit(struct loop_device *lo)
806 {
807 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
808 			   &loop_attribute_group);
809 }
810 
811 static void loop_config_discard(struct loop_device *lo)
812 {
813 	struct file *file = lo->lo_backing_file;
814 	struct inode *inode = file->f_mapping->host;
815 	struct request_queue *q = lo->lo_queue;
816 
817 	/*
818 	 * We use punch hole to reclaim the free space used by the
819 	 * image a.k.a. discard. However we do not support discard if
820 	 * encryption is enabled, because it may give an attacker
821 	 * useful information.
822 	 */
823 	if ((!file->f_op->fallocate) ||
824 	    lo->lo_encrypt_key_size) {
825 		q->limits.discard_granularity = 0;
826 		q->limits.discard_alignment = 0;
827 		blk_queue_max_discard_sectors(q, 0);
828 		blk_queue_max_write_zeroes_sectors(q, 0);
829 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
830 		return;
831 	}
832 
833 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
834 	q->limits.discard_alignment = 0;
835 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
836 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
837 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
838 }
839 
840 static void loop_unprepare_queue(struct loop_device *lo)
841 {
842 	kthread_flush_worker(&lo->worker);
843 	kthread_stop(lo->worker_task);
844 }
845 
846 static int loop_prepare_queue(struct loop_device *lo)
847 {
848 	kthread_init_worker(&lo->worker);
849 	lo->worker_task = kthread_run(kthread_worker_fn,
850 			&lo->worker, "loop%d", lo->lo_number);
851 	if (IS_ERR(lo->worker_task))
852 		return -ENOMEM;
853 	set_user_nice(lo->worker_task, MIN_NICE);
854 	return 0;
855 }
856 
857 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
858 		       struct block_device *bdev, unsigned int arg)
859 {
860 	struct file	*file, *f;
861 	struct inode	*inode;
862 	struct address_space *mapping;
863 	unsigned lo_blocksize;
864 	int		lo_flags = 0;
865 	int		error;
866 	loff_t		size;
867 
868 	/* This is safe, since we have a reference from open(). */
869 	__module_get(THIS_MODULE);
870 
871 	error = -EBADF;
872 	file = fget(arg);
873 	if (!file)
874 		goto out;
875 
876 	error = -EBUSY;
877 	if (lo->lo_state != Lo_unbound)
878 		goto out_putf;
879 
880 	/* Avoid recursion */
881 	f = file;
882 	while (is_loop_device(f)) {
883 		struct loop_device *l;
884 
885 		if (f->f_mapping->host->i_bdev == bdev)
886 			goto out_putf;
887 
888 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
889 		if (l->lo_state == Lo_unbound) {
890 			error = -EINVAL;
891 			goto out_putf;
892 		}
893 		f = l->lo_backing_file;
894 	}
895 
896 	mapping = file->f_mapping;
897 	inode = mapping->host;
898 
899 	error = -EINVAL;
900 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
901 		goto out_putf;
902 
903 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
904 	    !file->f_op->write_iter)
905 		lo_flags |= LO_FLAGS_READ_ONLY;
906 
907 	lo_blocksize = S_ISBLK(inode->i_mode) ?
908 		inode->i_bdev->bd_block_size : PAGE_SIZE;
909 
910 	error = -EFBIG;
911 	size = get_loop_size(lo, file);
912 	if ((loff_t)(sector_t)size != size)
913 		goto out_putf;
914 	error = loop_prepare_queue(lo);
915 	if (error)
916 		goto out_putf;
917 
918 	error = 0;
919 
920 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
921 
922 	lo->use_dio = false;
923 	lo->lo_blocksize = lo_blocksize;
924 	lo->lo_device = bdev;
925 	lo->lo_flags = lo_flags;
926 	lo->lo_backing_file = file;
927 	lo->transfer = NULL;
928 	lo->ioctl = NULL;
929 	lo->lo_sizelimit = 0;
930 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
931 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
932 
933 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
934 		blk_queue_write_cache(lo->lo_queue, true, false);
935 
936 	loop_update_dio(lo);
937 	set_capacity(lo->lo_disk, size);
938 	bd_set_size(bdev, size << 9);
939 	loop_sysfs_init(lo);
940 	/* let user-space know about the new size */
941 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
942 
943 	set_blocksize(bdev, lo_blocksize);
944 
945 	lo->lo_state = Lo_bound;
946 	if (part_shift)
947 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
948 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
949 		loop_reread_partitions(lo, bdev);
950 
951 	/* Grab the block_device to prevent its destruction after we
952 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
953 	 */
954 	bdgrab(bdev);
955 	return 0;
956 
957  out_putf:
958 	fput(file);
959  out:
960 	/* This is safe: open() is still holding a reference. */
961 	module_put(THIS_MODULE);
962 	return error;
963 }
964 
965 static int
966 loop_release_xfer(struct loop_device *lo)
967 {
968 	int err = 0;
969 	struct loop_func_table *xfer = lo->lo_encryption;
970 
971 	if (xfer) {
972 		if (xfer->release)
973 			err = xfer->release(lo);
974 		lo->transfer = NULL;
975 		lo->lo_encryption = NULL;
976 		module_put(xfer->owner);
977 	}
978 	return err;
979 }
980 
981 static int
982 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
983 	       const struct loop_info64 *i)
984 {
985 	int err = 0;
986 
987 	if (xfer) {
988 		struct module *owner = xfer->owner;
989 
990 		if (!try_module_get(owner))
991 			return -EINVAL;
992 		if (xfer->init)
993 			err = xfer->init(lo, i);
994 		if (err)
995 			module_put(owner);
996 		else
997 			lo->lo_encryption = xfer;
998 	}
999 	return err;
1000 }
1001 
1002 static int loop_clr_fd(struct loop_device *lo)
1003 {
1004 	struct file *filp = lo->lo_backing_file;
1005 	gfp_t gfp = lo->old_gfp_mask;
1006 	struct block_device *bdev = lo->lo_device;
1007 
1008 	if (lo->lo_state != Lo_bound)
1009 		return -ENXIO;
1010 
1011 	/*
1012 	 * If we've explicitly asked to tear down the loop device,
1013 	 * and it has an elevated reference count, set it for auto-teardown when
1014 	 * the last reference goes away. This stops $!~#$@ udev from
1015 	 * preventing teardown because it decided that it needs to run blkid on
1016 	 * the loopback device whenever they appear. xfstests is notorious for
1017 	 * failing tests because blkid via udev races with a losetup
1018 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1019 	 * command to fail with EBUSY.
1020 	 */
1021 	if (atomic_read(&lo->lo_refcnt) > 1) {
1022 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1023 		mutex_unlock(&lo->lo_ctl_mutex);
1024 		return 0;
1025 	}
1026 
1027 	if (filp == NULL)
1028 		return -EINVAL;
1029 
1030 	/* freeze request queue during the transition */
1031 	blk_mq_freeze_queue(lo->lo_queue);
1032 
1033 	spin_lock_irq(&lo->lo_lock);
1034 	lo->lo_state = Lo_rundown;
1035 	lo->lo_backing_file = NULL;
1036 	spin_unlock_irq(&lo->lo_lock);
1037 
1038 	loop_release_xfer(lo);
1039 	lo->transfer = NULL;
1040 	lo->ioctl = NULL;
1041 	lo->lo_device = NULL;
1042 	lo->lo_encryption = NULL;
1043 	lo->lo_offset = 0;
1044 	lo->lo_sizelimit = 0;
1045 	lo->lo_encrypt_key_size = 0;
1046 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1047 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1048 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1049 	if (bdev) {
1050 		bdput(bdev);
1051 		invalidate_bdev(bdev);
1052 	}
1053 	set_capacity(lo->lo_disk, 0);
1054 	loop_sysfs_exit(lo);
1055 	if (bdev) {
1056 		bd_set_size(bdev, 0);
1057 		/* let user-space know about this change */
1058 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1059 	}
1060 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1061 	lo->lo_state = Lo_unbound;
1062 	/* This is safe: open() is still holding a reference. */
1063 	module_put(THIS_MODULE);
1064 	blk_mq_unfreeze_queue(lo->lo_queue);
1065 
1066 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1067 		loop_reread_partitions(lo, bdev);
1068 	lo->lo_flags = 0;
1069 	if (!part_shift)
1070 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1071 	loop_unprepare_queue(lo);
1072 	mutex_unlock(&lo->lo_ctl_mutex);
1073 	/*
1074 	 * Need not hold lo_ctl_mutex to fput backing file.
1075 	 * Calling fput holding lo_ctl_mutex triggers a circular
1076 	 * lock dependency possibility warning as fput can take
1077 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1078 	 */
1079 	fput(filp);
1080 	return 0;
1081 }
1082 
1083 static int
1084 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1085 {
1086 	int err;
1087 	struct loop_func_table *xfer;
1088 	kuid_t uid = current_uid();
1089 
1090 	if (lo->lo_encrypt_key_size &&
1091 	    !uid_eq(lo->lo_key_owner, uid) &&
1092 	    !capable(CAP_SYS_ADMIN))
1093 		return -EPERM;
1094 	if (lo->lo_state != Lo_bound)
1095 		return -ENXIO;
1096 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1097 		return -EINVAL;
1098 
1099 	/* I/O need to be drained during transfer transition */
1100 	blk_mq_freeze_queue(lo->lo_queue);
1101 
1102 	err = loop_release_xfer(lo);
1103 	if (err)
1104 		goto exit;
1105 
1106 	if (info->lo_encrypt_type) {
1107 		unsigned int type = info->lo_encrypt_type;
1108 
1109 		if (type >= MAX_LO_CRYPT)
1110 			return -EINVAL;
1111 		xfer = xfer_funcs[type];
1112 		if (xfer == NULL)
1113 			return -EINVAL;
1114 	} else
1115 		xfer = NULL;
1116 
1117 	err = loop_init_xfer(lo, xfer, info);
1118 	if (err)
1119 		goto exit;
1120 
1121 	if (lo->lo_offset != info->lo_offset ||
1122 	    lo->lo_sizelimit != info->lo_sizelimit)
1123 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1124 			err = -EFBIG;
1125 			goto exit;
1126 		}
1127 
1128 	loop_config_discard(lo);
1129 
1130 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1131 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1132 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1133 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1134 
1135 	if (!xfer)
1136 		xfer = &none_funcs;
1137 	lo->transfer = xfer->transfer;
1138 	lo->ioctl = xfer->ioctl;
1139 
1140 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1141 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1142 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1143 
1144 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1145 	lo->lo_init[0] = info->lo_init[0];
1146 	lo->lo_init[1] = info->lo_init[1];
1147 	if (info->lo_encrypt_key_size) {
1148 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1149 		       info->lo_encrypt_key_size);
1150 		lo->lo_key_owner = uid;
1151 	}
1152 
1153 	/* update dio if lo_offset or transfer is changed */
1154 	__loop_update_dio(lo, lo->use_dio);
1155 
1156  exit:
1157 	blk_mq_unfreeze_queue(lo->lo_queue);
1158 
1159 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1160 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1161 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1162 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1163 		loop_reread_partitions(lo, lo->lo_device);
1164 	}
1165 
1166 	return err;
1167 }
1168 
1169 static int
1170 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1171 {
1172 	struct file *file = lo->lo_backing_file;
1173 	struct kstat stat;
1174 	int error;
1175 
1176 	if (lo->lo_state != Lo_bound)
1177 		return -ENXIO;
1178 	error = vfs_getattr(&file->f_path, &stat,
1179 			    STATX_INO, AT_STATX_SYNC_AS_STAT);
1180 	if (error)
1181 		return error;
1182 	memset(info, 0, sizeof(*info));
1183 	info->lo_number = lo->lo_number;
1184 	info->lo_device = huge_encode_dev(stat.dev);
1185 	info->lo_inode = stat.ino;
1186 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1187 	info->lo_offset = lo->lo_offset;
1188 	info->lo_sizelimit = lo->lo_sizelimit;
1189 	info->lo_flags = lo->lo_flags;
1190 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1191 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1192 	info->lo_encrypt_type =
1193 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1194 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1195 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1196 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1197 		       lo->lo_encrypt_key_size);
1198 	}
1199 	return 0;
1200 }
1201 
1202 static void
1203 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1204 {
1205 	memset(info64, 0, sizeof(*info64));
1206 	info64->lo_number = info->lo_number;
1207 	info64->lo_device = info->lo_device;
1208 	info64->lo_inode = info->lo_inode;
1209 	info64->lo_rdevice = info->lo_rdevice;
1210 	info64->lo_offset = info->lo_offset;
1211 	info64->lo_sizelimit = 0;
1212 	info64->lo_encrypt_type = info->lo_encrypt_type;
1213 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1214 	info64->lo_flags = info->lo_flags;
1215 	info64->lo_init[0] = info->lo_init[0];
1216 	info64->lo_init[1] = info->lo_init[1];
1217 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1218 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1219 	else
1220 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1221 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1222 }
1223 
1224 static int
1225 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1226 {
1227 	memset(info, 0, sizeof(*info));
1228 	info->lo_number = info64->lo_number;
1229 	info->lo_device = info64->lo_device;
1230 	info->lo_inode = info64->lo_inode;
1231 	info->lo_rdevice = info64->lo_rdevice;
1232 	info->lo_offset = info64->lo_offset;
1233 	info->lo_encrypt_type = info64->lo_encrypt_type;
1234 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1235 	info->lo_flags = info64->lo_flags;
1236 	info->lo_init[0] = info64->lo_init[0];
1237 	info->lo_init[1] = info64->lo_init[1];
1238 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1239 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1240 	else
1241 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1242 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1243 
1244 	/* error in case values were truncated */
1245 	if (info->lo_device != info64->lo_device ||
1246 	    info->lo_rdevice != info64->lo_rdevice ||
1247 	    info->lo_inode != info64->lo_inode ||
1248 	    info->lo_offset != info64->lo_offset)
1249 		return -EOVERFLOW;
1250 
1251 	return 0;
1252 }
1253 
1254 static int
1255 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1256 {
1257 	struct loop_info info;
1258 	struct loop_info64 info64;
1259 
1260 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1261 		return -EFAULT;
1262 	loop_info64_from_old(&info, &info64);
1263 	return loop_set_status(lo, &info64);
1264 }
1265 
1266 static int
1267 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1268 {
1269 	struct loop_info64 info64;
1270 
1271 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1272 		return -EFAULT;
1273 	return loop_set_status(lo, &info64);
1274 }
1275 
1276 static int
1277 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1278 	struct loop_info info;
1279 	struct loop_info64 info64;
1280 	int err = 0;
1281 
1282 	if (!arg)
1283 		err = -EINVAL;
1284 	if (!err)
1285 		err = loop_get_status(lo, &info64);
1286 	if (!err)
1287 		err = loop_info64_to_old(&info64, &info);
1288 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1289 		err = -EFAULT;
1290 
1291 	return err;
1292 }
1293 
1294 static int
1295 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1296 	struct loop_info64 info64;
1297 	int err = 0;
1298 
1299 	if (!arg)
1300 		err = -EINVAL;
1301 	if (!err)
1302 		err = loop_get_status(lo, &info64);
1303 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1304 		err = -EFAULT;
1305 
1306 	return err;
1307 }
1308 
1309 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1310 {
1311 	if (unlikely(lo->lo_state != Lo_bound))
1312 		return -ENXIO;
1313 
1314 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1315 }
1316 
1317 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1318 {
1319 	int error = -ENXIO;
1320 	if (lo->lo_state != Lo_bound)
1321 		goto out;
1322 
1323 	__loop_update_dio(lo, !!arg);
1324 	if (lo->use_dio == !!arg)
1325 		return 0;
1326 	error = -EINVAL;
1327  out:
1328 	return error;
1329 }
1330 
1331 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1332 	unsigned int cmd, unsigned long arg)
1333 {
1334 	struct loop_device *lo = bdev->bd_disk->private_data;
1335 	int err;
1336 
1337 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1338 	switch (cmd) {
1339 	case LOOP_SET_FD:
1340 		err = loop_set_fd(lo, mode, bdev, arg);
1341 		break;
1342 	case LOOP_CHANGE_FD:
1343 		err = loop_change_fd(lo, bdev, arg);
1344 		break;
1345 	case LOOP_CLR_FD:
1346 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1347 		err = loop_clr_fd(lo);
1348 		if (!err)
1349 			goto out_unlocked;
1350 		break;
1351 	case LOOP_SET_STATUS:
1352 		err = -EPERM;
1353 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1354 			err = loop_set_status_old(lo,
1355 					(struct loop_info __user *)arg);
1356 		break;
1357 	case LOOP_GET_STATUS:
1358 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1359 		break;
1360 	case LOOP_SET_STATUS64:
1361 		err = -EPERM;
1362 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1363 			err = loop_set_status64(lo,
1364 					(struct loop_info64 __user *) arg);
1365 		break;
1366 	case LOOP_GET_STATUS64:
1367 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1368 		break;
1369 	case LOOP_SET_CAPACITY:
1370 		err = -EPERM;
1371 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1372 			err = loop_set_capacity(lo, bdev);
1373 		break;
1374 	case LOOP_SET_DIRECT_IO:
1375 		err = -EPERM;
1376 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1377 			err = loop_set_dio(lo, arg);
1378 		break;
1379 	default:
1380 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1381 	}
1382 	mutex_unlock(&lo->lo_ctl_mutex);
1383 
1384 out_unlocked:
1385 	return err;
1386 }
1387 
1388 #ifdef CONFIG_COMPAT
1389 struct compat_loop_info {
1390 	compat_int_t	lo_number;      /* ioctl r/o */
1391 	compat_dev_t	lo_device;      /* ioctl r/o */
1392 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1393 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1394 	compat_int_t	lo_offset;
1395 	compat_int_t	lo_encrypt_type;
1396 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1397 	compat_int_t	lo_flags;       /* ioctl r/o */
1398 	char		lo_name[LO_NAME_SIZE];
1399 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1400 	compat_ulong_t	lo_init[2];
1401 	char		reserved[4];
1402 };
1403 
1404 /*
1405  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1406  * - noinlined to reduce stack space usage in main part of driver
1407  */
1408 static noinline int
1409 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1410 			struct loop_info64 *info64)
1411 {
1412 	struct compat_loop_info info;
1413 
1414 	if (copy_from_user(&info, arg, sizeof(info)))
1415 		return -EFAULT;
1416 
1417 	memset(info64, 0, sizeof(*info64));
1418 	info64->lo_number = info.lo_number;
1419 	info64->lo_device = info.lo_device;
1420 	info64->lo_inode = info.lo_inode;
1421 	info64->lo_rdevice = info.lo_rdevice;
1422 	info64->lo_offset = info.lo_offset;
1423 	info64->lo_sizelimit = 0;
1424 	info64->lo_encrypt_type = info.lo_encrypt_type;
1425 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1426 	info64->lo_flags = info.lo_flags;
1427 	info64->lo_init[0] = info.lo_init[0];
1428 	info64->lo_init[1] = info.lo_init[1];
1429 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1430 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1431 	else
1432 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1433 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1434 	return 0;
1435 }
1436 
1437 /*
1438  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1439  * - noinlined to reduce stack space usage in main part of driver
1440  */
1441 static noinline int
1442 loop_info64_to_compat(const struct loop_info64 *info64,
1443 		      struct compat_loop_info __user *arg)
1444 {
1445 	struct compat_loop_info info;
1446 
1447 	memset(&info, 0, sizeof(info));
1448 	info.lo_number = info64->lo_number;
1449 	info.lo_device = info64->lo_device;
1450 	info.lo_inode = info64->lo_inode;
1451 	info.lo_rdevice = info64->lo_rdevice;
1452 	info.lo_offset = info64->lo_offset;
1453 	info.lo_encrypt_type = info64->lo_encrypt_type;
1454 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1455 	info.lo_flags = info64->lo_flags;
1456 	info.lo_init[0] = info64->lo_init[0];
1457 	info.lo_init[1] = info64->lo_init[1];
1458 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1459 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1460 	else
1461 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1462 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1463 
1464 	/* error in case values were truncated */
1465 	if (info.lo_device != info64->lo_device ||
1466 	    info.lo_rdevice != info64->lo_rdevice ||
1467 	    info.lo_inode != info64->lo_inode ||
1468 	    info.lo_offset != info64->lo_offset ||
1469 	    info.lo_init[0] != info64->lo_init[0] ||
1470 	    info.lo_init[1] != info64->lo_init[1])
1471 		return -EOVERFLOW;
1472 
1473 	if (copy_to_user(arg, &info, sizeof(info)))
1474 		return -EFAULT;
1475 	return 0;
1476 }
1477 
1478 static int
1479 loop_set_status_compat(struct loop_device *lo,
1480 		       const struct compat_loop_info __user *arg)
1481 {
1482 	struct loop_info64 info64;
1483 	int ret;
1484 
1485 	ret = loop_info64_from_compat(arg, &info64);
1486 	if (ret < 0)
1487 		return ret;
1488 	return loop_set_status(lo, &info64);
1489 }
1490 
1491 static int
1492 loop_get_status_compat(struct loop_device *lo,
1493 		       struct compat_loop_info __user *arg)
1494 {
1495 	struct loop_info64 info64;
1496 	int err = 0;
1497 
1498 	if (!arg)
1499 		err = -EINVAL;
1500 	if (!err)
1501 		err = loop_get_status(lo, &info64);
1502 	if (!err)
1503 		err = loop_info64_to_compat(&info64, arg);
1504 	return err;
1505 }
1506 
1507 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1508 			   unsigned int cmd, unsigned long arg)
1509 {
1510 	struct loop_device *lo = bdev->bd_disk->private_data;
1511 	int err;
1512 
1513 	switch(cmd) {
1514 	case LOOP_SET_STATUS:
1515 		mutex_lock(&lo->lo_ctl_mutex);
1516 		err = loop_set_status_compat(
1517 			lo, (const struct compat_loop_info __user *) arg);
1518 		mutex_unlock(&lo->lo_ctl_mutex);
1519 		break;
1520 	case LOOP_GET_STATUS:
1521 		mutex_lock(&lo->lo_ctl_mutex);
1522 		err = loop_get_status_compat(
1523 			lo, (struct compat_loop_info __user *) arg);
1524 		mutex_unlock(&lo->lo_ctl_mutex);
1525 		break;
1526 	case LOOP_SET_CAPACITY:
1527 	case LOOP_CLR_FD:
1528 	case LOOP_GET_STATUS64:
1529 	case LOOP_SET_STATUS64:
1530 		arg = (unsigned long) compat_ptr(arg);
1531 	case LOOP_SET_FD:
1532 	case LOOP_CHANGE_FD:
1533 		err = lo_ioctl(bdev, mode, cmd, arg);
1534 		break;
1535 	default:
1536 		err = -ENOIOCTLCMD;
1537 		break;
1538 	}
1539 	return err;
1540 }
1541 #endif
1542 
1543 static int lo_open(struct block_device *bdev, fmode_t mode)
1544 {
1545 	struct loop_device *lo;
1546 	int err = 0;
1547 
1548 	mutex_lock(&loop_index_mutex);
1549 	lo = bdev->bd_disk->private_data;
1550 	if (!lo) {
1551 		err = -ENXIO;
1552 		goto out;
1553 	}
1554 
1555 	atomic_inc(&lo->lo_refcnt);
1556 out:
1557 	mutex_unlock(&loop_index_mutex);
1558 	return err;
1559 }
1560 
1561 static void lo_release(struct gendisk *disk, fmode_t mode)
1562 {
1563 	struct loop_device *lo = disk->private_data;
1564 	int err;
1565 
1566 	if (atomic_dec_return(&lo->lo_refcnt))
1567 		return;
1568 
1569 	mutex_lock(&lo->lo_ctl_mutex);
1570 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1571 		/*
1572 		 * In autoclear mode, stop the loop thread
1573 		 * and remove configuration after last close.
1574 		 */
1575 		err = loop_clr_fd(lo);
1576 		if (!err)
1577 			return;
1578 	} else {
1579 		/*
1580 		 * Otherwise keep thread (if running) and config,
1581 		 * but flush possible ongoing bios in thread.
1582 		 */
1583 		loop_flush(lo);
1584 	}
1585 
1586 	mutex_unlock(&lo->lo_ctl_mutex);
1587 }
1588 
1589 static const struct block_device_operations lo_fops = {
1590 	.owner =	THIS_MODULE,
1591 	.open =		lo_open,
1592 	.release =	lo_release,
1593 	.ioctl =	lo_ioctl,
1594 #ifdef CONFIG_COMPAT
1595 	.compat_ioctl =	lo_compat_ioctl,
1596 #endif
1597 };
1598 
1599 /*
1600  * And now the modules code and kernel interface.
1601  */
1602 static int max_loop;
1603 module_param(max_loop, int, S_IRUGO);
1604 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1605 module_param(max_part, int, S_IRUGO);
1606 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1607 MODULE_LICENSE("GPL");
1608 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1609 
1610 int loop_register_transfer(struct loop_func_table *funcs)
1611 {
1612 	unsigned int n = funcs->number;
1613 
1614 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1615 		return -EINVAL;
1616 	xfer_funcs[n] = funcs;
1617 	return 0;
1618 }
1619 
1620 static int unregister_transfer_cb(int id, void *ptr, void *data)
1621 {
1622 	struct loop_device *lo = ptr;
1623 	struct loop_func_table *xfer = data;
1624 
1625 	mutex_lock(&lo->lo_ctl_mutex);
1626 	if (lo->lo_encryption == xfer)
1627 		loop_release_xfer(lo);
1628 	mutex_unlock(&lo->lo_ctl_mutex);
1629 	return 0;
1630 }
1631 
1632 int loop_unregister_transfer(int number)
1633 {
1634 	unsigned int n = number;
1635 	struct loop_func_table *xfer;
1636 
1637 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1638 		return -EINVAL;
1639 
1640 	xfer_funcs[n] = NULL;
1641 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1642 	return 0;
1643 }
1644 
1645 EXPORT_SYMBOL(loop_register_transfer);
1646 EXPORT_SYMBOL(loop_unregister_transfer);
1647 
1648 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1649 		const struct blk_mq_queue_data *bd)
1650 {
1651 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1652 	struct loop_device *lo = cmd->rq->q->queuedata;
1653 
1654 	blk_mq_start_request(bd->rq);
1655 
1656 	if (lo->lo_state != Lo_bound)
1657 		return BLK_MQ_RQ_QUEUE_ERROR;
1658 
1659 	switch (req_op(cmd->rq)) {
1660 	case REQ_OP_FLUSH:
1661 	case REQ_OP_DISCARD:
1662 	case REQ_OP_WRITE_ZEROES:
1663 		cmd->use_aio = false;
1664 		break;
1665 	default:
1666 		cmd->use_aio = lo->use_dio;
1667 		break;
1668 	}
1669 
1670 	kthread_queue_work(&lo->worker, &cmd->work);
1671 
1672 	return BLK_MQ_RQ_QUEUE_OK;
1673 }
1674 
1675 static void loop_handle_cmd(struct loop_cmd *cmd)
1676 {
1677 	const bool write = op_is_write(req_op(cmd->rq));
1678 	struct loop_device *lo = cmd->rq->q->queuedata;
1679 	int ret = 0;
1680 
1681 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1682 		ret = -EIO;
1683 		goto failed;
1684 	}
1685 
1686 	ret = do_req_filebacked(lo, cmd->rq);
1687  failed:
1688 	/* complete non-aio request */
1689 	if (!cmd->use_aio || ret) {
1690 		cmd->ret = ret ? -EIO : 0;
1691 		blk_mq_complete_request(cmd->rq);
1692 	}
1693 }
1694 
1695 static void loop_queue_work(struct kthread_work *work)
1696 {
1697 	struct loop_cmd *cmd =
1698 		container_of(work, struct loop_cmd, work);
1699 
1700 	loop_handle_cmd(cmd);
1701 }
1702 
1703 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1704 		unsigned int hctx_idx, unsigned int numa_node)
1705 {
1706 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1707 
1708 	cmd->rq = rq;
1709 	kthread_init_work(&cmd->work, loop_queue_work);
1710 
1711 	return 0;
1712 }
1713 
1714 static const struct blk_mq_ops loop_mq_ops = {
1715 	.queue_rq       = loop_queue_rq,
1716 	.init_request	= loop_init_request,
1717 	.complete	= lo_complete_rq,
1718 };
1719 
1720 static int loop_add(struct loop_device **l, int i)
1721 {
1722 	struct loop_device *lo;
1723 	struct gendisk *disk;
1724 	int err;
1725 
1726 	err = -ENOMEM;
1727 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1728 	if (!lo)
1729 		goto out;
1730 
1731 	lo->lo_state = Lo_unbound;
1732 
1733 	/* allocate id, if @id >= 0, we're requesting that specific id */
1734 	if (i >= 0) {
1735 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1736 		if (err == -ENOSPC)
1737 			err = -EEXIST;
1738 	} else {
1739 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1740 	}
1741 	if (err < 0)
1742 		goto out_free_dev;
1743 	i = err;
1744 
1745 	err = -ENOMEM;
1746 	lo->tag_set.ops = &loop_mq_ops;
1747 	lo->tag_set.nr_hw_queues = 1;
1748 	lo->tag_set.queue_depth = 128;
1749 	lo->tag_set.numa_node = NUMA_NO_NODE;
1750 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1751 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1752 	lo->tag_set.driver_data = lo;
1753 
1754 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1755 	if (err)
1756 		goto out_free_idr;
1757 
1758 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1759 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1760 		err = PTR_ERR(lo->lo_queue);
1761 		goto out_cleanup_tags;
1762 	}
1763 	lo->lo_queue->queuedata = lo;
1764 
1765 	/*
1766 	 * It doesn't make sense to enable merge because the I/O
1767 	 * submitted to backing file is handled page by page.
1768 	 */
1769 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1770 
1771 	err = -ENOMEM;
1772 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1773 	if (!disk)
1774 		goto out_free_queue;
1775 
1776 	/*
1777 	 * Disable partition scanning by default. The in-kernel partition
1778 	 * scanning can be requested individually per-device during its
1779 	 * setup. Userspace can always add and remove partitions from all
1780 	 * devices. The needed partition minors are allocated from the
1781 	 * extended minor space, the main loop device numbers will continue
1782 	 * to match the loop minors, regardless of the number of partitions
1783 	 * used.
1784 	 *
1785 	 * If max_part is given, partition scanning is globally enabled for
1786 	 * all loop devices. The minors for the main loop devices will be
1787 	 * multiples of max_part.
1788 	 *
1789 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1790 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1791 	 * complicated, are too static, inflexible and may surprise
1792 	 * userspace tools. Parameters like this in general should be avoided.
1793 	 */
1794 	if (!part_shift)
1795 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1796 	disk->flags |= GENHD_FL_EXT_DEVT;
1797 	mutex_init(&lo->lo_ctl_mutex);
1798 	atomic_set(&lo->lo_refcnt, 0);
1799 	lo->lo_number		= i;
1800 	spin_lock_init(&lo->lo_lock);
1801 	disk->major		= LOOP_MAJOR;
1802 	disk->first_minor	= i << part_shift;
1803 	disk->fops		= &lo_fops;
1804 	disk->private_data	= lo;
1805 	disk->queue		= lo->lo_queue;
1806 	sprintf(disk->disk_name, "loop%d", i);
1807 	add_disk(disk);
1808 	*l = lo;
1809 	return lo->lo_number;
1810 
1811 out_free_queue:
1812 	blk_cleanup_queue(lo->lo_queue);
1813 out_cleanup_tags:
1814 	blk_mq_free_tag_set(&lo->tag_set);
1815 out_free_idr:
1816 	idr_remove(&loop_index_idr, i);
1817 out_free_dev:
1818 	kfree(lo);
1819 out:
1820 	return err;
1821 }
1822 
1823 static void loop_remove(struct loop_device *lo)
1824 {
1825 	blk_cleanup_queue(lo->lo_queue);
1826 	del_gendisk(lo->lo_disk);
1827 	blk_mq_free_tag_set(&lo->tag_set);
1828 	put_disk(lo->lo_disk);
1829 	kfree(lo);
1830 }
1831 
1832 static int find_free_cb(int id, void *ptr, void *data)
1833 {
1834 	struct loop_device *lo = ptr;
1835 	struct loop_device **l = data;
1836 
1837 	if (lo->lo_state == Lo_unbound) {
1838 		*l = lo;
1839 		return 1;
1840 	}
1841 	return 0;
1842 }
1843 
1844 static int loop_lookup(struct loop_device **l, int i)
1845 {
1846 	struct loop_device *lo;
1847 	int ret = -ENODEV;
1848 
1849 	if (i < 0) {
1850 		int err;
1851 
1852 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1853 		if (err == 1) {
1854 			*l = lo;
1855 			ret = lo->lo_number;
1856 		}
1857 		goto out;
1858 	}
1859 
1860 	/* lookup and return a specific i */
1861 	lo = idr_find(&loop_index_idr, i);
1862 	if (lo) {
1863 		*l = lo;
1864 		ret = lo->lo_number;
1865 	}
1866 out:
1867 	return ret;
1868 }
1869 
1870 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1871 {
1872 	struct loop_device *lo;
1873 	struct kobject *kobj;
1874 	int err;
1875 
1876 	mutex_lock(&loop_index_mutex);
1877 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1878 	if (err < 0)
1879 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1880 	if (err < 0)
1881 		kobj = NULL;
1882 	else
1883 		kobj = get_disk(lo->lo_disk);
1884 	mutex_unlock(&loop_index_mutex);
1885 
1886 	*part = 0;
1887 	return kobj;
1888 }
1889 
1890 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1891 			       unsigned long parm)
1892 {
1893 	struct loop_device *lo;
1894 	int ret = -ENOSYS;
1895 
1896 	mutex_lock(&loop_index_mutex);
1897 	switch (cmd) {
1898 	case LOOP_CTL_ADD:
1899 		ret = loop_lookup(&lo, parm);
1900 		if (ret >= 0) {
1901 			ret = -EEXIST;
1902 			break;
1903 		}
1904 		ret = loop_add(&lo, parm);
1905 		break;
1906 	case LOOP_CTL_REMOVE:
1907 		ret = loop_lookup(&lo, parm);
1908 		if (ret < 0)
1909 			break;
1910 		mutex_lock(&lo->lo_ctl_mutex);
1911 		if (lo->lo_state != Lo_unbound) {
1912 			ret = -EBUSY;
1913 			mutex_unlock(&lo->lo_ctl_mutex);
1914 			break;
1915 		}
1916 		if (atomic_read(&lo->lo_refcnt) > 0) {
1917 			ret = -EBUSY;
1918 			mutex_unlock(&lo->lo_ctl_mutex);
1919 			break;
1920 		}
1921 		lo->lo_disk->private_data = NULL;
1922 		mutex_unlock(&lo->lo_ctl_mutex);
1923 		idr_remove(&loop_index_idr, lo->lo_number);
1924 		loop_remove(lo);
1925 		break;
1926 	case LOOP_CTL_GET_FREE:
1927 		ret = loop_lookup(&lo, -1);
1928 		if (ret >= 0)
1929 			break;
1930 		ret = loop_add(&lo, -1);
1931 	}
1932 	mutex_unlock(&loop_index_mutex);
1933 
1934 	return ret;
1935 }
1936 
1937 static const struct file_operations loop_ctl_fops = {
1938 	.open		= nonseekable_open,
1939 	.unlocked_ioctl	= loop_control_ioctl,
1940 	.compat_ioctl	= loop_control_ioctl,
1941 	.owner		= THIS_MODULE,
1942 	.llseek		= noop_llseek,
1943 };
1944 
1945 static struct miscdevice loop_misc = {
1946 	.minor		= LOOP_CTRL_MINOR,
1947 	.name		= "loop-control",
1948 	.fops		= &loop_ctl_fops,
1949 };
1950 
1951 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1952 MODULE_ALIAS("devname:loop-control");
1953 
1954 static int __init loop_init(void)
1955 {
1956 	int i, nr;
1957 	unsigned long range;
1958 	struct loop_device *lo;
1959 	int err;
1960 
1961 	err = misc_register(&loop_misc);
1962 	if (err < 0)
1963 		return err;
1964 
1965 	part_shift = 0;
1966 	if (max_part > 0) {
1967 		part_shift = fls(max_part);
1968 
1969 		/*
1970 		 * Adjust max_part according to part_shift as it is exported
1971 		 * to user space so that user can decide correct minor number
1972 		 * if [s]he want to create more devices.
1973 		 *
1974 		 * Note that -1 is required because partition 0 is reserved
1975 		 * for the whole disk.
1976 		 */
1977 		max_part = (1UL << part_shift) - 1;
1978 	}
1979 
1980 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1981 		err = -EINVAL;
1982 		goto misc_out;
1983 	}
1984 
1985 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1986 		err = -EINVAL;
1987 		goto misc_out;
1988 	}
1989 
1990 	/*
1991 	 * If max_loop is specified, create that many devices upfront.
1992 	 * This also becomes a hard limit. If max_loop is not specified,
1993 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1994 	 * init time. Loop devices can be requested on-demand with the
1995 	 * /dev/loop-control interface, or be instantiated by accessing
1996 	 * a 'dead' device node.
1997 	 */
1998 	if (max_loop) {
1999 		nr = max_loop;
2000 		range = max_loop << part_shift;
2001 	} else {
2002 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2003 		range = 1UL << MINORBITS;
2004 	}
2005 
2006 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2007 		err = -EIO;
2008 		goto misc_out;
2009 	}
2010 
2011 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2012 				  THIS_MODULE, loop_probe, NULL, NULL);
2013 
2014 	/* pre-create number of devices given by config or max_loop */
2015 	mutex_lock(&loop_index_mutex);
2016 	for (i = 0; i < nr; i++)
2017 		loop_add(&lo, i);
2018 	mutex_unlock(&loop_index_mutex);
2019 
2020 	printk(KERN_INFO "loop: module loaded\n");
2021 	return 0;
2022 
2023 misc_out:
2024 	misc_deregister(&loop_misc);
2025 	return err;
2026 }
2027 
2028 static int loop_exit_cb(int id, void *ptr, void *data)
2029 {
2030 	struct loop_device *lo = ptr;
2031 
2032 	loop_remove(lo);
2033 	return 0;
2034 }
2035 
2036 static void __exit loop_exit(void)
2037 {
2038 	unsigned long range;
2039 
2040 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2041 
2042 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2043 	idr_destroy(&loop_index_idr);
2044 
2045 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2046 	unregister_blkdev(LOOP_MAJOR, "loop");
2047 
2048 	misc_deregister(&loop_misc);
2049 }
2050 
2051 module_init(loop_init);
2052 module_exit(loop_exit);
2053 
2054 #ifndef MODULE
2055 static int __init max_loop_setup(char *str)
2056 {
2057 	max_loop = simple_strtol(str, NULL, 0);
2058 	return 1;
2059 }
2060 
2061 __setup("max_loop=", max_loop_setup);
2062 #endif
2063