1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/loop.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/kthread.h> 75 #include <linux/splice.h> 76 #include <linux/sysfs.h> 77 #include <linux/miscdevice.h> 78 #include <linux/falloc.h> 79 80 #include <asm/uaccess.h> 81 82 static DEFINE_IDR(loop_index_idr); 83 static DEFINE_MUTEX(loop_index_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf); 105 kunmap_atomic(raw_buf); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf); 134 kunmap_atomic(raw_buf); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 164 { 165 loff_t size, loopsize; 166 167 /* Compute loopsize in bytes */ 168 size = i_size_read(file->f_mapping->host); 169 loopsize = size - offset; 170 /* offset is beyond i_size, wierd but possible */ 171 if (loopsize < 0) 172 return 0; 173 174 if (sizelimit > 0 && sizelimit < loopsize) 175 loopsize = sizelimit; 176 /* 177 * Unfortunately, if we want to do I/O on the device, 178 * the number of 512-byte sectors has to fit into a sector_t. 179 */ 180 return loopsize >> 9; 181 } 182 183 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 184 { 185 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 186 } 187 188 static int 189 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 190 { 191 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 192 sector_t x = (sector_t)size; 193 194 if (unlikely((loff_t)x != size)) 195 return -EFBIG; 196 if (lo->lo_offset != offset) 197 lo->lo_offset = offset; 198 if (lo->lo_sizelimit != sizelimit) 199 lo->lo_sizelimit = sizelimit; 200 set_capacity(lo->lo_disk, x); 201 return 0; 202 } 203 204 static inline int 205 lo_do_transfer(struct loop_device *lo, int cmd, 206 struct page *rpage, unsigned roffs, 207 struct page *lpage, unsigned loffs, 208 int size, sector_t rblock) 209 { 210 if (unlikely(!lo->transfer)) 211 return 0; 212 213 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 214 } 215 216 /** 217 * __do_lo_send_write - helper for writing data to a loop device 218 * 219 * This helper just factors out common code between do_lo_send_direct_write() 220 * and do_lo_send_write(). 221 */ 222 static int __do_lo_send_write(struct file *file, 223 u8 *buf, const int len, loff_t pos) 224 { 225 ssize_t bw; 226 mm_segment_t old_fs = get_fs(); 227 228 set_fs(get_ds()); 229 bw = file->f_op->write(file, buf, len, &pos); 230 set_fs(old_fs); 231 if (likely(bw == len)) 232 return 0; 233 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 234 (unsigned long long)pos, len); 235 if (bw >= 0) 236 bw = -EIO; 237 return bw; 238 } 239 240 /** 241 * do_lo_send_direct_write - helper for writing data to a loop device 242 * 243 * This is the fast, non-transforming version that does not need double 244 * buffering. 245 */ 246 static int do_lo_send_direct_write(struct loop_device *lo, 247 struct bio_vec *bvec, loff_t pos, struct page *page) 248 { 249 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 250 kmap(bvec->bv_page) + bvec->bv_offset, 251 bvec->bv_len, pos); 252 kunmap(bvec->bv_page); 253 cond_resched(); 254 return bw; 255 } 256 257 /** 258 * do_lo_send_write - helper for writing data to a loop device 259 * 260 * This is the slow, transforming version that needs to double buffer the 261 * data as it cannot do the transformations in place without having direct 262 * access to the destination pages of the backing file. 263 */ 264 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 265 loff_t pos, struct page *page) 266 { 267 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 268 bvec->bv_offset, bvec->bv_len, pos >> 9); 269 if (likely(!ret)) 270 return __do_lo_send_write(lo->lo_backing_file, 271 page_address(page), bvec->bv_len, 272 pos); 273 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 274 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 275 if (ret > 0) 276 ret = -EIO; 277 return ret; 278 } 279 280 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 281 { 282 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 283 struct page *page); 284 struct bio_vec *bvec; 285 struct page *page = NULL; 286 int i, ret = 0; 287 288 if (lo->transfer != transfer_none) { 289 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 290 if (unlikely(!page)) 291 goto fail; 292 kmap(page); 293 do_lo_send = do_lo_send_write; 294 } else { 295 do_lo_send = do_lo_send_direct_write; 296 } 297 298 bio_for_each_segment(bvec, bio, i) { 299 ret = do_lo_send(lo, bvec, pos, page); 300 if (ret < 0) 301 break; 302 pos += bvec->bv_len; 303 } 304 if (page) { 305 kunmap(page); 306 __free_page(page); 307 } 308 out: 309 return ret; 310 fail: 311 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 312 ret = -ENOMEM; 313 goto out; 314 } 315 316 struct lo_read_data { 317 struct loop_device *lo; 318 struct page *page; 319 unsigned offset; 320 int bsize; 321 }; 322 323 static int 324 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 325 struct splice_desc *sd) 326 { 327 struct lo_read_data *p = sd->u.data; 328 struct loop_device *lo = p->lo; 329 struct page *page = buf->page; 330 sector_t IV; 331 int size; 332 333 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 334 (buf->offset >> 9); 335 size = sd->len; 336 if (size > p->bsize) 337 size = p->bsize; 338 339 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 340 printk(KERN_ERR "loop: transfer error block %ld\n", 341 page->index); 342 size = -EINVAL; 343 } 344 345 flush_dcache_page(p->page); 346 347 if (size > 0) 348 p->offset += size; 349 350 return size; 351 } 352 353 static int 354 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 355 { 356 return __splice_from_pipe(pipe, sd, lo_splice_actor); 357 } 358 359 static ssize_t 360 do_lo_receive(struct loop_device *lo, 361 struct bio_vec *bvec, int bsize, loff_t pos) 362 { 363 struct lo_read_data cookie; 364 struct splice_desc sd; 365 struct file *file; 366 ssize_t retval; 367 368 cookie.lo = lo; 369 cookie.page = bvec->bv_page; 370 cookie.offset = bvec->bv_offset; 371 cookie.bsize = bsize; 372 373 sd.len = 0; 374 sd.total_len = bvec->bv_len; 375 sd.flags = 0; 376 sd.pos = pos; 377 sd.u.data = &cookie; 378 379 file = lo->lo_backing_file; 380 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 381 382 return retval; 383 } 384 385 static int 386 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 387 { 388 struct bio_vec *bvec; 389 ssize_t s; 390 int i; 391 392 bio_for_each_segment(bvec, bio, i) { 393 s = do_lo_receive(lo, bvec, bsize, pos); 394 if (s < 0) 395 return s; 396 397 if (s != bvec->bv_len) { 398 zero_fill_bio(bio); 399 break; 400 } 401 pos += bvec->bv_len; 402 } 403 return 0; 404 } 405 406 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 407 { 408 loff_t pos; 409 int ret; 410 411 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 412 413 if (bio_rw(bio) == WRITE) { 414 struct file *file = lo->lo_backing_file; 415 416 if (bio->bi_rw & REQ_FLUSH) { 417 ret = vfs_fsync(file, 0); 418 if (unlikely(ret && ret != -EINVAL)) { 419 ret = -EIO; 420 goto out; 421 } 422 } 423 424 /* 425 * We use punch hole to reclaim the free space used by the 426 * image a.k.a. discard. However we do not support discard if 427 * encryption is enabled, because it may give an attacker 428 * useful information. 429 */ 430 if (bio->bi_rw & REQ_DISCARD) { 431 struct file *file = lo->lo_backing_file; 432 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 433 434 if ((!file->f_op->fallocate) || 435 lo->lo_encrypt_key_size) { 436 ret = -EOPNOTSUPP; 437 goto out; 438 } 439 ret = file->f_op->fallocate(file, mode, pos, 440 bio->bi_size); 441 if (unlikely(ret && ret != -EINVAL && 442 ret != -EOPNOTSUPP)) 443 ret = -EIO; 444 goto out; 445 } 446 447 ret = lo_send(lo, bio, pos); 448 449 if ((bio->bi_rw & REQ_FUA) && !ret) { 450 ret = vfs_fsync(file, 0); 451 if (unlikely(ret && ret != -EINVAL)) 452 ret = -EIO; 453 } 454 } else 455 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 456 457 out: 458 return ret; 459 } 460 461 /* 462 * Add bio to back of pending list 463 */ 464 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 465 { 466 bio_list_add(&lo->lo_bio_list, bio); 467 } 468 469 /* 470 * Grab first pending buffer 471 */ 472 static struct bio *loop_get_bio(struct loop_device *lo) 473 { 474 return bio_list_pop(&lo->lo_bio_list); 475 } 476 477 static void loop_make_request(struct request_queue *q, struct bio *old_bio) 478 { 479 struct loop_device *lo = q->queuedata; 480 int rw = bio_rw(old_bio); 481 482 if (rw == READA) 483 rw = READ; 484 485 BUG_ON(!lo || (rw != READ && rw != WRITE)); 486 487 spin_lock_irq(&lo->lo_lock); 488 if (lo->lo_state != Lo_bound) 489 goto out; 490 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 491 goto out; 492 loop_add_bio(lo, old_bio); 493 wake_up(&lo->lo_event); 494 spin_unlock_irq(&lo->lo_lock); 495 return; 496 497 out: 498 spin_unlock_irq(&lo->lo_lock); 499 bio_io_error(old_bio); 500 } 501 502 struct switch_request { 503 struct file *file; 504 struct completion wait; 505 }; 506 507 static void do_loop_switch(struct loop_device *, struct switch_request *); 508 509 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 510 { 511 if (unlikely(!bio->bi_bdev)) { 512 do_loop_switch(lo, bio->bi_private); 513 bio_put(bio); 514 } else { 515 int ret = do_bio_filebacked(lo, bio); 516 bio_endio(bio, ret); 517 } 518 } 519 520 /* 521 * worker thread that handles reads/writes to file backed loop devices, 522 * to avoid blocking in our make_request_fn. it also does loop decrypting 523 * on reads for block backed loop, as that is too heavy to do from 524 * b_end_io context where irqs may be disabled. 525 * 526 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 527 * calling kthread_stop(). Therefore once kthread_should_stop() is 528 * true, make_request will not place any more requests. Therefore 529 * once kthread_should_stop() is true and lo_bio is NULL, we are 530 * done with the loop. 531 */ 532 static int loop_thread(void *data) 533 { 534 struct loop_device *lo = data; 535 struct bio *bio; 536 537 set_user_nice(current, -20); 538 539 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 540 541 wait_event_interruptible(lo->lo_event, 542 !bio_list_empty(&lo->lo_bio_list) || 543 kthread_should_stop()); 544 545 if (bio_list_empty(&lo->lo_bio_list)) 546 continue; 547 spin_lock_irq(&lo->lo_lock); 548 bio = loop_get_bio(lo); 549 spin_unlock_irq(&lo->lo_lock); 550 551 BUG_ON(!bio); 552 loop_handle_bio(lo, bio); 553 } 554 555 return 0; 556 } 557 558 /* 559 * loop_switch performs the hard work of switching a backing store. 560 * First it needs to flush existing IO, it does this by sending a magic 561 * BIO down the pipe. The completion of this BIO does the actual switch. 562 */ 563 static int loop_switch(struct loop_device *lo, struct file *file) 564 { 565 struct switch_request w; 566 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 567 if (!bio) 568 return -ENOMEM; 569 init_completion(&w.wait); 570 w.file = file; 571 bio->bi_private = &w; 572 bio->bi_bdev = NULL; 573 loop_make_request(lo->lo_queue, bio); 574 wait_for_completion(&w.wait); 575 return 0; 576 } 577 578 /* 579 * Helper to flush the IOs in loop, but keeping loop thread running 580 */ 581 static int loop_flush(struct loop_device *lo) 582 { 583 /* loop not yet configured, no running thread, nothing to flush */ 584 if (!lo->lo_thread) 585 return 0; 586 587 return loop_switch(lo, NULL); 588 } 589 590 /* 591 * Do the actual switch; called from the BIO completion routine 592 */ 593 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 594 { 595 struct file *file = p->file; 596 struct file *old_file = lo->lo_backing_file; 597 struct address_space *mapping; 598 599 /* if no new file, only flush of queued bios requested */ 600 if (!file) 601 goto out; 602 603 mapping = file->f_mapping; 604 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 605 lo->lo_backing_file = file; 606 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 607 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 608 lo->old_gfp_mask = mapping_gfp_mask(mapping); 609 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 610 out: 611 complete(&p->wait); 612 } 613 614 615 /* 616 * loop_change_fd switched the backing store of a loopback device to 617 * a new file. This is useful for operating system installers to free up 618 * the original file and in High Availability environments to switch to 619 * an alternative location for the content in case of server meltdown. 620 * This can only work if the loop device is used read-only, and if the 621 * new backing store is the same size and type as the old backing store. 622 */ 623 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 624 unsigned int arg) 625 { 626 struct file *file, *old_file; 627 struct inode *inode; 628 int error; 629 630 error = -ENXIO; 631 if (lo->lo_state != Lo_bound) 632 goto out; 633 634 /* the loop device has to be read-only */ 635 error = -EINVAL; 636 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 637 goto out; 638 639 error = -EBADF; 640 file = fget(arg); 641 if (!file) 642 goto out; 643 644 inode = file->f_mapping->host; 645 old_file = lo->lo_backing_file; 646 647 error = -EINVAL; 648 649 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 650 goto out_putf; 651 652 /* size of the new backing store needs to be the same */ 653 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 654 goto out_putf; 655 656 /* and ... switch */ 657 error = loop_switch(lo, file); 658 if (error) 659 goto out_putf; 660 661 fput(old_file); 662 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 663 ioctl_by_bdev(bdev, BLKRRPART, 0); 664 return 0; 665 666 out_putf: 667 fput(file); 668 out: 669 return error; 670 } 671 672 static inline int is_loop_device(struct file *file) 673 { 674 struct inode *i = file->f_mapping->host; 675 676 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 677 } 678 679 /* loop sysfs attributes */ 680 681 static ssize_t loop_attr_show(struct device *dev, char *page, 682 ssize_t (*callback)(struct loop_device *, char *)) 683 { 684 struct gendisk *disk = dev_to_disk(dev); 685 struct loop_device *lo = disk->private_data; 686 687 return callback(lo, page); 688 } 689 690 #define LOOP_ATTR_RO(_name) \ 691 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 692 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 693 struct device_attribute *attr, char *b) \ 694 { \ 695 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 696 } \ 697 static struct device_attribute loop_attr_##_name = \ 698 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 699 700 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 701 { 702 ssize_t ret; 703 char *p = NULL; 704 705 spin_lock_irq(&lo->lo_lock); 706 if (lo->lo_backing_file) 707 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 708 spin_unlock_irq(&lo->lo_lock); 709 710 if (IS_ERR_OR_NULL(p)) 711 ret = PTR_ERR(p); 712 else { 713 ret = strlen(p); 714 memmove(buf, p, ret); 715 buf[ret++] = '\n'; 716 buf[ret] = 0; 717 } 718 719 return ret; 720 } 721 722 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 723 { 724 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 725 } 726 727 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 728 { 729 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 730 } 731 732 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 733 { 734 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 735 736 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 737 } 738 739 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 740 { 741 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 742 743 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 744 } 745 746 LOOP_ATTR_RO(backing_file); 747 LOOP_ATTR_RO(offset); 748 LOOP_ATTR_RO(sizelimit); 749 LOOP_ATTR_RO(autoclear); 750 LOOP_ATTR_RO(partscan); 751 752 static struct attribute *loop_attrs[] = { 753 &loop_attr_backing_file.attr, 754 &loop_attr_offset.attr, 755 &loop_attr_sizelimit.attr, 756 &loop_attr_autoclear.attr, 757 &loop_attr_partscan.attr, 758 NULL, 759 }; 760 761 static struct attribute_group loop_attribute_group = { 762 .name = "loop", 763 .attrs= loop_attrs, 764 }; 765 766 static int loop_sysfs_init(struct loop_device *lo) 767 { 768 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 769 &loop_attribute_group); 770 } 771 772 static void loop_sysfs_exit(struct loop_device *lo) 773 { 774 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 775 &loop_attribute_group); 776 } 777 778 static void loop_config_discard(struct loop_device *lo) 779 { 780 struct file *file = lo->lo_backing_file; 781 struct inode *inode = file->f_mapping->host; 782 struct request_queue *q = lo->lo_queue; 783 784 /* 785 * We use punch hole to reclaim the free space used by the 786 * image a.k.a. discard. However we do support discard if 787 * encryption is enabled, because it may give an attacker 788 * useful information. 789 */ 790 if ((!file->f_op->fallocate) || 791 lo->lo_encrypt_key_size) { 792 q->limits.discard_granularity = 0; 793 q->limits.discard_alignment = 0; 794 q->limits.max_discard_sectors = 0; 795 q->limits.discard_zeroes_data = 0; 796 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 797 return; 798 } 799 800 q->limits.discard_granularity = inode->i_sb->s_blocksize; 801 q->limits.discard_alignment = 0; 802 q->limits.max_discard_sectors = UINT_MAX >> 9; 803 q->limits.discard_zeroes_data = 1; 804 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 805 } 806 807 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 808 struct block_device *bdev, unsigned int arg) 809 { 810 struct file *file, *f; 811 struct inode *inode; 812 struct address_space *mapping; 813 unsigned lo_blocksize; 814 int lo_flags = 0; 815 int error; 816 loff_t size; 817 818 /* This is safe, since we have a reference from open(). */ 819 __module_get(THIS_MODULE); 820 821 error = -EBADF; 822 file = fget(arg); 823 if (!file) 824 goto out; 825 826 error = -EBUSY; 827 if (lo->lo_state != Lo_unbound) 828 goto out_putf; 829 830 /* Avoid recursion */ 831 f = file; 832 while (is_loop_device(f)) { 833 struct loop_device *l; 834 835 if (f->f_mapping->host->i_bdev == bdev) 836 goto out_putf; 837 838 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 839 if (l->lo_state == Lo_unbound) { 840 error = -EINVAL; 841 goto out_putf; 842 } 843 f = l->lo_backing_file; 844 } 845 846 mapping = file->f_mapping; 847 inode = mapping->host; 848 849 error = -EINVAL; 850 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 851 goto out_putf; 852 853 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 854 !file->f_op->write) 855 lo_flags |= LO_FLAGS_READ_ONLY; 856 857 lo_blocksize = S_ISBLK(inode->i_mode) ? 858 inode->i_bdev->bd_block_size : PAGE_SIZE; 859 860 error = -EFBIG; 861 size = get_loop_size(lo, file); 862 if ((loff_t)(sector_t)size != size) 863 goto out_putf; 864 865 error = 0; 866 867 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 868 869 lo->lo_blocksize = lo_blocksize; 870 lo->lo_device = bdev; 871 lo->lo_flags = lo_flags; 872 lo->lo_backing_file = file; 873 lo->transfer = transfer_none; 874 lo->ioctl = NULL; 875 lo->lo_sizelimit = 0; 876 lo->old_gfp_mask = mapping_gfp_mask(mapping); 877 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 878 879 bio_list_init(&lo->lo_bio_list); 880 881 /* 882 * set queue make_request_fn, and add limits based on lower level 883 * device 884 */ 885 blk_queue_make_request(lo->lo_queue, loop_make_request); 886 lo->lo_queue->queuedata = lo; 887 888 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 889 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 890 891 set_capacity(lo->lo_disk, size); 892 bd_set_size(bdev, size << 9); 893 loop_sysfs_init(lo); 894 /* let user-space know about the new size */ 895 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 896 897 set_blocksize(bdev, lo_blocksize); 898 899 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 900 lo->lo_number); 901 if (IS_ERR(lo->lo_thread)) { 902 error = PTR_ERR(lo->lo_thread); 903 goto out_clr; 904 } 905 lo->lo_state = Lo_bound; 906 wake_up_process(lo->lo_thread); 907 if (part_shift) 908 lo->lo_flags |= LO_FLAGS_PARTSCAN; 909 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 910 ioctl_by_bdev(bdev, BLKRRPART, 0); 911 return 0; 912 913 out_clr: 914 loop_sysfs_exit(lo); 915 lo->lo_thread = NULL; 916 lo->lo_device = NULL; 917 lo->lo_backing_file = NULL; 918 lo->lo_flags = 0; 919 set_capacity(lo->lo_disk, 0); 920 invalidate_bdev(bdev); 921 bd_set_size(bdev, 0); 922 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 923 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 924 lo->lo_state = Lo_unbound; 925 out_putf: 926 fput(file); 927 out: 928 /* This is safe: open() is still holding a reference. */ 929 module_put(THIS_MODULE); 930 return error; 931 } 932 933 static int 934 loop_release_xfer(struct loop_device *lo) 935 { 936 int err = 0; 937 struct loop_func_table *xfer = lo->lo_encryption; 938 939 if (xfer) { 940 if (xfer->release) 941 err = xfer->release(lo); 942 lo->transfer = NULL; 943 lo->lo_encryption = NULL; 944 module_put(xfer->owner); 945 } 946 return err; 947 } 948 949 static int 950 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 951 const struct loop_info64 *i) 952 { 953 int err = 0; 954 955 if (xfer) { 956 struct module *owner = xfer->owner; 957 958 if (!try_module_get(owner)) 959 return -EINVAL; 960 if (xfer->init) 961 err = xfer->init(lo, i); 962 if (err) 963 module_put(owner); 964 else 965 lo->lo_encryption = xfer; 966 } 967 return err; 968 } 969 970 static int loop_clr_fd(struct loop_device *lo) 971 { 972 struct file *filp = lo->lo_backing_file; 973 gfp_t gfp = lo->old_gfp_mask; 974 struct block_device *bdev = lo->lo_device; 975 976 if (lo->lo_state != Lo_bound) 977 return -ENXIO; 978 979 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 980 return -EBUSY; 981 982 if (filp == NULL) 983 return -EINVAL; 984 985 spin_lock_irq(&lo->lo_lock); 986 lo->lo_state = Lo_rundown; 987 spin_unlock_irq(&lo->lo_lock); 988 989 kthread_stop(lo->lo_thread); 990 991 spin_lock_irq(&lo->lo_lock); 992 lo->lo_backing_file = NULL; 993 spin_unlock_irq(&lo->lo_lock); 994 995 loop_release_xfer(lo); 996 lo->transfer = NULL; 997 lo->ioctl = NULL; 998 lo->lo_device = NULL; 999 lo->lo_encryption = NULL; 1000 lo->lo_offset = 0; 1001 lo->lo_sizelimit = 0; 1002 lo->lo_encrypt_key_size = 0; 1003 lo->lo_thread = NULL; 1004 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1005 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1006 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1007 if (bdev) 1008 invalidate_bdev(bdev); 1009 set_capacity(lo->lo_disk, 0); 1010 loop_sysfs_exit(lo); 1011 if (bdev) { 1012 bd_set_size(bdev, 0); 1013 /* let user-space know about this change */ 1014 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1015 } 1016 mapping_set_gfp_mask(filp->f_mapping, gfp); 1017 lo->lo_state = Lo_unbound; 1018 /* This is safe: open() is still holding a reference. */ 1019 module_put(THIS_MODULE); 1020 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1021 ioctl_by_bdev(bdev, BLKRRPART, 0); 1022 lo->lo_flags = 0; 1023 if (!part_shift) 1024 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1025 mutex_unlock(&lo->lo_ctl_mutex); 1026 /* 1027 * Need not hold lo_ctl_mutex to fput backing file. 1028 * Calling fput holding lo_ctl_mutex triggers a circular 1029 * lock dependency possibility warning as fput can take 1030 * bd_mutex which is usually taken before lo_ctl_mutex. 1031 */ 1032 fput(filp); 1033 return 0; 1034 } 1035 1036 static int 1037 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1038 { 1039 int err; 1040 struct loop_func_table *xfer; 1041 uid_t uid = current_uid(); 1042 1043 if (lo->lo_encrypt_key_size && 1044 lo->lo_key_owner != uid && 1045 !capable(CAP_SYS_ADMIN)) 1046 return -EPERM; 1047 if (lo->lo_state != Lo_bound) 1048 return -ENXIO; 1049 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1050 return -EINVAL; 1051 1052 err = loop_release_xfer(lo); 1053 if (err) 1054 return err; 1055 1056 if (info->lo_encrypt_type) { 1057 unsigned int type = info->lo_encrypt_type; 1058 1059 if (type >= MAX_LO_CRYPT) 1060 return -EINVAL; 1061 xfer = xfer_funcs[type]; 1062 if (xfer == NULL) 1063 return -EINVAL; 1064 } else 1065 xfer = NULL; 1066 1067 err = loop_init_xfer(lo, xfer, info); 1068 if (err) 1069 return err; 1070 1071 if (lo->lo_offset != info->lo_offset || 1072 lo->lo_sizelimit != info->lo_sizelimit) { 1073 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1074 return -EFBIG; 1075 } 1076 loop_config_discard(lo); 1077 1078 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1079 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1080 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1081 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1082 1083 if (!xfer) 1084 xfer = &none_funcs; 1085 lo->transfer = xfer->transfer; 1086 lo->ioctl = xfer->ioctl; 1087 1088 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1089 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1090 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1091 1092 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1093 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1094 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1095 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1096 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0); 1097 } 1098 1099 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1100 lo->lo_init[0] = info->lo_init[0]; 1101 lo->lo_init[1] = info->lo_init[1]; 1102 if (info->lo_encrypt_key_size) { 1103 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1104 info->lo_encrypt_key_size); 1105 lo->lo_key_owner = uid; 1106 } 1107 1108 return 0; 1109 } 1110 1111 static int 1112 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1113 { 1114 struct file *file = lo->lo_backing_file; 1115 struct kstat stat; 1116 int error; 1117 1118 if (lo->lo_state != Lo_bound) 1119 return -ENXIO; 1120 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1121 if (error) 1122 return error; 1123 memset(info, 0, sizeof(*info)); 1124 info->lo_number = lo->lo_number; 1125 info->lo_device = huge_encode_dev(stat.dev); 1126 info->lo_inode = stat.ino; 1127 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1128 info->lo_offset = lo->lo_offset; 1129 info->lo_sizelimit = lo->lo_sizelimit; 1130 info->lo_flags = lo->lo_flags; 1131 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1132 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1133 info->lo_encrypt_type = 1134 lo->lo_encryption ? lo->lo_encryption->number : 0; 1135 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1136 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1137 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1138 lo->lo_encrypt_key_size); 1139 } 1140 return 0; 1141 } 1142 1143 static void 1144 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1145 { 1146 memset(info64, 0, sizeof(*info64)); 1147 info64->lo_number = info->lo_number; 1148 info64->lo_device = info->lo_device; 1149 info64->lo_inode = info->lo_inode; 1150 info64->lo_rdevice = info->lo_rdevice; 1151 info64->lo_offset = info->lo_offset; 1152 info64->lo_sizelimit = 0; 1153 info64->lo_encrypt_type = info->lo_encrypt_type; 1154 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1155 info64->lo_flags = info->lo_flags; 1156 info64->lo_init[0] = info->lo_init[0]; 1157 info64->lo_init[1] = info->lo_init[1]; 1158 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1159 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1160 else 1161 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1162 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1163 } 1164 1165 static int 1166 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1167 { 1168 memset(info, 0, sizeof(*info)); 1169 info->lo_number = info64->lo_number; 1170 info->lo_device = info64->lo_device; 1171 info->lo_inode = info64->lo_inode; 1172 info->lo_rdevice = info64->lo_rdevice; 1173 info->lo_offset = info64->lo_offset; 1174 info->lo_encrypt_type = info64->lo_encrypt_type; 1175 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1176 info->lo_flags = info64->lo_flags; 1177 info->lo_init[0] = info64->lo_init[0]; 1178 info->lo_init[1] = info64->lo_init[1]; 1179 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1180 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1181 else 1182 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1183 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1184 1185 /* error in case values were truncated */ 1186 if (info->lo_device != info64->lo_device || 1187 info->lo_rdevice != info64->lo_rdevice || 1188 info->lo_inode != info64->lo_inode || 1189 info->lo_offset != info64->lo_offset) 1190 return -EOVERFLOW; 1191 1192 return 0; 1193 } 1194 1195 static int 1196 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1197 { 1198 struct loop_info info; 1199 struct loop_info64 info64; 1200 1201 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1202 return -EFAULT; 1203 loop_info64_from_old(&info, &info64); 1204 return loop_set_status(lo, &info64); 1205 } 1206 1207 static int 1208 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1209 { 1210 struct loop_info64 info64; 1211 1212 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1213 return -EFAULT; 1214 return loop_set_status(lo, &info64); 1215 } 1216 1217 static int 1218 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1219 struct loop_info info; 1220 struct loop_info64 info64; 1221 int err = 0; 1222 1223 if (!arg) 1224 err = -EINVAL; 1225 if (!err) 1226 err = loop_get_status(lo, &info64); 1227 if (!err) 1228 err = loop_info64_to_old(&info64, &info); 1229 if (!err && copy_to_user(arg, &info, sizeof(info))) 1230 err = -EFAULT; 1231 1232 return err; 1233 } 1234 1235 static int 1236 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1237 struct loop_info64 info64; 1238 int err = 0; 1239 1240 if (!arg) 1241 err = -EINVAL; 1242 if (!err) 1243 err = loop_get_status(lo, &info64); 1244 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1245 err = -EFAULT; 1246 1247 return err; 1248 } 1249 1250 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1251 { 1252 int err; 1253 sector_t sec; 1254 loff_t sz; 1255 1256 err = -ENXIO; 1257 if (unlikely(lo->lo_state != Lo_bound)) 1258 goto out; 1259 err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1260 if (unlikely(err)) 1261 goto out; 1262 sec = get_capacity(lo->lo_disk); 1263 /* the width of sector_t may be narrow for bit-shift */ 1264 sz = sec; 1265 sz <<= 9; 1266 mutex_lock(&bdev->bd_mutex); 1267 bd_set_size(bdev, sz); 1268 /* let user-space know about the new size */ 1269 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1270 mutex_unlock(&bdev->bd_mutex); 1271 1272 out: 1273 return err; 1274 } 1275 1276 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1277 unsigned int cmd, unsigned long arg) 1278 { 1279 struct loop_device *lo = bdev->bd_disk->private_data; 1280 int err; 1281 1282 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1283 switch (cmd) { 1284 case LOOP_SET_FD: 1285 err = loop_set_fd(lo, mode, bdev, arg); 1286 break; 1287 case LOOP_CHANGE_FD: 1288 err = loop_change_fd(lo, bdev, arg); 1289 break; 1290 case LOOP_CLR_FD: 1291 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1292 err = loop_clr_fd(lo); 1293 if (!err) 1294 goto out_unlocked; 1295 break; 1296 case LOOP_SET_STATUS: 1297 err = -EPERM; 1298 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1299 err = loop_set_status_old(lo, 1300 (struct loop_info __user *)arg); 1301 break; 1302 case LOOP_GET_STATUS: 1303 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1304 break; 1305 case LOOP_SET_STATUS64: 1306 err = -EPERM; 1307 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1308 err = loop_set_status64(lo, 1309 (struct loop_info64 __user *) arg); 1310 break; 1311 case LOOP_GET_STATUS64: 1312 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1313 break; 1314 case LOOP_SET_CAPACITY: 1315 err = -EPERM; 1316 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1317 err = loop_set_capacity(lo, bdev); 1318 break; 1319 default: 1320 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1321 } 1322 mutex_unlock(&lo->lo_ctl_mutex); 1323 1324 out_unlocked: 1325 return err; 1326 } 1327 1328 #ifdef CONFIG_COMPAT 1329 struct compat_loop_info { 1330 compat_int_t lo_number; /* ioctl r/o */ 1331 compat_dev_t lo_device; /* ioctl r/o */ 1332 compat_ulong_t lo_inode; /* ioctl r/o */ 1333 compat_dev_t lo_rdevice; /* ioctl r/o */ 1334 compat_int_t lo_offset; 1335 compat_int_t lo_encrypt_type; 1336 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1337 compat_int_t lo_flags; /* ioctl r/o */ 1338 char lo_name[LO_NAME_SIZE]; 1339 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1340 compat_ulong_t lo_init[2]; 1341 char reserved[4]; 1342 }; 1343 1344 /* 1345 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1346 * - noinlined to reduce stack space usage in main part of driver 1347 */ 1348 static noinline int 1349 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1350 struct loop_info64 *info64) 1351 { 1352 struct compat_loop_info info; 1353 1354 if (copy_from_user(&info, arg, sizeof(info))) 1355 return -EFAULT; 1356 1357 memset(info64, 0, sizeof(*info64)); 1358 info64->lo_number = info.lo_number; 1359 info64->lo_device = info.lo_device; 1360 info64->lo_inode = info.lo_inode; 1361 info64->lo_rdevice = info.lo_rdevice; 1362 info64->lo_offset = info.lo_offset; 1363 info64->lo_sizelimit = 0; 1364 info64->lo_encrypt_type = info.lo_encrypt_type; 1365 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1366 info64->lo_flags = info.lo_flags; 1367 info64->lo_init[0] = info.lo_init[0]; 1368 info64->lo_init[1] = info.lo_init[1]; 1369 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1370 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1371 else 1372 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1373 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1374 return 0; 1375 } 1376 1377 /* 1378 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1379 * - noinlined to reduce stack space usage in main part of driver 1380 */ 1381 static noinline int 1382 loop_info64_to_compat(const struct loop_info64 *info64, 1383 struct compat_loop_info __user *arg) 1384 { 1385 struct compat_loop_info info; 1386 1387 memset(&info, 0, sizeof(info)); 1388 info.lo_number = info64->lo_number; 1389 info.lo_device = info64->lo_device; 1390 info.lo_inode = info64->lo_inode; 1391 info.lo_rdevice = info64->lo_rdevice; 1392 info.lo_offset = info64->lo_offset; 1393 info.lo_encrypt_type = info64->lo_encrypt_type; 1394 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1395 info.lo_flags = info64->lo_flags; 1396 info.lo_init[0] = info64->lo_init[0]; 1397 info.lo_init[1] = info64->lo_init[1]; 1398 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1399 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1400 else 1401 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1402 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1403 1404 /* error in case values were truncated */ 1405 if (info.lo_device != info64->lo_device || 1406 info.lo_rdevice != info64->lo_rdevice || 1407 info.lo_inode != info64->lo_inode || 1408 info.lo_offset != info64->lo_offset || 1409 info.lo_init[0] != info64->lo_init[0] || 1410 info.lo_init[1] != info64->lo_init[1]) 1411 return -EOVERFLOW; 1412 1413 if (copy_to_user(arg, &info, sizeof(info))) 1414 return -EFAULT; 1415 return 0; 1416 } 1417 1418 static int 1419 loop_set_status_compat(struct loop_device *lo, 1420 const struct compat_loop_info __user *arg) 1421 { 1422 struct loop_info64 info64; 1423 int ret; 1424 1425 ret = loop_info64_from_compat(arg, &info64); 1426 if (ret < 0) 1427 return ret; 1428 return loop_set_status(lo, &info64); 1429 } 1430 1431 static int 1432 loop_get_status_compat(struct loop_device *lo, 1433 struct compat_loop_info __user *arg) 1434 { 1435 struct loop_info64 info64; 1436 int err = 0; 1437 1438 if (!arg) 1439 err = -EINVAL; 1440 if (!err) 1441 err = loop_get_status(lo, &info64); 1442 if (!err) 1443 err = loop_info64_to_compat(&info64, arg); 1444 return err; 1445 } 1446 1447 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1448 unsigned int cmd, unsigned long arg) 1449 { 1450 struct loop_device *lo = bdev->bd_disk->private_data; 1451 int err; 1452 1453 switch(cmd) { 1454 case LOOP_SET_STATUS: 1455 mutex_lock(&lo->lo_ctl_mutex); 1456 err = loop_set_status_compat( 1457 lo, (const struct compat_loop_info __user *) arg); 1458 mutex_unlock(&lo->lo_ctl_mutex); 1459 break; 1460 case LOOP_GET_STATUS: 1461 mutex_lock(&lo->lo_ctl_mutex); 1462 err = loop_get_status_compat( 1463 lo, (struct compat_loop_info __user *) arg); 1464 mutex_unlock(&lo->lo_ctl_mutex); 1465 break; 1466 case LOOP_SET_CAPACITY: 1467 case LOOP_CLR_FD: 1468 case LOOP_GET_STATUS64: 1469 case LOOP_SET_STATUS64: 1470 arg = (unsigned long) compat_ptr(arg); 1471 case LOOP_SET_FD: 1472 case LOOP_CHANGE_FD: 1473 err = lo_ioctl(bdev, mode, cmd, arg); 1474 break; 1475 default: 1476 err = -ENOIOCTLCMD; 1477 break; 1478 } 1479 return err; 1480 } 1481 #endif 1482 1483 static int lo_open(struct block_device *bdev, fmode_t mode) 1484 { 1485 struct loop_device *lo; 1486 int err = 0; 1487 1488 mutex_lock(&loop_index_mutex); 1489 lo = bdev->bd_disk->private_data; 1490 if (!lo) { 1491 err = -ENXIO; 1492 goto out; 1493 } 1494 1495 mutex_lock(&lo->lo_ctl_mutex); 1496 lo->lo_refcnt++; 1497 mutex_unlock(&lo->lo_ctl_mutex); 1498 out: 1499 mutex_unlock(&loop_index_mutex); 1500 return err; 1501 } 1502 1503 static int lo_release(struct gendisk *disk, fmode_t mode) 1504 { 1505 struct loop_device *lo = disk->private_data; 1506 int err; 1507 1508 mutex_lock(&lo->lo_ctl_mutex); 1509 1510 if (--lo->lo_refcnt) 1511 goto out; 1512 1513 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1514 /* 1515 * In autoclear mode, stop the loop thread 1516 * and remove configuration after last close. 1517 */ 1518 err = loop_clr_fd(lo); 1519 if (!err) 1520 goto out_unlocked; 1521 } else { 1522 /* 1523 * Otherwise keep thread (if running) and config, 1524 * but flush possible ongoing bios in thread. 1525 */ 1526 loop_flush(lo); 1527 } 1528 1529 out: 1530 mutex_unlock(&lo->lo_ctl_mutex); 1531 out_unlocked: 1532 return 0; 1533 } 1534 1535 static const struct block_device_operations lo_fops = { 1536 .owner = THIS_MODULE, 1537 .open = lo_open, 1538 .release = lo_release, 1539 .ioctl = lo_ioctl, 1540 #ifdef CONFIG_COMPAT 1541 .compat_ioctl = lo_compat_ioctl, 1542 #endif 1543 }; 1544 1545 /* 1546 * And now the modules code and kernel interface. 1547 */ 1548 static int max_loop; 1549 module_param(max_loop, int, S_IRUGO); 1550 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1551 module_param(max_part, int, S_IRUGO); 1552 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1553 MODULE_LICENSE("GPL"); 1554 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1555 1556 int loop_register_transfer(struct loop_func_table *funcs) 1557 { 1558 unsigned int n = funcs->number; 1559 1560 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1561 return -EINVAL; 1562 xfer_funcs[n] = funcs; 1563 return 0; 1564 } 1565 1566 static int unregister_transfer_cb(int id, void *ptr, void *data) 1567 { 1568 struct loop_device *lo = ptr; 1569 struct loop_func_table *xfer = data; 1570 1571 mutex_lock(&lo->lo_ctl_mutex); 1572 if (lo->lo_encryption == xfer) 1573 loop_release_xfer(lo); 1574 mutex_unlock(&lo->lo_ctl_mutex); 1575 return 0; 1576 } 1577 1578 int loop_unregister_transfer(int number) 1579 { 1580 unsigned int n = number; 1581 struct loop_func_table *xfer; 1582 1583 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1584 return -EINVAL; 1585 1586 xfer_funcs[n] = NULL; 1587 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1588 return 0; 1589 } 1590 1591 EXPORT_SYMBOL(loop_register_transfer); 1592 EXPORT_SYMBOL(loop_unregister_transfer); 1593 1594 static int loop_add(struct loop_device **l, int i) 1595 { 1596 struct loop_device *lo; 1597 struct gendisk *disk; 1598 int err; 1599 1600 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1601 if (!lo) { 1602 err = -ENOMEM; 1603 goto out; 1604 } 1605 1606 err = idr_pre_get(&loop_index_idr, GFP_KERNEL); 1607 if (err < 0) 1608 goto out_free_dev; 1609 1610 if (i >= 0) { 1611 int m; 1612 1613 /* create specific i in the index */ 1614 err = idr_get_new_above(&loop_index_idr, lo, i, &m); 1615 if (err >= 0 && i != m) { 1616 idr_remove(&loop_index_idr, m); 1617 err = -EEXIST; 1618 } 1619 } else if (i == -1) { 1620 int m; 1621 1622 /* get next free nr */ 1623 err = idr_get_new(&loop_index_idr, lo, &m); 1624 if (err >= 0) 1625 i = m; 1626 } else { 1627 err = -EINVAL; 1628 } 1629 if (err < 0) 1630 goto out_free_dev; 1631 1632 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1633 if (!lo->lo_queue) 1634 goto out_free_dev; 1635 1636 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1637 if (!disk) 1638 goto out_free_queue; 1639 1640 /* 1641 * Disable partition scanning by default. The in-kernel partition 1642 * scanning can be requested individually per-device during its 1643 * setup. Userspace can always add and remove partitions from all 1644 * devices. The needed partition minors are allocated from the 1645 * extended minor space, the main loop device numbers will continue 1646 * to match the loop minors, regardless of the number of partitions 1647 * used. 1648 * 1649 * If max_part is given, partition scanning is globally enabled for 1650 * all loop devices. The minors for the main loop devices will be 1651 * multiples of max_part. 1652 * 1653 * Note: Global-for-all-devices, set-only-at-init, read-only module 1654 * parameteters like 'max_loop' and 'max_part' make things needlessly 1655 * complicated, are too static, inflexible and may surprise 1656 * userspace tools. Parameters like this in general should be avoided. 1657 */ 1658 if (!part_shift) 1659 disk->flags |= GENHD_FL_NO_PART_SCAN; 1660 disk->flags |= GENHD_FL_EXT_DEVT; 1661 mutex_init(&lo->lo_ctl_mutex); 1662 lo->lo_number = i; 1663 lo->lo_thread = NULL; 1664 init_waitqueue_head(&lo->lo_event); 1665 spin_lock_init(&lo->lo_lock); 1666 disk->major = LOOP_MAJOR; 1667 disk->first_minor = i << part_shift; 1668 disk->fops = &lo_fops; 1669 disk->private_data = lo; 1670 disk->queue = lo->lo_queue; 1671 sprintf(disk->disk_name, "loop%d", i); 1672 add_disk(disk); 1673 *l = lo; 1674 return lo->lo_number; 1675 1676 out_free_queue: 1677 blk_cleanup_queue(lo->lo_queue); 1678 out_free_dev: 1679 kfree(lo); 1680 out: 1681 return err; 1682 } 1683 1684 static void loop_remove(struct loop_device *lo) 1685 { 1686 del_gendisk(lo->lo_disk); 1687 blk_cleanup_queue(lo->lo_queue); 1688 put_disk(lo->lo_disk); 1689 kfree(lo); 1690 } 1691 1692 static int find_free_cb(int id, void *ptr, void *data) 1693 { 1694 struct loop_device *lo = ptr; 1695 struct loop_device **l = data; 1696 1697 if (lo->lo_state == Lo_unbound) { 1698 *l = lo; 1699 return 1; 1700 } 1701 return 0; 1702 } 1703 1704 static int loop_lookup(struct loop_device **l, int i) 1705 { 1706 struct loop_device *lo; 1707 int ret = -ENODEV; 1708 1709 if (i < 0) { 1710 int err; 1711 1712 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1713 if (err == 1) { 1714 *l = lo; 1715 ret = lo->lo_number; 1716 } 1717 goto out; 1718 } 1719 1720 /* lookup and return a specific i */ 1721 lo = idr_find(&loop_index_idr, i); 1722 if (lo) { 1723 *l = lo; 1724 ret = lo->lo_number; 1725 } 1726 out: 1727 return ret; 1728 } 1729 1730 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1731 { 1732 struct loop_device *lo; 1733 struct kobject *kobj; 1734 int err; 1735 1736 mutex_lock(&loop_index_mutex); 1737 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1738 if (err < 0) 1739 err = loop_add(&lo, MINOR(dev) >> part_shift); 1740 if (err < 0) 1741 kobj = ERR_PTR(err); 1742 else 1743 kobj = get_disk(lo->lo_disk); 1744 mutex_unlock(&loop_index_mutex); 1745 1746 *part = 0; 1747 return kobj; 1748 } 1749 1750 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1751 unsigned long parm) 1752 { 1753 struct loop_device *lo; 1754 int ret = -ENOSYS; 1755 1756 mutex_lock(&loop_index_mutex); 1757 switch (cmd) { 1758 case LOOP_CTL_ADD: 1759 ret = loop_lookup(&lo, parm); 1760 if (ret >= 0) { 1761 ret = -EEXIST; 1762 break; 1763 } 1764 ret = loop_add(&lo, parm); 1765 break; 1766 case LOOP_CTL_REMOVE: 1767 ret = loop_lookup(&lo, parm); 1768 if (ret < 0) 1769 break; 1770 mutex_lock(&lo->lo_ctl_mutex); 1771 if (lo->lo_state != Lo_unbound) { 1772 ret = -EBUSY; 1773 mutex_unlock(&lo->lo_ctl_mutex); 1774 break; 1775 } 1776 if (lo->lo_refcnt > 0) { 1777 ret = -EBUSY; 1778 mutex_unlock(&lo->lo_ctl_mutex); 1779 break; 1780 } 1781 lo->lo_disk->private_data = NULL; 1782 mutex_unlock(&lo->lo_ctl_mutex); 1783 idr_remove(&loop_index_idr, lo->lo_number); 1784 loop_remove(lo); 1785 break; 1786 case LOOP_CTL_GET_FREE: 1787 ret = loop_lookup(&lo, -1); 1788 if (ret >= 0) 1789 break; 1790 ret = loop_add(&lo, -1); 1791 } 1792 mutex_unlock(&loop_index_mutex); 1793 1794 return ret; 1795 } 1796 1797 static const struct file_operations loop_ctl_fops = { 1798 .open = nonseekable_open, 1799 .unlocked_ioctl = loop_control_ioctl, 1800 .compat_ioctl = loop_control_ioctl, 1801 .owner = THIS_MODULE, 1802 .llseek = noop_llseek, 1803 }; 1804 1805 static struct miscdevice loop_misc = { 1806 .minor = LOOP_CTRL_MINOR, 1807 .name = "loop-control", 1808 .fops = &loop_ctl_fops, 1809 }; 1810 1811 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1812 MODULE_ALIAS("devname:loop-control"); 1813 1814 static int __init loop_init(void) 1815 { 1816 int i, nr; 1817 unsigned long range; 1818 struct loop_device *lo; 1819 int err; 1820 1821 err = misc_register(&loop_misc); 1822 if (err < 0) 1823 return err; 1824 1825 part_shift = 0; 1826 if (max_part > 0) { 1827 part_shift = fls(max_part); 1828 1829 /* 1830 * Adjust max_part according to part_shift as it is exported 1831 * to user space so that user can decide correct minor number 1832 * if [s]he want to create more devices. 1833 * 1834 * Note that -1 is required because partition 0 is reserved 1835 * for the whole disk. 1836 */ 1837 max_part = (1UL << part_shift) - 1; 1838 } 1839 1840 if ((1UL << part_shift) > DISK_MAX_PARTS) 1841 return -EINVAL; 1842 1843 if (max_loop > 1UL << (MINORBITS - part_shift)) 1844 return -EINVAL; 1845 1846 /* 1847 * If max_loop is specified, create that many devices upfront. 1848 * This also becomes a hard limit. If max_loop is not specified, 1849 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1850 * init time. Loop devices can be requested on-demand with the 1851 * /dev/loop-control interface, or be instantiated by accessing 1852 * a 'dead' device node. 1853 */ 1854 if (max_loop) { 1855 nr = max_loop; 1856 range = max_loop << part_shift; 1857 } else { 1858 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1859 range = 1UL << MINORBITS; 1860 } 1861 1862 if (register_blkdev(LOOP_MAJOR, "loop")) 1863 return -EIO; 1864 1865 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1866 THIS_MODULE, loop_probe, NULL, NULL); 1867 1868 /* pre-create number of devices given by config or max_loop */ 1869 mutex_lock(&loop_index_mutex); 1870 for (i = 0; i < nr; i++) 1871 loop_add(&lo, i); 1872 mutex_unlock(&loop_index_mutex); 1873 1874 printk(KERN_INFO "loop: module loaded\n"); 1875 return 0; 1876 } 1877 1878 static int loop_exit_cb(int id, void *ptr, void *data) 1879 { 1880 struct loop_device *lo = ptr; 1881 1882 loop_remove(lo); 1883 return 0; 1884 } 1885 1886 static void __exit loop_exit(void) 1887 { 1888 unsigned long range; 1889 1890 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 1891 1892 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 1893 idr_remove_all(&loop_index_idr); 1894 idr_destroy(&loop_index_idr); 1895 1896 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1897 unregister_blkdev(LOOP_MAJOR, "loop"); 1898 1899 misc_deregister(&loop_misc); 1900 } 1901 1902 module_init(loop_init); 1903 module_exit(loop_exit); 1904 1905 #ifndef MODULE 1906 static int __init max_loop_setup(char *str) 1907 { 1908 max_loop = simple_strtol(str, NULL, 0); 1909 return 1; 1910 } 1911 1912 __setup("max_loop=", max_loop_setup); 1913 #endif 1914