xref: /openbmc/linux/drivers/block/loop.c (revision 5c73cc4b6c83e88863a5de869cc5df3b913aef4a)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static struct workqueue_struct *loop_wq;
90 
91 static int transfer_xor(struct loop_device *lo, int cmd,
92 			struct page *raw_page, unsigned raw_off,
93 			struct page *loop_page, unsigned loop_off,
94 			int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 	char *in, *out, *key;
99 	int i, keysize;
100 
101 	if (cmd == READ) {
102 		in = raw_buf;
103 		out = loop_buf;
104 	} else {
105 		in = loop_buf;
106 		out = raw_buf;
107 	}
108 
109 	key = lo->lo_encrypt_key;
110 	keysize = lo->lo_encrypt_key_size;
111 	for (i = 0; i < size; i++)
112 		*out++ = *in++ ^ key[(i & 511) % keysize];
113 
114 	kunmap_atomic(loop_buf);
115 	kunmap_atomic(raw_buf);
116 	cond_resched();
117 	return 0;
118 }
119 
120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
121 {
122 	if (unlikely(info->lo_encrypt_key_size <= 0))
123 		return -EINVAL;
124 	return 0;
125 }
126 
127 static struct loop_func_table none_funcs = {
128 	.number = LO_CRYPT_NONE,
129 };
130 
131 static struct loop_func_table xor_funcs = {
132 	.number = LO_CRYPT_XOR,
133 	.transfer = transfer_xor,
134 	.init = xor_init
135 };
136 
137 /* xfer_funcs[0] is special - its release function is never called */
138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
139 	&none_funcs,
140 	&xor_funcs
141 };
142 
143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
144 {
145 	loff_t loopsize;
146 
147 	/* Compute loopsize in bytes */
148 	loopsize = i_size_read(file->f_mapping->host);
149 	if (offset > 0)
150 		loopsize -= offset;
151 	/* offset is beyond i_size, weird but possible */
152 	if (loopsize < 0)
153 		return 0;
154 
155 	if (sizelimit > 0 && sizelimit < loopsize)
156 		loopsize = sizelimit;
157 	/*
158 	 * Unfortunately, if we want to do I/O on the device,
159 	 * the number of 512-byte sectors has to fit into a sector_t.
160 	 */
161 	return loopsize >> 9;
162 }
163 
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165 {
166 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 }
168 
169 static int
170 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
171 {
172 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
173 	sector_t x = (sector_t)size;
174 	struct block_device *bdev = lo->lo_device;
175 
176 	if (unlikely((loff_t)x != size))
177 		return -EFBIG;
178 	if (lo->lo_offset != offset)
179 		lo->lo_offset = offset;
180 	if (lo->lo_sizelimit != sizelimit)
181 		lo->lo_sizelimit = sizelimit;
182 	set_capacity(lo->lo_disk, x);
183 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
184 	/* let user-space know about the new size */
185 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
186 	return 0;
187 }
188 
189 static inline int
190 lo_do_transfer(struct loop_device *lo, int cmd,
191 	       struct page *rpage, unsigned roffs,
192 	       struct page *lpage, unsigned loffs,
193 	       int size, sector_t rblock)
194 {
195 	int ret;
196 
197 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
198 	if (likely(!ret))
199 		return 0;
200 
201 	printk_ratelimited(KERN_ERR
202 		"loop: Transfer error at byte offset %llu, length %i.\n",
203 		(unsigned long long)rblock << 9, size);
204 	return ret;
205 }
206 
207 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
208 {
209 	struct iov_iter i;
210 	ssize_t bw;
211 
212 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
213 
214 	file_start_write(file);
215 	bw = vfs_iter_write(file, &i, ppos);
216 	file_end_write(file);
217 
218 	if (likely(bw ==  bvec->bv_len))
219 		return 0;
220 
221 	printk_ratelimited(KERN_ERR
222 		"loop: Write error at byte offset %llu, length %i.\n",
223 		(unsigned long long)*ppos, bvec->bv_len);
224 	if (bw >= 0)
225 		bw = -EIO;
226 	return bw;
227 }
228 
229 static int lo_write_simple(struct loop_device *lo, struct request *rq,
230 		loff_t pos)
231 {
232 	struct bio_vec bvec;
233 	struct req_iterator iter;
234 	int ret = 0;
235 
236 	rq_for_each_segment(bvec, rq, iter) {
237 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
238 		if (ret < 0)
239 			break;
240 		cond_resched();
241 	}
242 
243 	return ret;
244 }
245 
246 /*
247  * This is the slow, transforming version that needs to double buffer the
248  * data as it cannot do the transformations in place without having direct
249  * access to the destination pages of the backing file.
250  */
251 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
252 		loff_t pos)
253 {
254 	struct bio_vec bvec, b;
255 	struct req_iterator iter;
256 	struct page *page;
257 	int ret = 0;
258 
259 	page = alloc_page(GFP_NOIO);
260 	if (unlikely(!page))
261 		return -ENOMEM;
262 
263 	rq_for_each_segment(bvec, rq, iter) {
264 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
265 			bvec.bv_offset, bvec.bv_len, pos >> 9);
266 		if (unlikely(ret))
267 			break;
268 
269 		b.bv_page = page;
270 		b.bv_offset = 0;
271 		b.bv_len = bvec.bv_len;
272 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
273 		if (ret < 0)
274 			break;
275 	}
276 
277 	__free_page(page);
278 	return ret;
279 }
280 
281 static int lo_read_simple(struct loop_device *lo, struct request *rq,
282 		loff_t pos)
283 {
284 	struct bio_vec bvec;
285 	struct req_iterator iter;
286 	struct iov_iter i;
287 	ssize_t len;
288 
289 	rq_for_each_segment(bvec, rq, iter) {
290 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
291 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
292 		if (len < 0)
293 			return len;
294 
295 		flush_dcache_page(bvec.bv_page);
296 
297 		if (len != bvec.bv_len) {
298 			struct bio *bio;
299 
300 			__rq_for_each_bio(bio, rq)
301 				zero_fill_bio(bio);
302 			break;
303 		}
304 		cond_resched();
305 	}
306 
307 	return 0;
308 }
309 
310 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
311 		loff_t pos)
312 {
313 	struct bio_vec bvec, b;
314 	struct req_iterator iter;
315 	struct iov_iter i;
316 	struct page *page;
317 	ssize_t len;
318 	int ret = 0;
319 
320 	page = alloc_page(GFP_NOIO);
321 	if (unlikely(!page))
322 		return -ENOMEM;
323 
324 	rq_for_each_segment(bvec, rq, iter) {
325 		loff_t offset = pos;
326 
327 		b.bv_page = page;
328 		b.bv_offset = 0;
329 		b.bv_len = bvec.bv_len;
330 
331 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
332 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
333 		if (len < 0) {
334 			ret = len;
335 			goto out_free_page;
336 		}
337 
338 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
339 			bvec.bv_offset, len, offset >> 9);
340 		if (ret)
341 			goto out_free_page;
342 
343 		flush_dcache_page(bvec.bv_page);
344 
345 		if (len != bvec.bv_len) {
346 			struct bio *bio;
347 
348 			__rq_for_each_bio(bio, rq)
349 				zero_fill_bio(bio);
350 			break;
351 		}
352 	}
353 
354 	ret = 0;
355 out_free_page:
356 	__free_page(page);
357 	return ret;
358 }
359 
360 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
361 {
362 	/*
363 	 * We use punch hole to reclaim the free space used by the
364 	 * image a.k.a. discard. However we do not support discard if
365 	 * encryption is enabled, because it may give an attacker
366 	 * useful information.
367 	 */
368 	struct file *file = lo->lo_backing_file;
369 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
370 	int ret;
371 
372 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
373 		ret = -EOPNOTSUPP;
374 		goto out;
375 	}
376 
377 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
378 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
379 		ret = -EIO;
380  out:
381 	return ret;
382 }
383 
384 static int lo_req_flush(struct loop_device *lo, struct request *rq)
385 {
386 	struct file *file = lo->lo_backing_file;
387 	int ret = vfs_fsync(file, 0);
388 	if (unlikely(ret && ret != -EINVAL))
389 		ret = -EIO;
390 
391 	return ret;
392 }
393 
394 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
395 {
396 	loff_t pos;
397 	int ret;
398 
399 	pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
400 
401 	if (rq->cmd_flags & REQ_WRITE) {
402 		if (rq->cmd_flags & REQ_FLUSH)
403 			ret = lo_req_flush(lo, rq);
404 		else if (rq->cmd_flags & REQ_DISCARD)
405 			ret = lo_discard(lo, rq, pos);
406 		else if (lo->transfer)
407 			ret = lo_write_transfer(lo, rq, pos);
408 		else
409 			ret = lo_write_simple(lo, rq, pos);
410 
411 	} else {
412 		if (lo->transfer)
413 			ret = lo_read_transfer(lo, rq, pos);
414 		else
415 			ret = lo_read_simple(lo, rq, pos);
416 	}
417 
418 	return ret;
419 }
420 
421 struct switch_request {
422 	struct file *file;
423 	struct completion wait;
424 };
425 
426 /*
427  * Do the actual switch; called from the BIO completion routine
428  */
429 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
430 {
431 	struct file *file = p->file;
432 	struct file *old_file = lo->lo_backing_file;
433 	struct address_space *mapping;
434 
435 	/* if no new file, only flush of queued bios requested */
436 	if (!file)
437 		return;
438 
439 	mapping = file->f_mapping;
440 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
441 	lo->lo_backing_file = file;
442 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
443 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
444 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
445 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
446 }
447 
448 /*
449  * loop_switch performs the hard work of switching a backing store.
450  * First it needs to flush existing IO, it does this by sending a magic
451  * BIO down the pipe. The completion of this BIO does the actual switch.
452  */
453 static int loop_switch(struct loop_device *lo, struct file *file)
454 {
455 	struct switch_request w;
456 
457 	w.file = file;
458 
459 	/* freeze queue and wait for completion of scheduled requests */
460 	blk_mq_freeze_queue(lo->lo_queue);
461 
462 	/* do the switch action */
463 	do_loop_switch(lo, &w);
464 
465 	/* unfreeze */
466 	blk_mq_unfreeze_queue(lo->lo_queue);
467 
468 	return 0;
469 }
470 
471 /*
472  * Helper to flush the IOs in loop, but keeping loop thread running
473  */
474 static int loop_flush(struct loop_device *lo)
475 {
476 	return loop_switch(lo, NULL);
477 }
478 
479 /*
480  * loop_change_fd switched the backing store of a loopback device to
481  * a new file. This is useful for operating system installers to free up
482  * the original file and in High Availability environments to switch to
483  * an alternative location for the content in case of server meltdown.
484  * This can only work if the loop device is used read-only, and if the
485  * new backing store is the same size and type as the old backing store.
486  */
487 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
488 			  unsigned int arg)
489 {
490 	struct file	*file, *old_file;
491 	struct inode	*inode;
492 	int		error;
493 
494 	error = -ENXIO;
495 	if (lo->lo_state != Lo_bound)
496 		goto out;
497 
498 	/* the loop device has to be read-only */
499 	error = -EINVAL;
500 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
501 		goto out;
502 
503 	error = -EBADF;
504 	file = fget(arg);
505 	if (!file)
506 		goto out;
507 
508 	inode = file->f_mapping->host;
509 	old_file = lo->lo_backing_file;
510 
511 	error = -EINVAL;
512 
513 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
514 		goto out_putf;
515 
516 	/* size of the new backing store needs to be the same */
517 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
518 		goto out_putf;
519 
520 	/* and ... switch */
521 	error = loop_switch(lo, file);
522 	if (error)
523 		goto out_putf;
524 
525 	fput(old_file);
526 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
527 		ioctl_by_bdev(bdev, BLKRRPART, 0);
528 	return 0;
529 
530  out_putf:
531 	fput(file);
532  out:
533 	return error;
534 }
535 
536 static inline int is_loop_device(struct file *file)
537 {
538 	struct inode *i = file->f_mapping->host;
539 
540 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
541 }
542 
543 /* loop sysfs attributes */
544 
545 static ssize_t loop_attr_show(struct device *dev, char *page,
546 			      ssize_t (*callback)(struct loop_device *, char *))
547 {
548 	struct gendisk *disk = dev_to_disk(dev);
549 	struct loop_device *lo = disk->private_data;
550 
551 	return callback(lo, page);
552 }
553 
554 #define LOOP_ATTR_RO(_name)						\
555 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
556 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
557 				struct device_attribute *attr, char *b)	\
558 {									\
559 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
560 }									\
561 static struct device_attribute loop_attr_##_name =			\
562 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
563 
564 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
565 {
566 	ssize_t ret;
567 	char *p = NULL;
568 
569 	spin_lock_irq(&lo->lo_lock);
570 	if (lo->lo_backing_file)
571 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
572 	spin_unlock_irq(&lo->lo_lock);
573 
574 	if (IS_ERR_OR_NULL(p))
575 		ret = PTR_ERR(p);
576 	else {
577 		ret = strlen(p);
578 		memmove(buf, p, ret);
579 		buf[ret++] = '\n';
580 		buf[ret] = 0;
581 	}
582 
583 	return ret;
584 }
585 
586 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
587 {
588 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
589 }
590 
591 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
592 {
593 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
594 }
595 
596 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
597 {
598 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
599 
600 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
601 }
602 
603 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
604 {
605 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
606 
607 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
608 }
609 
610 LOOP_ATTR_RO(backing_file);
611 LOOP_ATTR_RO(offset);
612 LOOP_ATTR_RO(sizelimit);
613 LOOP_ATTR_RO(autoclear);
614 LOOP_ATTR_RO(partscan);
615 
616 static struct attribute *loop_attrs[] = {
617 	&loop_attr_backing_file.attr,
618 	&loop_attr_offset.attr,
619 	&loop_attr_sizelimit.attr,
620 	&loop_attr_autoclear.attr,
621 	&loop_attr_partscan.attr,
622 	NULL,
623 };
624 
625 static struct attribute_group loop_attribute_group = {
626 	.name = "loop",
627 	.attrs= loop_attrs,
628 };
629 
630 static int loop_sysfs_init(struct loop_device *lo)
631 {
632 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
633 				  &loop_attribute_group);
634 }
635 
636 static void loop_sysfs_exit(struct loop_device *lo)
637 {
638 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
639 			   &loop_attribute_group);
640 }
641 
642 static void loop_config_discard(struct loop_device *lo)
643 {
644 	struct file *file = lo->lo_backing_file;
645 	struct inode *inode = file->f_mapping->host;
646 	struct request_queue *q = lo->lo_queue;
647 
648 	/*
649 	 * We use punch hole to reclaim the free space used by the
650 	 * image a.k.a. discard. However we do not support discard if
651 	 * encryption is enabled, because it may give an attacker
652 	 * useful information.
653 	 */
654 	if ((!file->f_op->fallocate) ||
655 	    lo->lo_encrypt_key_size) {
656 		q->limits.discard_granularity = 0;
657 		q->limits.discard_alignment = 0;
658 		q->limits.max_discard_sectors = 0;
659 		q->limits.discard_zeroes_data = 0;
660 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
661 		return;
662 	}
663 
664 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
665 	q->limits.discard_alignment = 0;
666 	q->limits.max_discard_sectors = UINT_MAX >> 9;
667 	q->limits.discard_zeroes_data = 1;
668 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
669 }
670 
671 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
672 		       struct block_device *bdev, unsigned int arg)
673 {
674 	struct file	*file, *f;
675 	struct inode	*inode;
676 	struct address_space *mapping;
677 	unsigned lo_blocksize;
678 	int		lo_flags = 0;
679 	int		error;
680 	loff_t		size;
681 
682 	/* This is safe, since we have a reference from open(). */
683 	__module_get(THIS_MODULE);
684 
685 	error = -EBADF;
686 	file = fget(arg);
687 	if (!file)
688 		goto out;
689 
690 	error = -EBUSY;
691 	if (lo->lo_state != Lo_unbound)
692 		goto out_putf;
693 
694 	/* Avoid recursion */
695 	f = file;
696 	while (is_loop_device(f)) {
697 		struct loop_device *l;
698 
699 		if (f->f_mapping->host->i_bdev == bdev)
700 			goto out_putf;
701 
702 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
703 		if (l->lo_state == Lo_unbound) {
704 			error = -EINVAL;
705 			goto out_putf;
706 		}
707 		f = l->lo_backing_file;
708 	}
709 
710 	mapping = file->f_mapping;
711 	inode = mapping->host;
712 
713 	error = -EINVAL;
714 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
715 		goto out_putf;
716 
717 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
718 	    !file->f_op->write_iter)
719 		lo_flags |= LO_FLAGS_READ_ONLY;
720 
721 	lo_blocksize = S_ISBLK(inode->i_mode) ?
722 		inode->i_bdev->bd_block_size : PAGE_SIZE;
723 
724 	error = -EFBIG;
725 	size = get_loop_size(lo, file);
726 	if ((loff_t)(sector_t)size != size)
727 		goto out_putf;
728 
729 	error = 0;
730 
731 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
732 
733 	lo->lo_blocksize = lo_blocksize;
734 	lo->lo_device = bdev;
735 	lo->lo_flags = lo_flags;
736 	lo->lo_backing_file = file;
737 	lo->transfer = NULL;
738 	lo->ioctl = NULL;
739 	lo->lo_sizelimit = 0;
740 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
741 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
742 
743 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
744 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
745 
746 	set_capacity(lo->lo_disk, size);
747 	bd_set_size(bdev, size << 9);
748 	loop_sysfs_init(lo);
749 	/* let user-space know about the new size */
750 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
751 
752 	set_blocksize(bdev, lo_blocksize);
753 
754 	lo->lo_state = Lo_bound;
755 	if (part_shift)
756 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
757 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
758 		ioctl_by_bdev(bdev, BLKRRPART, 0);
759 
760 	/* Grab the block_device to prevent its destruction after we
761 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
762 	 */
763 	bdgrab(bdev);
764 	return 0;
765 
766  out_putf:
767 	fput(file);
768  out:
769 	/* This is safe: open() is still holding a reference. */
770 	module_put(THIS_MODULE);
771 	return error;
772 }
773 
774 static int
775 loop_release_xfer(struct loop_device *lo)
776 {
777 	int err = 0;
778 	struct loop_func_table *xfer = lo->lo_encryption;
779 
780 	if (xfer) {
781 		if (xfer->release)
782 			err = xfer->release(lo);
783 		lo->transfer = NULL;
784 		lo->lo_encryption = NULL;
785 		module_put(xfer->owner);
786 	}
787 	return err;
788 }
789 
790 static int
791 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
792 	       const struct loop_info64 *i)
793 {
794 	int err = 0;
795 
796 	if (xfer) {
797 		struct module *owner = xfer->owner;
798 
799 		if (!try_module_get(owner))
800 			return -EINVAL;
801 		if (xfer->init)
802 			err = xfer->init(lo, i);
803 		if (err)
804 			module_put(owner);
805 		else
806 			lo->lo_encryption = xfer;
807 	}
808 	return err;
809 }
810 
811 static int loop_clr_fd(struct loop_device *lo)
812 {
813 	struct file *filp = lo->lo_backing_file;
814 	gfp_t gfp = lo->old_gfp_mask;
815 	struct block_device *bdev = lo->lo_device;
816 
817 	if (lo->lo_state != Lo_bound)
818 		return -ENXIO;
819 
820 	/*
821 	 * If we've explicitly asked to tear down the loop device,
822 	 * and it has an elevated reference count, set it for auto-teardown when
823 	 * the last reference goes away. This stops $!~#$@ udev from
824 	 * preventing teardown because it decided that it needs to run blkid on
825 	 * the loopback device whenever they appear. xfstests is notorious for
826 	 * failing tests because blkid via udev races with a losetup
827 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
828 	 * command to fail with EBUSY.
829 	 */
830 	if (lo->lo_refcnt > 1) {
831 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
832 		mutex_unlock(&lo->lo_ctl_mutex);
833 		return 0;
834 	}
835 
836 	if (filp == NULL)
837 		return -EINVAL;
838 
839 	spin_lock_irq(&lo->lo_lock);
840 	lo->lo_state = Lo_rundown;
841 	lo->lo_backing_file = NULL;
842 	spin_unlock_irq(&lo->lo_lock);
843 
844 	loop_release_xfer(lo);
845 	lo->transfer = NULL;
846 	lo->ioctl = NULL;
847 	lo->lo_device = NULL;
848 	lo->lo_encryption = NULL;
849 	lo->lo_offset = 0;
850 	lo->lo_sizelimit = 0;
851 	lo->lo_encrypt_key_size = 0;
852 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
853 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
854 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
855 	if (bdev) {
856 		bdput(bdev);
857 		invalidate_bdev(bdev);
858 	}
859 	set_capacity(lo->lo_disk, 0);
860 	loop_sysfs_exit(lo);
861 	if (bdev) {
862 		bd_set_size(bdev, 0);
863 		/* let user-space know about this change */
864 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
865 	}
866 	mapping_set_gfp_mask(filp->f_mapping, gfp);
867 	lo->lo_state = Lo_unbound;
868 	/* This is safe: open() is still holding a reference. */
869 	module_put(THIS_MODULE);
870 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
871 		ioctl_by_bdev(bdev, BLKRRPART, 0);
872 	lo->lo_flags = 0;
873 	if (!part_shift)
874 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
875 	mutex_unlock(&lo->lo_ctl_mutex);
876 	/*
877 	 * Need not hold lo_ctl_mutex to fput backing file.
878 	 * Calling fput holding lo_ctl_mutex triggers a circular
879 	 * lock dependency possibility warning as fput can take
880 	 * bd_mutex which is usually taken before lo_ctl_mutex.
881 	 */
882 	fput(filp);
883 	return 0;
884 }
885 
886 static int
887 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
888 {
889 	int err;
890 	struct loop_func_table *xfer;
891 	kuid_t uid = current_uid();
892 
893 	if (lo->lo_encrypt_key_size &&
894 	    !uid_eq(lo->lo_key_owner, uid) &&
895 	    !capable(CAP_SYS_ADMIN))
896 		return -EPERM;
897 	if (lo->lo_state != Lo_bound)
898 		return -ENXIO;
899 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
900 		return -EINVAL;
901 
902 	err = loop_release_xfer(lo);
903 	if (err)
904 		return err;
905 
906 	if (info->lo_encrypt_type) {
907 		unsigned int type = info->lo_encrypt_type;
908 
909 		if (type >= MAX_LO_CRYPT)
910 			return -EINVAL;
911 		xfer = xfer_funcs[type];
912 		if (xfer == NULL)
913 			return -EINVAL;
914 	} else
915 		xfer = NULL;
916 
917 	err = loop_init_xfer(lo, xfer, info);
918 	if (err)
919 		return err;
920 
921 	if (lo->lo_offset != info->lo_offset ||
922 	    lo->lo_sizelimit != info->lo_sizelimit)
923 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
924 			return -EFBIG;
925 
926 	loop_config_discard(lo);
927 
928 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
929 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
930 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
931 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
932 
933 	if (!xfer)
934 		xfer = &none_funcs;
935 	lo->transfer = xfer->transfer;
936 	lo->ioctl = xfer->ioctl;
937 
938 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
939 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
940 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
941 
942 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
943 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
944 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
945 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
946 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
947 	}
948 
949 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
950 	lo->lo_init[0] = info->lo_init[0];
951 	lo->lo_init[1] = info->lo_init[1];
952 	if (info->lo_encrypt_key_size) {
953 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
954 		       info->lo_encrypt_key_size);
955 		lo->lo_key_owner = uid;
956 	}
957 
958 	return 0;
959 }
960 
961 static int
962 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
963 {
964 	struct file *file = lo->lo_backing_file;
965 	struct kstat stat;
966 	int error;
967 
968 	if (lo->lo_state != Lo_bound)
969 		return -ENXIO;
970 	error = vfs_getattr(&file->f_path, &stat);
971 	if (error)
972 		return error;
973 	memset(info, 0, sizeof(*info));
974 	info->lo_number = lo->lo_number;
975 	info->lo_device = huge_encode_dev(stat.dev);
976 	info->lo_inode = stat.ino;
977 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
978 	info->lo_offset = lo->lo_offset;
979 	info->lo_sizelimit = lo->lo_sizelimit;
980 	info->lo_flags = lo->lo_flags;
981 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
982 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
983 	info->lo_encrypt_type =
984 		lo->lo_encryption ? lo->lo_encryption->number : 0;
985 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
986 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
987 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
988 		       lo->lo_encrypt_key_size);
989 	}
990 	return 0;
991 }
992 
993 static void
994 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
995 {
996 	memset(info64, 0, sizeof(*info64));
997 	info64->lo_number = info->lo_number;
998 	info64->lo_device = info->lo_device;
999 	info64->lo_inode = info->lo_inode;
1000 	info64->lo_rdevice = info->lo_rdevice;
1001 	info64->lo_offset = info->lo_offset;
1002 	info64->lo_sizelimit = 0;
1003 	info64->lo_encrypt_type = info->lo_encrypt_type;
1004 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1005 	info64->lo_flags = info->lo_flags;
1006 	info64->lo_init[0] = info->lo_init[0];
1007 	info64->lo_init[1] = info->lo_init[1];
1008 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1009 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1010 	else
1011 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1012 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1013 }
1014 
1015 static int
1016 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1017 {
1018 	memset(info, 0, sizeof(*info));
1019 	info->lo_number = info64->lo_number;
1020 	info->lo_device = info64->lo_device;
1021 	info->lo_inode = info64->lo_inode;
1022 	info->lo_rdevice = info64->lo_rdevice;
1023 	info->lo_offset = info64->lo_offset;
1024 	info->lo_encrypt_type = info64->lo_encrypt_type;
1025 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1026 	info->lo_flags = info64->lo_flags;
1027 	info->lo_init[0] = info64->lo_init[0];
1028 	info->lo_init[1] = info64->lo_init[1];
1029 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1030 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1031 	else
1032 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1033 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1034 
1035 	/* error in case values were truncated */
1036 	if (info->lo_device != info64->lo_device ||
1037 	    info->lo_rdevice != info64->lo_rdevice ||
1038 	    info->lo_inode != info64->lo_inode ||
1039 	    info->lo_offset != info64->lo_offset)
1040 		return -EOVERFLOW;
1041 
1042 	return 0;
1043 }
1044 
1045 static int
1046 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1047 {
1048 	struct loop_info info;
1049 	struct loop_info64 info64;
1050 
1051 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1052 		return -EFAULT;
1053 	loop_info64_from_old(&info, &info64);
1054 	return loop_set_status(lo, &info64);
1055 }
1056 
1057 static int
1058 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1059 {
1060 	struct loop_info64 info64;
1061 
1062 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1063 		return -EFAULT;
1064 	return loop_set_status(lo, &info64);
1065 }
1066 
1067 static int
1068 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1069 	struct loop_info info;
1070 	struct loop_info64 info64;
1071 	int err = 0;
1072 
1073 	if (!arg)
1074 		err = -EINVAL;
1075 	if (!err)
1076 		err = loop_get_status(lo, &info64);
1077 	if (!err)
1078 		err = loop_info64_to_old(&info64, &info);
1079 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1080 		err = -EFAULT;
1081 
1082 	return err;
1083 }
1084 
1085 static int
1086 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1087 	struct loop_info64 info64;
1088 	int err = 0;
1089 
1090 	if (!arg)
1091 		err = -EINVAL;
1092 	if (!err)
1093 		err = loop_get_status(lo, &info64);
1094 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1095 		err = -EFAULT;
1096 
1097 	return err;
1098 }
1099 
1100 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1101 {
1102 	if (unlikely(lo->lo_state != Lo_bound))
1103 		return -ENXIO;
1104 
1105 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1106 }
1107 
1108 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1109 	unsigned int cmd, unsigned long arg)
1110 {
1111 	struct loop_device *lo = bdev->bd_disk->private_data;
1112 	int err;
1113 
1114 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1115 	switch (cmd) {
1116 	case LOOP_SET_FD:
1117 		err = loop_set_fd(lo, mode, bdev, arg);
1118 		break;
1119 	case LOOP_CHANGE_FD:
1120 		err = loop_change_fd(lo, bdev, arg);
1121 		break;
1122 	case LOOP_CLR_FD:
1123 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1124 		err = loop_clr_fd(lo);
1125 		if (!err)
1126 			goto out_unlocked;
1127 		break;
1128 	case LOOP_SET_STATUS:
1129 		err = -EPERM;
1130 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1131 			err = loop_set_status_old(lo,
1132 					(struct loop_info __user *)arg);
1133 		break;
1134 	case LOOP_GET_STATUS:
1135 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1136 		break;
1137 	case LOOP_SET_STATUS64:
1138 		err = -EPERM;
1139 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1140 			err = loop_set_status64(lo,
1141 					(struct loop_info64 __user *) arg);
1142 		break;
1143 	case LOOP_GET_STATUS64:
1144 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1145 		break;
1146 	case LOOP_SET_CAPACITY:
1147 		err = -EPERM;
1148 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1149 			err = loop_set_capacity(lo, bdev);
1150 		break;
1151 	default:
1152 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1153 	}
1154 	mutex_unlock(&lo->lo_ctl_mutex);
1155 
1156 out_unlocked:
1157 	return err;
1158 }
1159 
1160 #ifdef CONFIG_COMPAT
1161 struct compat_loop_info {
1162 	compat_int_t	lo_number;      /* ioctl r/o */
1163 	compat_dev_t	lo_device;      /* ioctl r/o */
1164 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1165 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1166 	compat_int_t	lo_offset;
1167 	compat_int_t	lo_encrypt_type;
1168 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1169 	compat_int_t	lo_flags;       /* ioctl r/o */
1170 	char		lo_name[LO_NAME_SIZE];
1171 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1172 	compat_ulong_t	lo_init[2];
1173 	char		reserved[4];
1174 };
1175 
1176 /*
1177  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1178  * - noinlined to reduce stack space usage in main part of driver
1179  */
1180 static noinline int
1181 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1182 			struct loop_info64 *info64)
1183 {
1184 	struct compat_loop_info info;
1185 
1186 	if (copy_from_user(&info, arg, sizeof(info)))
1187 		return -EFAULT;
1188 
1189 	memset(info64, 0, sizeof(*info64));
1190 	info64->lo_number = info.lo_number;
1191 	info64->lo_device = info.lo_device;
1192 	info64->lo_inode = info.lo_inode;
1193 	info64->lo_rdevice = info.lo_rdevice;
1194 	info64->lo_offset = info.lo_offset;
1195 	info64->lo_sizelimit = 0;
1196 	info64->lo_encrypt_type = info.lo_encrypt_type;
1197 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1198 	info64->lo_flags = info.lo_flags;
1199 	info64->lo_init[0] = info.lo_init[0];
1200 	info64->lo_init[1] = info.lo_init[1];
1201 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1202 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1203 	else
1204 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1205 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1211  * - noinlined to reduce stack space usage in main part of driver
1212  */
1213 static noinline int
1214 loop_info64_to_compat(const struct loop_info64 *info64,
1215 		      struct compat_loop_info __user *arg)
1216 {
1217 	struct compat_loop_info info;
1218 
1219 	memset(&info, 0, sizeof(info));
1220 	info.lo_number = info64->lo_number;
1221 	info.lo_device = info64->lo_device;
1222 	info.lo_inode = info64->lo_inode;
1223 	info.lo_rdevice = info64->lo_rdevice;
1224 	info.lo_offset = info64->lo_offset;
1225 	info.lo_encrypt_type = info64->lo_encrypt_type;
1226 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1227 	info.lo_flags = info64->lo_flags;
1228 	info.lo_init[0] = info64->lo_init[0];
1229 	info.lo_init[1] = info64->lo_init[1];
1230 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1231 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1232 	else
1233 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1234 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1235 
1236 	/* error in case values were truncated */
1237 	if (info.lo_device != info64->lo_device ||
1238 	    info.lo_rdevice != info64->lo_rdevice ||
1239 	    info.lo_inode != info64->lo_inode ||
1240 	    info.lo_offset != info64->lo_offset ||
1241 	    info.lo_init[0] != info64->lo_init[0] ||
1242 	    info.lo_init[1] != info64->lo_init[1])
1243 		return -EOVERFLOW;
1244 
1245 	if (copy_to_user(arg, &info, sizeof(info)))
1246 		return -EFAULT;
1247 	return 0;
1248 }
1249 
1250 static int
1251 loop_set_status_compat(struct loop_device *lo,
1252 		       const struct compat_loop_info __user *arg)
1253 {
1254 	struct loop_info64 info64;
1255 	int ret;
1256 
1257 	ret = loop_info64_from_compat(arg, &info64);
1258 	if (ret < 0)
1259 		return ret;
1260 	return loop_set_status(lo, &info64);
1261 }
1262 
1263 static int
1264 loop_get_status_compat(struct loop_device *lo,
1265 		       struct compat_loop_info __user *arg)
1266 {
1267 	struct loop_info64 info64;
1268 	int err = 0;
1269 
1270 	if (!arg)
1271 		err = -EINVAL;
1272 	if (!err)
1273 		err = loop_get_status(lo, &info64);
1274 	if (!err)
1275 		err = loop_info64_to_compat(&info64, arg);
1276 	return err;
1277 }
1278 
1279 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1280 			   unsigned int cmd, unsigned long arg)
1281 {
1282 	struct loop_device *lo = bdev->bd_disk->private_data;
1283 	int err;
1284 
1285 	switch(cmd) {
1286 	case LOOP_SET_STATUS:
1287 		mutex_lock(&lo->lo_ctl_mutex);
1288 		err = loop_set_status_compat(
1289 			lo, (const struct compat_loop_info __user *) arg);
1290 		mutex_unlock(&lo->lo_ctl_mutex);
1291 		break;
1292 	case LOOP_GET_STATUS:
1293 		mutex_lock(&lo->lo_ctl_mutex);
1294 		err = loop_get_status_compat(
1295 			lo, (struct compat_loop_info __user *) arg);
1296 		mutex_unlock(&lo->lo_ctl_mutex);
1297 		break;
1298 	case LOOP_SET_CAPACITY:
1299 	case LOOP_CLR_FD:
1300 	case LOOP_GET_STATUS64:
1301 	case LOOP_SET_STATUS64:
1302 		arg = (unsigned long) compat_ptr(arg);
1303 	case LOOP_SET_FD:
1304 	case LOOP_CHANGE_FD:
1305 		err = lo_ioctl(bdev, mode, cmd, arg);
1306 		break;
1307 	default:
1308 		err = -ENOIOCTLCMD;
1309 		break;
1310 	}
1311 	return err;
1312 }
1313 #endif
1314 
1315 static int lo_open(struct block_device *bdev, fmode_t mode)
1316 {
1317 	struct loop_device *lo;
1318 	int err = 0;
1319 
1320 	mutex_lock(&loop_index_mutex);
1321 	lo = bdev->bd_disk->private_data;
1322 	if (!lo) {
1323 		err = -ENXIO;
1324 		goto out;
1325 	}
1326 
1327 	mutex_lock(&lo->lo_ctl_mutex);
1328 	lo->lo_refcnt++;
1329 	mutex_unlock(&lo->lo_ctl_mutex);
1330 out:
1331 	mutex_unlock(&loop_index_mutex);
1332 	return err;
1333 }
1334 
1335 static void lo_release(struct gendisk *disk, fmode_t mode)
1336 {
1337 	struct loop_device *lo = disk->private_data;
1338 	int err;
1339 
1340 	mutex_lock(&lo->lo_ctl_mutex);
1341 
1342 	if (--lo->lo_refcnt)
1343 		goto out;
1344 
1345 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1346 		/*
1347 		 * In autoclear mode, stop the loop thread
1348 		 * and remove configuration after last close.
1349 		 */
1350 		err = loop_clr_fd(lo);
1351 		if (!err)
1352 			return;
1353 	} else {
1354 		/*
1355 		 * Otherwise keep thread (if running) and config,
1356 		 * but flush possible ongoing bios in thread.
1357 		 */
1358 		loop_flush(lo);
1359 	}
1360 
1361 out:
1362 	mutex_unlock(&lo->lo_ctl_mutex);
1363 }
1364 
1365 static const struct block_device_operations lo_fops = {
1366 	.owner =	THIS_MODULE,
1367 	.open =		lo_open,
1368 	.release =	lo_release,
1369 	.ioctl =	lo_ioctl,
1370 #ifdef CONFIG_COMPAT
1371 	.compat_ioctl =	lo_compat_ioctl,
1372 #endif
1373 };
1374 
1375 /*
1376  * And now the modules code and kernel interface.
1377  */
1378 static int max_loop;
1379 module_param(max_loop, int, S_IRUGO);
1380 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1381 module_param(max_part, int, S_IRUGO);
1382 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1383 MODULE_LICENSE("GPL");
1384 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1385 
1386 int loop_register_transfer(struct loop_func_table *funcs)
1387 {
1388 	unsigned int n = funcs->number;
1389 
1390 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1391 		return -EINVAL;
1392 	xfer_funcs[n] = funcs;
1393 	return 0;
1394 }
1395 
1396 static int unregister_transfer_cb(int id, void *ptr, void *data)
1397 {
1398 	struct loop_device *lo = ptr;
1399 	struct loop_func_table *xfer = data;
1400 
1401 	mutex_lock(&lo->lo_ctl_mutex);
1402 	if (lo->lo_encryption == xfer)
1403 		loop_release_xfer(lo);
1404 	mutex_unlock(&lo->lo_ctl_mutex);
1405 	return 0;
1406 }
1407 
1408 int loop_unregister_transfer(int number)
1409 {
1410 	unsigned int n = number;
1411 	struct loop_func_table *xfer;
1412 
1413 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1414 		return -EINVAL;
1415 
1416 	xfer_funcs[n] = NULL;
1417 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1418 	return 0;
1419 }
1420 
1421 EXPORT_SYMBOL(loop_register_transfer);
1422 EXPORT_SYMBOL(loop_unregister_transfer);
1423 
1424 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1425 		const struct blk_mq_queue_data *bd)
1426 {
1427 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1428 
1429 	blk_mq_start_request(bd->rq);
1430 
1431 	if (cmd->rq->cmd_flags & REQ_WRITE) {
1432 		struct loop_device *lo = cmd->rq->q->queuedata;
1433 		bool need_sched = true;
1434 
1435 		spin_lock_irq(&lo->lo_lock);
1436 		if (lo->write_started)
1437 			need_sched = false;
1438 		else
1439 			lo->write_started = true;
1440 		list_add_tail(&cmd->list, &lo->write_cmd_head);
1441 		spin_unlock_irq(&lo->lo_lock);
1442 
1443 		if (need_sched)
1444 			queue_work(loop_wq, &lo->write_work);
1445 	} else {
1446 		queue_work(loop_wq, &cmd->read_work);
1447 	}
1448 
1449 	return BLK_MQ_RQ_QUEUE_OK;
1450 }
1451 
1452 static void loop_handle_cmd(struct loop_cmd *cmd)
1453 {
1454 	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1455 	struct loop_device *lo = cmd->rq->q->queuedata;
1456 	int ret = -EIO;
1457 
1458 	if (lo->lo_state != Lo_bound)
1459 		goto failed;
1460 
1461 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1462 		goto failed;
1463 
1464 	ret = do_req_filebacked(lo, cmd->rq);
1465 
1466  failed:
1467 	if (ret)
1468 		cmd->rq->errors = -EIO;
1469 	blk_mq_complete_request(cmd->rq);
1470 }
1471 
1472 static void loop_queue_write_work(struct work_struct *work)
1473 {
1474 	struct loop_device *lo =
1475 		container_of(work, struct loop_device, write_work);
1476 	LIST_HEAD(cmd_list);
1477 
1478 	spin_lock_irq(&lo->lo_lock);
1479  repeat:
1480 	list_splice_init(&lo->write_cmd_head, &cmd_list);
1481 	spin_unlock_irq(&lo->lo_lock);
1482 
1483 	while (!list_empty(&cmd_list)) {
1484 		struct loop_cmd *cmd = list_first_entry(&cmd_list,
1485 				struct loop_cmd, list);
1486 		list_del_init(&cmd->list);
1487 		loop_handle_cmd(cmd);
1488 	}
1489 
1490 	spin_lock_irq(&lo->lo_lock);
1491 	if (!list_empty(&lo->write_cmd_head))
1492 		goto repeat;
1493 	lo->write_started = false;
1494 	spin_unlock_irq(&lo->lo_lock);
1495 }
1496 
1497 static void loop_queue_read_work(struct work_struct *work)
1498 {
1499 	struct loop_cmd *cmd =
1500 		container_of(work, struct loop_cmd, read_work);
1501 
1502 	loop_handle_cmd(cmd);
1503 }
1504 
1505 static int loop_init_request(void *data, struct request *rq,
1506 		unsigned int hctx_idx, unsigned int request_idx,
1507 		unsigned int numa_node)
1508 {
1509 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1510 
1511 	cmd->rq = rq;
1512 	INIT_WORK(&cmd->read_work, loop_queue_read_work);
1513 
1514 	return 0;
1515 }
1516 
1517 static struct blk_mq_ops loop_mq_ops = {
1518 	.queue_rq       = loop_queue_rq,
1519 	.map_queue      = blk_mq_map_queue,
1520 	.init_request	= loop_init_request,
1521 };
1522 
1523 static int loop_add(struct loop_device **l, int i)
1524 {
1525 	struct loop_device *lo;
1526 	struct gendisk *disk;
1527 	int err;
1528 
1529 	err = -ENOMEM;
1530 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1531 	if (!lo)
1532 		goto out;
1533 
1534 	lo->lo_state = Lo_unbound;
1535 
1536 	/* allocate id, if @id >= 0, we're requesting that specific id */
1537 	if (i >= 0) {
1538 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1539 		if (err == -ENOSPC)
1540 			err = -EEXIST;
1541 	} else {
1542 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1543 	}
1544 	if (err < 0)
1545 		goto out_free_dev;
1546 	i = err;
1547 
1548 	err = -ENOMEM;
1549 	lo->tag_set.ops = &loop_mq_ops;
1550 	lo->tag_set.nr_hw_queues = 1;
1551 	lo->tag_set.queue_depth = 128;
1552 	lo->tag_set.numa_node = NUMA_NO_NODE;
1553 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1554 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1555 	lo->tag_set.driver_data = lo;
1556 
1557 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1558 	if (err)
1559 		goto out_free_idr;
1560 
1561 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1562 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1563 		err = PTR_ERR(lo->lo_queue);
1564 		goto out_cleanup_tags;
1565 	}
1566 	lo->lo_queue->queuedata = lo;
1567 
1568 	INIT_LIST_HEAD(&lo->write_cmd_head);
1569 	INIT_WORK(&lo->write_work, loop_queue_write_work);
1570 
1571 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1572 	if (!disk)
1573 		goto out_free_queue;
1574 
1575 	/*
1576 	 * Disable partition scanning by default. The in-kernel partition
1577 	 * scanning can be requested individually per-device during its
1578 	 * setup. Userspace can always add and remove partitions from all
1579 	 * devices. The needed partition minors are allocated from the
1580 	 * extended minor space, the main loop device numbers will continue
1581 	 * to match the loop minors, regardless of the number of partitions
1582 	 * used.
1583 	 *
1584 	 * If max_part is given, partition scanning is globally enabled for
1585 	 * all loop devices. The minors for the main loop devices will be
1586 	 * multiples of max_part.
1587 	 *
1588 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1589 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1590 	 * complicated, are too static, inflexible and may surprise
1591 	 * userspace tools. Parameters like this in general should be avoided.
1592 	 */
1593 	if (!part_shift)
1594 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1595 	disk->flags |= GENHD_FL_EXT_DEVT;
1596 	mutex_init(&lo->lo_ctl_mutex);
1597 	lo->lo_number		= i;
1598 	spin_lock_init(&lo->lo_lock);
1599 	disk->major		= LOOP_MAJOR;
1600 	disk->first_minor	= i << part_shift;
1601 	disk->fops		= &lo_fops;
1602 	disk->private_data	= lo;
1603 	disk->queue		= lo->lo_queue;
1604 	sprintf(disk->disk_name, "loop%d", i);
1605 	add_disk(disk);
1606 	*l = lo;
1607 	return lo->lo_number;
1608 
1609 out_free_queue:
1610 	blk_cleanup_queue(lo->lo_queue);
1611 out_cleanup_tags:
1612 	blk_mq_free_tag_set(&lo->tag_set);
1613 out_free_idr:
1614 	idr_remove(&loop_index_idr, i);
1615 out_free_dev:
1616 	kfree(lo);
1617 out:
1618 	return err;
1619 }
1620 
1621 static void loop_remove(struct loop_device *lo)
1622 {
1623 	del_gendisk(lo->lo_disk);
1624 	blk_cleanup_queue(lo->lo_queue);
1625 	blk_mq_free_tag_set(&lo->tag_set);
1626 	put_disk(lo->lo_disk);
1627 	kfree(lo);
1628 }
1629 
1630 static int find_free_cb(int id, void *ptr, void *data)
1631 {
1632 	struct loop_device *lo = ptr;
1633 	struct loop_device **l = data;
1634 
1635 	if (lo->lo_state == Lo_unbound) {
1636 		*l = lo;
1637 		return 1;
1638 	}
1639 	return 0;
1640 }
1641 
1642 static int loop_lookup(struct loop_device **l, int i)
1643 {
1644 	struct loop_device *lo;
1645 	int ret = -ENODEV;
1646 
1647 	if (i < 0) {
1648 		int err;
1649 
1650 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1651 		if (err == 1) {
1652 			*l = lo;
1653 			ret = lo->lo_number;
1654 		}
1655 		goto out;
1656 	}
1657 
1658 	/* lookup and return a specific i */
1659 	lo = idr_find(&loop_index_idr, i);
1660 	if (lo) {
1661 		*l = lo;
1662 		ret = lo->lo_number;
1663 	}
1664 out:
1665 	return ret;
1666 }
1667 
1668 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1669 {
1670 	struct loop_device *lo;
1671 	struct kobject *kobj;
1672 	int err;
1673 
1674 	mutex_lock(&loop_index_mutex);
1675 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1676 	if (err < 0)
1677 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1678 	if (err < 0)
1679 		kobj = NULL;
1680 	else
1681 		kobj = get_disk(lo->lo_disk);
1682 	mutex_unlock(&loop_index_mutex);
1683 
1684 	*part = 0;
1685 	return kobj;
1686 }
1687 
1688 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1689 			       unsigned long parm)
1690 {
1691 	struct loop_device *lo;
1692 	int ret = -ENOSYS;
1693 
1694 	mutex_lock(&loop_index_mutex);
1695 	switch (cmd) {
1696 	case LOOP_CTL_ADD:
1697 		ret = loop_lookup(&lo, parm);
1698 		if (ret >= 0) {
1699 			ret = -EEXIST;
1700 			break;
1701 		}
1702 		ret = loop_add(&lo, parm);
1703 		break;
1704 	case LOOP_CTL_REMOVE:
1705 		ret = loop_lookup(&lo, parm);
1706 		if (ret < 0)
1707 			break;
1708 		mutex_lock(&lo->lo_ctl_mutex);
1709 		if (lo->lo_state != Lo_unbound) {
1710 			ret = -EBUSY;
1711 			mutex_unlock(&lo->lo_ctl_mutex);
1712 			break;
1713 		}
1714 		if (lo->lo_refcnt > 0) {
1715 			ret = -EBUSY;
1716 			mutex_unlock(&lo->lo_ctl_mutex);
1717 			break;
1718 		}
1719 		lo->lo_disk->private_data = NULL;
1720 		mutex_unlock(&lo->lo_ctl_mutex);
1721 		idr_remove(&loop_index_idr, lo->lo_number);
1722 		loop_remove(lo);
1723 		break;
1724 	case LOOP_CTL_GET_FREE:
1725 		ret = loop_lookup(&lo, -1);
1726 		if (ret >= 0)
1727 			break;
1728 		ret = loop_add(&lo, -1);
1729 	}
1730 	mutex_unlock(&loop_index_mutex);
1731 
1732 	return ret;
1733 }
1734 
1735 static const struct file_operations loop_ctl_fops = {
1736 	.open		= nonseekable_open,
1737 	.unlocked_ioctl	= loop_control_ioctl,
1738 	.compat_ioctl	= loop_control_ioctl,
1739 	.owner		= THIS_MODULE,
1740 	.llseek		= noop_llseek,
1741 };
1742 
1743 static struct miscdevice loop_misc = {
1744 	.minor		= LOOP_CTRL_MINOR,
1745 	.name		= "loop-control",
1746 	.fops		= &loop_ctl_fops,
1747 };
1748 
1749 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1750 MODULE_ALIAS("devname:loop-control");
1751 
1752 static int __init loop_init(void)
1753 {
1754 	int i, nr;
1755 	unsigned long range;
1756 	struct loop_device *lo;
1757 	int err;
1758 
1759 	err = misc_register(&loop_misc);
1760 	if (err < 0)
1761 		return err;
1762 
1763 	part_shift = 0;
1764 	if (max_part > 0) {
1765 		part_shift = fls(max_part);
1766 
1767 		/*
1768 		 * Adjust max_part according to part_shift as it is exported
1769 		 * to user space so that user can decide correct minor number
1770 		 * if [s]he want to create more devices.
1771 		 *
1772 		 * Note that -1 is required because partition 0 is reserved
1773 		 * for the whole disk.
1774 		 */
1775 		max_part = (1UL << part_shift) - 1;
1776 	}
1777 
1778 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1779 		err = -EINVAL;
1780 		goto misc_out;
1781 	}
1782 
1783 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1784 		err = -EINVAL;
1785 		goto misc_out;
1786 	}
1787 
1788 	/*
1789 	 * If max_loop is specified, create that many devices upfront.
1790 	 * This also becomes a hard limit. If max_loop is not specified,
1791 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1792 	 * init time. Loop devices can be requested on-demand with the
1793 	 * /dev/loop-control interface, or be instantiated by accessing
1794 	 * a 'dead' device node.
1795 	 */
1796 	if (max_loop) {
1797 		nr = max_loop;
1798 		range = max_loop << part_shift;
1799 	} else {
1800 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1801 		range = 1UL << MINORBITS;
1802 	}
1803 
1804 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1805 		err = -EIO;
1806 		goto misc_out;
1807 	}
1808 
1809 	loop_wq = alloc_workqueue("kloopd",
1810 			WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 0);
1811 	if (!loop_wq) {
1812 		err = -ENOMEM;
1813 		goto misc_out;
1814 	}
1815 
1816 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1817 				  THIS_MODULE, loop_probe, NULL, NULL);
1818 
1819 	/* pre-create number of devices given by config or max_loop */
1820 	mutex_lock(&loop_index_mutex);
1821 	for (i = 0; i < nr; i++)
1822 		loop_add(&lo, i);
1823 	mutex_unlock(&loop_index_mutex);
1824 
1825 	printk(KERN_INFO "loop: module loaded\n");
1826 	return 0;
1827 
1828 misc_out:
1829 	misc_deregister(&loop_misc);
1830 	return err;
1831 }
1832 
1833 static int loop_exit_cb(int id, void *ptr, void *data)
1834 {
1835 	struct loop_device *lo = ptr;
1836 
1837 	loop_remove(lo);
1838 	return 0;
1839 }
1840 
1841 static void __exit loop_exit(void)
1842 {
1843 	unsigned long range;
1844 
1845 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1846 
1847 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1848 	idr_destroy(&loop_index_idr);
1849 
1850 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1851 	unregister_blkdev(LOOP_MAJOR, "loop");
1852 
1853 	destroy_workqueue(loop_wq);
1854 
1855 	misc_deregister(&loop_misc);
1856 }
1857 
1858 module_init(loop_init);
1859 module_exit(loop_exit);
1860 
1861 #ifndef MODULE
1862 static int __init max_loop_setup(char *str)
1863 {
1864 	max_loop = simple_strtol(str, NULL, 0);
1865 	return 1;
1866 }
1867 
1868 __setup("max_loop=", max_loop_setup);
1869 #endif
1870