xref: /openbmc/linux/drivers/block/loop.c (revision 5b5e20f4)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static int
168 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
169 {
170 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
171 	sector_t x = (sector_t)size;
172 	struct block_device *bdev = lo->lo_device;
173 
174 	if (unlikely((loff_t)x != size))
175 		return -EFBIG;
176 	if (lo->lo_offset != offset)
177 		lo->lo_offset = offset;
178 	if (lo->lo_sizelimit != sizelimit)
179 		lo->lo_sizelimit = sizelimit;
180 	set_capacity(lo->lo_disk, x);
181 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
182 	/* let user-space know about the new size */
183 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
184 	return 0;
185 }
186 
187 static inline int
188 lo_do_transfer(struct loop_device *lo, int cmd,
189 	       struct page *rpage, unsigned roffs,
190 	       struct page *lpage, unsigned loffs,
191 	       int size, sector_t rblock)
192 {
193 	int ret;
194 
195 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
196 	if (likely(!ret))
197 		return 0;
198 
199 	printk_ratelimited(KERN_ERR
200 		"loop: Transfer error at byte offset %llu, length %i.\n",
201 		(unsigned long long)rblock << 9, size);
202 	return ret;
203 }
204 
205 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
206 {
207 	struct iov_iter i;
208 	ssize_t bw;
209 
210 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
211 
212 	file_start_write(file);
213 	bw = vfs_iter_write(file, &i, ppos);
214 	file_end_write(file);
215 
216 	if (likely(bw ==  bvec->bv_len))
217 		return 0;
218 
219 	printk_ratelimited(KERN_ERR
220 		"loop: Write error at byte offset %llu, length %i.\n",
221 		(unsigned long long)*ppos, bvec->bv_len);
222 	if (bw >= 0)
223 		bw = -EIO;
224 	return bw;
225 }
226 
227 static int lo_write_simple(struct loop_device *lo, struct request *rq,
228 		loff_t pos)
229 {
230 	struct bio_vec bvec;
231 	struct req_iterator iter;
232 	int ret = 0;
233 
234 	rq_for_each_segment(bvec, rq, iter) {
235 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
236 		if (ret < 0)
237 			break;
238 		cond_resched();
239 	}
240 
241 	return ret;
242 }
243 
244 /*
245  * This is the slow, transforming version that needs to double buffer the
246  * data as it cannot do the transformations in place without having direct
247  * access to the destination pages of the backing file.
248  */
249 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
250 		loff_t pos)
251 {
252 	struct bio_vec bvec, b;
253 	struct req_iterator iter;
254 	struct page *page;
255 	int ret = 0;
256 
257 	page = alloc_page(GFP_NOIO);
258 	if (unlikely(!page))
259 		return -ENOMEM;
260 
261 	rq_for_each_segment(bvec, rq, iter) {
262 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
263 			bvec.bv_offset, bvec.bv_len, pos >> 9);
264 		if (unlikely(ret))
265 			break;
266 
267 		b.bv_page = page;
268 		b.bv_offset = 0;
269 		b.bv_len = bvec.bv_len;
270 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
271 		if (ret < 0)
272 			break;
273 	}
274 
275 	__free_page(page);
276 	return ret;
277 }
278 
279 static int lo_read_simple(struct loop_device *lo, struct request *rq,
280 		loff_t pos)
281 {
282 	struct bio_vec bvec;
283 	struct req_iterator iter;
284 	struct iov_iter i;
285 	ssize_t len;
286 
287 	rq_for_each_segment(bvec, rq, iter) {
288 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
289 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
290 		if (len < 0)
291 			return len;
292 
293 		flush_dcache_page(bvec.bv_page);
294 
295 		if (len != bvec.bv_len) {
296 			struct bio *bio;
297 
298 			__rq_for_each_bio(bio, rq)
299 				zero_fill_bio(bio);
300 			break;
301 		}
302 		cond_resched();
303 	}
304 
305 	return 0;
306 }
307 
308 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
309 		loff_t pos)
310 {
311 	struct bio_vec bvec, b;
312 	struct req_iterator iter;
313 	struct iov_iter i;
314 	struct page *page;
315 	ssize_t len;
316 	int ret = 0;
317 
318 	page = alloc_page(GFP_NOIO);
319 	if (unlikely(!page))
320 		return -ENOMEM;
321 
322 	rq_for_each_segment(bvec, rq, iter) {
323 		loff_t offset = pos;
324 
325 		b.bv_page = page;
326 		b.bv_offset = 0;
327 		b.bv_len = bvec.bv_len;
328 
329 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
330 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
331 		if (len < 0) {
332 			ret = len;
333 			goto out_free_page;
334 		}
335 
336 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
337 			bvec.bv_offset, len, offset >> 9);
338 		if (ret)
339 			goto out_free_page;
340 
341 		flush_dcache_page(bvec.bv_page);
342 
343 		if (len != bvec.bv_len) {
344 			struct bio *bio;
345 
346 			__rq_for_each_bio(bio, rq)
347 				zero_fill_bio(bio);
348 			break;
349 		}
350 	}
351 
352 	ret = 0;
353 out_free_page:
354 	__free_page(page);
355 	return ret;
356 }
357 
358 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
359 {
360 	/*
361 	 * We use punch hole to reclaim the free space used by the
362 	 * image a.k.a. discard. However we do not support discard if
363 	 * encryption is enabled, because it may give an attacker
364 	 * useful information.
365 	 */
366 	struct file *file = lo->lo_backing_file;
367 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
368 	int ret;
369 
370 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
371 		ret = -EOPNOTSUPP;
372 		goto out;
373 	}
374 
375 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
376 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
377 		ret = -EIO;
378  out:
379 	return ret;
380 }
381 
382 static int lo_req_flush(struct loop_device *lo, struct request *rq)
383 {
384 	struct file *file = lo->lo_backing_file;
385 	int ret = vfs_fsync(file, 0);
386 	if (unlikely(ret && ret != -EINVAL))
387 		ret = -EIO;
388 
389 	return ret;
390 }
391 
392 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
393 {
394 	loff_t pos;
395 	int ret;
396 
397 	pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
398 
399 	if (rq->cmd_flags & REQ_WRITE) {
400 		if (rq->cmd_flags & REQ_FLUSH)
401 			ret = lo_req_flush(lo, rq);
402 		else if (rq->cmd_flags & REQ_DISCARD)
403 			ret = lo_discard(lo, rq, pos);
404 		else if (lo->transfer)
405 			ret = lo_write_transfer(lo, rq, pos);
406 		else
407 			ret = lo_write_simple(lo, rq, pos);
408 
409 	} else {
410 		if (lo->transfer)
411 			ret = lo_read_transfer(lo, rq, pos);
412 		else
413 			ret = lo_read_simple(lo, rq, pos);
414 	}
415 
416 	return ret;
417 }
418 
419 struct switch_request {
420 	struct file *file;
421 	struct completion wait;
422 };
423 
424 /*
425  * Do the actual switch; called from the BIO completion routine
426  */
427 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
428 {
429 	struct file *file = p->file;
430 	struct file *old_file = lo->lo_backing_file;
431 	struct address_space *mapping;
432 
433 	/* if no new file, only flush of queued bios requested */
434 	if (!file)
435 		return;
436 
437 	mapping = file->f_mapping;
438 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
439 	lo->lo_backing_file = file;
440 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
441 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
442 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
443 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
444 }
445 
446 /*
447  * loop_switch performs the hard work of switching a backing store.
448  * First it needs to flush existing IO, it does this by sending a magic
449  * BIO down the pipe. The completion of this BIO does the actual switch.
450  */
451 static int loop_switch(struct loop_device *lo, struct file *file)
452 {
453 	struct switch_request w;
454 
455 	w.file = file;
456 
457 	/* freeze queue and wait for completion of scheduled requests */
458 	blk_mq_freeze_queue(lo->lo_queue);
459 
460 	/* do the switch action */
461 	do_loop_switch(lo, &w);
462 
463 	/* unfreeze */
464 	blk_mq_unfreeze_queue(lo->lo_queue);
465 
466 	return 0;
467 }
468 
469 /*
470  * Helper to flush the IOs in loop, but keeping loop thread running
471  */
472 static int loop_flush(struct loop_device *lo)
473 {
474 	return loop_switch(lo, NULL);
475 }
476 
477 static void loop_reread_partitions(struct loop_device *lo,
478 				   struct block_device *bdev)
479 {
480 	int rc;
481 
482 	/*
483 	 * bd_mutex has been held already in release path, so don't
484 	 * acquire it if this function is called in such case.
485 	 *
486 	 * If the reread partition isn't from release path, lo_refcnt
487 	 * must be at least one and it can only become zero when the
488 	 * current holder is released.
489 	 */
490 	if (!atomic_read(&lo->lo_refcnt))
491 		rc = __blkdev_reread_part(bdev);
492 	else
493 		rc = blkdev_reread_part(bdev);
494 	if (rc)
495 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
496 			__func__, lo->lo_number, lo->lo_file_name, rc);
497 }
498 
499 /*
500  * loop_change_fd switched the backing store of a loopback device to
501  * a new file. This is useful for operating system installers to free up
502  * the original file and in High Availability environments to switch to
503  * an alternative location for the content in case of server meltdown.
504  * This can only work if the loop device is used read-only, and if the
505  * new backing store is the same size and type as the old backing store.
506  */
507 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
508 			  unsigned int arg)
509 {
510 	struct file	*file, *old_file;
511 	struct inode	*inode;
512 	int		error;
513 
514 	error = -ENXIO;
515 	if (lo->lo_state != Lo_bound)
516 		goto out;
517 
518 	/* the loop device has to be read-only */
519 	error = -EINVAL;
520 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
521 		goto out;
522 
523 	error = -EBADF;
524 	file = fget(arg);
525 	if (!file)
526 		goto out;
527 
528 	inode = file->f_mapping->host;
529 	old_file = lo->lo_backing_file;
530 
531 	error = -EINVAL;
532 
533 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
534 		goto out_putf;
535 
536 	/* size of the new backing store needs to be the same */
537 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
538 		goto out_putf;
539 
540 	/* and ... switch */
541 	error = loop_switch(lo, file);
542 	if (error)
543 		goto out_putf;
544 
545 	fput(old_file);
546 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
547 		loop_reread_partitions(lo, bdev);
548 	return 0;
549 
550  out_putf:
551 	fput(file);
552  out:
553 	return error;
554 }
555 
556 static inline int is_loop_device(struct file *file)
557 {
558 	struct inode *i = file->f_mapping->host;
559 
560 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
561 }
562 
563 /* loop sysfs attributes */
564 
565 static ssize_t loop_attr_show(struct device *dev, char *page,
566 			      ssize_t (*callback)(struct loop_device *, char *))
567 {
568 	struct gendisk *disk = dev_to_disk(dev);
569 	struct loop_device *lo = disk->private_data;
570 
571 	return callback(lo, page);
572 }
573 
574 #define LOOP_ATTR_RO(_name)						\
575 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
576 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
577 				struct device_attribute *attr, char *b)	\
578 {									\
579 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
580 }									\
581 static struct device_attribute loop_attr_##_name =			\
582 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
583 
584 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
585 {
586 	ssize_t ret;
587 	char *p = NULL;
588 
589 	spin_lock_irq(&lo->lo_lock);
590 	if (lo->lo_backing_file)
591 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
592 	spin_unlock_irq(&lo->lo_lock);
593 
594 	if (IS_ERR_OR_NULL(p))
595 		ret = PTR_ERR(p);
596 	else {
597 		ret = strlen(p);
598 		memmove(buf, p, ret);
599 		buf[ret++] = '\n';
600 		buf[ret] = 0;
601 	}
602 
603 	return ret;
604 }
605 
606 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
607 {
608 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
609 }
610 
611 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
612 {
613 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
614 }
615 
616 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
617 {
618 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
619 
620 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
621 }
622 
623 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
624 {
625 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
626 
627 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
628 }
629 
630 LOOP_ATTR_RO(backing_file);
631 LOOP_ATTR_RO(offset);
632 LOOP_ATTR_RO(sizelimit);
633 LOOP_ATTR_RO(autoclear);
634 LOOP_ATTR_RO(partscan);
635 
636 static struct attribute *loop_attrs[] = {
637 	&loop_attr_backing_file.attr,
638 	&loop_attr_offset.attr,
639 	&loop_attr_sizelimit.attr,
640 	&loop_attr_autoclear.attr,
641 	&loop_attr_partscan.attr,
642 	NULL,
643 };
644 
645 static struct attribute_group loop_attribute_group = {
646 	.name = "loop",
647 	.attrs= loop_attrs,
648 };
649 
650 static int loop_sysfs_init(struct loop_device *lo)
651 {
652 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
653 				  &loop_attribute_group);
654 }
655 
656 static void loop_sysfs_exit(struct loop_device *lo)
657 {
658 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
659 			   &loop_attribute_group);
660 }
661 
662 static void loop_config_discard(struct loop_device *lo)
663 {
664 	struct file *file = lo->lo_backing_file;
665 	struct inode *inode = file->f_mapping->host;
666 	struct request_queue *q = lo->lo_queue;
667 
668 	/*
669 	 * We use punch hole to reclaim the free space used by the
670 	 * image a.k.a. discard. However we do not support discard if
671 	 * encryption is enabled, because it may give an attacker
672 	 * useful information.
673 	 */
674 	if ((!file->f_op->fallocate) ||
675 	    lo->lo_encrypt_key_size) {
676 		q->limits.discard_granularity = 0;
677 		q->limits.discard_alignment = 0;
678 		blk_queue_max_discard_sectors(q, 0);
679 		q->limits.discard_zeroes_data = 0;
680 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
681 		return;
682 	}
683 
684 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
685 	q->limits.discard_alignment = 0;
686 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
687 	q->limits.discard_zeroes_data = 1;
688 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
689 }
690 
691 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
692 		       struct block_device *bdev, unsigned int arg)
693 {
694 	struct file	*file, *f;
695 	struct inode	*inode;
696 	struct address_space *mapping;
697 	unsigned lo_blocksize;
698 	int		lo_flags = 0;
699 	int		error;
700 	loff_t		size;
701 
702 	/* This is safe, since we have a reference from open(). */
703 	__module_get(THIS_MODULE);
704 
705 	error = -EBADF;
706 	file = fget(arg);
707 	if (!file)
708 		goto out;
709 
710 	error = -EBUSY;
711 	if (lo->lo_state != Lo_unbound)
712 		goto out_putf;
713 
714 	/* Avoid recursion */
715 	f = file;
716 	while (is_loop_device(f)) {
717 		struct loop_device *l;
718 
719 		if (f->f_mapping->host->i_bdev == bdev)
720 			goto out_putf;
721 
722 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
723 		if (l->lo_state == Lo_unbound) {
724 			error = -EINVAL;
725 			goto out_putf;
726 		}
727 		f = l->lo_backing_file;
728 	}
729 
730 	mapping = file->f_mapping;
731 	inode = mapping->host;
732 
733 	error = -EINVAL;
734 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
735 		goto out_putf;
736 
737 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
738 	    !file->f_op->write_iter)
739 		lo_flags |= LO_FLAGS_READ_ONLY;
740 
741 	lo_blocksize = S_ISBLK(inode->i_mode) ?
742 		inode->i_bdev->bd_block_size : PAGE_SIZE;
743 
744 	error = -EFBIG;
745 	size = get_loop_size(lo, file);
746 	if ((loff_t)(sector_t)size != size)
747 		goto out_putf;
748 	error = -ENOMEM;
749 	lo->wq = alloc_workqueue("kloopd%d",
750 			WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 16,
751 			lo->lo_number);
752 	if (!lo->wq)
753 		goto out_putf;
754 
755 	error = 0;
756 
757 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
758 
759 	lo->lo_blocksize = lo_blocksize;
760 	lo->lo_device = bdev;
761 	lo->lo_flags = lo_flags;
762 	lo->lo_backing_file = file;
763 	lo->transfer = NULL;
764 	lo->ioctl = NULL;
765 	lo->lo_sizelimit = 0;
766 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
767 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
768 
769 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
770 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
771 
772 	set_capacity(lo->lo_disk, size);
773 	bd_set_size(bdev, size << 9);
774 	loop_sysfs_init(lo);
775 	/* let user-space know about the new size */
776 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
777 
778 	set_blocksize(bdev, lo_blocksize);
779 
780 	lo->lo_state = Lo_bound;
781 	if (part_shift)
782 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
783 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
784 		loop_reread_partitions(lo, bdev);
785 
786 	/* Grab the block_device to prevent its destruction after we
787 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
788 	 */
789 	bdgrab(bdev);
790 	return 0;
791 
792  out_putf:
793 	fput(file);
794  out:
795 	/* This is safe: open() is still holding a reference. */
796 	module_put(THIS_MODULE);
797 	return error;
798 }
799 
800 static int
801 loop_release_xfer(struct loop_device *lo)
802 {
803 	int err = 0;
804 	struct loop_func_table *xfer = lo->lo_encryption;
805 
806 	if (xfer) {
807 		if (xfer->release)
808 			err = xfer->release(lo);
809 		lo->transfer = NULL;
810 		lo->lo_encryption = NULL;
811 		module_put(xfer->owner);
812 	}
813 	return err;
814 }
815 
816 static int
817 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
818 	       const struct loop_info64 *i)
819 {
820 	int err = 0;
821 
822 	if (xfer) {
823 		struct module *owner = xfer->owner;
824 
825 		if (!try_module_get(owner))
826 			return -EINVAL;
827 		if (xfer->init)
828 			err = xfer->init(lo, i);
829 		if (err)
830 			module_put(owner);
831 		else
832 			lo->lo_encryption = xfer;
833 	}
834 	return err;
835 }
836 
837 static int loop_clr_fd(struct loop_device *lo)
838 {
839 	struct file *filp = lo->lo_backing_file;
840 	gfp_t gfp = lo->old_gfp_mask;
841 	struct block_device *bdev = lo->lo_device;
842 
843 	if (lo->lo_state != Lo_bound)
844 		return -ENXIO;
845 
846 	/*
847 	 * If we've explicitly asked to tear down the loop device,
848 	 * and it has an elevated reference count, set it for auto-teardown when
849 	 * the last reference goes away. This stops $!~#$@ udev from
850 	 * preventing teardown because it decided that it needs to run blkid on
851 	 * the loopback device whenever they appear. xfstests is notorious for
852 	 * failing tests because blkid via udev races with a losetup
853 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
854 	 * command to fail with EBUSY.
855 	 */
856 	if (atomic_read(&lo->lo_refcnt) > 1) {
857 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
858 		mutex_unlock(&lo->lo_ctl_mutex);
859 		return 0;
860 	}
861 
862 	if (filp == NULL)
863 		return -EINVAL;
864 
865 	/* freeze request queue during the transition */
866 	blk_mq_freeze_queue(lo->lo_queue);
867 
868 	spin_lock_irq(&lo->lo_lock);
869 	lo->lo_state = Lo_rundown;
870 	lo->lo_backing_file = NULL;
871 	spin_unlock_irq(&lo->lo_lock);
872 
873 	loop_release_xfer(lo);
874 	lo->transfer = NULL;
875 	lo->ioctl = NULL;
876 	lo->lo_device = NULL;
877 	lo->lo_encryption = NULL;
878 	lo->lo_offset = 0;
879 	lo->lo_sizelimit = 0;
880 	lo->lo_encrypt_key_size = 0;
881 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
882 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
883 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
884 	if (bdev) {
885 		bdput(bdev);
886 		invalidate_bdev(bdev);
887 	}
888 	set_capacity(lo->lo_disk, 0);
889 	loop_sysfs_exit(lo);
890 	if (bdev) {
891 		bd_set_size(bdev, 0);
892 		/* let user-space know about this change */
893 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
894 	}
895 	mapping_set_gfp_mask(filp->f_mapping, gfp);
896 	lo->lo_state = Lo_unbound;
897 	/* This is safe: open() is still holding a reference. */
898 	module_put(THIS_MODULE);
899 	blk_mq_unfreeze_queue(lo->lo_queue);
900 
901 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
902 		loop_reread_partitions(lo, bdev);
903 	lo->lo_flags = 0;
904 	if (!part_shift)
905 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
906 	destroy_workqueue(lo->wq);
907 	lo->wq = NULL;
908 	mutex_unlock(&lo->lo_ctl_mutex);
909 	/*
910 	 * Need not hold lo_ctl_mutex to fput backing file.
911 	 * Calling fput holding lo_ctl_mutex triggers a circular
912 	 * lock dependency possibility warning as fput can take
913 	 * bd_mutex which is usually taken before lo_ctl_mutex.
914 	 */
915 	fput(filp);
916 	return 0;
917 }
918 
919 static int
920 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
921 {
922 	int err;
923 	struct loop_func_table *xfer;
924 	kuid_t uid = current_uid();
925 
926 	if (lo->lo_encrypt_key_size &&
927 	    !uid_eq(lo->lo_key_owner, uid) &&
928 	    !capable(CAP_SYS_ADMIN))
929 		return -EPERM;
930 	if (lo->lo_state != Lo_bound)
931 		return -ENXIO;
932 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
933 		return -EINVAL;
934 
935 	err = loop_release_xfer(lo);
936 	if (err)
937 		return err;
938 
939 	if (info->lo_encrypt_type) {
940 		unsigned int type = info->lo_encrypt_type;
941 
942 		if (type >= MAX_LO_CRYPT)
943 			return -EINVAL;
944 		xfer = xfer_funcs[type];
945 		if (xfer == NULL)
946 			return -EINVAL;
947 	} else
948 		xfer = NULL;
949 
950 	err = loop_init_xfer(lo, xfer, info);
951 	if (err)
952 		return err;
953 
954 	if (lo->lo_offset != info->lo_offset ||
955 	    lo->lo_sizelimit != info->lo_sizelimit)
956 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
957 			return -EFBIG;
958 
959 	loop_config_discard(lo);
960 
961 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
962 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
963 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
964 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
965 
966 	if (!xfer)
967 		xfer = &none_funcs;
968 	lo->transfer = xfer->transfer;
969 	lo->ioctl = xfer->ioctl;
970 
971 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
972 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
973 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
974 
975 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
976 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
977 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
978 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
979 		loop_reread_partitions(lo, lo->lo_device);
980 	}
981 
982 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
983 	lo->lo_init[0] = info->lo_init[0];
984 	lo->lo_init[1] = info->lo_init[1];
985 	if (info->lo_encrypt_key_size) {
986 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
987 		       info->lo_encrypt_key_size);
988 		lo->lo_key_owner = uid;
989 	}
990 
991 	return 0;
992 }
993 
994 static int
995 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
996 {
997 	struct file *file = lo->lo_backing_file;
998 	struct kstat stat;
999 	int error;
1000 
1001 	if (lo->lo_state != Lo_bound)
1002 		return -ENXIO;
1003 	error = vfs_getattr(&file->f_path, &stat);
1004 	if (error)
1005 		return error;
1006 	memset(info, 0, sizeof(*info));
1007 	info->lo_number = lo->lo_number;
1008 	info->lo_device = huge_encode_dev(stat.dev);
1009 	info->lo_inode = stat.ino;
1010 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1011 	info->lo_offset = lo->lo_offset;
1012 	info->lo_sizelimit = lo->lo_sizelimit;
1013 	info->lo_flags = lo->lo_flags;
1014 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1015 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1016 	info->lo_encrypt_type =
1017 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1018 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1019 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1020 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1021 		       lo->lo_encrypt_key_size);
1022 	}
1023 	return 0;
1024 }
1025 
1026 static void
1027 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1028 {
1029 	memset(info64, 0, sizeof(*info64));
1030 	info64->lo_number = info->lo_number;
1031 	info64->lo_device = info->lo_device;
1032 	info64->lo_inode = info->lo_inode;
1033 	info64->lo_rdevice = info->lo_rdevice;
1034 	info64->lo_offset = info->lo_offset;
1035 	info64->lo_sizelimit = 0;
1036 	info64->lo_encrypt_type = info->lo_encrypt_type;
1037 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1038 	info64->lo_flags = info->lo_flags;
1039 	info64->lo_init[0] = info->lo_init[0];
1040 	info64->lo_init[1] = info->lo_init[1];
1041 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1042 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1043 	else
1044 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1045 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1046 }
1047 
1048 static int
1049 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1050 {
1051 	memset(info, 0, sizeof(*info));
1052 	info->lo_number = info64->lo_number;
1053 	info->lo_device = info64->lo_device;
1054 	info->lo_inode = info64->lo_inode;
1055 	info->lo_rdevice = info64->lo_rdevice;
1056 	info->lo_offset = info64->lo_offset;
1057 	info->lo_encrypt_type = info64->lo_encrypt_type;
1058 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1059 	info->lo_flags = info64->lo_flags;
1060 	info->lo_init[0] = info64->lo_init[0];
1061 	info->lo_init[1] = info64->lo_init[1];
1062 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1063 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1064 	else
1065 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1066 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1067 
1068 	/* error in case values were truncated */
1069 	if (info->lo_device != info64->lo_device ||
1070 	    info->lo_rdevice != info64->lo_rdevice ||
1071 	    info->lo_inode != info64->lo_inode ||
1072 	    info->lo_offset != info64->lo_offset)
1073 		return -EOVERFLOW;
1074 
1075 	return 0;
1076 }
1077 
1078 static int
1079 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1080 {
1081 	struct loop_info info;
1082 	struct loop_info64 info64;
1083 
1084 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1085 		return -EFAULT;
1086 	loop_info64_from_old(&info, &info64);
1087 	return loop_set_status(lo, &info64);
1088 }
1089 
1090 static int
1091 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1092 {
1093 	struct loop_info64 info64;
1094 
1095 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1096 		return -EFAULT;
1097 	return loop_set_status(lo, &info64);
1098 }
1099 
1100 static int
1101 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1102 	struct loop_info info;
1103 	struct loop_info64 info64;
1104 	int err = 0;
1105 
1106 	if (!arg)
1107 		err = -EINVAL;
1108 	if (!err)
1109 		err = loop_get_status(lo, &info64);
1110 	if (!err)
1111 		err = loop_info64_to_old(&info64, &info);
1112 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1113 		err = -EFAULT;
1114 
1115 	return err;
1116 }
1117 
1118 static int
1119 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1120 	struct loop_info64 info64;
1121 	int err = 0;
1122 
1123 	if (!arg)
1124 		err = -EINVAL;
1125 	if (!err)
1126 		err = loop_get_status(lo, &info64);
1127 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1128 		err = -EFAULT;
1129 
1130 	return err;
1131 }
1132 
1133 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1134 {
1135 	if (unlikely(lo->lo_state != Lo_bound))
1136 		return -ENXIO;
1137 
1138 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1139 }
1140 
1141 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1142 	unsigned int cmd, unsigned long arg)
1143 {
1144 	struct loop_device *lo = bdev->bd_disk->private_data;
1145 	int err;
1146 
1147 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1148 	switch (cmd) {
1149 	case LOOP_SET_FD:
1150 		err = loop_set_fd(lo, mode, bdev, arg);
1151 		break;
1152 	case LOOP_CHANGE_FD:
1153 		err = loop_change_fd(lo, bdev, arg);
1154 		break;
1155 	case LOOP_CLR_FD:
1156 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1157 		err = loop_clr_fd(lo);
1158 		if (!err)
1159 			goto out_unlocked;
1160 		break;
1161 	case LOOP_SET_STATUS:
1162 		err = -EPERM;
1163 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1164 			err = loop_set_status_old(lo,
1165 					(struct loop_info __user *)arg);
1166 		break;
1167 	case LOOP_GET_STATUS:
1168 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1169 		break;
1170 	case LOOP_SET_STATUS64:
1171 		err = -EPERM;
1172 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1173 			err = loop_set_status64(lo,
1174 					(struct loop_info64 __user *) arg);
1175 		break;
1176 	case LOOP_GET_STATUS64:
1177 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1178 		break;
1179 	case LOOP_SET_CAPACITY:
1180 		err = -EPERM;
1181 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1182 			err = loop_set_capacity(lo, bdev);
1183 		break;
1184 	default:
1185 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1186 	}
1187 	mutex_unlock(&lo->lo_ctl_mutex);
1188 
1189 out_unlocked:
1190 	return err;
1191 }
1192 
1193 #ifdef CONFIG_COMPAT
1194 struct compat_loop_info {
1195 	compat_int_t	lo_number;      /* ioctl r/o */
1196 	compat_dev_t	lo_device;      /* ioctl r/o */
1197 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1198 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1199 	compat_int_t	lo_offset;
1200 	compat_int_t	lo_encrypt_type;
1201 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1202 	compat_int_t	lo_flags;       /* ioctl r/o */
1203 	char		lo_name[LO_NAME_SIZE];
1204 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1205 	compat_ulong_t	lo_init[2];
1206 	char		reserved[4];
1207 };
1208 
1209 /*
1210  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1211  * - noinlined to reduce stack space usage in main part of driver
1212  */
1213 static noinline int
1214 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1215 			struct loop_info64 *info64)
1216 {
1217 	struct compat_loop_info info;
1218 
1219 	if (copy_from_user(&info, arg, sizeof(info)))
1220 		return -EFAULT;
1221 
1222 	memset(info64, 0, sizeof(*info64));
1223 	info64->lo_number = info.lo_number;
1224 	info64->lo_device = info.lo_device;
1225 	info64->lo_inode = info.lo_inode;
1226 	info64->lo_rdevice = info.lo_rdevice;
1227 	info64->lo_offset = info.lo_offset;
1228 	info64->lo_sizelimit = 0;
1229 	info64->lo_encrypt_type = info.lo_encrypt_type;
1230 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1231 	info64->lo_flags = info.lo_flags;
1232 	info64->lo_init[0] = info.lo_init[0];
1233 	info64->lo_init[1] = info.lo_init[1];
1234 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1235 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1236 	else
1237 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1238 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1239 	return 0;
1240 }
1241 
1242 /*
1243  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1244  * - noinlined to reduce stack space usage in main part of driver
1245  */
1246 static noinline int
1247 loop_info64_to_compat(const struct loop_info64 *info64,
1248 		      struct compat_loop_info __user *arg)
1249 {
1250 	struct compat_loop_info info;
1251 
1252 	memset(&info, 0, sizeof(info));
1253 	info.lo_number = info64->lo_number;
1254 	info.lo_device = info64->lo_device;
1255 	info.lo_inode = info64->lo_inode;
1256 	info.lo_rdevice = info64->lo_rdevice;
1257 	info.lo_offset = info64->lo_offset;
1258 	info.lo_encrypt_type = info64->lo_encrypt_type;
1259 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1260 	info.lo_flags = info64->lo_flags;
1261 	info.lo_init[0] = info64->lo_init[0];
1262 	info.lo_init[1] = info64->lo_init[1];
1263 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1264 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1265 	else
1266 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1267 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1268 
1269 	/* error in case values were truncated */
1270 	if (info.lo_device != info64->lo_device ||
1271 	    info.lo_rdevice != info64->lo_rdevice ||
1272 	    info.lo_inode != info64->lo_inode ||
1273 	    info.lo_offset != info64->lo_offset ||
1274 	    info.lo_init[0] != info64->lo_init[0] ||
1275 	    info.lo_init[1] != info64->lo_init[1])
1276 		return -EOVERFLOW;
1277 
1278 	if (copy_to_user(arg, &info, sizeof(info)))
1279 		return -EFAULT;
1280 	return 0;
1281 }
1282 
1283 static int
1284 loop_set_status_compat(struct loop_device *lo,
1285 		       const struct compat_loop_info __user *arg)
1286 {
1287 	struct loop_info64 info64;
1288 	int ret;
1289 
1290 	ret = loop_info64_from_compat(arg, &info64);
1291 	if (ret < 0)
1292 		return ret;
1293 	return loop_set_status(lo, &info64);
1294 }
1295 
1296 static int
1297 loop_get_status_compat(struct loop_device *lo,
1298 		       struct compat_loop_info __user *arg)
1299 {
1300 	struct loop_info64 info64;
1301 	int err = 0;
1302 
1303 	if (!arg)
1304 		err = -EINVAL;
1305 	if (!err)
1306 		err = loop_get_status(lo, &info64);
1307 	if (!err)
1308 		err = loop_info64_to_compat(&info64, arg);
1309 	return err;
1310 }
1311 
1312 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1313 			   unsigned int cmd, unsigned long arg)
1314 {
1315 	struct loop_device *lo = bdev->bd_disk->private_data;
1316 	int err;
1317 
1318 	switch(cmd) {
1319 	case LOOP_SET_STATUS:
1320 		mutex_lock(&lo->lo_ctl_mutex);
1321 		err = loop_set_status_compat(
1322 			lo, (const struct compat_loop_info __user *) arg);
1323 		mutex_unlock(&lo->lo_ctl_mutex);
1324 		break;
1325 	case LOOP_GET_STATUS:
1326 		mutex_lock(&lo->lo_ctl_mutex);
1327 		err = loop_get_status_compat(
1328 			lo, (struct compat_loop_info __user *) arg);
1329 		mutex_unlock(&lo->lo_ctl_mutex);
1330 		break;
1331 	case LOOP_SET_CAPACITY:
1332 	case LOOP_CLR_FD:
1333 	case LOOP_GET_STATUS64:
1334 	case LOOP_SET_STATUS64:
1335 		arg = (unsigned long) compat_ptr(arg);
1336 	case LOOP_SET_FD:
1337 	case LOOP_CHANGE_FD:
1338 		err = lo_ioctl(bdev, mode, cmd, arg);
1339 		break;
1340 	default:
1341 		err = -ENOIOCTLCMD;
1342 		break;
1343 	}
1344 	return err;
1345 }
1346 #endif
1347 
1348 static int lo_open(struct block_device *bdev, fmode_t mode)
1349 {
1350 	struct loop_device *lo;
1351 	int err = 0;
1352 
1353 	mutex_lock(&loop_index_mutex);
1354 	lo = bdev->bd_disk->private_data;
1355 	if (!lo) {
1356 		err = -ENXIO;
1357 		goto out;
1358 	}
1359 
1360 	atomic_inc(&lo->lo_refcnt);
1361 out:
1362 	mutex_unlock(&loop_index_mutex);
1363 	return err;
1364 }
1365 
1366 static void lo_release(struct gendisk *disk, fmode_t mode)
1367 {
1368 	struct loop_device *lo = disk->private_data;
1369 	int err;
1370 
1371 	if (atomic_dec_return(&lo->lo_refcnt))
1372 		return;
1373 
1374 	mutex_lock(&lo->lo_ctl_mutex);
1375 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1376 		/*
1377 		 * In autoclear mode, stop the loop thread
1378 		 * and remove configuration after last close.
1379 		 */
1380 		err = loop_clr_fd(lo);
1381 		if (!err)
1382 			return;
1383 	} else {
1384 		/*
1385 		 * Otherwise keep thread (if running) and config,
1386 		 * but flush possible ongoing bios in thread.
1387 		 */
1388 		loop_flush(lo);
1389 	}
1390 
1391 	mutex_unlock(&lo->lo_ctl_mutex);
1392 }
1393 
1394 static const struct block_device_operations lo_fops = {
1395 	.owner =	THIS_MODULE,
1396 	.open =		lo_open,
1397 	.release =	lo_release,
1398 	.ioctl =	lo_ioctl,
1399 #ifdef CONFIG_COMPAT
1400 	.compat_ioctl =	lo_compat_ioctl,
1401 #endif
1402 };
1403 
1404 /*
1405  * And now the modules code and kernel interface.
1406  */
1407 static int max_loop;
1408 module_param(max_loop, int, S_IRUGO);
1409 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1410 module_param(max_part, int, S_IRUGO);
1411 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1412 MODULE_LICENSE("GPL");
1413 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1414 
1415 int loop_register_transfer(struct loop_func_table *funcs)
1416 {
1417 	unsigned int n = funcs->number;
1418 
1419 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1420 		return -EINVAL;
1421 	xfer_funcs[n] = funcs;
1422 	return 0;
1423 }
1424 
1425 static int unregister_transfer_cb(int id, void *ptr, void *data)
1426 {
1427 	struct loop_device *lo = ptr;
1428 	struct loop_func_table *xfer = data;
1429 
1430 	mutex_lock(&lo->lo_ctl_mutex);
1431 	if (lo->lo_encryption == xfer)
1432 		loop_release_xfer(lo);
1433 	mutex_unlock(&lo->lo_ctl_mutex);
1434 	return 0;
1435 }
1436 
1437 int loop_unregister_transfer(int number)
1438 {
1439 	unsigned int n = number;
1440 	struct loop_func_table *xfer;
1441 
1442 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1443 		return -EINVAL;
1444 
1445 	xfer_funcs[n] = NULL;
1446 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1447 	return 0;
1448 }
1449 
1450 EXPORT_SYMBOL(loop_register_transfer);
1451 EXPORT_SYMBOL(loop_unregister_transfer);
1452 
1453 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1454 		const struct blk_mq_queue_data *bd)
1455 {
1456 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1457 	struct loop_device *lo = cmd->rq->q->queuedata;
1458 
1459 	blk_mq_start_request(bd->rq);
1460 
1461 	if (lo->lo_state != Lo_bound)
1462 		return -EIO;
1463 
1464 	if (cmd->rq->cmd_flags & REQ_WRITE) {
1465 		struct loop_device *lo = cmd->rq->q->queuedata;
1466 		bool need_sched = true;
1467 
1468 		spin_lock_irq(&lo->lo_lock);
1469 		if (lo->write_started)
1470 			need_sched = false;
1471 		else
1472 			lo->write_started = true;
1473 		list_add_tail(&cmd->list, &lo->write_cmd_head);
1474 		spin_unlock_irq(&lo->lo_lock);
1475 
1476 		if (need_sched)
1477 			queue_work(lo->wq, &lo->write_work);
1478 	} else {
1479 		queue_work(lo->wq, &cmd->read_work);
1480 	}
1481 
1482 	return BLK_MQ_RQ_QUEUE_OK;
1483 }
1484 
1485 static void loop_handle_cmd(struct loop_cmd *cmd)
1486 {
1487 	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1488 	struct loop_device *lo = cmd->rq->q->queuedata;
1489 	int ret = -EIO;
1490 
1491 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1492 		goto failed;
1493 
1494 	ret = do_req_filebacked(lo, cmd->rq);
1495 
1496  failed:
1497 	if (ret)
1498 		cmd->rq->errors = -EIO;
1499 	blk_mq_complete_request(cmd->rq);
1500 }
1501 
1502 static void loop_queue_write_work(struct work_struct *work)
1503 {
1504 	struct loop_device *lo =
1505 		container_of(work, struct loop_device, write_work);
1506 	LIST_HEAD(cmd_list);
1507 
1508 	spin_lock_irq(&lo->lo_lock);
1509  repeat:
1510 	list_splice_init(&lo->write_cmd_head, &cmd_list);
1511 	spin_unlock_irq(&lo->lo_lock);
1512 
1513 	while (!list_empty(&cmd_list)) {
1514 		struct loop_cmd *cmd = list_first_entry(&cmd_list,
1515 				struct loop_cmd, list);
1516 		list_del_init(&cmd->list);
1517 		loop_handle_cmd(cmd);
1518 	}
1519 
1520 	spin_lock_irq(&lo->lo_lock);
1521 	if (!list_empty(&lo->write_cmd_head))
1522 		goto repeat;
1523 	lo->write_started = false;
1524 	spin_unlock_irq(&lo->lo_lock);
1525 }
1526 
1527 static void loop_queue_read_work(struct work_struct *work)
1528 {
1529 	struct loop_cmd *cmd =
1530 		container_of(work, struct loop_cmd, read_work);
1531 
1532 	loop_handle_cmd(cmd);
1533 }
1534 
1535 static int loop_init_request(void *data, struct request *rq,
1536 		unsigned int hctx_idx, unsigned int request_idx,
1537 		unsigned int numa_node)
1538 {
1539 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1540 
1541 	cmd->rq = rq;
1542 	INIT_WORK(&cmd->read_work, loop_queue_read_work);
1543 
1544 	return 0;
1545 }
1546 
1547 static struct blk_mq_ops loop_mq_ops = {
1548 	.queue_rq       = loop_queue_rq,
1549 	.map_queue      = blk_mq_map_queue,
1550 	.init_request	= loop_init_request,
1551 };
1552 
1553 static int loop_add(struct loop_device **l, int i)
1554 {
1555 	struct loop_device *lo;
1556 	struct gendisk *disk;
1557 	int err;
1558 
1559 	err = -ENOMEM;
1560 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1561 	if (!lo)
1562 		goto out;
1563 
1564 	lo->lo_state = Lo_unbound;
1565 
1566 	/* allocate id, if @id >= 0, we're requesting that specific id */
1567 	if (i >= 0) {
1568 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1569 		if (err == -ENOSPC)
1570 			err = -EEXIST;
1571 	} else {
1572 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1573 	}
1574 	if (err < 0)
1575 		goto out_free_dev;
1576 	i = err;
1577 
1578 	err = -ENOMEM;
1579 	lo->tag_set.ops = &loop_mq_ops;
1580 	lo->tag_set.nr_hw_queues = 1;
1581 	lo->tag_set.queue_depth = 128;
1582 	lo->tag_set.numa_node = NUMA_NO_NODE;
1583 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1584 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1585 	lo->tag_set.driver_data = lo;
1586 
1587 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1588 	if (err)
1589 		goto out_free_idr;
1590 
1591 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1592 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1593 		err = PTR_ERR(lo->lo_queue);
1594 		goto out_cleanup_tags;
1595 	}
1596 	lo->lo_queue->queuedata = lo;
1597 
1598 	/*
1599 	 * It doesn't make sense to enable merge because the I/O
1600 	 * submitted to backing file is handled page by page.
1601 	 */
1602 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1603 
1604 	INIT_LIST_HEAD(&lo->write_cmd_head);
1605 	INIT_WORK(&lo->write_work, loop_queue_write_work);
1606 
1607 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1608 	if (!disk)
1609 		goto out_free_queue;
1610 
1611 	/*
1612 	 * Disable partition scanning by default. The in-kernel partition
1613 	 * scanning can be requested individually per-device during its
1614 	 * setup. Userspace can always add and remove partitions from all
1615 	 * devices. The needed partition minors are allocated from the
1616 	 * extended minor space, the main loop device numbers will continue
1617 	 * to match the loop minors, regardless of the number of partitions
1618 	 * used.
1619 	 *
1620 	 * If max_part is given, partition scanning is globally enabled for
1621 	 * all loop devices. The minors for the main loop devices will be
1622 	 * multiples of max_part.
1623 	 *
1624 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1625 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1626 	 * complicated, are too static, inflexible and may surprise
1627 	 * userspace tools. Parameters like this in general should be avoided.
1628 	 */
1629 	if (!part_shift)
1630 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1631 	disk->flags |= GENHD_FL_EXT_DEVT;
1632 	mutex_init(&lo->lo_ctl_mutex);
1633 	atomic_set(&lo->lo_refcnt, 0);
1634 	lo->lo_number		= i;
1635 	spin_lock_init(&lo->lo_lock);
1636 	disk->major		= LOOP_MAJOR;
1637 	disk->first_minor	= i << part_shift;
1638 	disk->fops		= &lo_fops;
1639 	disk->private_data	= lo;
1640 	disk->queue		= lo->lo_queue;
1641 	sprintf(disk->disk_name, "loop%d", i);
1642 	add_disk(disk);
1643 	*l = lo;
1644 	return lo->lo_number;
1645 
1646 out_free_queue:
1647 	blk_cleanup_queue(lo->lo_queue);
1648 out_cleanup_tags:
1649 	blk_mq_free_tag_set(&lo->tag_set);
1650 out_free_idr:
1651 	idr_remove(&loop_index_idr, i);
1652 out_free_dev:
1653 	kfree(lo);
1654 out:
1655 	return err;
1656 }
1657 
1658 static void loop_remove(struct loop_device *lo)
1659 {
1660 	blk_cleanup_queue(lo->lo_queue);
1661 	del_gendisk(lo->lo_disk);
1662 	blk_mq_free_tag_set(&lo->tag_set);
1663 	put_disk(lo->lo_disk);
1664 	kfree(lo);
1665 }
1666 
1667 static int find_free_cb(int id, void *ptr, void *data)
1668 {
1669 	struct loop_device *lo = ptr;
1670 	struct loop_device **l = data;
1671 
1672 	if (lo->lo_state == Lo_unbound) {
1673 		*l = lo;
1674 		return 1;
1675 	}
1676 	return 0;
1677 }
1678 
1679 static int loop_lookup(struct loop_device **l, int i)
1680 {
1681 	struct loop_device *lo;
1682 	int ret = -ENODEV;
1683 
1684 	if (i < 0) {
1685 		int err;
1686 
1687 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1688 		if (err == 1) {
1689 			*l = lo;
1690 			ret = lo->lo_number;
1691 		}
1692 		goto out;
1693 	}
1694 
1695 	/* lookup and return a specific i */
1696 	lo = idr_find(&loop_index_idr, i);
1697 	if (lo) {
1698 		*l = lo;
1699 		ret = lo->lo_number;
1700 	}
1701 out:
1702 	return ret;
1703 }
1704 
1705 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1706 {
1707 	struct loop_device *lo;
1708 	struct kobject *kobj;
1709 	int err;
1710 
1711 	mutex_lock(&loop_index_mutex);
1712 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1713 	if (err < 0)
1714 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1715 	if (err < 0)
1716 		kobj = NULL;
1717 	else
1718 		kobj = get_disk(lo->lo_disk);
1719 	mutex_unlock(&loop_index_mutex);
1720 
1721 	*part = 0;
1722 	return kobj;
1723 }
1724 
1725 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1726 			       unsigned long parm)
1727 {
1728 	struct loop_device *lo;
1729 	int ret = -ENOSYS;
1730 
1731 	mutex_lock(&loop_index_mutex);
1732 	switch (cmd) {
1733 	case LOOP_CTL_ADD:
1734 		ret = loop_lookup(&lo, parm);
1735 		if (ret >= 0) {
1736 			ret = -EEXIST;
1737 			break;
1738 		}
1739 		ret = loop_add(&lo, parm);
1740 		break;
1741 	case LOOP_CTL_REMOVE:
1742 		ret = loop_lookup(&lo, parm);
1743 		if (ret < 0)
1744 			break;
1745 		mutex_lock(&lo->lo_ctl_mutex);
1746 		if (lo->lo_state != Lo_unbound) {
1747 			ret = -EBUSY;
1748 			mutex_unlock(&lo->lo_ctl_mutex);
1749 			break;
1750 		}
1751 		if (atomic_read(&lo->lo_refcnt) > 0) {
1752 			ret = -EBUSY;
1753 			mutex_unlock(&lo->lo_ctl_mutex);
1754 			break;
1755 		}
1756 		lo->lo_disk->private_data = NULL;
1757 		mutex_unlock(&lo->lo_ctl_mutex);
1758 		idr_remove(&loop_index_idr, lo->lo_number);
1759 		loop_remove(lo);
1760 		break;
1761 	case LOOP_CTL_GET_FREE:
1762 		ret = loop_lookup(&lo, -1);
1763 		if (ret >= 0)
1764 			break;
1765 		ret = loop_add(&lo, -1);
1766 	}
1767 	mutex_unlock(&loop_index_mutex);
1768 
1769 	return ret;
1770 }
1771 
1772 static const struct file_operations loop_ctl_fops = {
1773 	.open		= nonseekable_open,
1774 	.unlocked_ioctl	= loop_control_ioctl,
1775 	.compat_ioctl	= loop_control_ioctl,
1776 	.owner		= THIS_MODULE,
1777 	.llseek		= noop_llseek,
1778 };
1779 
1780 static struct miscdevice loop_misc = {
1781 	.minor		= LOOP_CTRL_MINOR,
1782 	.name		= "loop-control",
1783 	.fops		= &loop_ctl_fops,
1784 };
1785 
1786 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1787 MODULE_ALIAS("devname:loop-control");
1788 
1789 static int __init loop_init(void)
1790 {
1791 	int i, nr;
1792 	unsigned long range;
1793 	struct loop_device *lo;
1794 	int err;
1795 
1796 	err = misc_register(&loop_misc);
1797 	if (err < 0)
1798 		return err;
1799 
1800 	part_shift = 0;
1801 	if (max_part > 0) {
1802 		part_shift = fls(max_part);
1803 
1804 		/*
1805 		 * Adjust max_part according to part_shift as it is exported
1806 		 * to user space so that user can decide correct minor number
1807 		 * if [s]he want to create more devices.
1808 		 *
1809 		 * Note that -1 is required because partition 0 is reserved
1810 		 * for the whole disk.
1811 		 */
1812 		max_part = (1UL << part_shift) - 1;
1813 	}
1814 
1815 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1816 		err = -EINVAL;
1817 		goto misc_out;
1818 	}
1819 
1820 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1821 		err = -EINVAL;
1822 		goto misc_out;
1823 	}
1824 
1825 	/*
1826 	 * If max_loop is specified, create that many devices upfront.
1827 	 * This also becomes a hard limit. If max_loop is not specified,
1828 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1829 	 * init time. Loop devices can be requested on-demand with the
1830 	 * /dev/loop-control interface, or be instantiated by accessing
1831 	 * a 'dead' device node.
1832 	 */
1833 	if (max_loop) {
1834 		nr = max_loop;
1835 		range = max_loop << part_shift;
1836 	} else {
1837 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1838 		range = 1UL << MINORBITS;
1839 	}
1840 
1841 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1842 		err = -EIO;
1843 		goto misc_out;
1844 	}
1845 
1846 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1847 				  THIS_MODULE, loop_probe, NULL, NULL);
1848 
1849 	/* pre-create number of devices given by config or max_loop */
1850 	mutex_lock(&loop_index_mutex);
1851 	for (i = 0; i < nr; i++)
1852 		loop_add(&lo, i);
1853 	mutex_unlock(&loop_index_mutex);
1854 
1855 	printk(KERN_INFO "loop: module loaded\n");
1856 	return 0;
1857 
1858 misc_out:
1859 	misc_deregister(&loop_misc);
1860 	return err;
1861 }
1862 
1863 static int loop_exit_cb(int id, void *ptr, void *data)
1864 {
1865 	struct loop_device *lo = ptr;
1866 
1867 	loop_remove(lo);
1868 	return 0;
1869 }
1870 
1871 static void __exit loop_exit(void)
1872 {
1873 	unsigned long range;
1874 
1875 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1876 
1877 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1878 	idr_destroy(&loop_index_idr);
1879 
1880 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1881 	unregister_blkdev(LOOP_MAJOR, "loop");
1882 
1883 	misc_deregister(&loop_misc);
1884 }
1885 
1886 module_init(loop_init);
1887 module_exit(loop_exit);
1888 
1889 #ifndef MODULE
1890 static int __init max_loop_setup(char *str)
1891 {
1892 	max_loop = simple_strtol(str, NULL, 0);
1893 	return 1;
1894 }
1895 
1896 __setup("max_loop=", max_loop_setup);
1897 #endif
1898