1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/pagemap.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 #include <linux/sched/mm.h> 82 #include <linux/statfs.h> 83 84 #include "loop.h" 85 86 #include <linux/uaccess.h> 87 88 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 89 90 static DEFINE_IDR(loop_index_idr); 91 static DEFINE_MUTEX(loop_ctl_mutex); 92 static DEFINE_MUTEX(loop_validate_mutex); 93 94 /** 95 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 96 * 97 * @lo: struct loop_device 98 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 99 * 100 * Returns 0 on success, -EINTR otherwise. 101 * 102 * Since loop_validate_file() traverses on other "struct loop_device" if 103 * is_loop_device() is true, we need a global lock for serializing concurrent 104 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 105 */ 106 static int loop_global_lock_killable(struct loop_device *lo, bool global) 107 { 108 int err; 109 110 if (global) { 111 err = mutex_lock_killable(&loop_validate_mutex); 112 if (err) 113 return err; 114 } 115 err = mutex_lock_killable(&lo->lo_mutex); 116 if (err && global) 117 mutex_unlock(&loop_validate_mutex); 118 return err; 119 } 120 121 /** 122 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 123 * 124 * @lo: struct loop_device 125 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 126 */ 127 static void loop_global_unlock(struct loop_device *lo, bool global) 128 { 129 mutex_unlock(&lo->lo_mutex); 130 if (global) 131 mutex_unlock(&loop_validate_mutex); 132 } 133 134 static int max_part; 135 static int part_shift; 136 137 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 138 { 139 loff_t loopsize; 140 141 /* Compute loopsize in bytes */ 142 loopsize = i_size_read(file->f_mapping->host); 143 if (offset > 0) 144 loopsize -= offset; 145 /* offset is beyond i_size, weird but possible */ 146 if (loopsize < 0) 147 return 0; 148 149 if (sizelimit > 0 && sizelimit < loopsize) 150 loopsize = sizelimit; 151 /* 152 * Unfortunately, if we want to do I/O on the device, 153 * the number of 512-byte sectors has to fit into a sector_t. 154 */ 155 return loopsize >> 9; 156 } 157 158 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 159 { 160 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 161 } 162 163 static void __loop_update_dio(struct loop_device *lo, bool dio) 164 { 165 struct file *file = lo->lo_backing_file; 166 struct address_space *mapping = file->f_mapping; 167 struct inode *inode = mapping->host; 168 unsigned short sb_bsize = 0; 169 unsigned dio_align = 0; 170 bool use_dio; 171 172 if (inode->i_sb->s_bdev) { 173 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 174 dio_align = sb_bsize - 1; 175 } 176 177 /* 178 * We support direct I/O only if lo_offset is aligned with the 179 * logical I/O size of backing device, and the logical block 180 * size of loop is bigger than the backing device's. 181 * 182 * TODO: the above condition may be loosed in the future, and 183 * direct I/O may be switched runtime at that time because most 184 * of requests in sane applications should be PAGE_SIZE aligned 185 */ 186 if (dio) { 187 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 188 !(lo->lo_offset & dio_align) && 189 mapping->a_ops->direct_IO) 190 use_dio = true; 191 else 192 use_dio = false; 193 } else { 194 use_dio = false; 195 } 196 197 if (lo->use_dio == use_dio) 198 return; 199 200 /* flush dirty pages before changing direct IO */ 201 vfs_fsync(file, 0); 202 203 /* 204 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 205 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 206 * will get updated by ioctl(LOOP_GET_STATUS) 207 */ 208 if (lo->lo_state == Lo_bound) 209 blk_mq_freeze_queue(lo->lo_queue); 210 lo->use_dio = use_dio; 211 if (use_dio) { 212 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 213 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 214 } else { 215 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 216 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 217 } 218 if (lo->lo_state == Lo_bound) 219 blk_mq_unfreeze_queue(lo->lo_queue); 220 } 221 222 /** 223 * loop_set_size() - sets device size and notifies userspace 224 * @lo: struct loop_device to set the size for 225 * @size: new size of the loop device 226 * 227 * Callers must validate that the size passed into this function fits into 228 * a sector_t, eg using loop_validate_size() 229 */ 230 static void loop_set_size(struct loop_device *lo, loff_t size) 231 { 232 if (!set_capacity_and_notify(lo->lo_disk, size)) 233 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 234 } 235 236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 237 { 238 struct iov_iter i; 239 ssize_t bw; 240 241 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 242 243 file_start_write(file); 244 bw = vfs_iter_write(file, &i, ppos, 0); 245 file_end_write(file); 246 247 if (likely(bw == bvec->bv_len)) 248 return 0; 249 250 printk_ratelimited(KERN_ERR 251 "loop: Write error at byte offset %llu, length %i.\n", 252 (unsigned long long)*ppos, bvec->bv_len); 253 if (bw >= 0) 254 bw = -EIO; 255 return bw; 256 } 257 258 static int lo_write_simple(struct loop_device *lo, struct request *rq, 259 loff_t pos) 260 { 261 struct bio_vec bvec; 262 struct req_iterator iter; 263 int ret = 0; 264 265 rq_for_each_segment(bvec, rq, iter) { 266 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 267 if (ret < 0) 268 break; 269 cond_resched(); 270 } 271 272 return ret; 273 } 274 275 static int lo_read_simple(struct loop_device *lo, struct request *rq, 276 loff_t pos) 277 { 278 struct bio_vec bvec; 279 struct req_iterator iter; 280 struct iov_iter i; 281 ssize_t len; 282 283 rq_for_each_segment(bvec, rq, iter) { 284 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 285 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 286 if (len < 0) 287 return len; 288 289 flush_dcache_page(bvec.bv_page); 290 291 if (len != bvec.bv_len) { 292 struct bio *bio; 293 294 __rq_for_each_bio(bio, rq) 295 zero_fill_bio(bio); 296 break; 297 } 298 cond_resched(); 299 } 300 301 return 0; 302 } 303 304 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 305 int mode) 306 { 307 /* 308 * We use fallocate to manipulate the space mappings used by the image 309 * a.k.a. discard/zerorange. 310 */ 311 struct file *file = lo->lo_backing_file; 312 struct request_queue *q = lo->lo_queue; 313 int ret; 314 315 mode |= FALLOC_FL_KEEP_SIZE; 316 317 if (!blk_queue_discard(q)) { 318 ret = -EOPNOTSUPP; 319 goto out; 320 } 321 322 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 323 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 324 ret = -EIO; 325 out: 326 return ret; 327 } 328 329 static int lo_req_flush(struct loop_device *lo, struct request *rq) 330 { 331 struct file *file = lo->lo_backing_file; 332 int ret = vfs_fsync(file, 0); 333 if (unlikely(ret && ret != -EINVAL)) 334 ret = -EIO; 335 336 return ret; 337 } 338 339 static void lo_complete_rq(struct request *rq) 340 { 341 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 342 blk_status_t ret = BLK_STS_OK; 343 344 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 345 req_op(rq) != REQ_OP_READ) { 346 if (cmd->ret < 0) 347 ret = errno_to_blk_status(cmd->ret); 348 goto end_io; 349 } 350 351 /* 352 * Short READ - if we got some data, advance our request and 353 * retry it. If we got no data, end the rest with EIO. 354 */ 355 if (cmd->ret) { 356 blk_update_request(rq, BLK_STS_OK, cmd->ret); 357 cmd->ret = 0; 358 blk_mq_requeue_request(rq, true); 359 } else { 360 if (cmd->use_aio) { 361 struct bio *bio = rq->bio; 362 363 while (bio) { 364 zero_fill_bio(bio); 365 bio = bio->bi_next; 366 } 367 } 368 ret = BLK_STS_IOERR; 369 end_io: 370 blk_mq_end_request(rq, ret); 371 } 372 } 373 374 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 375 { 376 struct request *rq = blk_mq_rq_from_pdu(cmd); 377 378 if (!atomic_dec_and_test(&cmd->ref)) 379 return; 380 kfree(cmd->bvec); 381 cmd->bvec = NULL; 382 if (likely(!blk_should_fake_timeout(rq->q))) 383 blk_mq_complete_request(rq); 384 } 385 386 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 387 { 388 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 389 390 cmd->ret = ret; 391 lo_rw_aio_do_completion(cmd); 392 } 393 394 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 395 loff_t pos, bool rw) 396 { 397 struct iov_iter iter; 398 struct req_iterator rq_iter; 399 struct bio_vec *bvec; 400 struct request *rq = blk_mq_rq_from_pdu(cmd); 401 struct bio *bio = rq->bio; 402 struct file *file = lo->lo_backing_file; 403 struct bio_vec tmp; 404 unsigned int offset; 405 int nr_bvec = 0; 406 int ret; 407 408 rq_for_each_bvec(tmp, rq, rq_iter) 409 nr_bvec++; 410 411 if (rq->bio != rq->biotail) { 412 413 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 414 GFP_NOIO); 415 if (!bvec) 416 return -EIO; 417 cmd->bvec = bvec; 418 419 /* 420 * The bios of the request may be started from the middle of 421 * the 'bvec' because of bio splitting, so we can't directly 422 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 423 * API will take care of all details for us. 424 */ 425 rq_for_each_bvec(tmp, rq, rq_iter) { 426 *bvec = tmp; 427 bvec++; 428 } 429 bvec = cmd->bvec; 430 offset = 0; 431 } else { 432 /* 433 * Same here, this bio may be started from the middle of the 434 * 'bvec' because of bio splitting, so offset from the bvec 435 * must be passed to iov iterator 436 */ 437 offset = bio->bi_iter.bi_bvec_done; 438 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 439 } 440 atomic_set(&cmd->ref, 2); 441 442 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 443 iter.iov_offset = offset; 444 445 cmd->iocb.ki_pos = pos; 446 cmd->iocb.ki_filp = file; 447 cmd->iocb.ki_complete = lo_rw_aio_complete; 448 cmd->iocb.ki_flags = IOCB_DIRECT; 449 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 450 451 if (rw == WRITE) 452 ret = call_write_iter(file, &cmd->iocb, &iter); 453 else 454 ret = call_read_iter(file, &cmd->iocb, &iter); 455 456 lo_rw_aio_do_completion(cmd); 457 458 if (ret != -EIOCBQUEUED) 459 lo_rw_aio_complete(&cmd->iocb, ret); 460 return 0; 461 } 462 463 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 464 { 465 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 466 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 467 468 /* 469 * lo_write_simple and lo_read_simple should have been covered 470 * by io submit style function like lo_rw_aio(), one blocker 471 * is that lo_read_simple() need to call flush_dcache_page after 472 * the page is written from kernel, and it isn't easy to handle 473 * this in io submit style function which submits all segments 474 * of the req at one time. And direct read IO doesn't need to 475 * run flush_dcache_page(). 476 */ 477 switch (req_op(rq)) { 478 case REQ_OP_FLUSH: 479 return lo_req_flush(lo, rq); 480 case REQ_OP_WRITE_ZEROES: 481 /* 482 * If the caller doesn't want deallocation, call zeroout to 483 * write zeroes the range. Otherwise, punch them out. 484 */ 485 return lo_fallocate(lo, rq, pos, 486 (rq->cmd_flags & REQ_NOUNMAP) ? 487 FALLOC_FL_ZERO_RANGE : 488 FALLOC_FL_PUNCH_HOLE); 489 case REQ_OP_DISCARD: 490 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 491 case REQ_OP_WRITE: 492 if (cmd->use_aio) 493 return lo_rw_aio(lo, cmd, pos, WRITE); 494 else 495 return lo_write_simple(lo, rq, pos); 496 case REQ_OP_READ: 497 if (cmd->use_aio) 498 return lo_rw_aio(lo, cmd, pos, READ); 499 else 500 return lo_read_simple(lo, rq, pos); 501 default: 502 WARN_ON_ONCE(1); 503 return -EIO; 504 } 505 } 506 507 static inline void loop_update_dio(struct loop_device *lo) 508 { 509 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 510 lo->use_dio); 511 } 512 513 static void loop_reread_partitions(struct loop_device *lo) 514 { 515 int rc; 516 517 mutex_lock(&lo->lo_disk->open_mutex); 518 rc = bdev_disk_changed(lo->lo_disk, false); 519 mutex_unlock(&lo->lo_disk->open_mutex); 520 if (rc) 521 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 522 __func__, lo->lo_number, lo->lo_file_name, rc); 523 } 524 525 static inline int is_loop_device(struct file *file) 526 { 527 struct inode *i = file->f_mapping->host; 528 529 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 530 } 531 532 static int loop_validate_file(struct file *file, struct block_device *bdev) 533 { 534 struct inode *inode = file->f_mapping->host; 535 struct file *f = file; 536 537 /* Avoid recursion */ 538 while (is_loop_device(f)) { 539 struct loop_device *l; 540 541 lockdep_assert_held(&loop_validate_mutex); 542 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 543 return -EBADF; 544 545 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 546 if (l->lo_state != Lo_bound) 547 return -EINVAL; 548 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 549 rmb(); 550 f = l->lo_backing_file; 551 } 552 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 553 return -EINVAL; 554 return 0; 555 } 556 557 /* 558 * loop_change_fd switched the backing store of a loopback device to 559 * a new file. This is useful for operating system installers to free up 560 * the original file and in High Availability environments to switch to 561 * an alternative location for the content in case of server meltdown. 562 * This can only work if the loop device is used read-only, and if the 563 * new backing store is the same size and type as the old backing store. 564 */ 565 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 566 unsigned int arg) 567 { 568 struct file *file = fget(arg); 569 struct file *old_file; 570 int error; 571 bool partscan; 572 bool is_loop; 573 574 if (!file) 575 return -EBADF; 576 is_loop = is_loop_device(file); 577 error = loop_global_lock_killable(lo, is_loop); 578 if (error) 579 goto out_putf; 580 error = -ENXIO; 581 if (lo->lo_state != Lo_bound) 582 goto out_err; 583 584 /* the loop device has to be read-only */ 585 error = -EINVAL; 586 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 587 goto out_err; 588 589 error = loop_validate_file(file, bdev); 590 if (error) 591 goto out_err; 592 593 old_file = lo->lo_backing_file; 594 595 error = -EINVAL; 596 597 /* size of the new backing store needs to be the same */ 598 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 599 goto out_err; 600 601 /* and ... switch */ 602 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 603 blk_mq_freeze_queue(lo->lo_queue); 604 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 605 lo->lo_backing_file = file; 606 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 607 mapping_set_gfp_mask(file->f_mapping, 608 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 609 loop_update_dio(lo); 610 blk_mq_unfreeze_queue(lo->lo_queue); 611 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 612 loop_global_unlock(lo, is_loop); 613 614 /* 615 * Flush loop_validate_file() before fput(), for l->lo_backing_file 616 * might be pointing at old_file which might be the last reference. 617 */ 618 if (!is_loop) { 619 mutex_lock(&loop_validate_mutex); 620 mutex_unlock(&loop_validate_mutex); 621 } 622 /* 623 * We must drop file reference outside of lo_mutex as dropping 624 * the file ref can take open_mutex which creates circular locking 625 * dependency. 626 */ 627 fput(old_file); 628 if (partscan) 629 loop_reread_partitions(lo); 630 return 0; 631 632 out_err: 633 loop_global_unlock(lo, is_loop); 634 out_putf: 635 fput(file); 636 return error; 637 } 638 639 /* loop sysfs attributes */ 640 641 static ssize_t loop_attr_show(struct device *dev, char *page, 642 ssize_t (*callback)(struct loop_device *, char *)) 643 { 644 struct gendisk *disk = dev_to_disk(dev); 645 struct loop_device *lo = disk->private_data; 646 647 return callback(lo, page); 648 } 649 650 #define LOOP_ATTR_RO(_name) \ 651 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 652 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 653 struct device_attribute *attr, char *b) \ 654 { \ 655 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 656 } \ 657 static struct device_attribute loop_attr_##_name = \ 658 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 659 660 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 661 { 662 ssize_t ret; 663 char *p = NULL; 664 665 spin_lock_irq(&lo->lo_lock); 666 if (lo->lo_backing_file) 667 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 668 spin_unlock_irq(&lo->lo_lock); 669 670 if (IS_ERR_OR_NULL(p)) 671 ret = PTR_ERR(p); 672 else { 673 ret = strlen(p); 674 memmove(buf, p, ret); 675 buf[ret++] = '\n'; 676 buf[ret] = 0; 677 } 678 679 return ret; 680 } 681 682 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 683 { 684 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 685 } 686 687 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 688 { 689 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 690 } 691 692 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 693 { 694 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 695 696 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 697 } 698 699 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 700 { 701 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 702 703 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 704 } 705 706 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 707 { 708 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 709 710 return sprintf(buf, "%s\n", dio ? "1" : "0"); 711 } 712 713 LOOP_ATTR_RO(backing_file); 714 LOOP_ATTR_RO(offset); 715 LOOP_ATTR_RO(sizelimit); 716 LOOP_ATTR_RO(autoclear); 717 LOOP_ATTR_RO(partscan); 718 LOOP_ATTR_RO(dio); 719 720 static struct attribute *loop_attrs[] = { 721 &loop_attr_backing_file.attr, 722 &loop_attr_offset.attr, 723 &loop_attr_sizelimit.attr, 724 &loop_attr_autoclear.attr, 725 &loop_attr_partscan.attr, 726 &loop_attr_dio.attr, 727 NULL, 728 }; 729 730 static struct attribute_group loop_attribute_group = { 731 .name = "loop", 732 .attrs= loop_attrs, 733 }; 734 735 static void loop_sysfs_init(struct loop_device *lo) 736 { 737 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 738 &loop_attribute_group); 739 } 740 741 static void loop_sysfs_exit(struct loop_device *lo) 742 { 743 if (lo->sysfs_inited) 744 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 745 &loop_attribute_group); 746 } 747 748 static void loop_config_discard(struct loop_device *lo) 749 { 750 struct file *file = lo->lo_backing_file; 751 struct inode *inode = file->f_mapping->host; 752 struct request_queue *q = lo->lo_queue; 753 u32 granularity, max_discard_sectors; 754 755 /* 756 * If the backing device is a block device, mirror its zeroing 757 * capability. Set the discard sectors to the block device's zeroing 758 * capabilities because loop discards result in blkdev_issue_zeroout(), 759 * not blkdev_issue_discard(). This maintains consistent behavior with 760 * file-backed loop devices: discarded regions read back as zero. 761 */ 762 if (S_ISBLK(inode->i_mode)) { 763 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 764 765 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 766 granularity = backingq->limits.discard_granularity ?: 767 queue_physical_block_size(backingq); 768 769 /* 770 * We use punch hole to reclaim the free space used by the 771 * image a.k.a. discard. 772 */ 773 } else if (!file->f_op->fallocate) { 774 max_discard_sectors = 0; 775 granularity = 0; 776 777 } else { 778 struct kstatfs sbuf; 779 780 max_discard_sectors = UINT_MAX >> 9; 781 if (!vfs_statfs(&file->f_path, &sbuf)) 782 granularity = sbuf.f_bsize; 783 else 784 max_discard_sectors = 0; 785 } 786 787 if (max_discard_sectors) { 788 q->limits.discard_granularity = granularity; 789 blk_queue_max_discard_sectors(q, max_discard_sectors); 790 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 791 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 792 } else { 793 q->limits.discard_granularity = 0; 794 blk_queue_max_discard_sectors(q, 0); 795 blk_queue_max_write_zeroes_sectors(q, 0); 796 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 797 } 798 q->limits.discard_alignment = 0; 799 } 800 801 struct loop_worker { 802 struct rb_node rb_node; 803 struct work_struct work; 804 struct list_head cmd_list; 805 struct list_head idle_list; 806 struct loop_device *lo; 807 struct cgroup_subsys_state *blkcg_css; 808 unsigned long last_ran_at; 809 }; 810 811 static void loop_workfn(struct work_struct *work); 812 static void loop_rootcg_workfn(struct work_struct *work); 813 static void loop_free_idle_workers(struct timer_list *timer); 814 815 #ifdef CONFIG_BLK_CGROUP 816 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 817 { 818 return !css || css == blkcg_root_css; 819 } 820 #else 821 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 822 { 823 return !css; 824 } 825 #endif 826 827 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 828 { 829 struct rb_node **node, *parent = NULL; 830 struct loop_worker *cur_worker, *worker = NULL; 831 struct work_struct *work; 832 struct list_head *cmd_list; 833 834 spin_lock_irq(&lo->lo_work_lock); 835 836 if (queue_on_root_worker(cmd->blkcg_css)) 837 goto queue_work; 838 839 node = &lo->worker_tree.rb_node; 840 841 while (*node) { 842 parent = *node; 843 cur_worker = container_of(*node, struct loop_worker, rb_node); 844 if (cur_worker->blkcg_css == cmd->blkcg_css) { 845 worker = cur_worker; 846 break; 847 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 848 node = &(*node)->rb_left; 849 } else { 850 node = &(*node)->rb_right; 851 } 852 } 853 if (worker) 854 goto queue_work; 855 856 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 857 /* 858 * In the event we cannot allocate a worker, just queue on the 859 * rootcg worker and issue the I/O as the rootcg 860 */ 861 if (!worker) { 862 cmd->blkcg_css = NULL; 863 if (cmd->memcg_css) 864 css_put(cmd->memcg_css); 865 cmd->memcg_css = NULL; 866 goto queue_work; 867 } 868 869 worker->blkcg_css = cmd->blkcg_css; 870 css_get(worker->blkcg_css); 871 INIT_WORK(&worker->work, loop_workfn); 872 INIT_LIST_HEAD(&worker->cmd_list); 873 INIT_LIST_HEAD(&worker->idle_list); 874 worker->lo = lo; 875 rb_link_node(&worker->rb_node, parent, node); 876 rb_insert_color(&worker->rb_node, &lo->worker_tree); 877 queue_work: 878 if (worker) { 879 /* 880 * We need to remove from the idle list here while 881 * holding the lock so that the idle timer doesn't 882 * free the worker 883 */ 884 if (!list_empty(&worker->idle_list)) 885 list_del_init(&worker->idle_list); 886 work = &worker->work; 887 cmd_list = &worker->cmd_list; 888 } else { 889 work = &lo->rootcg_work; 890 cmd_list = &lo->rootcg_cmd_list; 891 } 892 list_add_tail(&cmd->list_entry, cmd_list); 893 queue_work(lo->workqueue, work); 894 spin_unlock_irq(&lo->lo_work_lock); 895 } 896 897 static void loop_update_rotational(struct loop_device *lo) 898 { 899 struct file *file = lo->lo_backing_file; 900 struct inode *file_inode = file->f_mapping->host; 901 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 902 struct request_queue *q = lo->lo_queue; 903 bool nonrot = true; 904 905 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 906 if (file_bdev) 907 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 908 909 if (nonrot) 910 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 911 else 912 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 913 } 914 915 /** 916 * loop_set_status_from_info - configure device from loop_info 917 * @lo: struct loop_device to configure 918 * @info: struct loop_info64 to configure the device with 919 * 920 * Configures the loop device parameters according to the passed 921 * in loop_info64 configuration. 922 */ 923 static int 924 loop_set_status_from_info(struct loop_device *lo, 925 const struct loop_info64 *info) 926 { 927 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 928 return -EINVAL; 929 930 switch (info->lo_encrypt_type) { 931 case LO_CRYPT_NONE: 932 break; 933 case LO_CRYPT_XOR: 934 pr_warn("support for the xor transformation has been removed.\n"); 935 return -EINVAL; 936 case LO_CRYPT_CRYPTOAPI: 937 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 938 return -EINVAL; 939 default: 940 return -EINVAL; 941 } 942 943 lo->lo_offset = info->lo_offset; 944 lo->lo_sizelimit = info->lo_sizelimit; 945 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 946 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 947 lo->lo_flags = info->lo_flags; 948 return 0; 949 } 950 951 static int loop_configure(struct loop_device *lo, fmode_t mode, 952 struct block_device *bdev, 953 const struct loop_config *config) 954 { 955 struct file *file = fget(config->fd); 956 struct inode *inode; 957 struct address_space *mapping; 958 int error; 959 loff_t size; 960 bool partscan; 961 unsigned short bsize; 962 bool is_loop; 963 964 if (!file) 965 return -EBADF; 966 is_loop = is_loop_device(file); 967 968 /* This is safe, since we have a reference from open(). */ 969 __module_get(THIS_MODULE); 970 971 /* 972 * If we don't hold exclusive handle for the device, upgrade to it 973 * here to avoid changing device under exclusive owner. 974 */ 975 if (!(mode & FMODE_EXCL)) { 976 error = bd_prepare_to_claim(bdev, loop_configure); 977 if (error) 978 goto out_putf; 979 } 980 981 error = loop_global_lock_killable(lo, is_loop); 982 if (error) 983 goto out_bdev; 984 985 error = -EBUSY; 986 if (lo->lo_state != Lo_unbound) 987 goto out_unlock; 988 989 error = loop_validate_file(file, bdev); 990 if (error) 991 goto out_unlock; 992 993 mapping = file->f_mapping; 994 inode = mapping->host; 995 996 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 997 error = -EINVAL; 998 goto out_unlock; 999 } 1000 1001 if (config->block_size) { 1002 error = blk_validate_block_size(config->block_size); 1003 if (error) 1004 goto out_unlock; 1005 } 1006 1007 error = loop_set_status_from_info(lo, &config->info); 1008 if (error) 1009 goto out_unlock; 1010 1011 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1012 !file->f_op->write_iter) 1013 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1014 1015 lo->workqueue = alloc_workqueue("loop%d", 1016 WQ_UNBOUND | WQ_FREEZABLE, 1017 0, 1018 lo->lo_number); 1019 if (!lo->workqueue) { 1020 error = -ENOMEM; 1021 goto out_unlock; 1022 } 1023 1024 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1025 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1026 1027 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 1028 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 1029 INIT_LIST_HEAD(&lo->idle_worker_list); 1030 lo->worker_tree = RB_ROOT; 1031 timer_setup(&lo->timer, loop_free_idle_workers, 1032 TIMER_DEFERRABLE); 1033 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1034 lo->lo_device = bdev; 1035 lo->lo_backing_file = file; 1036 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1037 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1038 1039 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1040 blk_queue_write_cache(lo->lo_queue, true, false); 1041 1042 if (config->block_size) 1043 bsize = config->block_size; 1044 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1045 /* In case of direct I/O, match underlying block size */ 1046 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1047 else 1048 bsize = 512; 1049 1050 blk_queue_logical_block_size(lo->lo_queue, bsize); 1051 blk_queue_physical_block_size(lo->lo_queue, bsize); 1052 blk_queue_io_min(lo->lo_queue, bsize); 1053 1054 loop_config_discard(lo); 1055 loop_update_rotational(lo); 1056 loop_update_dio(lo); 1057 loop_sysfs_init(lo); 1058 1059 size = get_loop_size(lo, file); 1060 loop_set_size(lo, size); 1061 1062 /* Order wrt reading lo_state in loop_validate_file(). */ 1063 wmb(); 1064 1065 lo->lo_state = Lo_bound; 1066 if (part_shift) 1067 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1068 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1069 if (partscan) 1070 lo->lo_disk->flags &= ~GENHD_FL_NO_PART; 1071 1072 loop_global_unlock(lo, is_loop); 1073 if (partscan) 1074 loop_reread_partitions(lo); 1075 if (!(mode & FMODE_EXCL)) 1076 bd_abort_claiming(bdev, loop_configure); 1077 return 0; 1078 1079 out_unlock: 1080 loop_global_unlock(lo, is_loop); 1081 out_bdev: 1082 if (!(mode & FMODE_EXCL)) 1083 bd_abort_claiming(bdev, loop_configure); 1084 out_putf: 1085 fput(file); 1086 /* This is safe: open() is still holding a reference. */ 1087 module_put(THIS_MODULE); 1088 return error; 1089 } 1090 1091 static void __loop_clr_fd(struct loop_device *lo, bool release) 1092 { 1093 struct file *filp; 1094 gfp_t gfp = lo->old_gfp_mask; 1095 struct loop_worker *pos, *worker; 1096 1097 /* 1098 * Flush loop_configure() and loop_change_fd(). It is acceptable for 1099 * loop_validate_file() to succeed, for actual clear operation has not 1100 * started yet. 1101 */ 1102 mutex_lock(&loop_validate_mutex); 1103 mutex_unlock(&loop_validate_mutex); 1104 /* 1105 * loop_validate_file() now fails because l->lo_state != Lo_bound 1106 * became visible. 1107 */ 1108 1109 /* 1110 * Since this function is called upon "ioctl(LOOP_CLR_FD)" xor "close() 1111 * after ioctl(LOOP_CLR_FD)", it is a sign of something going wrong if 1112 * lo->lo_state has changed while waiting for lo->lo_mutex. 1113 */ 1114 mutex_lock(&lo->lo_mutex); 1115 BUG_ON(lo->lo_state != Lo_rundown); 1116 mutex_unlock(&lo->lo_mutex); 1117 1118 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1119 blk_queue_write_cache(lo->lo_queue, false, false); 1120 1121 /* freeze request queue during the transition */ 1122 blk_mq_freeze_queue(lo->lo_queue); 1123 1124 destroy_workqueue(lo->workqueue); 1125 spin_lock_irq(&lo->lo_work_lock); 1126 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1127 idle_list) { 1128 list_del(&worker->idle_list); 1129 rb_erase(&worker->rb_node, &lo->worker_tree); 1130 css_put(worker->blkcg_css); 1131 kfree(worker); 1132 } 1133 spin_unlock_irq(&lo->lo_work_lock); 1134 del_timer_sync(&lo->timer); 1135 1136 spin_lock_irq(&lo->lo_lock); 1137 filp = lo->lo_backing_file; 1138 lo->lo_backing_file = NULL; 1139 spin_unlock_irq(&lo->lo_lock); 1140 1141 lo->lo_device = NULL; 1142 lo->lo_offset = 0; 1143 lo->lo_sizelimit = 0; 1144 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1145 blk_queue_logical_block_size(lo->lo_queue, 512); 1146 blk_queue_physical_block_size(lo->lo_queue, 512); 1147 blk_queue_io_min(lo->lo_queue, 512); 1148 invalidate_disk(lo->lo_disk); 1149 loop_sysfs_exit(lo); 1150 /* let user-space know about this change */ 1151 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1152 mapping_set_gfp_mask(filp->f_mapping, gfp); 1153 /* This is safe: open() is still holding a reference. */ 1154 module_put(THIS_MODULE); 1155 blk_mq_unfreeze_queue(lo->lo_queue); 1156 1157 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1158 1159 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1160 int err; 1161 1162 /* 1163 * open_mutex has been held already in release path, so don't 1164 * acquire it if this function is called in such case. 1165 * 1166 * If the reread partition isn't from release path, lo_refcnt 1167 * must be at least one and it can only become zero when the 1168 * current holder is released. 1169 */ 1170 if (!release) 1171 mutex_lock(&lo->lo_disk->open_mutex); 1172 err = bdev_disk_changed(lo->lo_disk, false); 1173 if (!release) 1174 mutex_unlock(&lo->lo_disk->open_mutex); 1175 if (err) 1176 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1177 __func__, lo->lo_number, err); 1178 /* Device is gone, no point in returning error */ 1179 } 1180 1181 /* 1182 * lo->lo_state is set to Lo_unbound here after above partscan has 1183 * finished. There cannot be anybody else entering __loop_clr_fd() as 1184 * Lo_rundown state protects us from all the other places trying to 1185 * change the 'lo' device. 1186 */ 1187 lo->lo_flags = 0; 1188 if (!part_shift) 1189 lo->lo_disk->flags |= GENHD_FL_NO_PART; 1190 mutex_lock(&lo->lo_mutex); 1191 lo->lo_state = Lo_unbound; 1192 mutex_unlock(&lo->lo_mutex); 1193 1194 /* 1195 * Need not hold lo_mutex to fput backing file. Calling fput holding 1196 * lo_mutex triggers a circular lock dependency possibility warning as 1197 * fput can take open_mutex which is usually taken before lo_mutex. 1198 */ 1199 fput(filp); 1200 } 1201 1202 static int loop_clr_fd(struct loop_device *lo) 1203 { 1204 int err; 1205 1206 err = mutex_lock_killable(&lo->lo_mutex); 1207 if (err) 1208 return err; 1209 if (lo->lo_state != Lo_bound) { 1210 mutex_unlock(&lo->lo_mutex); 1211 return -ENXIO; 1212 } 1213 /* 1214 * If we've explicitly asked to tear down the loop device, 1215 * and it has an elevated reference count, set it for auto-teardown when 1216 * the last reference goes away. This stops $!~#$@ udev from 1217 * preventing teardown because it decided that it needs to run blkid on 1218 * the loopback device whenever they appear. xfstests is notorious for 1219 * failing tests because blkid via udev races with a losetup 1220 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1221 * command to fail with EBUSY. 1222 */ 1223 if (atomic_read(&lo->lo_refcnt) > 1) { 1224 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1225 mutex_unlock(&lo->lo_mutex); 1226 return 0; 1227 } 1228 lo->lo_state = Lo_rundown; 1229 mutex_unlock(&lo->lo_mutex); 1230 1231 __loop_clr_fd(lo, false); 1232 return 0; 1233 } 1234 1235 static int 1236 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1237 { 1238 int err; 1239 int prev_lo_flags; 1240 bool partscan = false; 1241 bool size_changed = false; 1242 1243 err = mutex_lock_killable(&lo->lo_mutex); 1244 if (err) 1245 return err; 1246 if (lo->lo_state != Lo_bound) { 1247 err = -ENXIO; 1248 goto out_unlock; 1249 } 1250 1251 if (lo->lo_offset != info->lo_offset || 1252 lo->lo_sizelimit != info->lo_sizelimit) { 1253 size_changed = true; 1254 sync_blockdev(lo->lo_device); 1255 invalidate_bdev(lo->lo_device); 1256 } 1257 1258 /* I/O need to be drained during transfer transition */ 1259 blk_mq_freeze_queue(lo->lo_queue); 1260 1261 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1262 /* If any pages were dirtied after invalidate_bdev(), try again */ 1263 err = -EAGAIN; 1264 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1265 __func__, lo->lo_number, lo->lo_file_name, 1266 lo->lo_device->bd_inode->i_mapping->nrpages); 1267 goto out_unfreeze; 1268 } 1269 1270 prev_lo_flags = lo->lo_flags; 1271 1272 err = loop_set_status_from_info(lo, info); 1273 if (err) 1274 goto out_unfreeze; 1275 1276 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1277 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1278 /* For those flags, use the previous values instead */ 1279 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1280 /* For flags that can't be cleared, use previous values too */ 1281 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1282 1283 if (size_changed) { 1284 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1285 lo->lo_backing_file); 1286 loop_set_size(lo, new_size); 1287 } 1288 1289 loop_config_discard(lo); 1290 1291 /* update dio if lo_offset or transfer is changed */ 1292 __loop_update_dio(lo, lo->use_dio); 1293 1294 out_unfreeze: 1295 blk_mq_unfreeze_queue(lo->lo_queue); 1296 1297 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1298 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1299 lo->lo_disk->flags &= ~GENHD_FL_NO_PART; 1300 partscan = true; 1301 } 1302 out_unlock: 1303 mutex_unlock(&lo->lo_mutex); 1304 if (partscan) 1305 loop_reread_partitions(lo); 1306 1307 return err; 1308 } 1309 1310 static int 1311 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1312 { 1313 struct path path; 1314 struct kstat stat; 1315 int ret; 1316 1317 ret = mutex_lock_killable(&lo->lo_mutex); 1318 if (ret) 1319 return ret; 1320 if (lo->lo_state != Lo_bound) { 1321 mutex_unlock(&lo->lo_mutex); 1322 return -ENXIO; 1323 } 1324 1325 memset(info, 0, sizeof(*info)); 1326 info->lo_number = lo->lo_number; 1327 info->lo_offset = lo->lo_offset; 1328 info->lo_sizelimit = lo->lo_sizelimit; 1329 info->lo_flags = lo->lo_flags; 1330 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1331 1332 /* Drop lo_mutex while we call into the filesystem. */ 1333 path = lo->lo_backing_file->f_path; 1334 path_get(&path); 1335 mutex_unlock(&lo->lo_mutex); 1336 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1337 if (!ret) { 1338 info->lo_device = huge_encode_dev(stat.dev); 1339 info->lo_inode = stat.ino; 1340 info->lo_rdevice = huge_encode_dev(stat.rdev); 1341 } 1342 path_put(&path); 1343 return ret; 1344 } 1345 1346 static void 1347 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1348 { 1349 memset(info64, 0, sizeof(*info64)); 1350 info64->lo_number = info->lo_number; 1351 info64->lo_device = info->lo_device; 1352 info64->lo_inode = info->lo_inode; 1353 info64->lo_rdevice = info->lo_rdevice; 1354 info64->lo_offset = info->lo_offset; 1355 info64->lo_sizelimit = 0; 1356 info64->lo_flags = info->lo_flags; 1357 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1358 } 1359 1360 static int 1361 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1362 { 1363 memset(info, 0, sizeof(*info)); 1364 info->lo_number = info64->lo_number; 1365 info->lo_device = info64->lo_device; 1366 info->lo_inode = info64->lo_inode; 1367 info->lo_rdevice = info64->lo_rdevice; 1368 info->lo_offset = info64->lo_offset; 1369 info->lo_flags = info64->lo_flags; 1370 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1371 1372 /* error in case values were truncated */ 1373 if (info->lo_device != info64->lo_device || 1374 info->lo_rdevice != info64->lo_rdevice || 1375 info->lo_inode != info64->lo_inode || 1376 info->lo_offset != info64->lo_offset) 1377 return -EOVERFLOW; 1378 1379 return 0; 1380 } 1381 1382 static int 1383 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1384 { 1385 struct loop_info info; 1386 struct loop_info64 info64; 1387 1388 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1389 return -EFAULT; 1390 loop_info64_from_old(&info, &info64); 1391 return loop_set_status(lo, &info64); 1392 } 1393 1394 static int 1395 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1396 { 1397 struct loop_info64 info64; 1398 1399 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1400 return -EFAULT; 1401 return loop_set_status(lo, &info64); 1402 } 1403 1404 static int 1405 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1406 struct loop_info info; 1407 struct loop_info64 info64; 1408 int err; 1409 1410 if (!arg) 1411 return -EINVAL; 1412 err = loop_get_status(lo, &info64); 1413 if (!err) 1414 err = loop_info64_to_old(&info64, &info); 1415 if (!err && copy_to_user(arg, &info, sizeof(info))) 1416 err = -EFAULT; 1417 1418 return err; 1419 } 1420 1421 static int 1422 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1423 struct loop_info64 info64; 1424 int err; 1425 1426 if (!arg) 1427 return -EINVAL; 1428 err = loop_get_status(lo, &info64); 1429 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1430 err = -EFAULT; 1431 1432 return err; 1433 } 1434 1435 static int loop_set_capacity(struct loop_device *lo) 1436 { 1437 loff_t size; 1438 1439 if (unlikely(lo->lo_state != Lo_bound)) 1440 return -ENXIO; 1441 1442 size = get_loop_size(lo, lo->lo_backing_file); 1443 loop_set_size(lo, size); 1444 1445 return 0; 1446 } 1447 1448 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1449 { 1450 int error = -ENXIO; 1451 if (lo->lo_state != Lo_bound) 1452 goto out; 1453 1454 __loop_update_dio(lo, !!arg); 1455 if (lo->use_dio == !!arg) 1456 return 0; 1457 error = -EINVAL; 1458 out: 1459 return error; 1460 } 1461 1462 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1463 { 1464 int err = 0; 1465 1466 if (lo->lo_state != Lo_bound) 1467 return -ENXIO; 1468 1469 err = blk_validate_block_size(arg); 1470 if (err) 1471 return err; 1472 1473 if (lo->lo_queue->limits.logical_block_size == arg) 1474 return 0; 1475 1476 sync_blockdev(lo->lo_device); 1477 invalidate_bdev(lo->lo_device); 1478 1479 blk_mq_freeze_queue(lo->lo_queue); 1480 1481 /* invalidate_bdev should have truncated all the pages */ 1482 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1483 err = -EAGAIN; 1484 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1485 __func__, lo->lo_number, lo->lo_file_name, 1486 lo->lo_device->bd_inode->i_mapping->nrpages); 1487 goto out_unfreeze; 1488 } 1489 1490 blk_queue_logical_block_size(lo->lo_queue, arg); 1491 blk_queue_physical_block_size(lo->lo_queue, arg); 1492 blk_queue_io_min(lo->lo_queue, arg); 1493 loop_update_dio(lo); 1494 out_unfreeze: 1495 blk_mq_unfreeze_queue(lo->lo_queue); 1496 1497 return err; 1498 } 1499 1500 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1501 unsigned long arg) 1502 { 1503 int err; 1504 1505 err = mutex_lock_killable(&lo->lo_mutex); 1506 if (err) 1507 return err; 1508 switch (cmd) { 1509 case LOOP_SET_CAPACITY: 1510 err = loop_set_capacity(lo); 1511 break; 1512 case LOOP_SET_DIRECT_IO: 1513 err = loop_set_dio(lo, arg); 1514 break; 1515 case LOOP_SET_BLOCK_SIZE: 1516 err = loop_set_block_size(lo, arg); 1517 break; 1518 default: 1519 err = -EINVAL; 1520 } 1521 mutex_unlock(&lo->lo_mutex); 1522 return err; 1523 } 1524 1525 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1526 unsigned int cmd, unsigned long arg) 1527 { 1528 struct loop_device *lo = bdev->bd_disk->private_data; 1529 void __user *argp = (void __user *) arg; 1530 int err; 1531 1532 switch (cmd) { 1533 case LOOP_SET_FD: { 1534 /* 1535 * Legacy case - pass in a zeroed out struct loop_config with 1536 * only the file descriptor set , which corresponds with the 1537 * default parameters we'd have used otherwise. 1538 */ 1539 struct loop_config config; 1540 1541 memset(&config, 0, sizeof(config)); 1542 config.fd = arg; 1543 1544 return loop_configure(lo, mode, bdev, &config); 1545 } 1546 case LOOP_CONFIGURE: { 1547 struct loop_config config; 1548 1549 if (copy_from_user(&config, argp, sizeof(config))) 1550 return -EFAULT; 1551 1552 return loop_configure(lo, mode, bdev, &config); 1553 } 1554 case LOOP_CHANGE_FD: 1555 return loop_change_fd(lo, bdev, arg); 1556 case LOOP_CLR_FD: 1557 return loop_clr_fd(lo); 1558 case LOOP_SET_STATUS: 1559 err = -EPERM; 1560 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1561 err = loop_set_status_old(lo, argp); 1562 } 1563 break; 1564 case LOOP_GET_STATUS: 1565 return loop_get_status_old(lo, argp); 1566 case LOOP_SET_STATUS64: 1567 err = -EPERM; 1568 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1569 err = loop_set_status64(lo, argp); 1570 } 1571 break; 1572 case LOOP_GET_STATUS64: 1573 return loop_get_status64(lo, argp); 1574 case LOOP_SET_CAPACITY: 1575 case LOOP_SET_DIRECT_IO: 1576 case LOOP_SET_BLOCK_SIZE: 1577 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1578 return -EPERM; 1579 fallthrough; 1580 default: 1581 err = lo_simple_ioctl(lo, cmd, arg); 1582 break; 1583 } 1584 1585 return err; 1586 } 1587 1588 #ifdef CONFIG_COMPAT 1589 struct compat_loop_info { 1590 compat_int_t lo_number; /* ioctl r/o */ 1591 compat_dev_t lo_device; /* ioctl r/o */ 1592 compat_ulong_t lo_inode; /* ioctl r/o */ 1593 compat_dev_t lo_rdevice; /* ioctl r/o */ 1594 compat_int_t lo_offset; 1595 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1596 compat_int_t lo_flags; /* ioctl r/o */ 1597 char lo_name[LO_NAME_SIZE]; 1598 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1599 compat_ulong_t lo_init[2]; 1600 char reserved[4]; 1601 }; 1602 1603 /* 1604 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1605 * - noinlined to reduce stack space usage in main part of driver 1606 */ 1607 static noinline int 1608 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1609 struct loop_info64 *info64) 1610 { 1611 struct compat_loop_info info; 1612 1613 if (copy_from_user(&info, arg, sizeof(info))) 1614 return -EFAULT; 1615 1616 memset(info64, 0, sizeof(*info64)); 1617 info64->lo_number = info.lo_number; 1618 info64->lo_device = info.lo_device; 1619 info64->lo_inode = info.lo_inode; 1620 info64->lo_rdevice = info.lo_rdevice; 1621 info64->lo_offset = info.lo_offset; 1622 info64->lo_sizelimit = 0; 1623 info64->lo_flags = info.lo_flags; 1624 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1625 return 0; 1626 } 1627 1628 /* 1629 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1630 * - noinlined to reduce stack space usage in main part of driver 1631 */ 1632 static noinline int 1633 loop_info64_to_compat(const struct loop_info64 *info64, 1634 struct compat_loop_info __user *arg) 1635 { 1636 struct compat_loop_info info; 1637 1638 memset(&info, 0, sizeof(info)); 1639 info.lo_number = info64->lo_number; 1640 info.lo_device = info64->lo_device; 1641 info.lo_inode = info64->lo_inode; 1642 info.lo_rdevice = info64->lo_rdevice; 1643 info.lo_offset = info64->lo_offset; 1644 info.lo_flags = info64->lo_flags; 1645 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1646 1647 /* error in case values were truncated */ 1648 if (info.lo_device != info64->lo_device || 1649 info.lo_rdevice != info64->lo_rdevice || 1650 info.lo_inode != info64->lo_inode || 1651 info.lo_offset != info64->lo_offset) 1652 return -EOVERFLOW; 1653 1654 if (copy_to_user(arg, &info, sizeof(info))) 1655 return -EFAULT; 1656 return 0; 1657 } 1658 1659 static int 1660 loop_set_status_compat(struct loop_device *lo, 1661 const struct compat_loop_info __user *arg) 1662 { 1663 struct loop_info64 info64; 1664 int ret; 1665 1666 ret = loop_info64_from_compat(arg, &info64); 1667 if (ret < 0) 1668 return ret; 1669 return loop_set_status(lo, &info64); 1670 } 1671 1672 static int 1673 loop_get_status_compat(struct loop_device *lo, 1674 struct compat_loop_info __user *arg) 1675 { 1676 struct loop_info64 info64; 1677 int err; 1678 1679 if (!arg) 1680 return -EINVAL; 1681 err = loop_get_status(lo, &info64); 1682 if (!err) 1683 err = loop_info64_to_compat(&info64, arg); 1684 return err; 1685 } 1686 1687 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1688 unsigned int cmd, unsigned long arg) 1689 { 1690 struct loop_device *lo = bdev->bd_disk->private_data; 1691 int err; 1692 1693 switch(cmd) { 1694 case LOOP_SET_STATUS: 1695 err = loop_set_status_compat(lo, 1696 (const struct compat_loop_info __user *)arg); 1697 break; 1698 case LOOP_GET_STATUS: 1699 err = loop_get_status_compat(lo, 1700 (struct compat_loop_info __user *)arg); 1701 break; 1702 case LOOP_SET_CAPACITY: 1703 case LOOP_CLR_FD: 1704 case LOOP_GET_STATUS64: 1705 case LOOP_SET_STATUS64: 1706 case LOOP_CONFIGURE: 1707 arg = (unsigned long) compat_ptr(arg); 1708 fallthrough; 1709 case LOOP_SET_FD: 1710 case LOOP_CHANGE_FD: 1711 case LOOP_SET_BLOCK_SIZE: 1712 case LOOP_SET_DIRECT_IO: 1713 err = lo_ioctl(bdev, mode, cmd, arg); 1714 break; 1715 default: 1716 err = -ENOIOCTLCMD; 1717 break; 1718 } 1719 return err; 1720 } 1721 #endif 1722 1723 static int lo_open(struct block_device *bdev, fmode_t mode) 1724 { 1725 struct loop_device *lo = bdev->bd_disk->private_data; 1726 int err; 1727 1728 err = mutex_lock_killable(&lo->lo_mutex); 1729 if (err) 1730 return err; 1731 if (lo->lo_state == Lo_deleting) 1732 err = -ENXIO; 1733 else 1734 atomic_inc(&lo->lo_refcnt); 1735 mutex_unlock(&lo->lo_mutex); 1736 return err; 1737 } 1738 1739 static void lo_release(struct gendisk *disk, fmode_t mode) 1740 { 1741 struct loop_device *lo = disk->private_data; 1742 1743 mutex_lock(&lo->lo_mutex); 1744 if (atomic_dec_return(&lo->lo_refcnt)) 1745 goto out_unlock; 1746 1747 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1748 if (lo->lo_state != Lo_bound) 1749 goto out_unlock; 1750 lo->lo_state = Lo_rundown; 1751 mutex_unlock(&lo->lo_mutex); 1752 /* 1753 * In autoclear mode, stop the loop thread 1754 * and remove configuration after last close. 1755 */ 1756 __loop_clr_fd(lo, true); 1757 return; 1758 } else if (lo->lo_state == Lo_bound) { 1759 /* 1760 * Otherwise keep thread (if running) and config, 1761 * but flush possible ongoing bios in thread. 1762 */ 1763 blk_mq_freeze_queue(lo->lo_queue); 1764 blk_mq_unfreeze_queue(lo->lo_queue); 1765 } 1766 1767 out_unlock: 1768 mutex_unlock(&lo->lo_mutex); 1769 } 1770 1771 static const struct block_device_operations lo_fops = { 1772 .owner = THIS_MODULE, 1773 .open = lo_open, 1774 .release = lo_release, 1775 .ioctl = lo_ioctl, 1776 #ifdef CONFIG_COMPAT 1777 .compat_ioctl = lo_compat_ioctl, 1778 #endif 1779 }; 1780 1781 /* 1782 * And now the modules code and kernel interface. 1783 */ 1784 static int max_loop; 1785 module_param(max_loop, int, 0444); 1786 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1787 module_param(max_part, int, 0444); 1788 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1789 MODULE_LICENSE("GPL"); 1790 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1791 1792 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1793 const struct blk_mq_queue_data *bd) 1794 { 1795 struct request *rq = bd->rq; 1796 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1797 struct loop_device *lo = rq->q->queuedata; 1798 1799 blk_mq_start_request(rq); 1800 1801 if (lo->lo_state != Lo_bound) 1802 return BLK_STS_IOERR; 1803 1804 switch (req_op(rq)) { 1805 case REQ_OP_FLUSH: 1806 case REQ_OP_DISCARD: 1807 case REQ_OP_WRITE_ZEROES: 1808 cmd->use_aio = false; 1809 break; 1810 default: 1811 cmd->use_aio = lo->use_dio; 1812 break; 1813 } 1814 1815 /* always use the first bio's css */ 1816 cmd->blkcg_css = NULL; 1817 cmd->memcg_css = NULL; 1818 #ifdef CONFIG_BLK_CGROUP 1819 if (rq->bio && rq->bio->bi_blkg) { 1820 cmd->blkcg_css = &bio_blkcg(rq->bio)->css; 1821 #ifdef CONFIG_MEMCG 1822 cmd->memcg_css = 1823 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1824 &memory_cgrp_subsys); 1825 #endif 1826 } 1827 #endif 1828 loop_queue_work(lo, cmd); 1829 1830 return BLK_STS_OK; 1831 } 1832 1833 static void loop_handle_cmd(struct loop_cmd *cmd) 1834 { 1835 struct request *rq = blk_mq_rq_from_pdu(cmd); 1836 const bool write = op_is_write(req_op(rq)); 1837 struct loop_device *lo = rq->q->queuedata; 1838 int ret = 0; 1839 struct mem_cgroup *old_memcg = NULL; 1840 1841 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1842 ret = -EIO; 1843 goto failed; 1844 } 1845 1846 if (cmd->blkcg_css) 1847 kthread_associate_blkcg(cmd->blkcg_css); 1848 if (cmd->memcg_css) 1849 old_memcg = set_active_memcg( 1850 mem_cgroup_from_css(cmd->memcg_css)); 1851 1852 ret = do_req_filebacked(lo, rq); 1853 1854 if (cmd->blkcg_css) 1855 kthread_associate_blkcg(NULL); 1856 1857 if (cmd->memcg_css) { 1858 set_active_memcg(old_memcg); 1859 css_put(cmd->memcg_css); 1860 } 1861 failed: 1862 /* complete non-aio request */ 1863 if (!cmd->use_aio || ret) { 1864 if (ret == -EOPNOTSUPP) 1865 cmd->ret = ret; 1866 else 1867 cmd->ret = ret ? -EIO : 0; 1868 if (likely(!blk_should_fake_timeout(rq->q))) 1869 blk_mq_complete_request(rq); 1870 } 1871 } 1872 1873 static void loop_set_timer(struct loop_device *lo) 1874 { 1875 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 1876 } 1877 1878 static void loop_process_work(struct loop_worker *worker, 1879 struct list_head *cmd_list, struct loop_device *lo) 1880 { 1881 int orig_flags = current->flags; 1882 struct loop_cmd *cmd; 1883 1884 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1885 spin_lock_irq(&lo->lo_work_lock); 1886 while (!list_empty(cmd_list)) { 1887 cmd = container_of( 1888 cmd_list->next, struct loop_cmd, list_entry); 1889 list_del(cmd_list->next); 1890 spin_unlock_irq(&lo->lo_work_lock); 1891 1892 loop_handle_cmd(cmd); 1893 cond_resched(); 1894 1895 spin_lock_irq(&lo->lo_work_lock); 1896 } 1897 1898 /* 1899 * We only add to the idle list if there are no pending cmds 1900 * *and* the worker will not run again which ensures that it 1901 * is safe to free any worker on the idle list 1902 */ 1903 if (worker && !work_pending(&worker->work)) { 1904 worker->last_ran_at = jiffies; 1905 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1906 loop_set_timer(lo); 1907 } 1908 spin_unlock_irq(&lo->lo_work_lock); 1909 current->flags = orig_flags; 1910 } 1911 1912 static void loop_workfn(struct work_struct *work) 1913 { 1914 struct loop_worker *worker = 1915 container_of(work, struct loop_worker, work); 1916 loop_process_work(worker, &worker->cmd_list, worker->lo); 1917 } 1918 1919 static void loop_rootcg_workfn(struct work_struct *work) 1920 { 1921 struct loop_device *lo = 1922 container_of(work, struct loop_device, rootcg_work); 1923 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1924 } 1925 1926 static void loop_free_idle_workers(struct timer_list *timer) 1927 { 1928 struct loop_device *lo = container_of(timer, struct loop_device, timer); 1929 struct loop_worker *pos, *worker; 1930 1931 spin_lock_irq(&lo->lo_work_lock); 1932 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1933 idle_list) { 1934 if (time_is_after_jiffies(worker->last_ran_at + 1935 LOOP_IDLE_WORKER_TIMEOUT)) 1936 break; 1937 list_del(&worker->idle_list); 1938 rb_erase(&worker->rb_node, &lo->worker_tree); 1939 css_put(worker->blkcg_css); 1940 kfree(worker); 1941 } 1942 if (!list_empty(&lo->idle_worker_list)) 1943 loop_set_timer(lo); 1944 spin_unlock_irq(&lo->lo_work_lock); 1945 } 1946 1947 static const struct blk_mq_ops loop_mq_ops = { 1948 .queue_rq = loop_queue_rq, 1949 .complete = lo_complete_rq, 1950 }; 1951 1952 static int loop_add(int i) 1953 { 1954 struct loop_device *lo; 1955 struct gendisk *disk; 1956 int err; 1957 1958 err = -ENOMEM; 1959 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1960 if (!lo) 1961 goto out; 1962 lo->lo_state = Lo_unbound; 1963 1964 err = mutex_lock_killable(&loop_ctl_mutex); 1965 if (err) 1966 goto out_free_dev; 1967 1968 /* allocate id, if @id >= 0, we're requesting that specific id */ 1969 if (i >= 0) { 1970 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1971 if (err == -ENOSPC) 1972 err = -EEXIST; 1973 } else { 1974 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1975 } 1976 mutex_unlock(&loop_ctl_mutex); 1977 if (err < 0) 1978 goto out_free_dev; 1979 i = err; 1980 1981 lo->tag_set.ops = &loop_mq_ops; 1982 lo->tag_set.nr_hw_queues = 1; 1983 lo->tag_set.queue_depth = 128; 1984 lo->tag_set.numa_node = NUMA_NO_NODE; 1985 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1986 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 1987 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1988 lo->tag_set.driver_data = lo; 1989 1990 err = blk_mq_alloc_tag_set(&lo->tag_set); 1991 if (err) 1992 goto out_free_idr; 1993 1994 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo); 1995 if (IS_ERR(disk)) { 1996 err = PTR_ERR(disk); 1997 goto out_cleanup_tags; 1998 } 1999 lo->lo_queue = lo->lo_disk->queue; 2000 2001 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2002 2003 /* 2004 * By default, we do buffer IO, so it doesn't make sense to enable 2005 * merge because the I/O submitted to backing file is handled page by 2006 * page. For directio mode, merge does help to dispatch bigger request 2007 * to underlayer disk. We will enable merge once directio is enabled. 2008 */ 2009 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2010 2011 /* 2012 * Disable partition scanning by default. The in-kernel partition 2013 * scanning can be requested individually per-device during its 2014 * setup. Userspace can always add and remove partitions from all 2015 * devices. The needed partition minors are allocated from the 2016 * extended minor space, the main loop device numbers will continue 2017 * to match the loop minors, regardless of the number of partitions 2018 * used. 2019 * 2020 * If max_part is given, partition scanning is globally enabled for 2021 * all loop devices. The minors for the main loop devices will be 2022 * multiples of max_part. 2023 * 2024 * Note: Global-for-all-devices, set-only-at-init, read-only module 2025 * parameteters like 'max_loop' and 'max_part' make things needlessly 2026 * complicated, are too static, inflexible and may surprise 2027 * userspace tools. Parameters like this in general should be avoided. 2028 */ 2029 if (!part_shift) 2030 disk->flags |= GENHD_FL_NO_PART; 2031 atomic_set(&lo->lo_refcnt, 0); 2032 mutex_init(&lo->lo_mutex); 2033 lo->lo_number = i; 2034 spin_lock_init(&lo->lo_lock); 2035 spin_lock_init(&lo->lo_work_lock); 2036 disk->major = LOOP_MAJOR; 2037 disk->first_minor = i << part_shift; 2038 disk->minors = 1 << part_shift; 2039 disk->fops = &lo_fops; 2040 disk->private_data = lo; 2041 disk->queue = lo->lo_queue; 2042 disk->events = DISK_EVENT_MEDIA_CHANGE; 2043 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2044 sprintf(disk->disk_name, "loop%d", i); 2045 /* Make this loop device reachable from pathname. */ 2046 err = add_disk(disk); 2047 if (err) 2048 goto out_cleanup_disk; 2049 2050 /* Show this loop device. */ 2051 mutex_lock(&loop_ctl_mutex); 2052 lo->idr_visible = true; 2053 mutex_unlock(&loop_ctl_mutex); 2054 2055 return i; 2056 2057 out_cleanup_disk: 2058 blk_cleanup_disk(disk); 2059 out_cleanup_tags: 2060 blk_mq_free_tag_set(&lo->tag_set); 2061 out_free_idr: 2062 mutex_lock(&loop_ctl_mutex); 2063 idr_remove(&loop_index_idr, i); 2064 mutex_unlock(&loop_ctl_mutex); 2065 out_free_dev: 2066 kfree(lo); 2067 out: 2068 return err; 2069 } 2070 2071 static void loop_remove(struct loop_device *lo) 2072 { 2073 /* Make this loop device unreachable from pathname. */ 2074 del_gendisk(lo->lo_disk); 2075 blk_cleanup_disk(lo->lo_disk); 2076 blk_mq_free_tag_set(&lo->tag_set); 2077 mutex_lock(&loop_ctl_mutex); 2078 idr_remove(&loop_index_idr, lo->lo_number); 2079 mutex_unlock(&loop_ctl_mutex); 2080 /* There is no route which can find this loop device. */ 2081 mutex_destroy(&lo->lo_mutex); 2082 kfree(lo); 2083 } 2084 2085 static void loop_probe(dev_t dev) 2086 { 2087 int idx = MINOR(dev) >> part_shift; 2088 2089 if (max_loop && idx >= max_loop) 2090 return; 2091 loop_add(idx); 2092 } 2093 2094 static int loop_control_remove(int idx) 2095 { 2096 struct loop_device *lo; 2097 int ret; 2098 2099 if (idx < 0) { 2100 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2101 return -EINVAL; 2102 } 2103 2104 /* Hide this loop device for serialization. */ 2105 ret = mutex_lock_killable(&loop_ctl_mutex); 2106 if (ret) 2107 return ret; 2108 lo = idr_find(&loop_index_idr, idx); 2109 if (!lo || !lo->idr_visible) 2110 ret = -ENODEV; 2111 else 2112 lo->idr_visible = false; 2113 mutex_unlock(&loop_ctl_mutex); 2114 if (ret) 2115 return ret; 2116 2117 /* Check whether this loop device can be removed. */ 2118 ret = mutex_lock_killable(&lo->lo_mutex); 2119 if (ret) 2120 goto mark_visible; 2121 if (lo->lo_state != Lo_unbound || 2122 atomic_read(&lo->lo_refcnt) > 0) { 2123 mutex_unlock(&lo->lo_mutex); 2124 ret = -EBUSY; 2125 goto mark_visible; 2126 } 2127 /* Mark this loop device no longer open()-able. */ 2128 lo->lo_state = Lo_deleting; 2129 mutex_unlock(&lo->lo_mutex); 2130 2131 loop_remove(lo); 2132 return 0; 2133 2134 mark_visible: 2135 /* Show this loop device again. */ 2136 mutex_lock(&loop_ctl_mutex); 2137 lo->idr_visible = true; 2138 mutex_unlock(&loop_ctl_mutex); 2139 return ret; 2140 } 2141 2142 static int loop_control_get_free(int idx) 2143 { 2144 struct loop_device *lo; 2145 int id, ret; 2146 2147 ret = mutex_lock_killable(&loop_ctl_mutex); 2148 if (ret) 2149 return ret; 2150 idr_for_each_entry(&loop_index_idr, lo, id) { 2151 /* Hitting a race results in creating a new loop device which is harmless. */ 2152 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2153 goto found; 2154 } 2155 mutex_unlock(&loop_ctl_mutex); 2156 return loop_add(-1); 2157 found: 2158 mutex_unlock(&loop_ctl_mutex); 2159 return id; 2160 } 2161 2162 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2163 unsigned long parm) 2164 { 2165 switch (cmd) { 2166 case LOOP_CTL_ADD: 2167 return loop_add(parm); 2168 case LOOP_CTL_REMOVE: 2169 return loop_control_remove(parm); 2170 case LOOP_CTL_GET_FREE: 2171 return loop_control_get_free(parm); 2172 default: 2173 return -ENOSYS; 2174 } 2175 } 2176 2177 static const struct file_operations loop_ctl_fops = { 2178 .open = nonseekable_open, 2179 .unlocked_ioctl = loop_control_ioctl, 2180 .compat_ioctl = loop_control_ioctl, 2181 .owner = THIS_MODULE, 2182 .llseek = noop_llseek, 2183 }; 2184 2185 static struct miscdevice loop_misc = { 2186 .minor = LOOP_CTRL_MINOR, 2187 .name = "loop-control", 2188 .fops = &loop_ctl_fops, 2189 }; 2190 2191 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2192 MODULE_ALIAS("devname:loop-control"); 2193 2194 static int __init loop_init(void) 2195 { 2196 int i, nr; 2197 int err; 2198 2199 part_shift = 0; 2200 if (max_part > 0) { 2201 part_shift = fls(max_part); 2202 2203 /* 2204 * Adjust max_part according to part_shift as it is exported 2205 * to user space so that user can decide correct minor number 2206 * if [s]he want to create more devices. 2207 * 2208 * Note that -1 is required because partition 0 is reserved 2209 * for the whole disk. 2210 */ 2211 max_part = (1UL << part_shift) - 1; 2212 } 2213 2214 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2215 err = -EINVAL; 2216 goto err_out; 2217 } 2218 2219 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2220 err = -EINVAL; 2221 goto err_out; 2222 } 2223 2224 /* 2225 * If max_loop is specified, create that many devices upfront. 2226 * This also becomes a hard limit. If max_loop is not specified, 2227 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2228 * init time. Loop devices can be requested on-demand with the 2229 * /dev/loop-control interface, or be instantiated by accessing 2230 * a 'dead' device node. 2231 */ 2232 if (max_loop) 2233 nr = max_loop; 2234 else 2235 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2236 2237 err = misc_register(&loop_misc); 2238 if (err < 0) 2239 goto err_out; 2240 2241 2242 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2243 err = -EIO; 2244 goto misc_out; 2245 } 2246 2247 /* pre-create number of devices given by config or max_loop */ 2248 for (i = 0; i < nr; i++) 2249 loop_add(i); 2250 2251 printk(KERN_INFO "loop: module loaded\n"); 2252 return 0; 2253 2254 misc_out: 2255 misc_deregister(&loop_misc); 2256 err_out: 2257 return err; 2258 } 2259 2260 static void __exit loop_exit(void) 2261 { 2262 struct loop_device *lo; 2263 int id; 2264 2265 unregister_blkdev(LOOP_MAJOR, "loop"); 2266 misc_deregister(&loop_misc); 2267 2268 /* 2269 * There is no need to use loop_ctl_mutex here, for nobody else can 2270 * access loop_index_idr when this module is unloading (unless forced 2271 * module unloading is requested). If this is not a clean unloading, 2272 * we have no means to avoid kernel crash. 2273 */ 2274 idr_for_each_entry(&loop_index_idr, lo, id) 2275 loop_remove(lo); 2276 2277 idr_destroy(&loop_index_idr); 2278 } 2279 2280 module_init(loop_init); 2281 module_exit(loop_exit); 2282 2283 #ifndef MODULE 2284 static int __init max_loop_setup(char *str) 2285 { 2286 max_loop = simple_strtol(str, NULL, 0); 2287 return 1; 2288 } 2289 2290 __setup("max_loop=", max_loop_setup); 2291 #endif 2292