xref: /openbmc/linux/drivers/block/loop.c (revision 4e95bc26)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	blk_mq_freeze_queue(lo->lo_queue);
218 	lo->use_dio = use_dio;
219 	if (use_dio) {
220 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
222 	} else {
223 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
224 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
225 	}
226 	blk_mq_unfreeze_queue(lo->lo_queue);
227 }
228 
229 static int
230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
231 {
232 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
233 	sector_t x = (sector_t)size;
234 	struct block_device *bdev = lo->lo_device;
235 
236 	if (unlikely((loff_t)x != size))
237 		return -EFBIG;
238 	if (lo->lo_offset != offset)
239 		lo->lo_offset = offset;
240 	if (lo->lo_sizelimit != sizelimit)
241 		lo->lo_sizelimit = sizelimit;
242 	set_capacity(lo->lo_disk, x);
243 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
244 	/* let user-space know about the new size */
245 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
246 	return 0;
247 }
248 
249 static inline int
250 lo_do_transfer(struct loop_device *lo, int cmd,
251 	       struct page *rpage, unsigned roffs,
252 	       struct page *lpage, unsigned loffs,
253 	       int size, sector_t rblock)
254 {
255 	int ret;
256 
257 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
258 	if (likely(!ret))
259 		return 0;
260 
261 	printk_ratelimited(KERN_ERR
262 		"loop: Transfer error at byte offset %llu, length %i.\n",
263 		(unsigned long long)rblock << 9, size);
264 	return ret;
265 }
266 
267 static inline void loop_iov_iter_bvec(struct iov_iter *i,
268 		unsigned int direction, const struct bio_vec *bvec,
269 		unsigned long nr_segs, size_t count)
270 {
271 	iov_iter_bvec(i, direction, bvec, nr_segs, count);
272 	i->type |= ITER_BVEC_FLAG_NO_REF;
273 }
274 
275 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
276 {
277 	struct iov_iter i;
278 	ssize_t bw;
279 
280 	loop_iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
281 
282 	file_start_write(file);
283 	bw = vfs_iter_write(file, &i, ppos, 0);
284 	file_end_write(file);
285 
286 	if (likely(bw ==  bvec->bv_len))
287 		return 0;
288 
289 	printk_ratelimited(KERN_ERR
290 		"loop: Write error at byte offset %llu, length %i.\n",
291 		(unsigned long long)*ppos, bvec->bv_len);
292 	if (bw >= 0)
293 		bw = -EIO;
294 	return bw;
295 }
296 
297 static int lo_write_simple(struct loop_device *lo, struct request *rq,
298 		loff_t pos)
299 {
300 	struct bio_vec bvec;
301 	struct req_iterator iter;
302 	int ret = 0;
303 
304 	rq_for_each_segment(bvec, rq, iter) {
305 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
306 		if (ret < 0)
307 			break;
308 		cond_resched();
309 	}
310 
311 	return ret;
312 }
313 
314 /*
315  * This is the slow, transforming version that needs to double buffer the
316  * data as it cannot do the transformations in place without having direct
317  * access to the destination pages of the backing file.
318  */
319 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
320 		loff_t pos)
321 {
322 	struct bio_vec bvec, b;
323 	struct req_iterator iter;
324 	struct page *page;
325 	int ret = 0;
326 
327 	page = alloc_page(GFP_NOIO);
328 	if (unlikely(!page))
329 		return -ENOMEM;
330 
331 	rq_for_each_segment(bvec, rq, iter) {
332 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
333 			bvec.bv_offset, bvec.bv_len, pos >> 9);
334 		if (unlikely(ret))
335 			break;
336 
337 		b.bv_page = page;
338 		b.bv_offset = 0;
339 		b.bv_len = bvec.bv_len;
340 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
341 		if (ret < 0)
342 			break;
343 	}
344 
345 	__free_page(page);
346 	return ret;
347 }
348 
349 static int lo_read_simple(struct loop_device *lo, struct request *rq,
350 		loff_t pos)
351 {
352 	struct bio_vec bvec;
353 	struct req_iterator iter;
354 	struct iov_iter i;
355 	ssize_t len;
356 
357 	rq_for_each_segment(bvec, rq, iter) {
358 		loop_iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
359 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
360 		if (len < 0)
361 			return len;
362 
363 		flush_dcache_page(bvec.bv_page);
364 
365 		if (len != bvec.bv_len) {
366 			struct bio *bio;
367 
368 			__rq_for_each_bio(bio, rq)
369 				zero_fill_bio(bio);
370 			break;
371 		}
372 		cond_resched();
373 	}
374 
375 	return 0;
376 }
377 
378 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
379 		loff_t pos)
380 {
381 	struct bio_vec bvec, b;
382 	struct req_iterator iter;
383 	struct iov_iter i;
384 	struct page *page;
385 	ssize_t len;
386 	int ret = 0;
387 
388 	page = alloc_page(GFP_NOIO);
389 	if (unlikely(!page))
390 		return -ENOMEM;
391 
392 	rq_for_each_segment(bvec, rq, iter) {
393 		loff_t offset = pos;
394 
395 		b.bv_page = page;
396 		b.bv_offset = 0;
397 		b.bv_len = bvec.bv_len;
398 
399 		loop_iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
400 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
401 		if (len < 0) {
402 			ret = len;
403 			goto out_free_page;
404 		}
405 
406 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
407 			bvec.bv_offset, len, offset >> 9);
408 		if (ret)
409 			goto out_free_page;
410 
411 		flush_dcache_page(bvec.bv_page);
412 
413 		if (len != bvec.bv_len) {
414 			struct bio *bio;
415 
416 			__rq_for_each_bio(bio, rq)
417 				zero_fill_bio(bio);
418 			break;
419 		}
420 	}
421 
422 	ret = 0;
423 out_free_page:
424 	__free_page(page);
425 	return ret;
426 }
427 
428 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
429 {
430 	/*
431 	 * We use punch hole to reclaim the free space used by the
432 	 * image a.k.a. discard. However we do not support discard if
433 	 * encryption is enabled, because it may give an attacker
434 	 * useful information.
435 	 */
436 	struct file *file = lo->lo_backing_file;
437 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
438 	int ret;
439 
440 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
441 		ret = -EOPNOTSUPP;
442 		goto out;
443 	}
444 
445 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
446 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
447 		ret = -EIO;
448  out:
449 	return ret;
450 }
451 
452 static int lo_req_flush(struct loop_device *lo, struct request *rq)
453 {
454 	struct file *file = lo->lo_backing_file;
455 	int ret = vfs_fsync(file, 0);
456 	if (unlikely(ret && ret != -EINVAL))
457 		ret = -EIO;
458 
459 	return ret;
460 }
461 
462 static void lo_complete_rq(struct request *rq)
463 {
464 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
465 	blk_status_t ret = BLK_STS_OK;
466 
467 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
468 	    req_op(rq) != REQ_OP_READ) {
469 		if (cmd->ret < 0)
470 			ret = BLK_STS_IOERR;
471 		goto end_io;
472 	}
473 
474 	/*
475 	 * Short READ - if we got some data, advance our request and
476 	 * retry it. If we got no data, end the rest with EIO.
477 	 */
478 	if (cmd->ret) {
479 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
480 		cmd->ret = 0;
481 		blk_mq_requeue_request(rq, true);
482 	} else {
483 		if (cmd->use_aio) {
484 			struct bio *bio = rq->bio;
485 
486 			while (bio) {
487 				zero_fill_bio(bio);
488 				bio = bio->bi_next;
489 			}
490 		}
491 		ret = BLK_STS_IOERR;
492 end_io:
493 		blk_mq_end_request(rq, ret);
494 	}
495 }
496 
497 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
498 {
499 	struct request *rq = blk_mq_rq_from_pdu(cmd);
500 
501 	if (!atomic_dec_and_test(&cmd->ref))
502 		return;
503 	kfree(cmd->bvec);
504 	cmd->bvec = NULL;
505 	blk_mq_complete_request(rq);
506 }
507 
508 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
509 {
510 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
511 
512 	if (cmd->css)
513 		css_put(cmd->css);
514 	cmd->ret = ret;
515 	lo_rw_aio_do_completion(cmd);
516 }
517 
518 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
519 		     loff_t pos, bool rw)
520 {
521 	struct iov_iter iter;
522 	struct req_iterator rq_iter;
523 	struct bio_vec *bvec;
524 	struct request *rq = blk_mq_rq_from_pdu(cmd);
525 	struct bio *bio = rq->bio;
526 	struct file *file = lo->lo_backing_file;
527 	struct bio_vec tmp;
528 	unsigned int offset;
529 	int nr_bvec = 0;
530 	int ret;
531 
532 	rq_for_each_bvec(tmp, rq, rq_iter)
533 		nr_bvec++;
534 
535 	if (rq->bio != rq->biotail) {
536 
537 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
538 				     GFP_NOIO);
539 		if (!bvec)
540 			return -EIO;
541 		cmd->bvec = bvec;
542 
543 		/*
544 		 * The bios of the request may be started from the middle of
545 		 * the 'bvec' because of bio splitting, so we can't directly
546 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
547 		 * API will take care of all details for us.
548 		 */
549 		rq_for_each_bvec(tmp, rq, rq_iter) {
550 			*bvec = tmp;
551 			bvec++;
552 		}
553 		bvec = cmd->bvec;
554 		offset = 0;
555 	} else {
556 		/*
557 		 * Same here, this bio may be started from the middle of the
558 		 * 'bvec' because of bio splitting, so offset from the bvec
559 		 * must be passed to iov iterator
560 		 */
561 		offset = bio->bi_iter.bi_bvec_done;
562 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
563 	}
564 	atomic_set(&cmd->ref, 2);
565 
566 	loop_iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
567 	iter.iov_offset = offset;
568 
569 	cmd->iocb.ki_pos = pos;
570 	cmd->iocb.ki_filp = file;
571 	cmd->iocb.ki_complete = lo_rw_aio_complete;
572 	cmd->iocb.ki_flags = IOCB_DIRECT;
573 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
574 	if (cmd->css)
575 		kthread_associate_blkcg(cmd->css);
576 
577 	if (rw == WRITE)
578 		ret = call_write_iter(file, &cmd->iocb, &iter);
579 	else
580 		ret = call_read_iter(file, &cmd->iocb, &iter);
581 
582 	lo_rw_aio_do_completion(cmd);
583 	kthread_associate_blkcg(NULL);
584 
585 	if (ret != -EIOCBQUEUED)
586 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
587 	return 0;
588 }
589 
590 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
591 {
592 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
593 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
594 
595 	/*
596 	 * lo_write_simple and lo_read_simple should have been covered
597 	 * by io submit style function like lo_rw_aio(), one blocker
598 	 * is that lo_read_simple() need to call flush_dcache_page after
599 	 * the page is written from kernel, and it isn't easy to handle
600 	 * this in io submit style function which submits all segments
601 	 * of the req at one time. And direct read IO doesn't need to
602 	 * run flush_dcache_page().
603 	 */
604 	switch (req_op(rq)) {
605 	case REQ_OP_FLUSH:
606 		return lo_req_flush(lo, rq);
607 	case REQ_OP_DISCARD:
608 	case REQ_OP_WRITE_ZEROES:
609 		return lo_discard(lo, rq, pos);
610 	case REQ_OP_WRITE:
611 		if (lo->transfer)
612 			return lo_write_transfer(lo, rq, pos);
613 		else if (cmd->use_aio)
614 			return lo_rw_aio(lo, cmd, pos, WRITE);
615 		else
616 			return lo_write_simple(lo, rq, pos);
617 	case REQ_OP_READ:
618 		if (lo->transfer)
619 			return lo_read_transfer(lo, rq, pos);
620 		else if (cmd->use_aio)
621 			return lo_rw_aio(lo, cmd, pos, READ);
622 		else
623 			return lo_read_simple(lo, rq, pos);
624 	default:
625 		WARN_ON_ONCE(1);
626 		return -EIO;
627 	}
628 }
629 
630 static inline void loop_update_dio(struct loop_device *lo)
631 {
632 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
633 			lo->use_dio);
634 }
635 
636 static void loop_reread_partitions(struct loop_device *lo,
637 				   struct block_device *bdev)
638 {
639 	int rc;
640 
641 	rc = blkdev_reread_part(bdev);
642 	if (rc)
643 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
644 			__func__, lo->lo_number, lo->lo_file_name, rc);
645 }
646 
647 static inline int is_loop_device(struct file *file)
648 {
649 	struct inode *i = file->f_mapping->host;
650 
651 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
652 }
653 
654 static int loop_validate_file(struct file *file, struct block_device *bdev)
655 {
656 	struct inode	*inode = file->f_mapping->host;
657 	struct file	*f = file;
658 
659 	/* Avoid recursion */
660 	while (is_loop_device(f)) {
661 		struct loop_device *l;
662 
663 		if (f->f_mapping->host->i_bdev == bdev)
664 			return -EBADF;
665 
666 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
667 		if (l->lo_state != Lo_bound) {
668 			return -EINVAL;
669 		}
670 		f = l->lo_backing_file;
671 	}
672 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
673 		return -EINVAL;
674 	return 0;
675 }
676 
677 /*
678  * loop_change_fd switched the backing store of a loopback device to
679  * a new file. This is useful for operating system installers to free up
680  * the original file and in High Availability environments to switch to
681  * an alternative location for the content in case of server meltdown.
682  * This can only work if the loop device is used read-only, and if the
683  * new backing store is the same size and type as the old backing store.
684  */
685 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
686 			  unsigned int arg)
687 {
688 	struct file	*file = NULL, *old_file;
689 	int		error;
690 	bool		partscan;
691 
692 	error = mutex_lock_killable(&loop_ctl_mutex);
693 	if (error)
694 		return error;
695 	error = -ENXIO;
696 	if (lo->lo_state != Lo_bound)
697 		goto out_err;
698 
699 	/* the loop device has to be read-only */
700 	error = -EINVAL;
701 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
702 		goto out_err;
703 
704 	error = -EBADF;
705 	file = fget(arg);
706 	if (!file)
707 		goto out_err;
708 
709 	error = loop_validate_file(file, bdev);
710 	if (error)
711 		goto out_err;
712 
713 	old_file = lo->lo_backing_file;
714 
715 	error = -EINVAL;
716 
717 	/* size of the new backing store needs to be the same */
718 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
719 		goto out_err;
720 
721 	/* and ... switch */
722 	blk_mq_freeze_queue(lo->lo_queue);
723 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
724 	lo->lo_backing_file = file;
725 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
726 	mapping_set_gfp_mask(file->f_mapping,
727 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
728 	loop_update_dio(lo);
729 	blk_mq_unfreeze_queue(lo->lo_queue);
730 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
731 	mutex_unlock(&loop_ctl_mutex);
732 	/*
733 	 * We must drop file reference outside of loop_ctl_mutex as dropping
734 	 * the file ref can take bd_mutex which creates circular locking
735 	 * dependency.
736 	 */
737 	fput(old_file);
738 	if (partscan)
739 		loop_reread_partitions(lo, bdev);
740 	return 0;
741 
742 out_err:
743 	mutex_unlock(&loop_ctl_mutex);
744 	if (file)
745 		fput(file);
746 	return error;
747 }
748 
749 /* loop sysfs attributes */
750 
751 static ssize_t loop_attr_show(struct device *dev, char *page,
752 			      ssize_t (*callback)(struct loop_device *, char *))
753 {
754 	struct gendisk *disk = dev_to_disk(dev);
755 	struct loop_device *lo = disk->private_data;
756 
757 	return callback(lo, page);
758 }
759 
760 #define LOOP_ATTR_RO(_name)						\
761 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
762 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
763 				struct device_attribute *attr, char *b)	\
764 {									\
765 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
766 }									\
767 static struct device_attribute loop_attr_##_name =			\
768 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
769 
770 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
771 {
772 	ssize_t ret;
773 	char *p = NULL;
774 
775 	spin_lock_irq(&lo->lo_lock);
776 	if (lo->lo_backing_file)
777 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
778 	spin_unlock_irq(&lo->lo_lock);
779 
780 	if (IS_ERR_OR_NULL(p))
781 		ret = PTR_ERR(p);
782 	else {
783 		ret = strlen(p);
784 		memmove(buf, p, ret);
785 		buf[ret++] = '\n';
786 		buf[ret] = 0;
787 	}
788 
789 	return ret;
790 }
791 
792 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
793 {
794 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
795 }
796 
797 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
798 {
799 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
800 }
801 
802 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
803 {
804 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
805 
806 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
807 }
808 
809 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
810 {
811 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
812 
813 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
814 }
815 
816 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
817 {
818 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
819 
820 	return sprintf(buf, "%s\n", dio ? "1" : "0");
821 }
822 
823 LOOP_ATTR_RO(backing_file);
824 LOOP_ATTR_RO(offset);
825 LOOP_ATTR_RO(sizelimit);
826 LOOP_ATTR_RO(autoclear);
827 LOOP_ATTR_RO(partscan);
828 LOOP_ATTR_RO(dio);
829 
830 static struct attribute *loop_attrs[] = {
831 	&loop_attr_backing_file.attr,
832 	&loop_attr_offset.attr,
833 	&loop_attr_sizelimit.attr,
834 	&loop_attr_autoclear.attr,
835 	&loop_attr_partscan.attr,
836 	&loop_attr_dio.attr,
837 	NULL,
838 };
839 
840 static struct attribute_group loop_attribute_group = {
841 	.name = "loop",
842 	.attrs= loop_attrs,
843 };
844 
845 static void loop_sysfs_init(struct loop_device *lo)
846 {
847 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
848 						&loop_attribute_group);
849 }
850 
851 static void loop_sysfs_exit(struct loop_device *lo)
852 {
853 	if (lo->sysfs_inited)
854 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
855 				   &loop_attribute_group);
856 }
857 
858 static void loop_config_discard(struct loop_device *lo)
859 {
860 	struct file *file = lo->lo_backing_file;
861 	struct inode *inode = file->f_mapping->host;
862 	struct request_queue *q = lo->lo_queue;
863 
864 	/*
865 	 * We use punch hole to reclaim the free space used by the
866 	 * image a.k.a. discard. However we do not support discard if
867 	 * encryption is enabled, because it may give an attacker
868 	 * useful information.
869 	 */
870 	if ((!file->f_op->fallocate) ||
871 	    lo->lo_encrypt_key_size) {
872 		q->limits.discard_granularity = 0;
873 		q->limits.discard_alignment = 0;
874 		blk_queue_max_discard_sectors(q, 0);
875 		blk_queue_max_write_zeroes_sectors(q, 0);
876 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
877 		return;
878 	}
879 
880 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
881 	q->limits.discard_alignment = 0;
882 
883 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
884 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
885 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
886 }
887 
888 static void loop_unprepare_queue(struct loop_device *lo)
889 {
890 	kthread_flush_worker(&lo->worker);
891 	kthread_stop(lo->worker_task);
892 }
893 
894 static int loop_kthread_worker_fn(void *worker_ptr)
895 {
896 	current->flags |= PF_LESS_THROTTLE;
897 	return kthread_worker_fn(worker_ptr);
898 }
899 
900 static int loop_prepare_queue(struct loop_device *lo)
901 {
902 	kthread_init_worker(&lo->worker);
903 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
904 			&lo->worker, "loop%d", lo->lo_number);
905 	if (IS_ERR(lo->worker_task))
906 		return -ENOMEM;
907 	set_user_nice(lo->worker_task, MIN_NICE);
908 	return 0;
909 }
910 
911 static void loop_update_rotational(struct loop_device *lo)
912 {
913 	struct file *file = lo->lo_backing_file;
914 	struct inode *file_inode = file->f_mapping->host;
915 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
916 	struct request_queue *q = lo->lo_queue;
917 	bool nonrot = true;
918 
919 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
920 	if (file_bdev)
921 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
922 
923 	if (nonrot)
924 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
925 	else
926 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
927 }
928 
929 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
930 		       struct block_device *bdev, unsigned int arg)
931 {
932 	struct file	*file;
933 	struct inode	*inode;
934 	struct address_space *mapping;
935 	int		lo_flags = 0;
936 	int		error;
937 	loff_t		size;
938 	bool		partscan;
939 
940 	/* This is safe, since we have a reference from open(). */
941 	__module_get(THIS_MODULE);
942 
943 	error = -EBADF;
944 	file = fget(arg);
945 	if (!file)
946 		goto out;
947 
948 	/*
949 	 * If we don't hold exclusive handle for the device, upgrade to it
950 	 * here to avoid changing device under exclusive owner.
951 	 */
952 	if (!(mode & FMODE_EXCL)) {
953 		bdgrab(bdev);
954 		error = blkdev_get(bdev, mode | FMODE_EXCL, loop_set_fd);
955 		if (error)
956 			goto out_putf;
957 	}
958 
959 	error = mutex_lock_killable(&loop_ctl_mutex);
960 	if (error)
961 		goto out_bdev;
962 
963 	error = -EBUSY;
964 	if (lo->lo_state != Lo_unbound)
965 		goto out_unlock;
966 
967 	error = loop_validate_file(file, bdev);
968 	if (error)
969 		goto out_unlock;
970 
971 	mapping = file->f_mapping;
972 	inode = mapping->host;
973 
974 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
975 	    !file->f_op->write_iter)
976 		lo_flags |= LO_FLAGS_READ_ONLY;
977 
978 	error = -EFBIG;
979 	size = get_loop_size(lo, file);
980 	if ((loff_t)(sector_t)size != size)
981 		goto out_unlock;
982 	error = loop_prepare_queue(lo);
983 	if (error)
984 		goto out_unlock;
985 
986 	error = 0;
987 
988 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
989 
990 	lo->use_dio = false;
991 	lo->lo_device = bdev;
992 	lo->lo_flags = lo_flags;
993 	lo->lo_backing_file = file;
994 	lo->transfer = NULL;
995 	lo->ioctl = NULL;
996 	lo->lo_sizelimit = 0;
997 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
998 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
999 
1000 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1001 		blk_queue_write_cache(lo->lo_queue, true, false);
1002 
1003 	loop_update_rotational(lo);
1004 	loop_update_dio(lo);
1005 	set_capacity(lo->lo_disk, size);
1006 	bd_set_size(bdev, size << 9);
1007 	loop_sysfs_init(lo);
1008 	/* let user-space know about the new size */
1009 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1010 
1011 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1012 		      block_size(inode->i_bdev) : PAGE_SIZE);
1013 
1014 	lo->lo_state = Lo_bound;
1015 	if (part_shift)
1016 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1017 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1018 
1019 	/* Grab the block_device to prevent its destruction after we
1020 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1021 	 */
1022 	bdgrab(bdev);
1023 	mutex_unlock(&loop_ctl_mutex);
1024 	if (partscan)
1025 		loop_reread_partitions(lo, bdev);
1026 	if (!(mode & FMODE_EXCL))
1027 		blkdev_put(bdev, mode | FMODE_EXCL);
1028 	return 0;
1029 
1030 out_unlock:
1031 	mutex_unlock(&loop_ctl_mutex);
1032 out_bdev:
1033 	if (!(mode & FMODE_EXCL))
1034 		blkdev_put(bdev, mode | FMODE_EXCL);
1035 out_putf:
1036 	fput(file);
1037 out:
1038 	/* This is safe: open() is still holding a reference. */
1039 	module_put(THIS_MODULE);
1040 	return error;
1041 }
1042 
1043 static int
1044 loop_release_xfer(struct loop_device *lo)
1045 {
1046 	int err = 0;
1047 	struct loop_func_table *xfer = lo->lo_encryption;
1048 
1049 	if (xfer) {
1050 		if (xfer->release)
1051 			err = xfer->release(lo);
1052 		lo->transfer = NULL;
1053 		lo->lo_encryption = NULL;
1054 		module_put(xfer->owner);
1055 	}
1056 	return err;
1057 }
1058 
1059 static int
1060 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1061 	       const struct loop_info64 *i)
1062 {
1063 	int err = 0;
1064 
1065 	if (xfer) {
1066 		struct module *owner = xfer->owner;
1067 
1068 		if (!try_module_get(owner))
1069 			return -EINVAL;
1070 		if (xfer->init)
1071 			err = xfer->init(lo, i);
1072 		if (err)
1073 			module_put(owner);
1074 		else
1075 			lo->lo_encryption = xfer;
1076 	}
1077 	return err;
1078 }
1079 
1080 static int __loop_clr_fd(struct loop_device *lo, bool release)
1081 {
1082 	struct file *filp = NULL;
1083 	gfp_t gfp = lo->old_gfp_mask;
1084 	struct block_device *bdev = lo->lo_device;
1085 	int err = 0;
1086 	bool partscan = false;
1087 	int lo_number;
1088 
1089 	mutex_lock(&loop_ctl_mutex);
1090 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1091 		err = -ENXIO;
1092 		goto out_unlock;
1093 	}
1094 
1095 	filp = lo->lo_backing_file;
1096 	if (filp == NULL) {
1097 		err = -EINVAL;
1098 		goto out_unlock;
1099 	}
1100 
1101 	/* freeze request queue during the transition */
1102 	blk_mq_freeze_queue(lo->lo_queue);
1103 
1104 	spin_lock_irq(&lo->lo_lock);
1105 	lo->lo_backing_file = NULL;
1106 	spin_unlock_irq(&lo->lo_lock);
1107 
1108 	loop_release_xfer(lo);
1109 	lo->transfer = NULL;
1110 	lo->ioctl = NULL;
1111 	lo->lo_device = NULL;
1112 	lo->lo_encryption = NULL;
1113 	lo->lo_offset = 0;
1114 	lo->lo_sizelimit = 0;
1115 	lo->lo_encrypt_key_size = 0;
1116 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1117 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1118 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1119 	blk_queue_logical_block_size(lo->lo_queue, 512);
1120 	blk_queue_physical_block_size(lo->lo_queue, 512);
1121 	blk_queue_io_min(lo->lo_queue, 512);
1122 	if (bdev) {
1123 		bdput(bdev);
1124 		invalidate_bdev(bdev);
1125 		bdev->bd_inode->i_mapping->wb_err = 0;
1126 	}
1127 	set_capacity(lo->lo_disk, 0);
1128 	loop_sysfs_exit(lo);
1129 	if (bdev) {
1130 		bd_set_size(bdev, 0);
1131 		/* let user-space know about this change */
1132 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1133 	}
1134 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1135 	/* This is safe: open() is still holding a reference. */
1136 	module_put(THIS_MODULE);
1137 	blk_mq_unfreeze_queue(lo->lo_queue);
1138 
1139 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1140 	lo_number = lo->lo_number;
1141 	loop_unprepare_queue(lo);
1142 out_unlock:
1143 	mutex_unlock(&loop_ctl_mutex);
1144 	if (partscan) {
1145 		/*
1146 		 * bd_mutex has been held already in release path, so don't
1147 		 * acquire it if this function is called in such case.
1148 		 *
1149 		 * If the reread partition isn't from release path, lo_refcnt
1150 		 * must be at least one and it can only become zero when the
1151 		 * current holder is released.
1152 		 */
1153 		if (release)
1154 			err = __blkdev_reread_part(bdev);
1155 		else
1156 			err = blkdev_reread_part(bdev);
1157 		if (err)
1158 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1159 				__func__, lo_number, err);
1160 		/* Device is gone, no point in returning error */
1161 		err = 0;
1162 	}
1163 
1164 	/*
1165 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1166 	 * finished.
1167 	 *
1168 	 * There cannot be anybody else entering __loop_clr_fd() as
1169 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1170 	 * protects us from all the other places trying to change the 'lo'
1171 	 * device.
1172 	 */
1173 	mutex_lock(&loop_ctl_mutex);
1174 	lo->lo_flags = 0;
1175 	if (!part_shift)
1176 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1177 	lo->lo_state = Lo_unbound;
1178 	mutex_unlock(&loop_ctl_mutex);
1179 
1180 	/*
1181 	 * Need not hold loop_ctl_mutex to fput backing file.
1182 	 * Calling fput holding loop_ctl_mutex triggers a circular
1183 	 * lock dependency possibility warning as fput can take
1184 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1185 	 */
1186 	if (filp)
1187 		fput(filp);
1188 	return err;
1189 }
1190 
1191 static int loop_clr_fd(struct loop_device *lo)
1192 {
1193 	int err;
1194 
1195 	err = mutex_lock_killable(&loop_ctl_mutex);
1196 	if (err)
1197 		return err;
1198 	if (lo->lo_state != Lo_bound) {
1199 		mutex_unlock(&loop_ctl_mutex);
1200 		return -ENXIO;
1201 	}
1202 	/*
1203 	 * If we've explicitly asked to tear down the loop device,
1204 	 * and it has an elevated reference count, set it for auto-teardown when
1205 	 * the last reference goes away. This stops $!~#$@ udev from
1206 	 * preventing teardown because it decided that it needs to run blkid on
1207 	 * the loopback device whenever they appear. xfstests is notorious for
1208 	 * failing tests because blkid via udev races with a losetup
1209 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1210 	 * command to fail with EBUSY.
1211 	 */
1212 	if (atomic_read(&lo->lo_refcnt) > 1) {
1213 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1214 		mutex_unlock(&loop_ctl_mutex);
1215 		return 0;
1216 	}
1217 	lo->lo_state = Lo_rundown;
1218 	mutex_unlock(&loop_ctl_mutex);
1219 
1220 	return __loop_clr_fd(lo, false);
1221 }
1222 
1223 static int
1224 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1225 {
1226 	int err;
1227 	struct loop_func_table *xfer;
1228 	kuid_t uid = current_uid();
1229 	struct block_device *bdev;
1230 	bool partscan = false;
1231 
1232 	err = mutex_lock_killable(&loop_ctl_mutex);
1233 	if (err)
1234 		return err;
1235 	if (lo->lo_encrypt_key_size &&
1236 	    !uid_eq(lo->lo_key_owner, uid) &&
1237 	    !capable(CAP_SYS_ADMIN)) {
1238 		err = -EPERM;
1239 		goto out_unlock;
1240 	}
1241 	if (lo->lo_state != Lo_bound) {
1242 		err = -ENXIO;
1243 		goto out_unlock;
1244 	}
1245 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1246 		err = -EINVAL;
1247 		goto out_unlock;
1248 	}
1249 
1250 	if (lo->lo_offset != info->lo_offset ||
1251 	    lo->lo_sizelimit != info->lo_sizelimit) {
1252 		sync_blockdev(lo->lo_device);
1253 		kill_bdev(lo->lo_device);
1254 	}
1255 
1256 	/* I/O need to be drained during transfer transition */
1257 	blk_mq_freeze_queue(lo->lo_queue);
1258 
1259 	err = loop_release_xfer(lo);
1260 	if (err)
1261 		goto out_unfreeze;
1262 
1263 	if (info->lo_encrypt_type) {
1264 		unsigned int type = info->lo_encrypt_type;
1265 
1266 		if (type >= MAX_LO_CRYPT) {
1267 			err = -EINVAL;
1268 			goto out_unfreeze;
1269 		}
1270 		xfer = xfer_funcs[type];
1271 		if (xfer == NULL) {
1272 			err = -EINVAL;
1273 			goto out_unfreeze;
1274 		}
1275 	} else
1276 		xfer = NULL;
1277 
1278 	err = loop_init_xfer(lo, xfer, info);
1279 	if (err)
1280 		goto out_unfreeze;
1281 
1282 	if (lo->lo_offset != info->lo_offset ||
1283 	    lo->lo_sizelimit != info->lo_sizelimit) {
1284 		/* kill_bdev should have truncated all the pages */
1285 		if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1286 			err = -EAGAIN;
1287 			pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1288 				__func__, lo->lo_number, lo->lo_file_name,
1289 				lo->lo_device->bd_inode->i_mapping->nrpages);
1290 			goto out_unfreeze;
1291 		}
1292 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1293 			err = -EFBIG;
1294 			goto out_unfreeze;
1295 		}
1296 	}
1297 
1298 	loop_config_discard(lo);
1299 
1300 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1301 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1302 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1303 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1304 
1305 	if (!xfer)
1306 		xfer = &none_funcs;
1307 	lo->transfer = xfer->transfer;
1308 	lo->ioctl = xfer->ioctl;
1309 
1310 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1311 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1312 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1313 
1314 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1315 	lo->lo_init[0] = info->lo_init[0];
1316 	lo->lo_init[1] = info->lo_init[1];
1317 	if (info->lo_encrypt_key_size) {
1318 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1319 		       info->lo_encrypt_key_size);
1320 		lo->lo_key_owner = uid;
1321 	}
1322 
1323 	/* update dio if lo_offset or transfer is changed */
1324 	__loop_update_dio(lo, lo->use_dio);
1325 
1326 out_unfreeze:
1327 	blk_mq_unfreeze_queue(lo->lo_queue);
1328 
1329 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1330 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1331 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1332 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1333 		bdev = lo->lo_device;
1334 		partscan = true;
1335 	}
1336 out_unlock:
1337 	mutex_unlock(&loop_ctl_mutex);
1338 	if (partscan)
1339 		loop_reread_partitions(lo, bdev);
1340 
1341 	return err;
1342 }
1343 
1344 static int
1345 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1346 {
1347 	struct path path;
1348 	struct kstat stat;
1349 	int ret;
1350 
1351 	ret = mutex_lock_killable(&loop_ctl_mutex);
1352 	if (ret)
1353 		return ret;
1354 	if (lo->lo_state != Lo_bound) {
1355 		mutex_unlock(&loop_ctl_mutex);
1356 		return -ENXIO;
1357 	}
1358 
1359 	memset(info, 0, sizeof(*info));
1360 	info->lo_number = lo->lo_number;
1361 	info->lo_offset = lo->lo_offset;
1362 	info->lo_sizelimit = lo->lo_sizelimit;
1363 	info->lo_flags = lo->lo_flags;
1364 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1365 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1366 	info->lo_encrypt_type =
1367 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1368 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1369 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1370 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1371 		       lo->lo_encrypt_key_size);
1372 	}
1373 
1374 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1375 	path = lo->lo_backing_file->f_path;
1376 	path_get(&path);
1377 	mutex_unlock(&loop_ctl_mutex);
1378 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1379 	if (!ret) {
1380 		info->lo_device = huge_encode_dev(stat.dev);
1381 		info->lo_inode = stat.ino;
1382 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1383 	}
1384 	path_put(&path);
1385 	return ret;
1386 }
1387 
1388 static void
1389 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1390 {
1391 	memset(info64, 0, sizeof(*info64));
1392 	info64->lo_number = info->lo_number;
1393 	info64->lo_device = info->lo_device;
1394 	info64->lo_inode = info->lo_inode;
1395 	info64->lo_rdevice = info->lo_rdevice;
1396 	info64->lo_offset = info->lo_offset;
1397 	info64->lo_sizelimit = 0;
1398 	info64->lo_encrypt_type = info->lo_encrypt_type;
1399 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1400 	info64->lo_flags = info->lo_flags;
1401 	info64->lo_init[0] = info->lo_init[0];
1402 	info64->lo_init[1] = info->lo_init[1];
1403 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1404 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1405 	else
1406 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1407 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1408 }
1409 
1410 static int
1411 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1412 {
1413 	memset(info, 0, sizeof(*info));
1414 	info->lo_number = info64->lo_number;
1415 	info->lo_device = info64->lo_device;
1416 	info->lo_inode = info64->lo_inode;
1417 	info->lo_rdevice = info64->lo_rdevice;
1418 	info->lo_offset = info64->lo_offset;
1419 	info->lo_encrypt_type = info64->lo_encrypt_type;
1420 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1421 	info->lo_flags = info64->lo_flags;
1422 	info->lo_init[0] = info64->lo_init[0];
1423 	info->lo_init[1] = info64->lo_init[1];
1424 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1425 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1426 	else
1427 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1428 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1429 
1430 	/* error in case values were truncated */
1431 	if (info->lo_device != info64->lo_device ||
1432 	    info->lo_rdevice != info64->lo_rdevice ||
1433 	    info->lo_inode != info64->lo_inode ||
1434 	    info->lo_offset != info64->lo_offset)
1435 		return -EOVERFLOW;
1436 
1437 	return 0;
1438 }
1439 
1440 static int
1441 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1442 {
1443 	struct loop_info info;
1444 	struct loop_info64 info64;
1445 
1446 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1447 		return -EFAULT;
1448 	loop_info64_from_old(&info, &info64);
1449 	return loop_set_status(lo, &info64);
1450 }
1451 
1452 static int
1453 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1454 {
1455 	struct loop_info64 info64;
1456 
1457 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1458 		return -EFAULT;
1459 	return loop_set_status(lo, &info64);
1460 }
1461 
1462 static int
1463 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1464 	struct loop_info info;
1465 	struct loop_info64 info64;
1466 	int err;
1467 
1468 	if (!arg)
1469 		return -EINVAL;
1470 	err = loop_get_status(lo, &info64);
1471 	if (!err)
1472 		err = loop_info64_to_old(&info64, &info);
1473 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1474 		err = -EFAULT;
1475 
1476 	return err;
1477 }
1478 
1479 static int
1480 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1481 	struct loop_info64 info64;
1482 	int err;
1483 
1484 	if (!arg)
1485 		return -EINVAL;
1486 	err = loop_get_status(lo, &info64);
1487 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1488 		err = -EFAULT;
1489 
1490 	return err;
1491 }
1492 
1493 static int loop_set_capacity(struct loop_device *lo)
1494 {
1495 	if (unlikely(lo->lo_state != Lo_bound))
1496 		return -ENXIO;
1497 
1498 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1499 }
1500 
1501 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1502 {
1503 	int error = -ENXIO;
1504 	if (lo->lo_state != Lo_bound)
1505 		goto out;
1506 
1507 	__loop_update_dio(lo, !!arg);
1508 	if (lo->use_dio == !!arg)
1509 		return 0;
1510 	error = -EINVAL;
1511  out:
1512 	return error;
1513 }
1514 
1515 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1516 {
1517 	int err = 0;
1518 
1519 	if (lo->lo_state != Lo_bound)
1520 		return -ENXIO;
1521 
1522 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1523 		return -EINVAL;
1524 
1525 	if (lo->lo_queue->limits.logical_block_size != arg) {
1526 		sync_blockdev(lo->lo_device);
1527 		kill_bdev(lo->lo_device);
1528 	}
1529 
1530 	blk_mq_freeze_queue(lo->lo_queue);
1531 
1532 	/* kill_bdev should have truncated all the pages */
1533 	if (lo->lo_queue->limits.logical_block_size != arg &&
1534 			lo->lo_device->bd_inode->i_mapping->nrpages) {
1535 		err = -EAGAIN;
1536 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1537 			__func__, lo->lo_number, lo->lo_file_name,
1538 			lo->lo_device->bd_inode->i_mapping->nrpages);
1539 		goto out_unfreeze;
1540 	}
1541 
1542 	blk_queue_logical_block_size(lo->lo_queue, arg);
1543 	blk_queue_physical_block_size(lo->lo_queue, arg);
1544 	blk_queue_io_min(lo->lo_queue, arg);
1545 	loop_update_dio(lo);
1546 out_unfreeze:
1547 	blk_mq_unfreeze_queue(lo->lo_queue);
1548 
1549 	return err;
1550 }
1551 
1552 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1553 			   unsigned long arg)
1554 {
1555 	int err;
1556 
1557 	err = mutex_lock_killable(&loop_ctl_mutex);
1558 	if (err)
1559 		return err;
1560 	switch (cmd) {
1561 	case LOOP_SET_CAPACITY:
1562 		err = loop_set_capacity(lo);
1563 		break;
1564 	case LOOP_SET_DIRECT_IO:
1565 		err = loop_set_dio(lo, arg);
1566 		break;
1567 	case LOOP_SET_BLOCK_SIZE:
1568 		err = loop_set_block_size(lo, arg);
1569 		break;
1570 	default:
1571 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1572 	}
1573 	mutex_unlock(&loop_ctl_mutex);
1574 	return err;
1575 }
1576 
1577 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1578 	unsigned int cmd, unsigned long arg)
1579 {
1580 	struct loop_device *lo = bdev->bd_disk->private_data;
1581 	int err;
1582 
1583 	switch (cmd) {
1584 	case LOOP_SET_FD:
1585 		return loop_set_fd(lo, mode, bdev, arg);
1586 	case LOOP_CHANGE_FD:
1587 		return loop_change_fd(lo, bdev, arg);
1588 	case LOOP_CLR_FD:
1589 		return loop_clr_fd(lo);
1590 	case LOOP_SET_STATUS:
1591 		err = -EPERM;
1592 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1593 			err = loop_set_status_old(lo,
1594 					(struct loop_info __user *)arg);
1595 		}
1596 		break;
1597 	case LOOP_GET_STATUS:
1598 		return loop_get_status_old(lo, (struct loop_info __user *) arg);
1599 	case LOOP_SET_STATUS64:
1600 		err = -EPERM;
1601 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1602 			err = loop_set_status64(lo,
1603 					(struct loop_info64 __user *) arg);
1604 		}
1605 		break;
1606 	case LOOP_GET_STATUS64:
1607 		return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1608 	case LOOP_SET_CAPACITY:
1609 	case LOOP_SET_DIRECT_IO:
1610 	case LOOP_SET_BLOCK_SIZE:
1611 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1612 			return -EPERM;
1613 		/* Fall through */
1614 	default:
1615 		err = lo_simple_ioctl(lo, cmd, arg);
1616 		break;
1617 	}
1618 
1619 	return err;
1620 }
1621 
1622 #ifdef CONFIG_COMPAT
1623 struct compat_loop_info {
1624 	compat_int_t	lo_number;      /* ioctl r/o */
1625 	compat_dev_t	lo_device;      /* ioctl r/o */
1626 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1627 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1628 	compat_int_t	lo_offset;
1629 	compat_int_t	lo_encrypt_type;
1630 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1631 	compat_int_t	lo_flags;       /* ioctl r/o */
1632 	char		lo_name[LO_NAME_SIZE];
1633 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1634 	compat_ulong_t	lo_init[2];
1635 	char		reserved[4];
1636 };
1637 
1638 /*
1639  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1640  * - noinlined to reduce stack space usage in main part of driver
1641  */
1642 static noinline int
1643 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1644 			struct loop_info64 *info64)
1645 {
1646 	struct compat_loop_info info;
1647 
1648 	if (copy_from_user(&info, arg, sizeof(info)))
1649 		return -EFAULT;
1650 
1651 	memset(info64, 0, sizeof(*info64));
1652 	info64->lo_number = info.lo_number;
1653 	info64->lo_device = info.lo_device;
1654 	info64->lo_inode = info.lo_inode;
1655 	info64->lo_rdevice = info.lo_rdevice;
1656 	info64->lo_offset = info.lo_offset;
1657 	info64->lo_sizelimit = 0;
1658 	info64->lo_encrypt_type = info.lo_encrypt_type;
1659 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1660 	info64->lo_flags = info.lo_flags;
1661 	info64->lo_init[0] = info.lo_init[0];
1662 	info64->lo_init[1] = info.lo_init[1];
1663 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1664 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1665 	else
1666 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1667 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1668 	return 0;
1669 }
1670 
1671 /*
1672  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1673  * - noinlined to reduce stack space usage in main part of driver
1674  */
1675 static noinline int
1676 loop_info64_to_compat(const struct loop_info64 *info64,
1677 		      struct compat_loop_info __user *arg)
1678 {
1679 	struct compat_loop_info info;
1680 
1681 	memset(&info, 0, sizeof(info));
1682 	info.lo_number = info64->lo_number;
1683 	info.lo_device = info64->lo_device;
1684 	info.lo_inode = info64->lo_inode;
1685 	info.lo_rdevice = info64->lo_rdevice;
1686 	info.lo_offset = info64->lo_offset;
1687 	info.lo_encrypt_type = info64->lo_encrypt_type;
1688 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1689 	info.lo_flags = info64->lo_flags;
1690 	info.lo_init[0] = info64->lo_init[0];
1691 	info.lo_init[1] = info64->lo_init[1];
1692 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1693 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1694 	else
1695 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1696 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1697 
1698 	/* error in case values were truncated */
1699 	if (info.lo_device != info64->lo_device ||
1700 	    info.lo_rdevice != info64->lo_rdevice ||
1701 	    info.lo_inode != info64->lo_inode ||
1702 	    info.lo_offset != info64->lo_offset ||
1703 	    info.lo_init[0] != info64->lo_init[0] ||
1704 	    info.lo_init[1] != info64->lo_init[1])
1705 		return -EOVERFLOW;
1706 
1707 	if (copy_to_user(arg, &info, sizeof(info)))
1708 		return -EFAULT;
1709 	return 0;
1710 }
1711 
1712 static int
1713 loop_set_status_compat(struct loop_device *lo,
1714 		       const struct compat_loop_info __user *arg)
1715 {
1716 	struct loop_info64 info64;
1717 	int ret;
1718 
1719 	ret = loop_info64_from_compat(arg, &info64);
1720 	if (ret < 0)
1721 		return ret;
1722 	return loop_set_status(lo, &info64);
1723 }
1724 
1725 static int
1726 loop_get_status_compat(struct loop_device *lo,
1727 		       struct compat_loop_info __user *arg)
1728 {
1729 	struct loop_info64 info64;
1730 	int err;
1731 
1732 	if (!arg)
1733 		return -EINVAL;
1734 	err = loop_get_status(lo, &info64);
1735 	if (!err)
1736 		err = loop_info64_to_compat(&info64, arg);
1737 	return err;
1738 }
1739 
1740 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1741 			   unsigned int cmd, unsigned long arg)
1742 {
1743 	struct loop_device *lo = bdev->bd_disk->private_data;
1744 	int err;
1745 
1746 	switch(cmd) {
1747 	case LOOP_SET_STATUS:
1748 		err = loop_set_status_compat(lo,
1749 			     (const struct compat_loop_info __user *)arg);
1750 		break;
1751 	case LOOP_GET_STATUS:
1752 		err = loop_get_status_compat(lo,
1753 				     (struct compat_loop_info __user *)arg);
1754 		break;
1755 	case LOOP_SET_CAPACITY:
1756 	case LOOP_CLR_FD:
1757 	case LOOP_GET_STATUS64:
1758 	case LOOP_SET_STATUS64:
1759 		arg = (unsigned long) compat_ptr(arg);
1760 		/* fall through */
1761 	case LOOP_SET_FD:
1762 	case LOOP_CHANGE_FD:
1763 	case LOOP_SET_BLOCK_SIZE:
1764 		err = lo_ioctl(bdev, mode, cmd, arg);
1765 		break;
1766 	default:
1767 		err = -ENOIOCTLCMD;
1768 		break;
1769 	}
1770 	return err;
1771 }
1772 #endif
1773 
1774 static int lo_open(struct block_device *bdev, fmode_t mode)
1775 {
1776 	struct loop_device *lo;
1777 	int err;
1778 
1779 	err = mutex_lock_killable(&loop_ctl_mutex);
1780 	if (err)
1781 		return err;
1782 	lo = bdev->bd_disk->private_data;
1783 	if (!lo) {
1784 		err = -ENXIO;
1785 		goto out;
1786 	}
1787 
1788 	atomic_inc(&lo->lo_refcnt);
1789 out:
1790 	mutex_unlock(&loop_ctl_mutex);
1791 	return err;
1792 }
1793 
1794 static void lo_release(struct gendisk *disk, fmode_t mode)
1795 {
1796 	struct loop_device *lo;
1797 
1798 	mutex_lock(&loop_ctl_mutex);
1799 	lo = disk->private_data;
1800 	if (atomic_dec_return(&lo->lo_refcnt))
1801 		goto out_unlock;
1802 
1803 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1804 		if (lo->lo_state != Lo_bound)
1805 			goto out_unlock;
1806 		lo->lo_state = Lo_rundown;
1807 		mutex_unlock(&loop_ctl_mutex);
1808 		/*
1809 		 * In autoclear mode, stop the loop thread
1810 		 * and remove configuration after last close.
1811 		 */
1812 		__loop_clr_fd(lo, true);
1813 		return;
1814 	} else if (lo->lo_state == Lo_bound) {
1815 		/*
1816 		 * Otherwise keep thread (if running) and config,
1817 		 * but flush possible ongoing bios in thread.
1818 		 */
1819 		blk_mq_freeze_queue(lo->lo_queue);
1820 		blk_mq_unfreeze_queue(lo->lo_queue);
1821 	}
1822 
1823 out_unlock:
1824 	mutex_unlock(&loop_ctl_mutex);
1825 }
1826 
1827 static const struct block_device_operations lo_fops = {
1828 	.owner =	THIS_MODULE,
1829 	.open =		lo_open,
1830 	.release =	lo_release,
1831 	.ioctl =	lo_ioctl,
1832 #ifdef CONFIG_COMPAT
1833 	.compat_ioctl =	lo_compat_ioctl,
1834 #endif
1835 };
1836 
1837 /*
1838  * And now the modules code and kernel interface.
1839  */
1840 static int max_loop;
1841 module_param(max_loop, int, 0444);
1842 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1843 module_param(max_part, int, 0444);
1844 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1845 MODULE_LICENSE("GPL");
1846 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1847 
1848 int loop_register_transfer(struct loop_func_table *funcs)
1849 {
1850 	unsigned int n = funcs->number;
1851 
1852 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1853 		return -EINVAL;
1854 	xfer_funcs[n] = funcs;
1855 	return 0;
1856 }
1857 
1858 static int unregister_transfer_cb(int id, void *ptr, void *data)
1859 {
1860 	struct loop_device *lo = ptr;
1861 	struct loop_func_table *xfer = data;
1862 
1863 	mutex_lock(&loop_ctl_mutex);
1864 	if (lo->lo_encryption == xfer)
1865 		loop_release_xfer(lo);
1866 	mutex_unlock(&loop_ctl_mutex);
1867 	return 0;
1868 }
1869 
1870 int loop_unregister_transfer(int number)
1871 {
1872 	unsigned int n = number;
1873 	struct loop_func_table *xfer;
1874 
1875 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1876 		return -EINVAL;
1877 
1878 	xfer_funcs[n] = NULL;
1879 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1880 	return 0;
1881 }
1882 
1883 EXPORT_SYMBOL(loop_register_transfer);
1884 EXPORT_SYMBOL(loop_unregister_transfer);
1885 
1886 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1887 		const struct blk_mq_queue_data *bd)
1888 {
1889 	struct request *rq = bd->rq;
1890 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1891 	struct loop_device *lo = rq->q->queuedata;
1892 
1893 	blk_mq_start_request(rq);
1894 
1895 	if (lo->lo_state != Lo_bound)
1896 		return BLK_STS_IOERR;
1897 
1898 	switch (req_op(rq)) {
1899 	case REQ_OP_FLUSH:
1900 	case REQ_OP_DISCARD:
1901 	case REQ_OP_WRITE_ZEROES:
1902 		cmd->use_aio = false;
1903 		break;
1904 	default:
1905 		cmd->use_aio = lo->use_dio;
1906 		break;
1907 	}
1908 
1909 	/* always use the first bio's css */
1910 #ifdef CONFIG_BLK_CGROUP
1911 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1912 		cmd->css = &bio_blkcg(rq->bio)->css;
1913 		css_get(cmd->css);
1914 	} else
1915 #endif
1916 		cmd->css = NULL;
1917 	kthread_queue_work(&lo->worker, &cmd->work);
1918 
1919 	return BLK_STS_OK;
1920 }
1921 
1922 static void loop_handle_cmd(struct loop_cmd *cmd)
1923 {
1924 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1925 	const bool write = op_is_write(req_op(rq));
1926 	struct loop_device *lo = rq->q->queuedata;
1927 	int ret = 0;
1928 
1929 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1930 		ret = -EIO;
1931 		goto failed;
1932 	}
1933 
1934 	ret = do_req_filebacked(lo, rq);
1935  failed:
1936 	/* complete non-aio request */
1937 	if (!cmd->use_aio || ret) {
1938 		cmd->ret = ret ? -EIO : 0;
1939 		blk_mq_complete_request(rq);
1940 	}
1941 }
1942 
1943 static void loop_queue_work(struct kthread_work *work)
1944 {
1945 	struct loop_cmd *cmd =
1946 		container_of(work, struct loop_cmd, work);
1947 
1948 	loop_handle_cmd(cmd);
1949 }
1950 
1951 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1952 		unsigned int hctx_idx, unsigned int numa_node)
1953 {
1954 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1955 
1956 	kthread_init_work(&cmd->work, loop_queue_work);
1957 	return 0;
1958 }
1959 
1960 static const struct blk_mq_ops loop_mq_ops = {
1961 	.queue_rq       = loop_queue_rq,
1962 	.init_request	= loop_init_request,
1963 	.complete	= lo_complete_rq,
1964 };
1965 
1966 static int loop_add(struct loop_device **l, int i)
1967 {
1968 	struct loop_device *lo;
1969 	struct gendisk *disk;
1970 	int err;
1971 
1972 	err = -ENOMEM;
1973 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1974 	if (!lo)
1975 		goto out;
1976 
1977 	lo->lo_state = Lo_unbound;
1978 
1979 	/* allocate id, if @id >= 0, we're requesting that specific id */
1980 	if (i >= 0) {
1981 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1982 		if (err == -ENOSPC)
1983 			err = -EEXIST;
1984 	} else {
1985 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1986 	}
1987 	if (err < 0)
1988 		goto out_free_dev;
1989 	i = err;
1990 
1991 	err = -ENOMEM;
1992 	lo->tag_set.ops = &loop_mq_ops;
1993 	lo->tag_set.nr_hw_queues = 1;
1994 	lo->tag_set.queue_depth = 128;
1995 	lo->tag_set.numa_node = NUMA_NO_NODE;
1996 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1997 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1998 	lo->tag_set.driver_data = lo;
1999 
2000 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2001 	if (err)
2002 		goto out_free_idr;
2003 
2004 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2005 	if (IS_ERR(lo->lo_queue)) {
2006 		err = PTR_ERR(lo->lo_queue);
2007 		goto out_cleanup_tags;
2008 	}
2009 	lo->lo_queue->queuedata = lo;
2010 
2011 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2012 
2013 	/*
2014 	 * By default, we do buffer IO, so it doesn't make sense to enable
2015 	 * merge because the I/O submitted to backing file is handled page by
2016 	 * page. For directio mode, merge does help to dispatch bigger request
2017 	 * to underlayer disk. We will enable merge once directio is enabled.
2018 	 */
2019 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2020 
2021 	err = -ENOMEM;
2022 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2023 	if (!disk)
2024 		goto out_free_queue;
2025 
2026 	/*
2027 	 * Disable partition scanning by default. The in-kernel partition
2028 	 * scanning can be requested individually per-device during its
2029 	 * setup. Userspace can always add and remove partitions from all
2030 	 * devices. The needed partition minors are allocated from the
2031 	 * extended minor space, the main loop device numbers will continue
2032 	 * to match the loop minors, regardless of the number of partitions
2033 	 * used.
2034 	 *
2035 	 * If max_part is given, partition scanning is globally enabled for
2036 	 * all loop devices. The minors for the main loop devices will be
2037 	 * multiples of max_part.
2038 	 *
2039 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2040 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2041 	 * complicated, are too static, inflexible and may surprise
2042 	 * userspace tools. Parameters like this in general should be avoided.
2043 	 */
2044 	if (!part_shift)
2045 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2046 	disk->flags |= GENHD_FL_EXT_DEVT;
2047 	atomic_set(&lo->lo_refcnt, 0);
2048 	lo->lo_number		= i;
2049 	spin_lock_init(&lo->lo_lock);
2050 	disk->major		= LOOP_MAJOR;
2051 	disk->first_minor	= i << part_shift;
2052 	disk->fops		= &lo_fops;
2053 	disk->private_data	= lo;
2054 	disk->queue		= lo->lo_queue;
2055 	sprintf(disk->disk_name, "loop%d", i);
2056 	add_disk(disk);
2057 	*l = lo;
2058 	return lo->lo_number;
2059 
2060 out_free_queue:
2061 	blk_cleanup_queue(lo->lo_queue);
2062 out_cleanup_tags:
2063 	blk_mq_free_tag_set(&lo->tag_set);
2064 out_free_idr:
2065 	idr_remove(&loop_index_idr, i);
2066 out_free_dev:
2067 	kfree(lo);
2068 out:
2069 	return err;
2070 }
2071 
2072 static void loop_remove(struct loop_device *lo)
2073 {
2074 	del_gendisk(lo->lo_disk);
2075 	blk_cleanup_queue(lo->lo_queue);
2076 	blk_mq_free_tag_set(&lo->tag_set);
2077 	put_disk(lo->lo_disk);
2078 	kfree(lo);
2079 }
2080 
2081 static int find_free_cb(int id, void *ptr, void *data)
2082 {
2083 	struct loop_device *lo = ptr;
2084 	struct loop_device **l = data;
2085 
2086 	if (lo->lo_state == Lo_unbound) {
2087 		*l = lo;
2088 		return 1;
2089 	}
2090 	return 0;
2091 }
2092 
2093 static int loop_lookup(struct loop_device **l, int i)
2094 {
2095 	struct loop_device *lo;
2096 	int ret = -ENODEV;
2097 
2098 	if (i < 0) {
2099 		int err;
2100 
2101 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2102 		if (err == 1) {
2103 			*l = lo;
2104 			ret = lo->lo_number;
2105 		}
2106 		goto out;
2107 	}
2108 
2109 	/* lookup and return a specific i */
2110 	lo = idr_find(&loop_index_idr, i);
2111 	if (lo) {
2112 		*l = lo;
2113 		ret = lo->lo_number;
2114 	}
2115 out:
2116 	return ret;
2117 }
2118 
2119 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2120 {
2121 	struct loop_device *lo;
2122 	struct kobject *kobj;
2123 	int err;
2124 
2125 	mutex_lock(&loop_ctl_mutex);
2126 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2127 	if (err < 0)
2128 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2129 	if (err < 0)
2130 		kobj = NULL;
2131 	else
2132 		kobj = get_disk_and_module(lo->lo_disk);
2133 	mutex_unlock(&loop_ctl_mutex);
2134 
2135 	*part = 0;
2136 	return kobj;
2137 }
2138 
2139 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2140 			       unsigned long parm)
2141 {
2142 	struct loop_device *lo;
2143 	int ret;
2144 
2145 	ret = mutex_lock_killable(&loop_ctl_mutex);
2146 	if (ret)
2147 		return ret;
2148 
2149 	ret = -ENOSYS;
2150 	switch (cmd) {
2151 	case LOOP_CTL_ADD:
2152 		ret = loop_lookup(&lo, parm);
2153 		if (ret >= 0) {
2154 			ret = -EEXIST;
2155 			break;
2156 		}
2157 		ret = loop_add(&lo, parm);
2158 		break;
2159 	case LOOP_CTL_REMOVE:
2160 		ret = loop_lookup(&lo, parm);
2161 		if (ret < 0)
2162 			break;
2163 		if (lo->lo_state != Lo_unbound) {
2164 			ret = -EBUSY;
2165 			break;
2166 		}
2167 		if (atomic_read(&lo->lo_refcnt) > 0) {
2168 			ret = -EBUSY;
2169 			break;
2170 		}
2171 		lo->lo_disk->private_data = NULL;
2172 		idr_remove(&loop_index_idr, lo->lo_number);
2173 		loop_remove(lo);
2174 		break;
2175 	case LOOP_CTL_GET_FREE:
2176 		ret = loop_lookup(&lo, -1);
2177 		if (ret >= 0)
2178 			break;
2179 		ret = loop_add(&lo, -1);
2180 	}
2181 	mutex_unlock(&loop_ctl_mutex);
2182 
2183 	return ret;
2184 }
2185 
2186 static const struct file_operations loop_ctl_fops = {
2187 	.open		= nonseekable_open,
2188 	.unlocked_ioctl	= loop_control_ioctl,
2189 	.compat_ioctl	= loop_control_ioctl,
2190 	.owner		= THIS_MODULE,
2191 	.llseek		= noop_llseek,
2192 };
2193 
2194 static struct miscdevice loop_misc = {
2195 	.minor		= LOOP_CTRL_MINOR,
2196 	.name		= "loop-control",
2197 	.fops		= &loop_ctl_fops,
2198 };
2199 
2200 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2201 MODULE_ALIAS("devname:loop-control");
2202 
2203 static int __init loop_init(void)
2204 {
2205 	int i, nr;
2206 	unsigned long range;
2207 	struct loop_device *lo;
2208 	int err;
2209 
2210 	part_shift = 0;
2211 	if (max_part > 0) {
2212 		part_shift = fls(max_part);
2213 
2214 		/*
2215 		 * Adjust max_part according to part_shift as it is exported
2216 		 * to user space so that user can decide correct minor number
2217 		 * if [s]he want to create more devices.
2218 		 *
2219 		 * Note that -1 is required because partition 0 is reserved
2220 		 * for the whole disk.
2221 		 */
2222 		max_part = (1UL << part_shift) - 1;
2223 	}
2224 
2225 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2226 		err = -EINVAL;
2227 		goto err_out;
2228 	}
2229 
2230 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2231 		err = -EINVAL;
2232 		goto err_out;
2233 	}
2234 
2235 	/*
2236 	 * If max_loop is specified, create that many devices upfront.
2237 	 * This also becomes a hard limit. If max_loop is not specified,
2238 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2239 	 * init time. Loop devices can be requested on-demand with the
2240 	 * /dev/loop-control interface, or be instantiated by accessing
2241 	 * a 'dead' device node.
2242 	 */
2243 	if (max_loop) {
2244 		nr = max_loop;
2245 		range = max_loop << part_shift;
2246 	} else {
2247 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2248 		range = 1UL << MINORBITS;
2249 	}
2250 
2251 	err = misc_register(&loop_misc);
2252 	if (err < 0)
2253 		goto err_out;
2254 
2255 
2256 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2257 		err = -EIO;
2258 		goto misc_out;
2259 	}
2260 
2261 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2262 				  THIS_MODULE, loop_probe, NULL, NULL);
2263 
2264 	/* pre-create number of devices given by config or max_loop */
2265 	mutex_lock(&loop_ctl_mutex);
2266 	for (i = 0; i < nr; i++)
2267 		loop_add(&lo, i);
2268 	mutex_unlock(&loop_ctl_mutex);
2269 
2270 	printk(KERN_INFO "loop: module loaded\n");
2271 	return 0;
2272 
2273 misc_out:
2274 	misc_deregister(&loop_misc);
2275 err_out:
2276 	return err;
2277 }
2278 
2279 static int loop_exit_cb(int id, void *ptr, void *data)
2280 {
2281 	struct loop_device *lo = ptr;
2282 
2283 	loop_remove(lo);
2284 	return 0;
2285 }
2286 
2287 static void __exit loop_exit(void)
2288 {
2289 	unsigned long range;
2290 
2291 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2292 
2293 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2294 	idr_destroy(&loop_index_idr);
2295 
2296 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2297 	unregister_blkdev(LOOP_MAJOR, "loop");
2298 
2299 	misc_deregister(&loop_misc);
2300 }
2301 
2302 module_init(loop_init);
2303 module_exit(loop_exit);
2304 
2305 #ifndef MODULE
2306 static int __init max_loop_setup(char *str)
2307 {
2308 	max_loop = simple_strtol(str, NULL, 0);
2309 	return 1;
2310 }
2311 
2312 __setup("max_loop=", max_loop_setup);
2313 #endif
2314