1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 blk_mq_freeze_queue(lo->lo_queue); 218 lo->use_dio = use_dio; 219 if (use_dio) { 220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 221 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 222 } else { 223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 224 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 225 } 226 blk_mq_unfreeze_queue(lo->lo_queue); 227 } 228 229 static int 230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 231 { 232 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 233 sector_t x = (sector_t)size; 234 struct block_device *bdev = lo->lo_device; 235 236 if (unlikely((loff_t)x != size)) 237 return -EFBIG; 238 if (lo->lo_offset != offset) 239 lo->lo_offset = offset; 240 if (lo->lo_sizelimit != sizelimit) 241 lo->lo_sizelimit = sizelimit; 242 set_capacity(lo->lo_disk, x); 243 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 244 /* let user-space know about the new size */ 245 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 246 return 0; 247 } 248 249 static inline int 250 lo_do_transfer(struct loop_device *lo, int cmd, 251 struct page *rpage, unsigned roffs, 252 struct page *lpage, unsigned loffs, 253 int size, sector_t rblock) 254 { 255 int ret; 256 257 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 258 if (likely(!ret)) 259 return 0; 260 261 printk_ratelimited(KERN_ERR 262 "loop: Transfer error at byte offset %llu, length %i.\n", 263 (unsigned long long)rblock << 9, size); 264 return ret; 265 } 266 267 static inline void loop_iov_iter_bvec(struct iov_iter *i, 268 unsigned int direction, const struct bio_vec *bvec, 269 unsigned long nr_segs, size_t count) 270 { 271 iov_iter_bvec(i, direction, bvec, nr_segs, count); 272 i->type |= ITER_BVEC_FLAG_NO_REF; 273 } 274 275 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 276 { 277 struct iov_iter i; 278 ssize_t bw; 279 280 loop_iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 281 282 file_start_write(file); 283 bw = vfs_iter_write(file, &i, ppos, 0); 284 file_end_write(file); 285 286 if (likely(bw == bvec->bv_len)) 287 return 0; 288 289 printk_ratelimited(KERN_ERR 290 "loop: Write error at byte offset %llu, length %i.\n", 291 (unsigned long long)*ppos, bvec->bv_len); 292 if (bw >= 0) 293 bw = -EIO; 294 return bw; 295 } 296 297 static int lo_write_simple(struct loop_device *lo, struct request *rq, 298 loff_t pos) 299 { 300 struct bio_vec bvec; 301 struct req_iterator iter; 302 int ret = 0; 303 304 rq_for_each_segment(bvec, rq, iter) { 305 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 306 if (ret < 0) 307 break; 308 cond_resched(); 309 } 310 311 return ret; 312 } 313 314 /* 315 * This is the slow, transforming version that needs to double buffer the 316 * data as it cannot do the transformations in place without having direct 317 * access to the destination pages of the backing file. 318 */ 319 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 320 loff_t pos) 321 { 322 struct bio_vec bvec, b; 323 struct req_iterator iter; 324 struct page *page; 325 int ret = 0; 326 327 page = alloc_page(GFP_NOIO); 328 if (unlikely(!page)) 329 return -ENOMEM; 330 331 rq_for_each_segment(bvec, rq, iter) { 332 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 333 bvec.bv_offset, bvec.bv_len, pos >> 9); 334 if (unlikely(ret)) 335 break; 336 337 b.bv_page = page; 338 b.bv_offset = 0; 339 b.bv_len = bvec.bv_len; 340 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 341 if (ret < 0) 342 break; 343 } 344 345 __free_page(page); 346 return ret; 347 } 348 349 static int lo_read_simple(struct loop_device *lo, struct request *rq, 350 loff_t pos) 351 { 352 struct bio_vec bvec; 353 struct req_iterator iter; 354 struct iov_iter i; 355 ssize_t len; 356 357 rq_for_each_segment(bvec, rq, iter) { 358 loop_iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 359 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 360 if (len < 0) 361 return len; 362 363 flush_dcache_page(bvec.bv_page); 364 365 if (len != bvec.bv_len) { 366 struct bio *bio; 367 368 __rq_for_each_bio(bio, rq) 369 zero_fill_bio(bio); 370 break; 371 } 372 cond_resched(); 373 } 374 375 return 0; 376 } 377 378 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 379 loff_t pos) 380 { 381 struct bio_vec bvec, b; 382 struct req_iterator iter; 383 struct iov_iter i; 384 struct page *page; 385 ssize_t len; 386 int ret = 0; 387 388 page = alloc_page(GFP_NOIO); 389 if (unlikely(!page)) 390 return -ENOMEM; 391 392 rq_for_each_segment(bvec, rq, iter) { 393 loff_t offset = pos; 394 395 b.bv_page = page; 396 b.bv_offset = 0; 397 b.bv_len = bvec.bv_len; 398 399 loop_iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 400 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 401 if (len < 0) { 402 ret = len; 403 goto out_free_page; 404 } 405 406 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 407 bvec.bv_offset, len, offset >> 9); 408 if (ret) 409 goto out_free_page; 410 411 flush_dcache_page(bvec.bv_page); 412 413 if (len != bvec.bv_len) { 414 struct bio *bio; 415 416 __rq_for_each_bio(bio, rq) 417 zero_fill_bio(bio); 418 break; 419 } 420 } 421 422 ret = 0; 423 out_free_page: 424 __free_page(page); 425 return ret; 426 } 427 428 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 429 { 430 /* 431 * We use punch hole to reclaim the free space used by the 432 * image a.k.a. discard. However we do not support discard if 433 * encryption is enabled, because it may give an attacker 434 * useful information. 435 */ 436 struct file *file = lo->lo_backing_file; 437 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 438 int ret; 439 440 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 441 ret = -EOPNOTSUPP; 442 goto out; 443 } 444 445 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 446 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 447 ret = -EIO; 448 out: 449 return ret; 450 } 451 452 static int lo_req_flush(struct loop_device *lo, struct request *rq) 453 { 454 struct file *file = lo->lo_backing_file; 455 int ret = vfs_fsync(file, 0); 456 if (unlikely(ret && ret != -EINVAL)) 457 ret = -EIO; 458 459 return ret; 460 } 461 462 static void lo_complete_rq(struct request *rq) 463 { 464 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 465 blk_status_t ret = BLK_STS_OK; 466 467 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 468 req_op(rq) != REQ_OP_READ) { 469 if (cmd->ret < 0) 470 ret = BLK_STS_IOERR; 471 goto end_io; 472 } 473 474 /* 475 * Short READ - if we got some data, advance our request and 476 * retry it. If we got no data, end the rest with EIO. 477 */ 478 if (cmd->ret) { 479 blk_update_request(rq, BLK_STS_OK, cmd->ret); 480 cmd->ret = 0; 481 blk_mq_requeue_request(rq, true); 482 } else { 483 if (cmd->use_aio) { 484 struct bio *bio = rq->bio; 485 486 while (bio) { 487 zero_fill_bio(bio); 488 bio = bio->bi_next; 489 } 490 } 491 ret = BLK_STS_IOERR; 492 end_io: 493 blk_mq_end_request(rq, ret); 494 } 495 } 496 497 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 498 { 499 struct request *rq = blk_mq_rq_from_pdu(cmd); 500 501 if (!atomic_dec_and_test(&cmd->ref)) 502 return; 503 kfree(cmd->bvec); 504 cmd->bvec = NULL; 505 blk_mq_complete_request(rq); 506 } 507 508 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 509 { 510 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 511 512 if (cmd->css) 513 css_put(cmd->css); 514 cmd->ret = ret; 515 lo_rw_aio_do_completion(cmd); 516 } 517 518 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 519 loff_t pos, bool rw) 520 { 521 struct iov_iter iter; 522 struct req_iterator rq_iter; 523 struct bio_vec *bvec; 524 struct request *rq = blk_mq_rq_from_pdu(cmd); 525 struct bio *bio = rq->bio; 526 struct file *file = lo->lo_backing_file; 527 struct bio_vec tmp; 528 unsigned int offset; 529 int nr_bvec = 0; 530 int ret; 531 532 rq_for_each_bvec(tmp, rq, rq_iter) 533 nr_bvec++; 534 535 if (rq->bio != rq->biotail) { 536 537 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 538 GFP_NOIO); 539 if (!bvec) 540 return -EIO; 541 cmd->bvec = bvec; 542 543 /* 544 * The bios of the request may be started from the middle of 545 * the 'bvec' because of bio splitting, so we can't directly 546 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 547 * API will take care of all details for us. 548 */ 549 rq_for_each_bvec(tmp, rq, rq_iter) { 550 *bvec = tmp; 551 bvec++; 552 } 553 bvec = cmd->bvec; 554 offset = 0; 555 } else { 556 /* 557 * Same here, this bio may be started from the middle of the 558 * 'bvec' because of bio splitting, so offset from the bvec 559 * must be passed to iov iterator 560 */ 561 offset = bio->bi_iter.bi_bvec_done; 562 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 563 } 564 atomic_set(&cmd->ref, 2); 565 566 loop_iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 567 iter.iov_offset = offset; 568 569 cmd->iocb.ki_pos = pos; 570 cmd->iocb.ki_filp = file; 571 cmd->iocb.ki_complete = lo_rw_aio_complete; 572 cmd->iocb.ki_flags = IOCB_DIRECT; 573 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 574 if (cmd->css) 575 kthread_associate_blkcg(cmd->css); 576 577 if (rw == WRITE) 578 ret = call_write_iter(file, &cmd->iocb, &iter); 579 else 580 ret = call_read_iter(file, &cmd->iocb, &iter); 581 582 lo_rw_aio_do_completion(cmd); 583 kthread_associate_blkcg(NULL); 584 585 if (ret != -EIOCBQUEUED) 586 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 587 return 0; 588 } 589 590 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 591 { 592 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 593 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 594 595 /* 596 * lo_write_simple and lo_read_simple should have been covered 597 * by io submit style function like lo_rw_aio(), one blocker 598 * is that lo_read_simple() need to call flush_dcache_page after 599 * the page is written from kernel, and it isn't easy to handle 600 * this in io submit style function which submits all segments 601 * of the req at one time. And direct read IO doesn't need to 602 * run flush_dcache_page(). 603 */ 604 switch (req_op(rq)) { 605 case REQ_OP_FLUSH: 606 return lo_req_flush(lo, rq); 607 case REQ_OP_DISCARD: 608 case REQ_OP_WRITE_ZEROES: 609 return lo_discard(lo, rq, pos); 610 case REQ_OP_WRITE: 611 if (lo->transfer) 612 return lo_write_transfer(lo, rq, pos); 613 else if (cmd->use_aio) 614 return lo_rw_aio(lo, cmd, pos, WRITE); 615 else 616 return lo_write_simple(lo, rq, pos); 617 case REQ_OP_READ: 618 if (lo->transfer) 619 return lo_read_transfer(lo, rq, pos); 620 else if (cmd->use_aio) 621 return lo_rw_aio(lo, cmd, pos, READ); 622 else 623 return lo_read_simple(lo, rq, pos); 624 default: 625 WARN_ON_ONCE(1); 626 return -EIO; 627 } 628 } 629 630 static inline void loop_update_dio(struct loop_device *lo) 631 { 632 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 633 lo->use_dio); 634 } 635 636 static void loop_reread_partitions(struct loop_device *lo, 637 struct block_device *bdev) 638 { 639 int rc; 640 641 rc = blkdev_reread_part(bdev); 642 if (rc) 643 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 644 __func__, lo->lo_number, lo->lo_file_name, rc); 645 } 646 647 static inline int is_loop_device(struct file *file) 648 { 649 struct inode *i = file->f_mapping->host; 650 651 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 652 } 653 654 static int loop_validate_file(struct file *file, struct block_device *bdev) 655 { 656 struct inode *inode = file->f_mapping->host; 657 struct file *f = file; 658 659 /* Avoid recursion */ 660 while (is_loop_device(f)) { 661 struct loop_device *l; 662 663 if (f->f_mapping->host->i_bdev == bdev) 664 return -EBADF; 665 666 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 667 if (l->lo_state != Lo_bound) { 668 return -EINVAL; 669 } 670 f = l->lo_backing_file; 671 } 672 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 673 return -EINVAL; 674 return 0; 675 } 676 677 /* 678 * loop_change_fd switched the backing store of a loopback device to 679 * a new file. This is useful for operating system installers to free up 680 * the original file and in High Availability environments to switch to 681 * an alternative location for the content in case of server meltdown. 682 * This can only work if the loop device is used read-only, and if the 683 * new backing store is the same size and type as the old backing store. 684 */ 685 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 686 unsigned int arg) 687 { 688 struct file *file = NULL, *old_file; 689 int error; 690 bool partscan; 691 692 error = mutex_lock_killable(&loop_ctl_mutex); 693 if (error) 694 return error; 695 error = -ENXIO; 696 if (lo->lo_state != Lo_bound) 697 goto out_err; 698 699 /* the loop device has to be read-only */ 700 error = -EINVAL; 701 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 702 goto out_err; 703 704 error = -EBADF; 705 file = fget(arg); 706 if (!file) 707 goto out_err; 708 709 error = loop_validate_file(file, bdev); 710 if (error) 711 goto out_err; 712 713 old_file = lo->lo_backing_file; 714 715 error = -EINVAL; 716 717 /* size of the new backing store needs to be the same */ 718 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 719 goto out_err; 720 721 /* and ... switch */ 722 blk_mq_freeze_queue(lo->lo_queue); 723 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 724 lo->lo_backing_file = file; 725 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 726 mapping_set_gfp_mask(file->f_mapping, 727 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 728 loop_update_dio(lo); 729 blk_mq_unfreeze_queue(lo->lo_queue); 730 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 731 mutex_unlock(&loop_ctl_mutex); 732 /* 733 * We must drop file reference outside of loop_ctl_mutex as dropping 734 * the file ref can take bd_mutex which creates circular locking 735 * dependency. 736 */ 737 fput(old_file); 738 if (partscan) 739 loop_reread_partitions(lo, bdev); 740 return 0; 741 742 out_err: 743 mutex_unlock(&loop_ctl_mutex); 744 if (file) 745 fput(file); 746 return error; 747 } 748 749 /* loop sysfs attributes */ 750 751 static ssize_t loop_attr_show(struct device *dev, char *page, 752 ssize_t (*callback)(struct loop_device *, char *)) 753 { 754 struct gendisk *disk = dev_to_disk(dev); 755 struct loop_device *lo = disk->private_data; 756 757 return callback(lo, page); 758 } 759 760 #define LOOP_ATTR_RO(_name) \ 761 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 762 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 763 struct device_attribute *attr, char *b) \ 764 { \ 765 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 766 } \ 767 static struct device_attribute loop_attr_##_name = \ 768 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 769 770 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 771 { 772 ssize_t ret; 773 char *p = NULL; 774 775 spin_lock_irq(&lo->lo_lock); 776 if (lo->lo_backing_file) 777 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 778 spin_unlock_irq(&lo->lo_lock); 779 780 if (IS_ERR_OR_NULL(p)) 781 ret = PTR_ERR(p); 782 else { 783 ret = strlen(p); 784 memmove(buf, p, ret); 785 buf[ret++] = '\n'; 786 buf[ret] = 0; 787 } 788 789 return ret; 790 } 791 792 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 793 { 794 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 795 } 796 797 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 798 { 799 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 800 } 801 802 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 803 { 804 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 805 806 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 807 } 808 809 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 810 { 811 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 812 813 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 814 } 815 816 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 817 { 818 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 819 820 return sprintf(buf, "%s\n", dio ? "1" : "0"); 821 } 822 823 LOOP_ATTR_RO(backing_file); 824 LOOP_ATTR_RO(offset); 825 LOOP_ATTR_RO(sizelimit); 826 LOOP_ATTR_RO(autoclear); 827 LOOP_ATTR_RO(partscan); 828 LOOP_ATTR_RO(dio); 829 830 static struct attribute *loop_attrs[] = { 831 &loop_attr_backing_file.attr, 832 &loop_attr_offset.attr, 833 &loop_attr_sizelimit.attr, 834 &loop_attr_autoclear.attr, 835 &loop_attr_partscan.attr, 836 &loop_attr_dio.attr, 837 NULL, 838 }; 839 840 static struct attribute_group loop_attribute_group = { 841 .name = "loop", 842 .attrs= loop_attrs, 843 }; 844 845 static void loop_sysfs_init(struct loop_device *lo) 846 { 847 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 848 &loop_attribute_group); 849 } 850 851 static void loop_sysfs_exit(struct loop_device *lo) 852 { 853 if (lo->sysfs_inited) 854 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 855 &loop_attribute_group); 856 } 857 858 static void loop_config_discard(struct loop_device *lo) 859 { 860 struct file *file = lo->lo_backing_file; 861 struct inode *inode = file->f_mapping->host; 862 struct request_queue *q = lo->lo_queue; 863 864 /* 865 * We use punch hole to reclaim the free space used by the 866 * image a.k.a. discard. However we do not support discard if 867 * encryption is enabled, because it may give an attacker 868 * useful information. 869 */ 870 if ((!file->f_op->fallocate) || 871 lo->lo_encrypt_key_size) { 872 q->limits.discard_granularity = 0; 873 q->limits.discard_alignment = 0; 874 blk_queue_max_discard_sectors(q, 0); 875 blk_queue_max_write_zeroes_sectors(q, 0); 876 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 877 return; 878 } 879 880 q->limits.discard_granularity = inode->i_sb->s_blocksize; 881 q->limits.discard_alignment = 0; 882 883 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 884 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 885 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 886 } 887 888 static void loop_unprepare_queue(struct loop_device *lo) 889 { 890 kthread_flush_worker(&lo->worker); 891 kthread_stop(lo->worker_task); 892 } 893 894 static int loop_kthread_worker_fn(void *worker_ptr) 895 { 896 current->flags |= PF_LESS_THROTTLE; 897 return kthread_worker_fn(worker_ptr); 898 } 899 900 static int loop_prepare_queue(struct loop_device *lo) 901 { 902 kthread_init_worker(&lo->worker); 903 lo->worker_task = kthread_run(loop_kthread_worker_fn, 904 &lo->worker, "loop%d", lo->lo_number); 905 if (IS_ERR(lo->worker_task)) 906 return -ENOMEM; 907 set_user_nice(lo->worker_task, MIN_NICE); 908 return 0; 909 } 910 911 static void loop_update_rotational(struct loop_device *lo) 912 { 913 struct file *file = lo->lo_backing_file; 914 struct inode *file_inode = file->f_mapping->host; 915 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 916 struct request_queue *q = lo->lo_queue; 917 bool nonrot = true; 918 919 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 920 if (file_bdev) 921 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 922 923 if (nonrot) 924 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 925 else 926 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 927 } 928 929 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 930 struct block_device *bdev, unsigned int arg) 931 { 932 struct file *file; 933 struct inode *inode; 934 struct address_space *mapping; 935 int lo_flags = 0; 936 int error; 937 loff_t size; 938 bool partscan; 939 940 /* This is safe, since we have a reference from open(). */ 941 __module_get(THIS_MODULE); 942 943 error = -EBADF; 944 file = fget(arg); 945 if (!file) 946 goto out; 947 948 /* 949 * If we don't hold exclusive handle for the device, upgrade to it 950 * here to avoid changing device under exclusive owner. 951 */ 952 if (!(mode & FMODE_EXCL)) { 953 bdgrab(bdev); 954 error = blkdev_get(bdev, mode | FMODE_EXCL, loop_set_fd); 955 if (error) 956 goto out_putf; 957 } 958 959 error = mutex_lock_killable(&loop_ctl_mutex); 960 if (error) 961 goto out_bdev; 962 963 error = -EBUSY; 964 if (lo->lo_state != Lo_unbound) 965 goto out_unlock; 966 967 error = loop_validate_file(file, bdev); 968 if (error) 969 goto out_unlock; 970 971 mapping = file->f_mapping; 972 inode = mapping->host; 973 974 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 975 !file->f_op->write_iter) 976 lo_flags |= LO_FLAGS_READ_ONLY; 977 978 error = -EFBIG; 979 size = get_loop_size(lo, file); 980 if ((loff_t)(sector_t)size != size) 981 goto out_unlock; 982 error = loop_prepare_queue(lo); 983 if (error) 984 goto out_unlock; 985 986 error = 0; 987 988 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 989 990 lo->use_dio = false; 991 lo->lo_device = bdev; 992 lo->lo_flags = lo_flags; 993 lo->lo_backing_file = file; 994 lo->transfer = NULL; 995 lo->ioctl = NULL; 996 lo->lo_sizelimit = 0; 997 lo->old_gfp_mask = mapping_gfp_mask(mapping); 998 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 999 1000 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1001 blk_queue_write_cache(lo->lo_queue, true, false); 1002 1003 loop_update_rotational(lo); 1004 loop_update_dio(lo); 1005 set_capacity(lo->lo_disk, size); 1006 bd_set_size(bdev, size << 9); 1007 loop_sysfs_init(lo); 1008 /* let user-space know about the new size */ 1009 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1010 1011 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1012 block_size(inode->i_bdev) : PAGE_SIZE); 1013 1014 lo->lo_state = Lo_bound; 1015 if (part_shift) 1016 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1017 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1018 1019 /* Grab the block_device to prevent its destruction after we 1020 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1021 */ 1022 bdgrab(bdev); 1023 mutex_unlock(&loop_ctl_mutex); 1024 if (partscan) 1025 loop_reread_partitions(lo, bdev); 1026 if (!(mode & FMODE_EXCL)) 1027 blkdev_put(bdev, mode | FMODE_EXCL); 1028 return 0; 1029 1030 out_unlock: 1031 mutex_unlock(&loop_ctl_mutex); 1032 out_bdev: 1033 if (!(mode & FMODE_EXCL)) 1034 blkdev_put(bdev, mode | FMODE_EXCL); 1035 out_putf: 1036 fput(file); 1037 out: 1038 /* This is safe: open() is still holding a reference. */ 1039 module_put(THIS_MODULE); 1040 return error; 1041 } 1042 1043 static int 1044 loop_release_xfer(struct loop_device *lo) 1045 { 1046 int err = 0; 1047 struct loop_func_table *xfer = lo->lo_encryption; 1048 1049 if (xfer) { 1050 if (xfer->release) 1051 err = xfer->release(lo); 1052 lo->transfer = NULL; 1053 lo->lo_encryption = NULL; 1054 module_put(xfer->owner); 1055 } 1056 return err; 1057 } 1058 1059 static int 1060 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1061 const struct loop_info64 *i) 1062 { 1063 int err = 0; 1064 1065 if (xfer) { 1066 struct module *owner = xfer->owner; 1067 1068 if (!try_module_get(owner)) 1069 return -EINVAL; 1070 if (xfer->init) 1071 err = xfer->init(lo, i); 1072 if (err) 1073 module_put(owner); 1074 else 1075 lo->lo_encryption = xfer; 1076 } 1077 return err; 1078 } 1079 1080 static int __loop_clr_fd(struct loop_device *lo, bool release) 1081 { 1082 struct file *filp = NULL; 1083 gfp_t gfp = lo->old_gfp_mask; 1084 struct block_device *bdev = lo->lo_device; 1085 int err = 0; 1086 bool partscan = false; 1087 int lo_number; 1088 1089 mutex_lock(&loop_ctl_mutex); 1090 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1091 err = -ENXIO; 1092 goto out_unlock; 1093 } 1094 1095 filp = lo->lo_backing_file; 1096 if (filp == NULL) { 1097 err = -EINVAL; 1098 goto out_unlock; 1099 } 1100 1101 /* freeze request queue during the transition */ 1102 blk_mq_freeze_queue(lo->lo_queue); 1103 1104 spin_lock_irq(&lo->lo_lock); 1105 lo->lo_backing_file = NULL; 1106 spin_unlock_irq(&lo->lo_lock); 1107 1108 loop_release_xfer(lo); 1109 lo->transfer = NULL; 1110 lo->ioctl = NULL; 1111 lo->lo_device = NULL; 1112 lo->lo_encryption = NULL; 1113 lo->lo_offset = 0; 1114 lo->lo_sizelimit = 0; 1115 lo->lo_encrypt_key_size = 0; 1116 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1117 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1118 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1119 blk_queue_logical_block_size(lo->lo_queue, 512); 1120 blk_queue_physical_block_size(lo->lo_queue, 512); 1121 blk_queue_io_min(lo->lo_queue, 512); 1122 if (bdev) { 1123 bdput(bdev); 1124 invalidate_bdev(bdev); 1125 bdev->bd_inode->i_mapping->wb_err = 0; 1126 } 1127 set_capacity(lo->lo_disk, 0); 1128 loop_sysfs_exit(lo); 1129 if (bdev) { 1130 bd_set_size(bdev, 0); 1131 /* let user-space know about this change */ 1132 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1133 } 1134 mapping_set_gfp_mask(filp->f_mapping, gfp); 1135 /* This is safe: open() is still holding a reference. */ 1136 module_put(THIS_MODULE); 1137 blk_mq_unfreeze_queue(lo->lo_queue); 1138 1139 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1140 lo_number = lo->lo_number; 1141 loop_unprepare_queue(lo); 1142 out_unlock: 1143 mutex_unlock(&loop_ctl_mutex); 1144 if (partscan) { 1145 /* 1146 * bd_mutex has been held already in release path, so don't 1147 * acquire it if this function is called in such case. 1148 * 1149 * If the reread partition isn't from release path, lo_refcnt 1150 * must be at least one and it can only become zero when the 1151 * current holder is released. 1152 */ 1153 if (release) 1154 err = __blkdev_reread_part(bdev); 1155 else 1156 err = blkdev_reread_part(bdev); 1157 if (err) 1158 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1159 __func__, lo_number, err); 1160 /* Device is gone, no point in returning error */ 1161 err = 0; 1162 } 1163 1164 /* 1165 * lo->lo_state is set to Lo_unbound here after above partscan has 1166 * finished. 1167 * 1168 * There cannot be anybody else entering __loop_clr_fd() as 1169 * lo->lo_backing_file is already cleared and Lo_rundown state 1170 * protects us from all the other places trying to change the 'lo' 1171 * device. 1172 */ 1173 mutex_lock(&loop_ctl_mutex); 1174 lo->lo_flags = 0; 1175 if (!part_shift) 1176 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1177 lo->lo_state = Lo_unbound; 1178 mutex_unlock(&loop_ctl_mutex); 1179 1180 /* 1181 * Need not hold loop_ctl_mutex to fput backing file. 1182 * Calling fput holding loop_ctl_mutex triggers a circular 1183 * lock dependency possibility warning as fput can take 1184 * bd_mutex which is usually taken before loop_ctl_mutex. 1185 */ 1186 if (filp) 1187 fput(filp); 1188 return err; 1189 } 1190 1191 static int loop_clr_fd(struct loop_device *lo) 1192 { 1193 int err; 1194 1195 err = mutex_lock_killable(&loop_ctl_mutex); 1196 if (err) 1197 return err; 1198 if (lo->lo_state != Lo_bound) { 1199 mutex_unlock(&loop_ctl_mutex); 1200 return -ENXIO; 1201 } 1202 /* 1203 * If we've explicitly asked to tear down the loop device, 1204 * and it has an elevated reference count, set it for auto-teardown when 1205 * the last reference goes away. This stops $!~#$@ udev from 1206 * preventing teardown because it decided that it needs to run blkid on 1207 * the loopback device whenever they appear. xfstests is notorious for 1208 * failing tests because blkid via udev races with a losetup 1209 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1210 * command to fail with EBUSY. 1211 */ 1212 if (atomic_read(&lo->lo_refcnt) > 1) { 1213 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1214 mutex_unlock(&loop_ctl_mutex); 1215 return 0; 1216 } 1217 lo->lo_state = Lo_rundown; 1218 mutex_unlock(&loop_ctl_mutex); 1219 1220 return __loop_clr_fd(lo, false); 1221 } 1222 1223 static int 1224 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1225 { 1226 int err; 1227 struct loop_func_table *xfer; 1228 kuid_t uid = current_uid(); 1229 struct block_device *bdev; 1230 bool partscan = false; 1231 1232 err = mutex_lock_killable(&loop_ctl_mutex); 1233 if (err) 1234 return err; 1235 if (lo->lo_encrypt_key_size && 1236 !uid_eq(lo->lo_key_owner, uid) && 1237 !capable(CAP_SYS_ADMIN)) { 1238 err = -EPERM; 1239 goto out_unlock; 1240 } 1241 if (lo->lo_state != Lo_bound) { 1242 err = -ENXIO; 1243 goto out_unlock; 1244 } 1245 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) { 1246 err = -EINVAL; 1247 goto out_unlock; 1248 } 1249 1250 if (lo->lo_offset != info->lo_offset || 1251 lo->lo_sizelimit != info->lo_sizelimit) { 1252 sync_blockdev(lo->lo_device); 1253 kill_bdev(lo->lo_device); 1254 } 1255 1256 /* I/O need to be drained during transfer transition */ 1257 blk_mq_freeze_queue(lo->lo_queue); 1258 1259 err = loop_release_xfer(lo); 1260 if (err) 1261 goto out_unfreeze; 1262 1263 if (info->lo_encrypt_type) { 1264 unsigned int type = info->lo_encrypt_type; 1265 1266 if (type >= MAX_LO_CRYPT) { 1267 err = -EINVAL; 1268 goto out_unfreeze; 1269 } 1270 xfer = xfer_funcs[type]; 1271 if (xfer == NULL) { 1272 err = -EINVAL; 1273 goto out_unfreeze; 1274 } 1275 } else 1276 xfer = NULL; 1277 1278 err = loop_init_xfer(lo, xfer, info); 1279 if (err) 1280 goto out_unfreeze; 1281 1282 if (lo->lo_offset != info->lo_offset || 1283 lo->lo_sizelimit != info->lo_sizelimit) { 1284 /* kill_bdev should have truncated all the pages */ 1285 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1286 err = -EAGAIN; 1287 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1288 __func__, lo->lo_number, lo->lo_file_name, 1289 lo->lo_device->bd_inode->i_mapping->nrpages); 1290 goto out_unfreeze; 1291 } 1292 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1293 err = -EFBIG; 1294 goto out_unfreeze; 1295 } 1296 } 1297 1298 loop_config_discard(lo); 1299 1300 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1301 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1302 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1303 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1304 1305 if (!xfer) 1306 xfer = &none_funcs; 1307 lo->transfer = xfer->transfer; 1308 lo->ioctl = xfer->ioctl; 1309 1310 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1311 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1312 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1313 1314 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1315 lo->lo_init[0] = info->lo_init[0]; 1316 lo->lo_init[1] = info->lo_init[1]; 1317 if (info->lo_encrypt_key_size) { 1318 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1319 info->lo_encrypt_key_size); 1320 lo->lo_key_owner = uid; 1321 } 1322 1323 /* update dio if lo_offset or transfer is changed */ 1324 __loop_update_dio(lo, lo->use_dio); 1325 1326 out_unfreeze: 1327 blk_mq_unfreeze_queue(lo->lo_queue); 1328 1329 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1330 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1331 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1332 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1333 bdev = lo->lo_device; 1334 partscan = true; 1335 } 1336 out_unlock: 1337 mutex_unlock(&loop_ctl_mutex); 1338 if (partscan) 1339 loop_reread_partitions(lo, bdev); 1340 1341 return err; 1342 } 1343 1344 static int 1345 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1346 { 1347 struct path path; 1348 struct kstat stat; 1349 int ret; 1350 1351 ret = mutex_lock_killable(&loop_ctl_mutex); 1352 if (ret) 1353 return ret; 1354 if (lo->lo_state != Lo_bound) { 1355 mutex_unlock(&loop_ctl_mutex); 1356 return -ENXIO; 1357 } 1358 1359 memset(info, 0, sizeof(*info)); 1360 info->lo_number = lo->lo_number; 1361 info->lo_offset = lo->lo_offset; 1362 info->lo_sizelimit = lo->lo_sizelimit; 1363 info->lo_flags = lo->lo_flags; 1364 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1365 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1366 info->lo_encrypt_type = 1367 lo->lo_encryption ? lo->lo_encryption->number : 0; 1368 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1369 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1370 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1371 lo->lo_encrypt_key_size); 1372 } 1373 1374 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1375 path = lo->lo_backing_file->f_path; 1376 path_get(&path); 1377 mutex_unlock(&loop_ctl_mutex); 1378 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1379 if (!ret) { 1380 info->lo_device = huge_encode_dev(stat.dev); 1381 info->lo_inode = stat.ino; 1382 info->lo_rdevice = huge_encode_dev(stat.rdev); 1383 } 1384 path_put(&path); 1385 return ret; 1386 } 1387 1388 static void 1389 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1390 { 1391 memset(info64, 0, sizeof(*info64)); 1392 info64->lo_number = info->lo_number; 1393 info64->lo_device = info->lo_device; 1394 info64->lo_inode = info->lo_inode; 1395 info64->lo_rdevice = info->lo_rdevice; 1396 info64->lo_offset = info->lo_offset; 1397 info64->lo_sizelimit = 0; 1398 info64->lo_encrypt_type = info->lo_encrypt_type; 1399 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1400 info64->lo_flags = info->lo_flags; 1401 info64->lo_init[0] = info->lo_init[0]; 1402 info64->lo_init[1] = info->lo_init[1]; 1403 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1404 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1405 else 1406 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1407 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1408 } 1409 1410 static int 1411 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1412 { 1413 memset(info, 0, sizeof(*info)); 1414 info->lo_number = info64->lo_number; 1415 info->lo_device = info64->lo_device; 1416 info->lo_inode = info64->lo_inode; 1417 info->lo_rdevice = info64->lo_rdevice; 1418 info->lo_offset = info64->lo_offset; 1419 info->lo_encrypt_type = info64->lo_encrypt_type; 1420 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1421 info->lo_flags = info64->lo_flags; 1422 info->lo_init[0] = info64->lo_init[0]; 1423 info->lo_init[1] = info64->lo_init[1]; 1424 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1425 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1426 else 1427 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1428 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1429 1430 /* error in case values were truncated */ 1431 if (info->lo_device != info64->lo_device || 1432 info->lo_rdevice != info64->lo_rdevice || 1433 info->lo_inode != info64->lo_inode || 1434 info->lo_offset != info64->lo_offset) 1435 return -EOVERFLOW; 1436 1437 return 0; 1438 } 1439 1440 static int 1441 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1442 { 1443 struct loop_info info; 1444 struct loop_info64 info64; 1445 1446 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1447 return -EFAULT; 1448 loop_info64_from_old(&info, &info64); 1449 return loop_set_status(lo, &info64); 1450 } 1451 1452 static int 1453 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1454 { 1455 struct loop_info64 info64; 1456 1457 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1458 return -EFAULT; 1459 return loop_set_status(lo, &info64); 1460 } 1461 1462 static int 1463 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1464 struct loop_info info; 1465 struct loop_info64 info64; 1466 int err; 1467 1468 if (!arg) 1469 return -EINVAL; 1470 err = loop_get_status(lo, &info64); 1471 if (!err) 1472 err = loop_info64_to_old(&info64, &info); 1473 if (!err && copy_to_user(arg, &info, sizeof(info))) 1474 err = -EFAULT; 1475 1476 return err; 1477 } 1478 1479 static int 1480 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1481 struct loop_info64 info64; 1482 int err; 1483 1484 if (!arg) 1485 return -EINVAL; 1486 err = loop_get_status(lo, &info64); 1487 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1488 err = -EFAULT; 1489 1490 return err; 1491 } 1492 1493 static int loop_set_capacity(struct loop_device *lo) 1494 { 1495 if (unlikely(lo->lo_state != Lo_bound)) 1496 return -ENXIO; 1497 1498 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1499 } 1500 1501 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1502 { 1503 int error = -ENXIO; 1504 if (lo->lo_state != Lo_bound) 1505 goto out; 1506 1507 __loop_update_dio(lo, !!arg); 1508 if (lo->use_dio == !!arg) 1509 return 0; 1510 error = -EINVAL; 1511 out: 1512 return error; 1513 } 1514 1515 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1516 { 1517 int err = 0; 1518 1519 if (lo->lo_state != Lo_bound) 1520 return -ENXIO; 1521 1522 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1523 return -EINVAL; 1524 1525 if (lo->lo_queue->limits.logical_block_size != arg) { 1526 sync_blockdev(lo->lo_device); 1527 kill_bdev(lo->lo_device); 1528 } 1529 1530 blk_mq_freeze_queue(lo->lo_queue); 1531 1532 /* kill_bdev should have truncated all the pages */ 1533 if (lo->lo_queue->limits.logical_block_size != arg && 1534 lo->lo_device->bd_inode->i_mapping->nrpages) { 1535 err = -EAGAIN; 1536 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1537 __func__, lo->lo_number, lo->lo_file_name, 1538 lo->lo_device->bd_inode->i_mapping->nrpages); 1539 goto out_unfreeze; 1540 } 1541 1542 blk_queue_logical_block_size(lo->lo_queue, arg); 1543 blk_queue_physical_block_size(lo->lo_queue, arg); 1544 blk_queue_io_min(lo->lo_queue, arg); 1545 loop_update_dio(lo); 1546 out_unfreeze: 1547 blk_mq_unfreeze_queue(lo->lo_queue); 1548 1549 return err; 1550 } 1551 1552 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1553 unsigned long arg) 1554 { 1555 int err; 1556 1557 err = mutex_lock_killable(&loop_ctl_mutex); 1558 if (err) 1559 return err; 1560 switch (cmd) { 1561 case LOOP_SET_CAPACITY: 1562 err = loop_set_capacity(lo); 1563 break; 1564 case LOOP_SET_DIRECT_IO: 1565 err = loop_set_dio(lo, arg); 1566 break; 1567 case LOOP_SET_BLOCK_SIZE: 1568 err = loop_set_block_size(lo, arg); 1569 break; 1570 default: 1571 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1572 } 1573 mutex_unlock(&loop_ctl_mutex); 1574 return err; 1575 } 1576 1577 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1578 unsigned int cmd, unsigned long arg) 1579 { 1580 struct loop_device *lo = bdev->bd_disk->private_data; 1581 int err; 1582 1583 switch (cmd) { 1584 case LOOP_SET_FD: 1585 return loop_set_fd(lo, mode, bdev, arg); 1586 case LOOP_CHANGE_FD: 1587 return loop_change_fd(lo, bdev, arg); 1588 case LOOP_CLR_FD: 1589 return loop_clr_fd(lo); 1590 case LOOP_SET_STATUS: 1591 err = -EPERM; 1592 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1593 err = loop_set_status_old(lo, 1594 (struct loop_info __user *)arg); 1595 } 1596 break; 1597 case LOOP_GET_STATUS: 1598 return loop_get_status_old(lo, (struct loop_info __user *) arg); 1599 case LOOP_SET_STATUS64: 1600 err = -EPERM; 1601 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1602 err = loop_set_status64(lo, 1603 (struct loop_info64 __user *) arg); 1604 } 1605 break; 1606 case LOOP_GET_STATUS64: 1607 return loop_get_status64(lo, (struct loop_info64 __user *) arg); 1608 case LOOP_SET_CAPACITY: 1609 case LOOP_SET_DIRECT_IO: 1610 case LOOP_SET_BLOCK_SIZE: 1611 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1612 return -EPERM; 1613 /* Fall through */ 1614 default: 1615 err = lo_simple_ioctl(lo, cmd, arg); 1616 break; 1617 } 1618 1619 return err; 1620 } 1621 1622 #ifdef CONFIG_COMPAT 1623 struct compat_loop_info { 1624 compat_int_t lo_number; /* ioctl r/o */ 1625 compat_dev_t lo_device; /* ioctl r/o */ 1626 compat_ulong_t lo_inode; /* ioctl r/o */ 1627 compat_dev_t lo_rdevice; /* ioctl r/o */ 1628 compat_int_t lo_offset; 1629 compat_int_t lo_encrypt_type; 1630 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1631 compat_int_t lo_flags; /* ioctl r/o */ 1632 char lo_name[LO_NAME_SIZE]; 1633 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1634 compat_ulong_t lo_init[2]; 1635 char reserved[4]; 1636 }; 1637 1638 /* 1639 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1640 * - noinlined to reduce stack space usage in main part of driver 1641 */ 1642 static noinline int 1643 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1644 struct loop_info64 *info64) 1645 { 1646 struct compat_loop_info info; 1647 1648 if (copy_from_user(&info, arg, sizeof(info))) 1649 return -EFAULT; 1650 1651 memset(info64, 0, sizeof(*info64)); 1652 info64->lo_number = info.lo_number; 1653 info64->lo_device = info.lo_device; 1654 info64->lo_inode = info.lo_inode; 1655 info64->lo_rdevice = info.lo_rdevice; 1656 info64->lo_offset = info.lo_offset; 1657 info64->lo_sizelimit = 0; 1658 info64->lo_encrypt_type = info.lo_encrypt_type; 1659 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1660 info64->lo_flags = info.lo_flags; 1661 info64->lo_init[0] = info.lo_init[0]; 1662 info64->lo_init[1] = info.lo_init[1]; 1663 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1664 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1665 else 1666 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1667 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1668 return 0; 1669 } 1670 1671 /* 1672 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1673 * - noinlined to reduce stack space usage in main part of driver 1674 */ 1675 static noinline int 1676 loop_info64_to_compat(const struct loop_info64 *info64, 1677 struct compat_loop_info __user *arg) 1678 { 1679 struct compat_loop_info info; 1680 1681 memset(&info, 0, sizeof(info)); 1682 info.lo_number = info64->lo_number; 1683 info.lo_device = info64->lo_device; 1684 info.lo_inode = info64->lo_inode; 1685 info.lo_rdevice = info64->lo_rdevice; 1686 info.lo_offset = info64->lo_offset; 1687 info.lo_encrypt_type = info64->lo_encrypt_type; 1688 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1689 info.lo_flags = info64->lo_flags; 1690 info.lo_init[0] = info64->lo_init[0]; 1691 info.lo_init[1] = info64->lo_init[1]; 1692 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1693 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1694 else 1695 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1696 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1697 1698 /* error in case values were truncated */ 1699 if (info.lo_device != info64->lo_device || 1700 info.lo_rdevice != info64->lo_rdevice || 1701 info.lo_inode != info64->lo_inode || 1702 info.lo_offset != info64->lo_offset || 1703 info.lo_init[0] != info64->lo_init[0] || 1704 info.lo_init[1] != info64->lo_init[1]) 1705 return -EOVERFLOW; 1706 1707 if (copy_to_user(arg, &info, sizeof(info))) 1708 return -EFAULT; 1709 return 0; 1710 } 1711 1712 static int 1713 loop_set_status_compat(struct loop_device *lo, 1714 const struct compat_loop_info __user *arg) 1715 { 1716 struct loop_info64 info64; 1717 int ret; 1718 1719 ret = loop_info64_from_compat(arg, &info64); 1720 if (ret < 0) 1721 return ret; 1722 return loop_set_status(lo, &info64); 1723 } 1724 1725 static int 1726 loop_get_status_compat(struct loop_device *lo, 1727 struct compat_loop_info __user *arg) 1728 { 1729 struct loop_info64 info64; 1730 int err; 1731 1732 if (!arg) 1733 return -EINVAL; 1734 err = loop_get_status(lo, &info64); 1735 if (!err) 1736 err = loop_info64_to_compat(&info64, arg); 1737 return err; 1738 } 1739 1740 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1741 unsigned int cmd, unsigned long arg) 1742 { 1743 struct loop_device *lo = bdev->bd_disk->private_data; 1744 int err; 1745 1746 switch(cmd) { 1747 case LOOP_SET_STATUS: 1748 err = loop_set_status_compat(lo, 1749 (const struct compat_loop_info __user *)arg); 1750 break; 1751 case LOOP_GET_STATUS: 1752 err = loop_get_status_compat(lo, 1753 (struct compat_loop_info __user *)arg); 1754 break; 1755 case LOOP_SET_CAPACITY: 1756 case LOOP_CLR_FD: 1757 case LOOP_GET_STATUS64: 1758 case LOOP_SET_STATUS64: 1759 arg = (unsigned long) compat_ptr(arg); 1760 /* fall through */ 1761 case LOOP_SET_FD: 1762 case LOOP_CHANGE_FD: 1763 case LOOP_SET_BLOCK_SIZE: 1764 err = lo_ioctl(bdev, mode, cmd, arg); 1765 break; 1766 default: 1767 err = -ENOIOCTLCMD; 1768 break; 1769 } 1770 return err; 1771 } 1772 #endif 1773 1774 static int lo_open(struct block_device *bdev, fmode_t mode) 1775 { 1776 struct loop_device *lo; 1777 int err; 1778 1779 err = mutex_lock_killable(&loop_ctl_mutex); 1780 if (err) 1781 return err; 1782 lo = bdev->bd_disk->private_data; 1783 if (!lo) { 1784 err = -ENXIO; 1785 goto out; 1786 } 1787 1788 atomic_inc(&lo->lo_refcnt); 1789 out: 1790 mutex_unlock(&loop_ctl_mutex); 1791 return err; 1792 } 1793 1794 static void lo_release(struct gendisk *disk, fmode_t mode) 1795 { 1796 struct loop_device *lo; 1797 1798 mutex_lock(&loop_ctl_mutex); 1799 lo = disk->private_data; 1800 if (atomic_dec_return(&lo->lo_refcnt)) 1801 goto out_unlock; 1802 1803 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1804 if (lo->lo_state != Lo_bound) 1805 goto out_unlock; 1806 lo->lo_state = Lo_rundown; 1807 mutex_unlock(&loop_ctl_mutex); 1808 /* 1809 * In autoclear mode, stop the loop thread 1810 * and remove configuration after last close. 1811 */ 1812 __loop_clr_fd(lo, true); 1813 return; 1814 } else if (lo->lo_state == Lo_bound) { 1815 /* 1816 * Otherwise keep thread (if running) and config, 1817 * but flush possible ongoing bios in thread. 1818 */ 1819 blk_mq_freeze_queue(lo->lo_queue); 1820 blk_mq_unfreeze_queue(lo->lo_queue); 1821 } 1822 1823 out_unlock: 1824 mutex_unlock(&loop_ctl_mutex); 1825 } 1826 1827 static const struct block_device_operations lo_fops = { 1828 .owner = THIS_MODULE, 1829 .open = lo_open, 1830 .release = lo_release, 1831 .ioctl = lo_ioctl, 1832 #ifdef CONFIG_COMPAT 1833 .compat_ioctl = lo_compat_ioctl, 1834 #endif 1835 }; 1836 1837 /* 1838 * And now the modules code and kernel interface. 1839 */ 1840 static int max_loop; 1841 module_param(max_loop, int, 0444); 1842 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1843 module_param(max_part, int, 0444); 1844 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1845 MODULE_LICENSE("GPL"); 1846 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1847 1848 int loop_register_transfer(struct loop_func_table *funcs) 1849 { 1850 unsigned int n = funcs->number; 1851 1852 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1853 return -EINVAL; 1854 xfer_funcs[n] = funcs; 1855 return 0; 1856 } 1857 1858 static int unregister_transfer_cb(int id, void *ptr, void *data) 1859 { 1860 struct loop_device *lo = ptr; 1861 struct loop_func_table *xfer = data; 1862 1863 mutex_lock(&loop_ctl_mutex); 1864 if (lo->lo_encryption == xfer) 1865 loop_release_xfer(lo); 1866 mutex_unlock(&loop_ctl_mutex); 1867 return 0; 1868 } 1869 1870 int loop_unregister_transfer(int number) 1871 { 1872 unsigned int n = number; 1873 struct loop_func_table *xfer; 1874 1875 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1876 return -EINVAL; 1877 1878 xfer_funcs[n] = NULL; 1879 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1880 return 0; 1881 } 1882 1883 EXPORT_SYMBOL(loop_register_transfer); 1884 EXPORT_SYMBOL(loop_unregister_transfer); 1885 1886 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1887 const struct blk_mq_queue_data *bd) 1888 { 1889 struct request *rq = bd->rq; 1890 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1891 struct loop_device *lo = rq->q->queuedata; 1892 1893 blk_mq_start_request(rq); 1894 1895 if (lo->lo_state != Lo_bound) 1896 return BLK_STS_IOERR; 1897 1898 switch (req_op(rq)) { 1899 case REQ_OP_FLUSH: 1900 case REQ_OP_DISCARD: 1901 case REQ_OP_WRITE_ZEROES: 1902 cmd->use_aio = false; 1903 break; 1904 default: 1905 cmd->use_aio = lo->use_dio; 1906 break; 1907 } 1908 1909 /* always use the first bio's css */ 1910 #ifdef CONFIG_BLK_CGROUP 1911 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 1912 cmd->css = &bio_blkcg(rq->bio)->css; 1913 css_get(cmd->css); 1914 } else 1915 #endif 1916 cmd->css = NULL; 1917 kthread_queue_work(&lo->worker, &cmd->work); 1918 1919 return BLK_STS_OK; 1920 } 1921 1922 static void loop_handle_cmd(struct loop_cmd *cmd) 1923 { 1924 struct request *rq = blk_mq_rq_from_pdu(cmd); 1925 const bool write = op_is_write(req_op(rq)); 1926 struct loop_device *lo = rq->q->queuedata; 1927 int ret = 0; 1928 1929 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1930 ret = -EIO; 1931 goto failed; 1932 } 1933 1934 ret = do_req_filebacked(lo, rq); 1935 failed: 1936 /* complete non-aio request */ 1937 if (!cmd->use_aio || ret) { 1938 cmd->ret = ret ? -EIO : 0; 1939 blk_mq_complete_request(rq); 1940 } 1941 } 1942 1943 static void loop_queue_work(struct kthread_work *work) 1944 { 1945 struct loop_cmd *cmd = 1946 container_of(work, struct loop_cmd, work); 1947 1948 loop_handle_cmd(cmd); 1949 } 1950 1951 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1952 unsigned int hctx_idx, unsigned int numa_node) 1953 { 1954 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1955 1956 kthread_init_work(&cmd->work, loop_queue_work); 1957 return 0; 1958 } 1959 1960 static const struct blk_mq_ops loop_mq_ops = { 1961 .queue_rq = loop_queue_rq, 1962 .init_request = loop_init_request, 1963 .complete = lo_complete_rq, 1964 }; 1965 1966 static int loop_add(struct loop_device **l, int i) 1967 { 1968 struct loop_device *lo; 1969 struct gendisk *disk; 1970 int err; 1971 1972 err = -ENOMEM; 1973 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1974 if (!lo) 1975 goto out; 1976 1977 lo->lo_state = Lo_unbound; 1978 1979 /* allocate id, if @id >= 0, we're requesting that specific id */ 1980 if (i >= 0) { 1981 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1982 if (err == -ENOSPC) 1983 err = -EEXIST; 1984 } else { 1985 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1986 } 1987 if (err < 0) 1988 goto out_free_dev; 1989 i = err; 1990 1991 err = -ENOMEM; 1992 lo->tag_set.ops = &loop_mq_ops; 1993 lo->tag_set.nr_hw_queues = 1; 1994 lo->tag_set.queue_depth = 128; 1995 lo->tag_set.numa_node = NUMA_NO_NODE; 1996 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1997 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1998 lo->tag_set.driver_data = lo; 1999 2000 err = blk_mq_alloc_tag_set(&lo->tag_set); 2001 if (err) 2002 goto out_free_idr; 2003 2004 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2005 if (IS_ERR(lo->lo_queue)) { 2006 err = PTR_ERR(lo->lo_queue); 2007 goto out_cleanup_tags; 2008 } 2009 lo->lo_queue->queuedata = lo; 2010 2011 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2012 2013 /* 2014 * By default, we do buffer IO, so it doesn't make sense to enable 2015 * merge because the I/O submitted to backing file is handled page by 2016 * page. For directio mode, merge does help to dispatch bigger request 2017 * to underlayer disk. We will enable merge once directio is enabled. 2018 */ 2019 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2020 2021 err = -ENOMEM; 2022 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2023 if (!disk) 2024 goto out_free_queue; 2025 2026 /* 2027 * Disable partition scanning by default. The in-kernel partition 2028 * scanning can be requested individually per-device during its 2029 * setup. Userspace can always add and remove partitions from all 2030 * devices. The needed partition minors are allocated from the 2031 * extended minor space, the main loop device numbers will continue 2032 * to match the loop minors, regardless of the number of partitions 2033 * used. 2034 * 2035 * If max_part is given, partition scanning is globally enabled for 2036 * all loop devices. The minors for the main loop devices will be 2037 * multiples of max_part. 2038 * 2039 * Note: Global-for-all-devices, set-only-at-init, read-only module 2040 * parameteters like 'max_loop' and 'max_part' make things needlessly 2041 * complicated, are too static, inflexible and may surprise 2042 * userspace tools. Parameters like this in general should be avoided. 2043 */ 2044 if (!part_shift) 2045 disk->flags |= GENHD_FL_NO_PART_SCAN; 2046 disk->flags |= GENHD_FL_EXT_DEVT; 2047 atomic_set(&lo->lo_refcnt, 0); 2048 lo->lo_number = i; 2049 spin_lock_init(&lo->lo_lock); 2050 disk->major = LOOP_MAJOR; 2051 disk->first_minor = i << part_shift; 2052 disk->fops = &lo_fops; 2053 disk->private_data = lo; 2054 disk->queue = lo->lo_queue; 2055 sprintf(disk->disk_name, "loop%d", i); 2056 add_disk(disk); 2057 *l = lo; 2058 return lo->lo_number; 2059 2060 out_free_queue: 2061 blk_cleanup_queue(lo->lo_queue); 2062 out_cleanup_tags: 2063 blk_mq_free_tag_set(&lo->tag_set); 2064 out_free_idr: 2065 idr_remove(&loop_index_idr, i); 2066 out_free_dev: 2067 kfree(lo); 2068 out: 2069 return err; 2070 } 2071 2072 static void loop_remove(struct loop_device *lo) 2073 { 2074 del_gendisk(lo->lo_disk); 2075 blk_cleanup_queue(lo->lo_queue); 2076 blk_mq_free_tag_set(&lo->tag_set); 2077 put_disk(lo->lo_disk); 2078 kfree(lo); 2079 } 2080 2081 static int find_free_cb(int id, void *ptr, void *data) 2082 { 2083 struct loop_device *lo = ptr; 2084 struct loop_device **l = data; 2085 2086 if (lo->lo_state == Lo_unbound) { 2087 *l = lo; 2088 return 1; 2089 } 2090 return 0; 2091 } 2092 2093 static int loop_lookup(struct loop_device **l, int i) 2094 { 2095 struct loop_device *lo; 2096 int ret = -ENODEV; 2097 2098 if (i < 0) { 2099 int err; 2100 2101 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2102 if (err == 1) { 2103 *l = lo; 2104 ret = lo->lo_number; 2105 } 2106 goto out; 2107 } 2108 2109 /* lookup and return a specific i */ 2110 lo = idr_find(&loop_index_idr, i); 2111 if (lo) { 2112 *l = lo; 2113 ret = lo->lo_number; 2114 } 2115 out: 2116 return ret; 2117 } 2118 2119 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2120 { 2121 struct loop_device *lo; 2122 struct kobject *kobj; 2123 int err; 2124 2125 mutex_lock(&loop_ctl_mutex); 2126 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2127 if (err < 0) 2128 err = loop_add(&lo, MINOR(dev) >> part_shift); 2129 if (err < 0) 2130 kobj = NULL; 2131 else 2132 kobj = get_disk_and_module(lo->lo_disk); 2133 mutex_unlock(&loop_ctl_mutex); 2134 2135 *part = 0; 2136 return kobj; 2137 } 2138 2139 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2140 unsigned long parm) 2141 { 2142 struct loop_device *lo; 2143 int ret; 2144 2145 ret = mutex_lock_killable(&loop_ctl_mutex); 2146 if (ret) 2147 return ret; 2148 2149 ret = -ENOSYS; 2150 switch (cmd) { 2151 case LOOP_CTL_ADD: 2152 ret = loop_lookup(&lo, parm); 2153 if (ret >= 0) { 2154 ret = -EEXIST; 2155 break; 2156 } 2157 ret = loop_add(&lo, parm); 2158 break; 2159 case LOOP_CTL_REMOVE: 2160 ret = loop_lookup(&lo, parm); 2161 if (ret < 0) 2162 break; 2163 if (lo->lo_state != Lo_unbound) { 2164 ret = -EBUSY; 2165 break; 2166 } 2167 if (atomic_read(&lo->lo_refcnt) > 0) { 2168 ret = -EBUSY; 2169 break; 2170 } 2171 lo->lo_disk->private_data = NULL; 2172 idr_remove(&loop_index_idr, lo->lo_number); 2173 loop_remove(lo); 2174 break; 2175 case LOOP_CTL_GET_FREE: 2176 ret = loop_lookup(&lo, -1); 2177 if (ret >= 0) 2178 break; 2179 ret = loop_add(&lo, -1); 2180 } 2181 mutex_unlock(&loop_ctl_mutex); 2182 2183 return ret; 2184 } 2185 2186 static const struct file_operations loop_ctl_fops = { 2187 .open = nonseekable_open, 2188 .unlocked_ioctl = loop_control_ioctl, 2189 .compat_ioctl = loop_control_ioctl, 2190 .owner = THIS_MODULE, 2191 .llseek = noop_llseek, 2192 }; 2193 2194 static struct miscdevice loop_misc = { 2195 .minor = LOOP_CTRL_MINOR, 2196 .name = "loop-control", 2197 .fops = &loop_ctl_fops, 2198 }; 2199 2200 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2201 MODULE_ALIAS("devname:loop-control"); 2202 2203 static int __init loop_init(void) 2204 { 2205 int i, nr; 2206 unsigned long range; 2207 struct loop_device *lo; 2208 int err; 2209 2210 part_shift = 0; 2211 if (max_part > 0) { 2212 part_shift = fls(max_part); 2213 2214 /* 2215 * Adjust max_part according to part_shift as it is exported 2216 * to user space so that user can decide correct minor number 2217 * if [s]he want to create more devices. 2218 * 2219 * Note that -1 is required because partition 0 is reserved 2220 * for the whole disk. 2221 */ 2222 max_part = (1UL << part_shift) - 1; 2223 } 2224 2225 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2226 err = -EINVAL; 2227 goto err_out; 2228 } 2229 2230 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2231 err = -EINVAL; 2232 goto err_out; 2233 } 2234 2235 /* 2236 * If max_loop is specified, create that many devices upfront. 2237 * This also becomes a hard limit. If max_loop is not specified, 2238 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2239 * init time. Loop devices can be requested on-demand with the 2240 * /dev/loop-control interface, or be instantiated by accessing 2241 * a 'dead' device node. 2242 */ 2243 if (max_loop) { 2244 nr = max_loop; 2245 range = max_loop << part_shift; 2246 } else { 2247 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2248 range = 1UL << MINORBITS; 2249 } 2250 2251 err = misc_register(&loop_misc); 2252 if (err < 0) 2253 goto err_out; 2254 2255 2256 if (register_blkdev(LOOP_MAJOR, "loop")) { 2257 err = -EIO; 2258 goto misc_out; 2259 } 2260 2261 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2262 THIS_MODULE, loop_probe, NULL, NULL); 2263 2264 /* pre-create number of devices given by config or max_loop */ 2265 mutex_lock(&loop_ctl_mutex); 2266 for (i = 0; i < nr; i++) 2267 loop_add(&lo, i); 2268 mutex_unlock(&loop_ctl_mutex); 2269 2270 printk(KERN_INFO "loop: module loaded\n"); 2271 return 0; 2272 2273 misc_out: 2274 misc_deregister(&loop_misc); 2275 err_out: 2276 return err; 2277 } 2278 2279 static int loop_exit_cb(int id, void *ptr, void *data) 2280 { 2281 struct loop_device *lo = ptr; 2282 2283 loop_remove(lo); 2284 return 0; 2285 } 2286 2287 static void __exit loop_exit(void) 2288 { 2289 unsigned long range; 2290 2291 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2292 2293 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2294 idr_destroy(&loop_index_idr); 2295 2296 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2297 unregister_blkdev(LOOP_MAJOR, "loop"); 2298 2299 misc_deregister(&loop_misc); 2300 } 2301 2302 module_init(loop_init); 2303 module_exit(loop_exit); 2304 2305 #ifndef MODULE 2306 static int __init max_loop_setup(char *str) 2307 { 2308 max_loop = simple_strtol(str, NULL, 0); 2309 return 1; 2310 } 2311 2312 __setup("max_loop=", max_loop_setup); 2313 #endif 2314