xref: /openbmc/linux/drivers/block/loop.c (revision 4c823cc3)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/falloc.h>
79 
80 #include <asm/uaccess.h>
81 
82 static LIST_HEAD(loop_devices);
83 static DEFINE_MUTEX(loop_devices_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(loop_buf, KM_USER1);
105 	kunmap_atomic(raw_buf, KM_USER0);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(loop_buf, KM_USER1);
134 	kunmap_atomic(raw_buf, KM_USER0);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 	loff_t size, offset, loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	size = i_size_read(file->f_mapping->host);
169 	offset = lo->lo_offset;
170 	loopsize = size - offset;
171 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
172 		loopsize = lo->lo_sizelimit;
173 
174 	/*
175 	 * Unfortunately, if we want to do I/O on the device,
176 	 * the number of 512-byte sectors has to fit into a sector_t.
177 	 */
178 	return loopsize >> 9;
179 }
180 
181 static int
182 figure_loop_size(struct loop_device *lo)
183 {
184 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
185 	sector_t x = (sector_t)size;
186 
187 	if (unlikely((loff_t)x != size))
188 		return -EFBIG;
189 
190 	set_capacity(lo->lo_disk, x);
191 	return 0;
192 }
193 
194 static inline int
195 lo_do_transfer(struct loop_device *lo, int cmd,
196 	       struct page *rpage, unsigned roffs,
197 	       struct page *lpage, unsigned loffs,
198 	       int size, sector_t rblock)
199 {
200 	if (unlikely(!lo->transfer))
201 		return 0;
202 
203 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
204 }
205 
206 /**
207  * do_lo_send_aops - helper for writing data to a loop device
208  *
209  * This is the fast version for backing filesystems which implement the address
210  * space operations write_begin and write_end.
211  */
212 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
213 		loff_t pos, struct page *unused)
214 {
215 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
216 	struct address_space *mapping = file->f_mapping;
217 	pgoff_t index;
218 	unsigned offset, bv_offs;
219 	int len, ret;
220 
221 	mutex_lock(&mapping->host->i_mutex);
222 	index = pos >> PAGE_CACHE_SHIFT;
223 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
224 	bv_offs = bvec->bv_offset;
225 	len = bvec->bv_len;
226 	while (len > 0) {
227 		sector_t IV;
228 		unsigned size, copied;
229 		int transfer_result;
230 		struct page *page;
231 		void *fsdata;
232 
233 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
234 		size = PAGE_CACHE_SIZE - offset;
235 		if (size > len)
236 			size = len;
237 
238 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
239 							&page, &fsdata);
240 		if (ret)
241 			goto fail;
242 
243 		file_update_time(file);
244 
245 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
246 				bvec->bv_page, bv_offs, size, IV);
247 		copied = size;
248 		if (unlikely(transfer_result))
249 			copied = 0;
250 
251 		ret = pagecache_write_end(file, mapping, pos, size, copied,
252 							page, fsdata);
253 		if (ret < 0 || ret != copied)
254 			goto fail;
255 
256 		if (unlikely(transfer_result))
257 			goto fail;
258 
259 		bv_offs += copied;
260 		len -= copied;
261 		offset = 0;
262 		index++;
263 		pos += copied;
264 	}
265 	ret = 0;
266 out:
267 	mutex_unlock(&mapping->host->i_mutex);
268 	return ret;
269 fail:
270 	ret = -1;
271 	goto out;
272 }
273 
274 /**
275  * __do_lo_send_write - helper for writing data to a loop device
276  *
277  * This helper just factors out common code between do_lo_send_direct_write()
278  * and do_lo_send_write().
279  */
280 static int __do_lo_send_write(struct file *file,
281 		u8 *buf, const int len, loff_t pos)
282 {
283 	ssize_t bw;
284 	mm_segment_t old_fs = get_fs();
285 
286 	set_fs(get_ds());
287 	bw = file->f_op->write(file, buf, len, &pos);
288 	set_fs(old_fs);
289 	if (likely(bw == len))
290 		return 0;
291 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
292 			(unsigned long long)pos, len);
293 	if (bw >= 0)
294 		bw = -EIO;
295 	return bw;
296 }
297 
298 /**
299  * do_lo_send_direct_write - helper for writing data to a loop device
300  *
301  * This is the fast, non-transforming version for backing filesystems which do
302  * not implement the address space operations write_begin and write_end.
303  * It uses the write file operation which should be present on all writeable
304  * filesystems.
305  */
306 static int do_lo_send_direct_write(struct loop_device *lo,
307 		struct bio_vec *bvec, loff_t pos, struct page *page)
308 {
309 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
310 			kmap(bvec->bv_page) + bvec->bv_offset,
311 			bvec->bv_len, pos);
312 	kunmap(bvec->bv_page);
313 	cond_resched();
314 	return bw;
315 }
316 
317 /**
318  * do_lo_send_write - helper for writing data to a loop device
319  *
320  * This is the slow, transforming version for filesystems which do not
321  * implement the address space operations write_begin and write_end.  It
322  * uses the write file operation which should be present on all writeable
323  * filesystems.
324  *
325  * Using fops->write is slower than using aops->{prepare,commit}_write in the
326  * transforming case because we need to double buffer the data as we cannot do
327  * the transformations in place as we do not have direct access to the
328  * destination pages of the backing file.
329  */
330 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
331 		loff_t pos, struct page *page)
332 {
333 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
334 			bvec->bv_offset, bvec->bv_len, pos >> 9);
335 	if (likely(!ret))
336 		return __do_lo_send_write(lo->lo_backing_file,
337 				page_address(page), bvec->bv_len,
338 				pos);
339 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
340 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
341 	if (ret > 0)
342 		ret = -EIO;
343 	return ret;
344 }
345 
346 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
347 {
348 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
349 			struct page *page);
350 	struct bio_vec *bvec;
351 	struct page *page = NULL;
352 	int i, ret = 0;
353 
354 	do_lo_send = do_lo_send_aops;
355 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
356 		do_lo_send = do_lo_send_direct_write;
357 		if (lo->transfer != transfer_none) {
358 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
359 			if (unlikely(!page))
360 				goto fail;
361 			kmap(page);
362 			do_lo_send = do_lo_send_write;
363 		}
364 	}
365 	bio_for_each_segment(bvec, bio, i) {
366 		ret = do_lo_send(lo, bvec, pos, page);
367 		if (ret < 0)
368 			break;
369 		pos += bvec->bv_len;
370 	}
371 	if (page) {
372 		kunmap(page);
373 		__free_page(page);
374 	}
375 out:
376 	return ret;
377 fail:
378 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
379 	ret = -ENOMEM;
380 	goto out;
381 }
382 
383 struct lo_read_data {
384 	struct loop_device *lo;
385 	struct page *page;
386 	unsigned offset;
387 	int bsize;
388 };
389 
390 static int
391 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
392 		struct splice_desc *sd)
393 {
394 	struct lo_read_data *p = sd->u.data;
395 	struct loop_device *lo = p->lo;
396 	struct page *page = buf->page;
397 	sector_t IV;
398 	int size;
399 
400 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
401 							(buf->offset >> 9);
402 	size = sd->len;
403 	if (size > p->bsize)
404 		size = p->bsize;
405 
406 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
407 		printk(KERN_ERR "loop: transfer error block %ld\n",
408 		       page->index);
409 		size = -EINVAL;
410 	}
411 
412 	flush_dcache_page(p->page);
413 
414 	if (size > 0)
415 		p->offset += size;
416 
417 	return size;
418 }
419 
420 static int
421 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
422 {
423 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
424 }
425 
426 static int
427 do_lo_receive(struct loop_device *lo,
428 	      struct bio_vec *bvec, int bsize, loff_t pos)
429 {
430 	struct lo_read_data cookie;
431 	struct splice_desc sd;
432 	struct file *file;
433 	long retval;
434 
435 	cookie.lo = lo;
436 	cookie.page = bvec->bv_page;
437 	cookie.offset = bvec->bv_offset;
438 	cookie.bsize = bsize;
439 
440 	sd.len = 0;
441 	sd.total_len = bvec->bv_len;
442 	sd.flags = 0;
443 	sd.pos = pos;
444 	sd.u.data = &cookie;
445 
446 	file = lo->lo_backing_file;
447 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
448 
449 	if (retval < 0)
450 		return retval;
451 
452 	return 0;
453 }
454 
455 static int
456 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
457 {
458 	struct bio_vec *bvec;
459 	int i, ret = 0;
460 
461 	bio_for_each_segment(bvec, bio, i) {
462 		ret = do_lo_receive(lo, bvec, bsize, pos);
463 		if (ret < 0)
464 			break;
465 		pos += bvec->bv_len;
466 	}
467 	return ret;
468 }
469 
470 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
471 {
472 	loff_t pos;
473 	int ret;
474 
475 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
476 
477 	if (bio_rw(bio) == WRITE) {
478 		struct file *file = lo->lo_backing_file;
479 
480 		if (bio->bi_rw & REQ_FLUSH) {
481 			ret = vfs_fsync(file, 0);
482 			if (unlikely(ret && ret != -EINVAL)) {
483 				ret = -EIO;
484 				goto out;
485 			}
486 		}
487 
488 		/*
489 		 * We use punch hole to reclaim the free space used by the
490 		 * image a.k.a. discard. However we do support discard if
491 		 * encryption is enabled, because it may give an attacker
492 		 * useful information.
493 		 */
494 		if (bio->bi_rw & REQ_DISCARD) {
495 			struct file *file = lo->lo_backing_file;
496 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
497 
498 			if ((!file->f_op->fallocate) ||
499 			    lo->lo_encrypt_key_size) {
500 				ret = -EOPNOTSUPP;
501 				goto out;
502 			}
503 			ret = file->f_op->fallocate(file, mode, pos,
504 						    bio->bi_size);
505 			if (unlikely(ret && ret != -EINVAL &&
506 				     ret != -EOPNOTSUPP))
507 				ret = -EIO;
508 			goto out;
509 		}
510 
511 		ret = lo_send(lo, bio, pos);
512 
513 		if ((bio->bi_rw & REQ_FUA) && !ret) {
514 			ret = vfs_fsync(file, 0);
515 			if (unlikely(ret && ret != -EINVAL))
516 				ret = -EIO;
517 		}
518 	} else
519 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
520 
521 out:
522 	return ret;
523 }
524 
525 /*
526  * Add bio to back of pending list
527  */
528 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
529 {
530 	bio_list_add(&lo->lo_bio_list, bio);
531 }
532 
533 /*
534  * Grab first pending buffer
535  */
536 static struct bio *loop_get_bio(struct loop_device *lo)
537 {
538 	return bio_list_pop(&lo->lo_bio_list);
539 }
540 
541 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
542 {
543 	struct loop_device *lo = q->queuedata;
544 	int rw = bio_rw(old_bio);
545 
546 	if (rw == READA)
547 		rw = READ;
548 
549 	BUG_ON(!lo || (rw != READ && rw != WRITE));
550 
551 	spin_lock_irq(&lo->lo_lock);
552 	if (lo->lo_state != Lo_bound)
553 		goto out;
554 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
555 		goto out;
556 	loop_add_bio(lo, old_bio);
557 	wake_up(&lo->lo_event);
558 	spin_unlock_irq(&lo->lo_lock);
559 	return 0;
560 
561 out:
562 	spin_unlock_irq(&lo->lo_lock);
563 	bio_io_error(old_bio);
564 	return 0;
565 }
566 
567 struct switch_request {
568 	struct file *file;
569 	struct completion wait;
570 };
571 
572 static void do_loop_switch(struct loop_device *, struct switch_request *);
573 
574 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
575 {
576 	if (unlikely(!bio->bi_bdev)) {
577 		do_loop_switch(lo, bio->bi_private);
578 		bio_put(bio);
579 	} else {
580 		int ret = do_bio_filebacked(lo, bio);
581 		bio_endio(bio, ret);
582 	}
583 }
584 
585 /*
586  * worker thread that handles reads/writes to file backed loop devices,
587  * to avoid blocking in our make_request_fn. it also does loop decrypting
588  * on reads for block backed loop, as that is too heavy to do from
589  * b_end_io context where irqs may be disabled.
590  *
591  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
592  * calling kthread_stop().  Therefore once kthread_should_stop() is
593  * true, make_request will not place any more requests.  Therefore
594  * once kthread_should_stop() is true and lo_bio is NULL, we are
595  * done with the loop.
596  */
597 static int loop_thread(void *data)
598 {
599 	struct loop_device *lo = data;
600 	struct bio *bio;
601 
602 	set_user_nice(current, -20);
603 
604 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
605 
606 		wait_event_interruptible(lo->lo_event,
607 				!bio_list_empty(&lo->lo_bio_list) ||
608 				kthread_should_stop());
609 
610 		if (bio_list_empty(&lo->lo_bio_list))
611 			continue;
612 		spin_lock_irq(&lo->lo_lock);
613 		bio = loop_get_bio(lo);
614 		spin_unlock_irq(&lo->lo_lock);
615 
616 		BUG_ON(!bio);
617 		loop_handle_bio(lo, bio);
618 	}
619 
620 	return 0;
621 }
622 
623 /*
624  * loop_switch performs the hard work of switching a backing store.
625  * First it needs to flush existing IO, it does this by sending a magic
626  * BIO down the pipe. The completion of this BIO does the actual switch.
627  */
628 static int loop_switch(struct loop_device *lo, struct file *file)
629 {
630 	struct switch_request w;
631 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
632 	if (!bio)
633 		return -ENOMEM;
634 	init_completion(&w.wait);
635 	w.file = file;
636 	bio->bi_private = &w;
637 	bio->bi_bdev = NULL;
638 	loop_make_request(lo->lo_queue, bio);
639 	wait_for_completion(&w.wait);
640 	return 0;
641 }
642 
643 /*
644  * Helper to flush the IOs in loop, but keeping loop thread running
645  */
646 static int loop_flush(struct loop_device *lo)
647 {
648 	/* loop not yet configured, no running thread, nothing to flush */
649 	if (!lo->lo_thread)
650 		return 0;
651 
652 	return loop_switch(lo, NULL);
653 }
654 
655 /*
656  * Do the actual switch; called from the BIO completion routine
657  */
658 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
659 {
660 	struct file *file = p->file;
661 	struct file *old_file = lo->lo_backing_file;
662 	struct address_space *mapping;
663 
664 	/* if no new file, only flush of queued bios requested */
665 	if (!file)
666 		goto out;
667 
668 	mapping = file->f_mapping;
669 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
670 	lo->lo_backing_file = file;
671 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
672 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
673 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
674 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
675 out:
676 	complete(&p->wait);
677 }
678 
679 
680 /*
681  * loop_change_fd switched the backing store of a loopback device to
682  * a new file. This is useful for operating system installers to free up
683  * the original file and in High Availability environments to switch to
684  * an alternative location for the content in case of server meltdown.
685  * This can only work if the loop device is used read-only, and if the
686  * new backing store is the same size and type as the old backing store.
687  */
688 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
689 			  unsigned int arg)
690 {
691 	struct file	*file, *old_file;
692 	struct inode	*inode;
693 	int		error;
694 
695 	error = -ENXIO;
696 	if (lo->lo_state != Lo_bound)
697 		goto out;
698 
699 	/* the loop device has to be read-only */
700 	error = -EINVAL;
701 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
702 		goto out;
703 
704 	error = -EBADF;
705 	file = fget(arg);
706 	if (!file)
707 		goto out;
708 
709 	inode = file->f_mapping->host;
710 	old_file = lo->lo_backing_file;
711 
712 	error = -EINVAL;
713 
714 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
715 		goto out_putf;
716 
717 	/* size of the new backing store needs to be the same */
718 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
719 		goto out_putf;
720 
721 	/* and ... switch */
722 	error = loop_switch(lo, file);
723 	if (error)
724 		goto out_putf;
725 
726 	fput(old_file);
727 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
728 		ioctl_by_bdev(bdev, BLKRRPART, 0);
729 	return 0;
730 
731  out_putf:
732 	fput(file);
733  out:
734 	return error;
735 }
736 
737 static inline int is_loop_device(struct file *file)
738 {
739 	struct inode *i = file->f_mapping->host;
740 
741 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
742 }
743 
744 /* loop sysfs attributes */
745 
746 static ssize_t loop_attr_show(struct device *dev, char *page,
747 			      ssize_t (*callback)(struct loop_device *, char *))
748 {
749 	struct loop_device *l, *lo = NULL;
750 
751 	mutex_lock(&loop_devices_mutex);
752 	list_for_each_entry(l, &loop_devices, lo_list)
753 		if (disk_to_dev(l->lo_disk) == dev) {
754 			lo = l;
755 			break;
756 		}
757 	mutex_unlock(&loop_devices_mutex);
758 
759 	return lo ? callback(lo, page) : -EIO;
760 }
761 
762 #define LOOP_ATTR_RO(_name)						\
763 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
764 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
765 				struct device_attribute *attr, char *b)	\
766 {									\
767 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
768 }									\
769 static struct device_attribute loop_attr_##_name =			\
770 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
771 
772 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
773 {
774 	ssize_t ret;
775 	char *p = NULL;
776 
777 	mutex_lock(&lo->lo_ctl_mutex);
778 	if (lo->lo_backing_file)
779 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
780 	mutex_unlock(&lo->lo_ctl_mutex);
781 
782 	if (IS_ERR_OR_NULL(p))
783 		ret = PTR_ERR(p);
784 	else {
785 		ret = strlen(p);
786 		memmove(buf, p, ret);
787 		buf[ret++] = '\n';
788 		buf[ret] = 0;
789 	}
790 
791 	return ret;
792 }
793 
794 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
795 {
796 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
797 }
798 
799 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
800 {
801 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
802 }
803 
804 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
805 {
806 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
807 
808 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
809 }
810 
811 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
812 {
813 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
814 
815 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
816 }
817 
818 LOOP_ATTR_RO(backing_file);
819 LOOP_ATTR_RO(offset);
820 LOOP_ATTR_RO(sizelimit);
821 LOOP_ATTR_RO(autoclear);
822 LOOP_ATTR_RO(partscan);
823 
824 static struct attribute *loop_attrs[] = {
825 	&loop_attr_backing_file.attr,
826 	&loop_attr_offset.attr,
827 	&loop_attr_sizelimit.attr,
828 	&loop_attr_autoclear.attr,
829 	&loop_attr_partscan.attr,
830 	NULL,
831 };
832 
833 static struct attribute_group loop_attribute_group = {
834 	.name = "loop",
835 	.attrs= loop_attrs,
836 };
837 
838 static int loop_sysfs_init(struct loop_device *lo)
839 {
840 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
841 				  &loop_attribute_group);
842 }
843 
844 static void loop_sysfs_exit(struct loop_device *lo)
845 {
846 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
847 			   &loop_attribute_group);
848 }
849 
850 static void loop_config_discard(struct loop_device *lo)
851 {
852 	struct file *file = lo->lo_backing_file;
853 	struct inode *inode = file->f_mapping->host;
854 	struct request_queue *q = lo->lo_queue;
855 
856 	/*
857 	 * We use punch hole to reclaim the free space used by the
858 	 * image a.k.a. discard. However we do support discard if
859 	 * encryption is enabled, because it may give an attacker
860 	 * useful information.
861 	 */
862 	if ((!file->f_op->fallocate) ||
863 	    lo->lo_encrypt_key_size) {
864 		q->limits.discard_granularity = 0;
865 		q->limits.discard_alignment = 0;
866 		q->limits.max_discard_sectors = 0;
867 		q->limits.discard_zeroes_data = 0;
868 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
869 		return;
870 	}
871 
872 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
873 	q->limits.discard_alignment = inode->i_sb->s_blocksize;
874 	q->limits.max_discard_sectors = UINT_MAX >> 9;
875 	q->limits.discard_zeroes_data = 1;
876 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
877 }
878 
879 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
880 		       struct block_device *bdev, unsigned int arg)
881 {
882 	struct file	*file, *f;
883 	struct inode	*inode;
884 	struct address_space *mapping;
885 	unsigned lo_blocksize;
886 	int		lo_flags = 0;
887 	int		error;
888 	loff_t		size;
889 
890 	/* This is safe, since we have a reference from open(). */
891 	__module_get(THIS_MODULE);
892 
893 	error = -EBADF;
894 	file = fget(arg);
895 	if (!file)
896 		goto out;
897 
898 	error = -EBUSY;
899 	if (lo->lo_state != Lo_unbound)
900 		goto out_putf;
901 
902 	/* Avoid recursion */
903 	f = file;
904 	while (is_loop_device(f)) {
905 		struct loop_device *l;
906 
907 		if (f->f_mapping->host->i_bdev == bdev)
908 			goto out_putf;
909 
910 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
911 		if (l->lo_state == Lo_unbound) {
912 			error = -EINVAL;
913 			goto out_putf;
914 		}
915 		f = l->lo_backing_file;
916 	}
917 
918 	mapping = file->f_mapping;
919 	inode = mapping->host;
920 
921 	if (!(file->f_mode & FMODE_WRITE))
922 		lo_flags |= LO_FLAGS_READ_ONLY;
923 
924 	error = -EINVAL;
925 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
926 		const struct address_space_operations *aops = mapping->a_ops;
927 
928 		if (aops->write_begin)
929 			lo_flags |= LO_FLAGS_USE_AOPS;
930 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
931 			lo_flags |= LO_FLAGS_READ_ONLY;
932 
933 		lo_blocksize = S_ISBLK(inode->i_mode) ?
934 			inode->i_bdev->bd_block_size : PAGE_SIZE;
935 
936 		error = 0;
937 	} else {
938 		goto out_putf;
939 	}
940 
941 	size = get_loop_size(lo, file);
942 
943 	if ((loff_t)(sector_t)size != size) {
944 		error = -EFBIG;
945 		goto out_putf;
946 	}
947 
948 	if (!(mode & FMODE_WRITE))
949 		lo_flags |= LO_FLAGS_READ_ONLY;
950 
951 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
952 
953 	lo->lo_blocksize = lo_blocksize;
954 	lo->lo_device = bdev;
955 	lo->lo_flags = lo_flags;
956 	lo->lo_backing_file = file;
957 	lo->transfer = transfer_none;
958 	lo->ioctl = NULL;
959 	lo->lo_sizelimit = 0;
960 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
961 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
962 
963 	bio_list_init(&lo->lo_bio_list);
964 
965 	/*
966 	 * set queue make_request_fn, and add limits based on lower level
967 	 * device
968 	 */
969 	blk_queue_make_request(lo->lo_queue, loop_make_request);
970 	lo->lo_queue->queuedata = lo;
971 
972 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
973 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
974 
975 	set_capacity(lo->lo_disk, size);
976 	bd_set_size(bdev, size << 9);
977 	loop_sysfs_init(lo);
978 	/* let user-space know about the new size */
979 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
980 
981 	set_blocksize(bdev, lo_blocksize);
982 
983 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
984 						lo->lo_number);
985 	if (IS_ERR(lo->lo_thread)) {
986 		error = PTR_ERR(lo->lo_thread);
987 		goto out_clr;
988 	}
989 	lo->lo_state = Lo_bound;
990 	wake_up_process(lo->lo_thread);
991 	if (part_shift)
992 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
993 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
994 		ioctl_by_bdev(bdev, BLKRRPART, 0);
995 	return 0;
996 
997 out_clr:
998 	loop_sysfs_exit(lo);
999 	lo->lo_thread = NULL;
1000 	lo->lo_device = NULL;
1001 	lo->lo_backing_file = NULL;
1002 	lo->lo_flags = 0;
1003 	set_capacity(lo->lo_disk, 0);
1004 	invalidate_bdev(bdev);
1005 	bd_set_size(bdev, 0);
1006 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1007 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
1008 	lo->lo_state = Lo_unbound;
1009  out_putf:
1010 	fput(file);
1011  out:
1012 	/* This is safe: open() is still holding a reference. */
1013 	module_put(THIS_MODULE);
1014 	return error;
1015 }
1016 
1017 static int
1018 loop_release_xfer(struct loop_device *lo)
1019 {
1020 	int err = 0;
1021 	struct loop_func_table *xfer = lo->lo_encryption;
1022 
1023 	if (xfer) {
1024 		if (xfer->release)
1025 			err = xfer->release(lo);
1026 		lo->transfer = NULL;
1027 		lo->lo_encryption = NULL;
1028 		module_put(xfer->owner);
1029 	}
1030 	return err;
1031 }
1032 
1033 static int
1034 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1035 	       const struct loop_info64 *i)
1036 {
1037 	int err = 0;
1038 
1039 	if (xfer) {
1040 		struct module *owner = xfer->owner;
1041 
1042 		if (!try_module_get(owner))
1043 			return -EINVAL;
1044 		if (xfer->init)
1045 			err = xfer->init(lo, i);
1046 		if (err)
1047 			module_put(owner);
1048 		else
1049 			lo->lo_encryption = xfer;
1050 	}
1051 	return err;
1052 }
1053 
1054 static int loop_clr_fd(struct loop_device *lo)
1055 {
1056 	struct file *filp = lo->lo_backing_file;
1057 	gfp_t gfp = lo->old_gfp_mask;
1058 	struct block_device *bdev = lo->lo_device;
1059 
1060 	if (lo->lo_state != Lo_bound)
1061 		return -ENXIO;
1062 
1063 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
1064 		return -EBUSY;
1065 
1066 	if (filp == NULL)
1067 		return -EINVAL;
1068 
1069 	spin_lock_irq(&lo->lo_lock);
1070 	lo->lo_state = Lo_rundown;
1071 	spin_unlock_irq(&lo->lo_lock);
1072 
1073 	kthread_stop(lo->lo_thread);
1074 
1075 	lo->lo_backing_file = NULL;
1076 
1077 	loop_release_xfer(lo);
1078 	lo->transfer = NULL;
1079 	lo->ioctl = NULL;
1080 	lo->lo_device = NULL;
1081 	lo->lo_encryption = NULL;
1082 	lo->lo_offset = 0;
1083 	lo->lo_sizelimit = 0;
1084 	lo->lo_encrypt_key_size = 0;
1085 	lo->lo_thread = NULL;
1086 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1087 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1088 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1089 	if (bdev)
1090 		invalidate_bdev(bdev);
1091 	set_capacity(lo->lo_disk, 0);
1092 	loop_sysfs_exit(lo);
1093 	if (bdev) {
1094 		bd_set_size(bdev, 0);
1095 		/* let user-space know about this change */
1096 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1097 	}
1098 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1099 	lo->lo_state = Lo_unbound;
1100 	/* This is safe: open() is still holding a reference. */
1101 	module_put(THIS_MODULE);
1102 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1103 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1104 	lo->lo_flags = 0;
1105 	if (!part_shift)
1106 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1107 	mutex_unlock(&lo->lo_ctl_mutex);
1108 	/*
1109 	 * Need not hold lo_ctl_mutex to fput backing file.
1110 	 * Calling fput holding lo_ctl_mutex triggers a circular
1111 	 * lock dependency possibility warning as fput can take
1112 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1113 	 */
1114 	fput(filp);
1115 	return 0;
1116 }
1117 
1118 static int
1119 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1120 {
1121 	int err;
1122 	struct loop_func_table *xfer;
1123 	uid_t uid = current_uid();
1124 
1125 	if (lo->lo_encrypt_key_size &&
1126 	    lo->lo_key_owner != uid &&
1127 	    !capable(CAP_SYS_ADMIN))
1128 		return -EPERM;
1129 	if (lo->lo_state != Lo_bound)
1130 		return -ENXIO;
1131 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1132 		return -EINVAL;
1133 
1134 	err = loop_release_xfer(lo);
1135 	if (err)
1136 		return err;
1137 
1138 	if (info->lo_encrypt_type) {
1139 		unsigned int type = info->lo_encrypt_type;
1140 
1141 		if (type >= MAX_LO_CRYPT)
1142 			return -EINVAL;
1143 		xfer = xfer_funcs[type];
1144 		if (xfer == NULL)
1145 			return -EINVAL;
1146 	} else
1147 		xfer = NULL;
1148 
1149 	err = loop_init_xfer(lo, xfer, info);
1150 	if (err)
1151 		return err;
1152 
1153 	if (lo->lo_offset != info->lo_offset ||
1154 	    lo->lo_sizelimit != info->lo_sizelimit) {
1155 		lo->lo_offset = info->lo_offset;
1156 		lo->lo_sizelimit = info->lo_sizelimit;
1157 		if (figure_loop_size(lo))
1158 			return -EFBIG;
1159 	}
1160 	loop_config_discard(lo);
1161 
1162 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1163 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1164 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1165 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1166 
1167 	if (!xfer)
1168 		xfer = &none_funcs;
1169 	lo->transfer = xfer->transfer;
1170 	lo->ioctl = xfer->ioctl;
1171 
1172 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1173 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1174 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1175 
1176 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1177 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1178 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1179 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1180 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1181 	}
1182 
1183 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1184 	lo->lo_init[0] = info->lo_init[0];
1185 	lo->lo_init[1] = info->lo_init[1];
1186 	if (info->lo_encrypt_key_size) {
1187 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1188 		       info->lo_encrypt_key_size);
1189 		lo->lo_key_owner = uid;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 static int
1196 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1197 {
1198 	struct file *file = lo->lo_backing_file;
1199 	struct kstat stat;
1200 	int error;
1201 
1202 	if (lo->lo_state != Lo_bound)
1203 		return -ENXIO;
1204 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1205 	if (error)
1206 		return error;
1207 	memset(info, 0, sizeof(*info));
1208 	info->lo_number = lo->lo_number;
1209 	info->lo_device = huge_encode_dev(stat.dev);
1210 	info->lo_inode = stat.ino;
1211 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1212 	info->lo_offset = lo->lo_offset;
1213 	info->lo_sizelimit = lo->lo_sizelimit;
1214 	info->lo_flags = lo->lo_flags;
1215 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1216 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1217 	info->lo_encrypt_type =
1218 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1219 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1220 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1221 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1222 		       lo->lo_encrypt_key_size);
1223 	}
1224 	return 0;
1225 }
1226 
1227 static void
1228 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1229 {
1230 	memset(info64, 0, sizeof(*info64));
1231 	info64->lo_number = info->lo_number;
1232 	info64->lo_device = info->lo_device;
1233 	info64->lo_inode = info->lo_inode;
1234 	info64->lo_rdevice = info->lo_rdevice;
1235 	info64->lo_offset = info->lo_offset;
1236 	info64->lo_sizelimit = 0;
1237 	info64->lo_encrypt_type = info->lo_encrypt_type;
1238 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1239 	info64->lo_flags = info->lo_flags;
1240 	info64->lo_init[0] = info->lo_init[0];
1241 	info64->lo_init[1] = info->lo_init[1];
1242 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1243 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1244 	else
1245 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1246 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1247 }
1248 
1249 static int
1250 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1251 {
1252 	memset(info, 0, sizeof(*info));
1253 	info->lo_number = info64->lo_number;
1254 	info->lo_device = info64->lo_device;
1255 	info->lo_inode = info64->lo_inode;
1256 	info->lo_rdevice = info64->lo_rdevice;
1257 	info->lo_offset = info64->lo_offset;
1258 	info->lo_encrypt_type = info64->lo_encrypt_type;
1259 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1260 	info->lo_flags = info64->lo_flags;
1261 	info->lo_init[0] = info64->lo_init[0];
1262 	info->lo_init[1] = info64->lo_init[1];
1263 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1264 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1265 	else
1266 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1267 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1268 
1269 	/* error in case values were truncated */
1270 	if (info->lo_device != info64->lo_device ||
1271 	    info->lo_rdevice != info64->lo_rdevice ||
1272 	    info->lo_inode != info64->lo_inode ||
1273 	    info->lo_offset != info64->lo_offset)
1274 		return -EOVERFLOW;
1275 
1276 	return 0;
1277 }
1278 
1279 static int
1280 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1281 {
1282 	struct loop_info info;
1283 	struct loop_info64 info64;
1284 
1285 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1286 		return -EFAULT;
1287 	loop_info64_from_old(&info, &info64);
1288 	return loop_set_status(lo, &info64);
1289 }
1290 
1291 static int
1292 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1293 {
1294 	struct loop_info64 info64;
1295 
1296 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1297 		return -EFAULT;
1298 	return loop_set_status(lo, &info64);
1299 }
1300 
1301 static int
1302 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1303 	struct loop_info info;
1304 	struct loop_info64 info64;
1305 	int err = 0;
1306 
1307 	if (!arg)
1308 		err = -EINVAL;
1309 	if (!err)
1310 		err = loop_get_status(lo, &info64);
1311 	if (!err)
1312 		err = loop_info64_to_old(&info64, &info);
1313 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1314 		err = -EFAULT;
1315 
1316 	return err;
1317 }
1318 
1319 static int
1320 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1321 	struct loop_info64 info64;
1322 	int err = 0;
1323 
1324 	if (!arg)
1325 		err = -EINVAL;
1326 	if (!err)
1327 		err = loop_get_status(lo, &info64);
1328 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1329 		err = -EFAULT;
1330 
1331 	return err;
1332 }
1333 
1334 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1335 {
1336 	int err;
1337 	sector_t sec;
1338 	loff_t sz;
1339 
1340 	err = -ENXIO;
1341 	if (unlikely(lo->lo_state != Lo_bound))
1342 		goto out;
1343 	err = figure_loop_size(lo);
1344 	if (unlikely(err))
1345 		goto out;
1346 	sec = get_capacity(lo->lo_disk);
1347 	/* the width of sector_t may be narrow for bit-shift */
1348 	sz = sec;
1349 	sz <<= 9;
1350 	mutex_lock(&bdev->bd_mutex);
1351 	bd_set_size(bdev, sz);
1352 	/* let user-space know about the new size */
1353 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1354 	mutex_unlock(&bdev->bd_mutex);
1355 
1356  out:
1357 	return err;
1358 }
1359 
1360 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1361 	unsigned int cmd, unsigned long arg)
1362 {
1363 	struct loop_device *lo = bdev->bd_disk->private_data;
1364 	int err;
1365 
1366 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1367 	switch (cmd) {
1368 	case LOOP_SET_FD:
1369 		err = loop_set_fd(lo, mode, bdev, arg);
1370 		break;
1371 	case LOOP_CHANGE_FD:
1372 		err = loop_change_fd(lo, bdev, arg);
1373 		break;
1374 	case LOOP_CLR_FD:
1375 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1376 		err = loop_clr_fd(lo);
1377 		if (!err)
1378 			goto out_unlocked;
1379 		break;
1380 	case LOOP_SET_STATUS:
1381 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1382 		break;
1383 	case LOOP_GET_STATUS:
1384 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1385 		break;
1386 	case LOOP_SET_STATUS64:
1387 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1388 		break;
1389 	case LOOP_GET_STATUS64:
1390 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1391 		break;
1392 	case LOOP_SET_CAPACITY:
1393 		err = -EPERM;
1394 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1395 			err = loop_set_capacity(lo, bdev);
1396 		break;
1397 	default:
1398 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1399 	}
1400 	mutex_unlock(&lo->lo_ctl_mutex);
1401 
1402 out_unlocked:
1403 	return err;
1404 }
1405 
1406 #ifdef CONFIG_COMPAT
1407 struct compat_loop_info {
1408 	compat_int_t	lo_number;      /* ioctl r/o */
1409 	compat_dev_t	lo_device;      /* ioctl r/o */
1410 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1411 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1412 	compat_int_t	lo_offset;
1413 	compat_int_t	lo_encrypt_type;
1414 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1415 	compat_int_t	lo_flags;       /* ioctl r/o */
1416 	char		lo_name[LO_NAME_SIZE];
1417 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1418 	compat_ulong_t	lo_init[2];
1419 	char		reserved[4];
1420 };
1421 
1422 /*
1423  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1424  * - noinlined to reduce stack space usage in main part of driver
1425  */
1426 static noinline int
1427 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1428 			struct loop_info64 *info64)
1429 {
1430 	struct compat_loop_info info;
1431 
1432 	if (copy_from_user(&info, arg, sizeof(info)))
1433 		return -EFAULT;
1434 
1435 	memset(info64, 0, sizeof(*info64));
1436 	info64->lo_number = info.lo_number;
1437 	info64->lo_device = info.lo_device;
1438 	info64->lo_inode = info.lo_inode;
1439 	info64->lo_rdevice = info.lo_rdevice;
1440 	info64->lo_offset = info.lo_offset;
1441 	info64->lo_sizelimit = 0;
1442 	info64->lo_encrypt_type = info.lo_encrypt_type;
1443 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1444 	info64->lo_flags = info.lo_flags;
1445 	info64->lo_init[0] = info.lo_init[0];
1446 	info64->lo_init[1] = info.lo_init[1];
1447 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1448 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1449 	else
1450 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1451 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1452 	return 0;
1453 }
1454 
1455 /*
1456  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1457  * - noinlined to reduce stack space usage in main part of driver
1458  */
1459 static noinline int
1460 loop_info64_to_compat(const struct loop_info64 *info64,
1461 		      struct compat_loop_info __user *arg)
1462 {
1463 	struct compat_loop_info info;
1464 
1465 	memset(&info, 0, sizeof(info));
1466 	info.lo_number = info64->lo_number;
1467 	info.lo_device = info64->lo_device;
1468 	info.lo_inode = info64->lo_inode;
1469 	info.lo_rdevice = info64->lo_rdevice;
1470 	info.lo_offset = info64->lo_offset;
1471 	info.lo_encrypt_type = info64->lo_encrypt_type;
1472 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1473 	info.lo_flags = info64->lo_flags;
1474 	info.lo_init[0] = info64->lo_init[0];
1475 	info.lo_init[1] = info64->lo_init[1];
1476 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1477 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1478 	else
1479 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1480 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1481 
1482 	/* error in case values were truncated */
1483 	if (info.lo_device != info64->lo_device ||
1484 	    info.lo_rdevice != info64->lo_rdevice ||
1485 	    info.lo_inode != info64->lo_inode ||
1486 	    info.lo_offset != info64->lo_offset ||
1487 	    info.lo_init[0] != info64->lo_init[0] ||
1488 	    info.lo_init[1] != info64->lo_init[1])
1489 		return -EOVERFLOW;
1490 
1491 	if (copy_to_user(arg, &info, sizeof(info)))
1492 		return -EFAULT;
1493 	return 0;
1494 }
1495 
1496 static int
1497 loop_set_status_compat(struct loop_device *lo,
1498 		       const struct compat_loop_info __user *arg)
1499 {
1500 	struct loop_info64 info64;
1501 	int ret;
1502 
1503 	ret = loop_info64_from_compat(arg, &info64);
1504 	if (ret < 0)
1505 		return ret;
1506 	return loop_set_status(lo, &info64);
1507 }
1508 
1509 static int
1510 loop_get_status_compat(struct loop_device *lo,
1511 		       struct compat_loop_info __user *arg)
1512 {
1513 	struct loop_info64 info64;
1514 	int err = 0;
1515 
1516 	if (!arg)
1517 		err = -EINVAL;
1518 	if (!err)
1519 		err = loop_get_status(lo, &info64);
1520 	if (!err)
1521 		err = loop_info64_to_compat(&info64, arg);
1522 	return err;
1523 }
1524 
1525 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1526 			   unsigned int cmd, unsigned long arg)
1527 {
1528 	struct loop_device *lo = bdev->bd_disk->private_data;
1529 	int err;
1530 
1531 	switch(cmd) {
1532 	case LOOP_SET_STATUS:
1533 		mutex_lock(&lo->lo_ctl_mutex);
1534 		err = loop_set_status_compat(
1535 			lo, (const struct compat_loop_info __user *) arg);
1536 		mutex_unlock(&lo->lo_ctl_mutex);
1537 		break;
1538 	case LOOP_GET_STATUS:
1539 		mutex_lock(&lo->lo_ctl_mutex);
1540 		err = loop_get_status_compat(
1541 			lo, (struct compat_loop_info __user *) arg);
1542 		mutex_unlock(&lo->lo_ctl_mutex);
1543 		break;
1544 	case LOOP_SET_CAPACITY:
1545 	case LOOP_CLR_FD:
1546 	case LOOP_GET_STATUS64:
1547 	case LOOP_SET_STATUS64:
1548 		arg = (unsigned long) compat_ptr(arg);
1549 	case LOOP_SET_FD:
1550 	case LOOP_CHANGE_FD:
1551 		err = lo_ioctl(bdev, mode, cmd, arg);
1552 		break;
1553 	default:
1554 		err = -ENOIOCTLCMD;
1555 		break;
1556 	}
1557 	return err;
1558 }
1559 #endif
1560 
1561 static int lo_open(struct block_device *bdev, fmode_t mode)
1562 {
1563 	struct loop_device *lo = bdev->bd_disk->private_data;
1564 
1565 	mutex_lock(&lo->lo_ctl_mutex);
1566 	lo->lo_refcnt++;
1567 	mutex_unlock(&lo->lo_ctl_mutex);
1568 
1569 	return 0;
1570 }
1571 
1572 static int lo_release(struct gendisk *disk, fmode_t mode)
1573 {
1574 	struct loop_device *lo = disk->private_data;
1575 	int err;
1576 
1577 	mutex_lock(&lo->lo_ctl_mutex);
1578 
1579 	if (--lo->lo_refcnt)
1580 		goto out;
1581 
1582 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1583 		/*
1584 		 * In autoclear mode, stop the loop thread
1585 		 * and remove configuration after last close.
1586 		 */
1587 		err = loop_clr_fd(lo);
1588 		if (!err)
1589 			goto out_unlocked;
1590 	} else {
1591 		/*
1592 		 * Otherwise keep thread (if running) and config,
1593 		 * but flush possible ongoing bios in thread.
1594 		 */
1595 		loop_flush(lo);
1596 	}
1597 
1598 out:
1599 	mutex_unlock(&lo->lo_ctl_mutex);
1600 out_unlocked:
1601 	return 0;
1602 }
1603 
1604 static const struct block_device_operations lo_fops = {
1605 	.owner =	THIS_MODULE,
1606 	.open =		lo_open,
1607 	.release =	lo_release,
1608 	.ioctl =	lo_ioctl,
1609 #ifdef CONFIG_COMPAT
1610 	.compat_ioctl =	lo_compat_ioctl,
1611 #endif
1612 };
1613 
1614 /*
1615  * And now the modules code and kernel interface.
1616  */
1617 static int max_loop;
1618 module_param(max_loop, int, S_IRUGO);
1619 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1620 module_param(max_part, int, S_IRUGO);
1621 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1622 MODULE_LICENSE("GPL");
1623 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1624 
1625 int loop_register_transfer(struct loop_func_table *funcs)
1626 {
1627 	unsigned int n = funcs->number;
1628 
1629 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1630 		return -EINVAL;
1631 	xfer_funcs[n] = funcs;
1632 	return 0;
1633 }
1634 
1635 int loop_unregister_transfer(int number)
1636 {
1637 	unsigned int n = number;
1638 	struct loop_device *lo;
1639 	struct loop_func_table *xfer;
1640 
1641 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1642 		return -EINVAL;
1643 
1644 	xfer_funcs[n] = NULL;
1645 
1646 	list_for_each_entry(lo, &loop_devices, lo_list) {
1647 		mutex_lock(&lo->lo_ctl_mutex);
1648 
1649 		if (lo->lo_encryption == xfer)
1650 			loop_release_xfer(lo);
1651 
1652 		mutex_unlock(&lo->lo_ctl_mutex);
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 EXPORT_SYMBOL(loop_register_transfer);
1659 EXPORT_SYMBOL(loop_unregister_transfer);
1660 
1661 static struct loop_device *loop_alloc(int i)
1662 {
1663 	struct loop_device *lo;
1664 	struct gendisk *disk;
1665 
1666 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1667 	if (!lo)
1668 		goto out;
1669 
1670 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1671 	if (!lo->lo_queue)
1672 		goto out_free_dev;
1673 
1674 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1675 	if (!disk)
1676 		goto out_free_queue;
1677 
1678 	/*
1679 	 * Disable partition scanning by default. The in-kernel partition
1680 	 * scanning can be requested individually per-device during its
1681 	 * setup. Userspace can always add and remove partitions from all
1682 	 * devices. The needed partition minors are allocated from the
1683 	 * extended minor space, the main loop device numbers will continue
1684 	 * to match the loop minors, regardless of the number of partitions
1685 	 * used.
1686 	 *
1687 	 * If max_part is given, partition scanning is globally enabled for
1688 	 * all loop devices. The minors for the main loop devices will be
1689 	 * multiples of max_part.
1690 	 *
1691 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1692 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1693 	 * complicated, are too static, inflexible and may surprise
1694 	 * userspace tools. Parameters like this in general should be avoided.
1695 	 */
1696 	if (!part_shift)
1697 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1698 	disk->flags |= GENHD_FL_EXT_DEVT;
1699 	mutex_init(&lo->lo_ctl_mutex);
1700 	lo->lo_number		= i;
1701 	lo->lo_thread		= NULL;
1702 	init_waitqueue_head(&lo->lo_event);
1703 	spin_lock_init(&lo->lo_lock);
1704 	disk->major		= LOOP_MAJOR;
1705 	disk->first_minor	= i << part_shift;
1706 	disk->fops		= &lo_fops;
1707 	disk->private_data	= lo;
1708 	disk->queue		= lo->lo_queue;
1709 	sprintf(disk->disk_name, "loop%d", i);
1710 	return lo;
1711 
1712 out_free_queue:
1713 	blk_cleanup_queue(lo->lo_queue);
1714 out_free_dev:
1715 	kfree(lo);
1716 out:
1717 	return NULL;
1718 }
1719 
1720 static void loop_free(struct loop_device *lo)
1721 {
1722 	blk_cleanup_queue(lo->lo_queue);
1723 	put_disk(lo->lo_disk);
1724 	list_del(&lo->lo_list);
1725 	kfree(lo);
1726 }
1727 
1728 static struct loop_device *loop_init_one(int i)
1729 {
1730 	struct loop_device *lo;
1731 
1732 	list_for_each_entry(lo, &loop_devices, lo_list) {
1733 		if (lo->lo_number == i)
1734 			return lo;
1735 	}
1736 
1737 	lo = loop_alloc(i);
1738 	if (lo) {
1739 		add_disk(lo->lo_disk);
1740 		list_add_tail(&lo->lo_list, &loop_devices);
1741 	}
1742 	return lo;
1743 }
1744 
1745 static void loop_del_one(struct loop_device *lo)
1746 {
1747 	del_gendisk(lo->lo_disk);
1748 	loop_free(lo);
1749 }
1750 
1751 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1752 {
1753 	struct loop_device *lo;
1754 	struct kobject *kobj;
1755 
1756 	mutex_lock(&loop_devices_mutex);
1757 	lo = loop_init_one(MINOR(dev) >> part_shift);
1758 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1759 	mutex_unlock(&loop_devices_mutex);
1760 
1761 	*part = 0;
1762 	return kobj;
1763 }
1764 
1765 static int __init loop_init(void)
1766 {
1767 	int i, nr;
1768 	unsigned long range;
1769 	struct loop_device *lo, *next;
1770 
1771 	/*
1772 	 * loop module now has a feature to instantiate underlying device
1773 	 * structure on-demand, provided that there is an access dev node.
1774 	 * However, this will not work well with user space tool that doesn't
1775 	 * know about such "feature".  In order to not break any existing
1776 	 * tool, we do the following:
1777 	 *
1778 	 * (1) if max_loop is specified, create that many upfront, and this
1779 	 *     also becomes a hard limit.
1780 	 * (2) if max_loop is not specified, create 8 loop device on module
1781 	 *     load, user can further extend loop device by create dev node
1782 	 *     themselves and have kernel automatically instantiate actual
1783 	 *     device on-demand.
1784 	 */
1785 
1786 	part_shift = 0;
1787 	if (max_part > 0) {
1788 		part_shift = fls(max_part);
1789 
1790 		/*
1791 		 * Adjust max_part according to part_shift as it is exported
1792 		 * to user space so that user can decide correct minor number
1793 		 * if [s]he want to create more devices.
1794 		 *
1795 		 * Note that -1 is required because partition 0 is reserved
1796 		 * for the whole disk.
1797 		 */
1798 		max_part = (1UL << part_shift) - 1;
1799 	}
1800 
1801 	if ((1UL << part_shift) > DISK_MAX_PARTS)
1802 		return -EINVAL;
1803 
1804 	if (max_loop > 1UL << (MINORBITS - part_shift))
1805 		return -EINVAL;
1806 
1807 	if (max_loop) {
1808 		nr = max_loop;
1809 		range = max_loop << part_shift;
1810 	} else {
1811 		nr = 8;
1812 		range = 1UL << MINORBITS;
1813 	}
1814 
1815 	if (register_blkdev(LOOP_MAJOR, "loop"))
1816 		return -EIO;
1817 
1818 	for (i = 0; i < nr; i++) {
1819 		lo = loop_alloc(i);
1820 		if (!lo)
1821 			goto Enomem;
1822 		list_add_tail(&lo->lo_list, &loop_devices);
1823 	}
1824 
1825 	/* point of no return */
1826 
1827 	list_for_each_entry(lo, &loop_devices, lo_list)
1828 		add_disk(lo->lo_disk);
1829 
1830 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1831 				  THIS_MODULE, loop_probe, NULL, NULL);
1832 
1833 	printk(KERN_INFO "loop: module loaded\n");
1834 	return 0;
1835 
1836 Enomem:
1837 	printk(KERN_INFO "loop: out of memory\n");
1838 
1839 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1840 		loop_free(lo);
1841 
1842 	unregister_blkdev(LOOP_MAJOR, "loop");
1843 	return -ENOMEM;
1844 }
1845 
1846 static void __exit loop_exit(void)
1847 {
1848 	unsigned long range;
1849 	struct loop_device *lo, *next;
1850 
1851 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1852 
1853 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1854 		loop_del_one(lo);
1855 
1856 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1857 	unregister_blkdev(LOOP_MAJOR, "loop");
1858 }
1859 
1860 module_init(loop_init);
1861 module_exit(loop_exit);
1862 
1863 #ifndef MODULE
1864 static int __init max_loop_setup(char *str)
1865 {
1866 	max_loop = simple_strtol(str, NULL, 0);
1867 	return 1;
1868 }
1869 
1870 __setup("max_loop=", max_loop_setup);
1871 #endif
1872