xref: /openbmc/linux/drivers/block/loop.c (revision 4a5ce9ba)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 
81 #include "loop.h"
82 
83 #include <linux/uaccess.h>
84 
85 static DEFINE_IDR(loop_index_idr);
86 static DEFINE_MUTEX(loop_ctl_mutex);
87 
88 static int max_part;
89 static int part_shift;
90 
91 static int transfer_xor(struct loop_device *lo, int cmd,
92 			struct page *raw_page, unsigned raw_off,
93 			struct page *loop_page, unsigned loop_off,
94 			int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 	char *in, *out, *key;
99 	int i, keysize;
100 
101 	if (cmd == READ) {
102 		in = raw_buf;
103 		out = loop_buf;
104 	} else {
105 		in = loop_buf;
106 		out = raw_buf;
107 	}
108 
109 	key = lo->lo_encrypt_key;
110 	keysize = lo->lo_encrypt_key_size;
111 	for (i = 0; i < size; i++)
112 		*out++ = *in++ ^ key[(i & 511) % keysize];
113 
114 	kunmap_atomic(loop_buf);
115 	kunmap_atomic(raw_buf);
116 	cond_resched();
117 	return 0;
118 }
119 
120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
121 {
122 	if (unlikely(info->lo_encrypt_key_size <= 0))
123 		return -EINVAL;
124 	return 0;
125 }
126 
127 static struct loop_func_table none_funcs = {
128 	.number = LO_CRYPT_NONE,
129 };
130 
131 static struct loop_func_table xor_funcs = {
132 	.number = LO_CRYPT_XOR,
133 	.transfer = transfer_xor,
134 	.init = xor_init
135 };
136 
137 /* xfer_funcs[0] is special - its release function is never called */
138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
139 	&none_funcs,
140 	&xor_funcs
141 };
142 
143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
144 {
145 	loff_t loopsize;
146 
147 	/* Compute loopsize in bytes */
148 	loopsize = i_size_read(file->f_mapping->host);
149 	if (offset > 0)
150 		loopsize -= offset;
151 	/* offset is beyond i_size, weird but possible */
152 	if (loopsize < 0)
153 		return 0;
154 
155 	if (sizelimit > 0 && sizelimit < loopsize)
156 		loopsize = sizelimit;
157 	/*
158 	 * Unfortunately, if we want to do I/O on the device,
159 	 * the number of 512-byte sectors has to fit into a sector_t.
160 	 */
161 	return loopsize >> 9;
162 }
163 
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165 {
166 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 }
168 
169 static void __loop_update_dio(struct loop_device *lo, bool dio)
170 {
171 	struct file *file = lo->lo_backing_file;
172 	struct address_space *mapping = file->f_mapping;
173 	struct inode *inode = mapping->host;
174 	unsigned short sb_bsize = 0;
175 	unsigned dio_align = 0;
176 	bool use_dio;
177 
178 	if (inode->i_sb->s_bdev) {
179 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
180 		dio_align = sb_bsize - 1;
181 	}
182 
183 	/*
184 	 * We support direct I/O only if lo_offset is aligned with the
185 	 * logical I/O size of backing device, and the logical block
186 	 * size of loop is bigger than the backing device's and the loop
187 	 * needn't transform transfer.
188 	 *
189 	 * TODO: the above condition may be loosed in the future, and
190 	 * direct I/O may be switched runtime at that time because most
191 	 * of requests in sane applications should be PAGE_SIZE aligned
192 	 */
193 	if (dio) {
194 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
195 				!(lo->lo_offset & dio_align) &&
196 				mapping->a_ops->direct_IO &&
197 				!lo->transfer)
198 			use_dio = true;
199 		else
200 			use_dio = false;
201 	} else {
202 		use_dio = false;
203 	}
204 
205 	if (lo->use_dio == use_dio)
206 		return;
207 
208 	/* flush dirty pages before changing direct IO */
209 	vfs_fsync(file, 0);
210 
211 	/*
212 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
213 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
214 	 * will get updated by ioctl(LOOP_GET_STATUS)
215 	 */
216 	blk_mq_freeze_queue(lo->lo_queue);
217 	lo->use_dio = use_dio;
218 	if (use_dio) {
219 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
220 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
221 	} else {
222 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
223 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
224 	}
225 	blk_mq_unfreeze_queue(lo->lo_queue);
226 }
227 
228 static int
229 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
230 {
231 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
232 	sector_t x = (sector_t)size;
233 	struct block_device *bdev = lo->lo_device;
234 
235 	if (unlikely((loff_t)x != size))
236 		return -EFBIG;
237 	if (lo->lo_offset != offset)
238 		lo->lo_offset = offset;
239 	if (lo->lo_sizelimit != sizelimit)
240 		lo->lo_sizelimit = sizelimit;
241 	set_capacity(lo->lo_disk, x);
242 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
243 	/* let user-space know about the new size */
244 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
245 	return 0;
246 }
247 
248 static inline int
249 lo_do_transfer(struct loop_device *lo, int cmd,
250 	       struct page *rpage, unsigned roffs,
251 	       struct page *lpage, unsigned loffs,
252 	       int size, sector_t rblock)
253 {
254 	int ret;
255 
256 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
257 	if (likely(!ret))
258 		return 0;
259 
260 	printk_ratelimited(KERN_ERR
261 		"loop: Transfer error at byte offset %llu, length %i.\n",
262 		(unsigned long long)rblock << 9, size);
263 	return ret;
264 }
265 
266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
267 {
268 	struct iov_iter i;
269 	ssize_t bw;
270 
271 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
272 
273 	file_start_write(file);
274 	bw = vfs_iter_write(file, &i, ppos, 0);
275 	file_end_write(file);
276 
277 	if (likely(bw ==  bvec->bv_len))
278 		return 0;
279 
280 	printk_ratelimited(KERN_ERR
281 		"loop: Write error at byte offset %llu, length %i.\n",
282 		(unsigned long long)*ppos, bvec->bv_len);
283 	if (bw >= 0)
284 		bw = -EIO;
285 	return bw;
286 }
287 
288 static int lo_write_simple(struct loop_device *lo, struct request *rq,
289 		loff_t pos)
290 {
291 	struct bio_vec bvec;
292 	struct req_iterator iter;
293 	int ret = 0;
294 
295 	rq_for_each_segment(bvec, rq, iter) {
296 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
297 		if (ret < 0)
298 			break;
299 		cond_resched();
300 	}
301 
302 	return ret;
303 }
304 
305 /*
306  * This is the slow, transforming version that needs to double buffer the
307  * data as it cannot do the transformations in place without having direct
308  * access to the destination pages of the backing file.
309  */
310 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
311 		loff_t pos)
312 {
313 	struct bio_vec bvec, b;
314 	struct req_iterator iter;
315 	struct page *page;
316 	int ret = 0;
317 
318 	page = alloc_page(GFP_NOIO);
319 	if (unlikely(!page))
320 		return -ENOMEM;
321 
322 	rq_for_each_segment(bvec, rq, iter) {
323 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
324 			bvec.bv_offset, bvec.bv_len, pos >> 9);
325 		if (unlikely(ret))
326 			break;
327 
328 		b.bv_page = page;
329 		b.bv_offset = 0;
330 		b.bv_len = bvec.bv_len;
331 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
332 		if (ret < 0)
333 			break;
334 	}
335 
336 	__free_page(page);
337 	return ret;
338 }
339 
340 static int lo_read_simple(struct loop_device *lo, struct request *rq,
341 		loff_t pos)
342 {
343 	struct bio_vec bvec;
344 	struct req_iterator iter;
345 	struct iov_iter i;
346 	ssize_t len;
347 
348 	rq_for_each_segment(bvec, rq, iter) {
349 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
350 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
351 		if (len < 0)
352 			return len;
353 
354 		flush_dcache_page(bvec.bv_page);
355 
356 		if (len != bvec.bv_len) {
357 			struct bio *bio;
358 
359 			__rq_for_each_bio(bio, rq)
360 				zero_fill_bio(bio);
361 			break;
362 		}
363 		cond_resched();
364 	}
365 
366 	return 0;
367 }
368 
369 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
370 		loff_t pos)
371 {
372 	struct bio_vec bvec, b;
373 	struct req_iterator iter;
374 	struct iov_iter i;
375 	struct page *page;
376 	ssize_t len;
377 	int ret = 0;
378 
379 	page = alloc_page(GFP_NOIO);
380 	if (unlikely(!page))
381 		return -ENOMEM;
382 
383 	rq_for_each_segment(bvec, rq, iter) {
384 		loff_t offset = pos;
385 
386 		b.bv_page = page;
387 		b.bv_offset = 0;
388 		b.bv_len = bvec.bv_len;
389 
390 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
391 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
392 		if (len < 0) {
393 			ret = len;
394 			goto out_free_page;
395 		}
396 
397 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
398 			bvec.bv_offset, len, offset >> 9);
399 		if (ret)
400 			goto out_free_page;
401 
402 		flush_dcache_page(bvec.bv_page);
403 
404 		if (len != bvec.bv_len) {
405 			struct bio *bio;
406 
407 			__rq_for_each_bio(bio, rq)
408 				zero_fill_bio(bio);
409 			break;
410 		}
411 	}
412 
413 	ret = 0;
414 out_free_page:
415 	__free_page(page);
416 	return ret;
417 }
418 
419 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
420 {
421 	/*
422 	 * We use punch hole to reclaim the free space used by the
423 	 * image a.k.a. discard. However we do not support discard if
424 	 * encryption is enabled, because it may give an attacker
425 	 * useful information.
426 	 */
427 	struct file *file = lo->lo_backing_file;
428 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
429 	int ret;
430 
431 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
432 		ret = -EOPNOTSUPP;
433 		goto out;
434 	}
435 
436 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
437 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
438 		ret = -EIO;
439  out:
440 	return ret;
441 }
442 
443 static int lo_req_flush(struct loop_device *lo, struct request *rq)
444 {
445 	struct file *file = lo->lo_backing_file;
446 	int ret = vfs_fsync(file, 0);
447 	if (unlikely(ret && ret != -EINVAL))
448 		ret = -EIO;
449 
450 	return ret;
451 }
452 
453 static void lo_complete_rq(struct request *rq)
454 {
455 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
456 	blk_status_t ret = BLK_STS_OK;
457 
458 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
459 	    req_op(rq) != REQ_OP_READ) {
460 		if (cmd->ret < 0)
461 			ret = BLK_STS_IOERR;
462 		goto end_io;
463 	}
464 
465 	/*
466 	 * Short READ - if we got some data, advance our request and
467 	 * retry it. If we got no data, end the rest with EIO.
468 	 */
469 	if (cmd->ret) {
470 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
471 		cmd->ret = 0;
472 		blk_mq_requeue_request(rq, true);
473 	} else {
474 		if (cmd->use_aio) {
475 			struct bio *bio = rq->bio;
476 
477 			while (bio) {
478 				zero_fill_bio(bio);
479 				bio = bio->bi_next;
480 			}
481 		}
482 		ret = BLK_STS_IOERR;
483 end_io:
484 		blk_mq_end_request(rq, ret);
485 	}
486 }
487 
488 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
489 {
490 	struct request *rq = blk_mq_rq_from_pdu(cmd);
491 
492 	if (!atomic_dec_and_test(&cmd->ref))
493 		return;
494 	kfree(cmd->bvec);
495 	cmd->bvec = NULL;
496 	blk_mq_complete_request(rq);
497 }
498 
499 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
500 {
501 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
502 
503 	if (cmd->css)
504 		css_put(cmd->css);
505 	cmd->ret = ret;
506 	lo_rw_aio_do_completion(cmd);
507 }
508 
509 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
510 		     loff_t pos, bool rw)
511 {
512 	struct iov_iter iter;
513 	struct bio_vec *bvec;
514 	struct request *rq = blk_mq_rq_from_pdu(cmd);
515 	struct bio *bio = rq->bio;
516 	struct file *file = lo->lo_backing_file;
517 	unsigned int offset;
518 	int segments = 0;
519 	int ret;
520 
521 	if (rq->bio != rq->biotail) {
522 		struct req_iterator iter;
523 		struct bio_vec tmp;
524 
525 		__rq_for_each_bio(bio, rq)
526 			segments += bio_segments(bio);
527 		bvec = kmalloc_array(segments, sizeof(struct bio_vec),
528 				     GFP_NOIO);
529 		if (!bvec)
530 			return -EIO;
531 		cmd->bvec = bvec;
532 
533 		/*
534 		 * The bios of the request may be started from the middle of
535 		 * the 'bvec' because of bio splitting, so we can't directly
536 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
537 		 * API will take care of all details for us.
538 		 */
539 		rq_for_each_segment(tmp, rq, iter) {
540 			*bvec = tmp;
541 			bvec++;
542 		}
543 		bvec = cmd->bvec;
544 		offset = 0;
545 	} else {
546 		/*
547 		 * Same here, this bio may be started from the middle of the
548 		 * 'bvec' because of bio splitting, so offset from the bvec
549 		 * must be passed to iov iterator
550 		 */
551 		offset = bio->bi_iter.bi_bvec_done;
552 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
553 		segments = bio_segments(bio);
554 	}
555 	atomic_set(&cmd->ref, 2);
556 
557 	iov_iter_bvec(&iter, rw, bvec, segments, blk_rq_bytes(rq));
558 	iter.iov_offset = offset;
559 
560 	cmd->iocb.ki_pos = pos;
561 	cmd->iocb.ki_filp = file;
562 	cmd->iocb.ki_complete = lo_rw_aio_complete;
563 	cmd->iocb.ki_flags = IOCB_DIRECT;
564 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
565 	if (cmd->css)
566 		kthread_associate_blkcg(cmd->css);
567 
568 	if (rw == WRITE)
569 		ret = call_write_iter(file, &cmd->iocb, &iter);
570 	else
571 		ret = call_read_iter(file, &cmd->iocb, &iter);
572 
573 	lo_rw_aio_do_completion(cmd);
574 	kthread_associate_blkcg(NULL);
575 
576 	if (ret != -EIOCBQUEUED)
577 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
578 	return 0;
579 }
580 
581 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
582 {
583 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
584 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
585 
586 	/*
587 	 * lo_write_simple and lo_read_simple should have been covered
588 	 * by io submit style function like lo_rw_aio(), one blocker
589 	 * is that lo_read_simple() need to call flush_dcache_page after
590 	 * the page is written from kernel, and it isn't easy to handle
591 	 * this in io submit style function which submits all segments
592 	 * of the req at one time. And direct read IO doesn't need to
593 	 * run flush_dcache_page().
594 	 */
595 	switch (req_op(rq)) {
596 	case REQ_OP_FLUSH:
597 		return lo_req_flush(lo, rq);
598 	case REQ_OP_DISCARD:
599 	case REQ_OP_WRITE_ZEROES:
600 		return lo_discard(lo, rq, pos);
601 	case REQ_OP_WRITE:
602 		if (lo->transfer)
603 			return lo_write_transfer(lo, rq, pos);
604 		else if (cmd->use_aio)
605 			return lo_rw_aio(lo, cmd, pos, WRITE);
606 		else
607 			return lo_write_simple(lo, rq, pos);
608 	case REQ_OP_READ:
609 		if (lo->transfer)
610 			return lo_read_transfer(lo, rq, pos);
611 		else if (cmd->use_aio)
612 			return lo_rw_aio(lo, cmd, pos, READ);
613 		else
614 			return lo_read_simple(lo, rq, pos);
615 	default:
616 		WARN_ON_ONCE(1);
617 		return -EIO;
618 		break;
619 	}
620 }
621 
622 static inline void loop_update_dio(struct loop_device *lo)
623 {
624 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
625 			lo->use_dio);
626 }
627 
628 static void loop_reread_partitions(struct loop_device *lo,
629 				   struct block_device *bdev)
630 {
631 	int rc;
632 
633 	/*
634 	 * bd_mutex has been held already in release path, so don't
635 	 * acquire it if this function is called in such case.
636 	 *
637 	 * If the reread partition isn't from release path, lo_refcnt
638 	 * must be at least one and it can only become zero when the
639 	 * current holder is released.
640 	 */
641 	if (!atomic_read(&lo->lo_refcnt))
642 		rc = __blkdev_reread_part(bdev);
643 	else
644 		rc = blkdev_reread_part(bdev);
645 	if (rc)
646 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
647 			__func__, lo->lo_number, lo->lo_file_name, rc);
648 }
649 
650 static inline int is_loop_device(struct file *file)
651 {
652 	struct inode *i = file->f_mapping->host;
653 
654 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
655 }
656 
657 static int loop_validate_file(struct file *file, struct block_device *bdev)
658 {
659 	struct inode	*inode = file->f_mapping->host;
660 	struct file	*f = file;
661 
662 	/* Avoid recursion */
663 	while (is_loop_device(f)) {
664 		struct loop_device *l;
665 
666 		if (f->f_mapping->host->i_bdev == bdev)
667 			return -EBADF;
668 
669 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
670 		if (l->lo_state == Lo_unbound) {
671 			return -EINVAL;
672 		}
673 		f = l->lo_backing_file;
674 	}
675 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
676 		return -EINVAL;
677 	return 0;
678 }
679 
680 /*
681  * loop_change_fd switched the backing store of a loopback device to
682  * a new file. This is useful for operating system installers to free up
683  * the original file and in High Availability environments to switch to
684  * an alternative location for the content in case of server meltdown.
685  * This can only work if the loop device is used read-only, and if the
686  * new backing store is the same size and type as the old backing store.
687  */
688 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
689 			  unsigned int arg)
690 {
691 	struct file	*file, *old_file;
692 	int		error;
693 
694 	error = -ENXIO;
695 	if (lo->lo_state != Lo_bound)
696 		goto out;
697 
698 	/* the loop device has to be read-only */
699 	error = -EINVAL;
700 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
701 		goto out;
702 
703 	error = -EBADF;
704 	file = fget(arg);
705 	if (!file)
706 		goto out;
707 
708 	error = loop_validate_file(file, bdev);
709 	if (error)
710 		goto out_putf;
711 
712 	old_file = lo->lo_backing_file;
713 
714 	error = -EINVAL;
715 
716 	/* size of the new backing store needs to be the same */
717 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
718 		goto out_putf;
719 
720 	/* and ... switch */
721 	blk_mq_freeze_queue(lo->lo_queue);
722 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
723 	lo->lo_backing_file = file;
724 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
725 	mapping_set_gfp_mask(file->f_mapping,
726 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
727 	loop_update_dio(lo);
728 	blk_mq_unfreeze_queue(lo->lo_queue);
729 
730 	fput(old_file);
731 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
732 		loop_reread_partitions(lo, bdev);
733 	return 0;
734 
735  out_putf:
736 	fput(file);
737  out:
738 	return error;
739 }
740 
741 /* loop sysfs attributes */
742 
743 static ssize_t loop_attr_show(struct device *dev, char *page,
744 			      ssize_t (*callback)(struct loop_device *, char *))
745 {
746 	struct gendisk *disk = dev_to_disk(dev);
747 	struct loop_device *lo = disk->private_data;
748 
749 	return callback(lo, page);
750 }
751 
752 #define LOOP_ATTR_RO(_name)						\
753 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
754 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
755 				struct device_attribute *attr, char *b)	\
756 {									\
757 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
758 }									\
759 static struct device_attribute loop_attr_##_name =			\
760 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
761 
762 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
763 {
764 	ssize_t ret;
765 	char *p = NULL;
766 
767 	spin_lock_irq(&lo->lo_lock);
768 	if (lo->lo_backing_file)
769 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
770 	spin_unlock_irq(&lo->lo_lock);
771 
772 	if (IS_ERR_OR_NULL(p))
773 		ret = PTR_ERR(p);
774 	else {
775 		ret = strlen(p);
776 		memmove(buf, p, ret);
777 		buf[ret++] = '\n';
778 		buf[ret] = 0;
779 	}
780 
781 	return ret;
782 }
783 
784 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
785 {
786 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
787 }
788 
789 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
790 {
791 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
792 }
793 
794 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
795 {
796 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
797 
798 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
799 }
800 
801 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
802 {
803 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
804 
805 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
806 }
807 
808 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
809 {
810 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
811 
812 	return sprintf(buf, "%s\n", dio ? "1" : "0");
813 }
814 
815 LOOP_ATTR_RO(backing_file);
816 LOOP_ATTR_RO(offset);
817 LOOP_ATTR_RO(sizelimit);
818 LOOP_ATTR_RO(autoclear);
819 LOOP_ATTR_RO(partscan);
820 LOOP_ATTR_RO(dio);
821 
822 static struct attribute *loop_attrs[] = {
823 	&loop_attr_backing_file.attr,
824 	&loop_attr_offset.attr,
825 	&loop_attr_sizelimit.attr,
826 	&loop_attr_autoclear.attr,
827 	&loop_attr_partscan.attr,
828 	&loop_attr_dio.attr,
829 	NULL,
830 };
831 
832 static struct attribute_group loop_attribute_group = {
833 	.name = "loop",
834 	.attrs= loop_attrs,
835 };
836 
837 static void loop_sysfs_init(struct loop_device *lo)
838 {
839 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
840 						&loop_attribute_group);
841 }
842 
843 static void loop_sysfs_exit(struct loop_device *lo)
844 {
845 	if (lo->sysfs_inited)
846 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
847 				   &loop_attribute_group);
848 }
849 
850 static void loop_config_discard(struct loop_device *lo)
851 {
852 	struct file *file = lo->lo_backing_file;
853 	struct inode *inode = file->f_mapping->host;
854 	struct request_queue *q = lo->lo_queue;
855 
856 	/*
857 	 * We use punch hole to reclaim the free space used by the
858 	 * image a.k.a. discard. However we do not support discard if
859 	 * encryption is enabled, because it may give an attacker
860 	 * useful information.
861 	 */
862 	if ((!file->f_op->fallocate) ||
863 	    lo->lo_encrypt_key_size) {
864 		q->limits.discard_granularity = 0;
865 		q->limits.discard_alignment = 0;
866 		blk_queue_max_discard_sectors(q, 0);
867 		blk_queue_max_write_zeroes_sectors(q, 0);
868 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
869 		return;
870 	}
871 
872 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
873 	q->limits.discard_alignment = 0;
874 
875 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
876 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
877 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
878 }
879 
880 static void loop_unprepare_queue(struct loop_device *lo)
881 {
882 	kthread_flush_worker(&lo->worker);
883 	kthread_stop(lo->worker_task);
884 }
885 
886 static int loop_kthread_worker_fn(void *worker_ptr)
887 {
888 	current->flags |= PF_LESS_THROTTLE;
889 	return kthread_worker_fn(worker_ptr);
890 }
891 
892 static int loop_prepare_queue(struct loop_device *lo)
893 {
894 	kthread_init_worker(&lo->worker);
895 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
896 			&lo->worker, "loop%d", lo->lo_number);
897 	if (IS_ERR(lo->worker_task))
898 		return -ENOMEM;
899 	set_user_nice(lo->worker_task, MIN_NICE);
900 	return 0;
901 }
902 
903 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
904 		       struct block_device *bdev, unsigned int arg)
905 {
906 	struct file	*file;
907 	struct inode	*inode;
908 	struct address_space *mapping;
909 	int		lo_flags = 0;
910 	int		error;
911 	loff_t		size;
912 
913 	/* This is safe, since we have a reference from open(). */
914 	__module_get(THIS_MODULE);
915 
916 	error = -EBADF;
917 	file = fget(arg);
918 	if (!file)
919 		goto out;
920 
921 	error = -EBUSY;
922 	if (lo->lo_state != Lo_unbound)
923 		goto out_putf;
924 
925 	error = loop_validate_file(file, bdev);
926 	if (error)
927 		goto out_putf;
928 
929 	mapping = file->f_mapping;
930 	inode = mapping->host;
931 
932 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
933 	    !file->f_op->write_iter)
934 		lo_flags |= LO_FLAGS_READ_ONLY;
935 
936 	error = -EFBIG;
937 	size = get_loop_size(lo, file);
938 	if ((loff_t)(sector_t)size != size)
939 		goto out_putf;
940 	error = loop_prepare_queue(lo);
941 	if (error)
942 		goto out_putf;
943 
944 	error = 0;
945 
946 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
947 
948 	lo->use_dio = false;
949 	lo->lo_device = bdev;
950 	lo->lo_flags = lo_flags;
951 	lo->lo_backing_file = file;
952 	lo->transfer = NULL;
953 	lo->ioctl = NULL;
954 	lo->lo_sizelimit = 0;
955 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
956 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
957 
958 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
959 		blk_queue_write_cache(lo->lo_queue, true, false);
960 
961 	loop_update_dio(lo);
962 	set_capacity(lo->lo_disk, size);
963 	bd_set_size(bdev, size << 9);
964 	loop_sysfs_init(lo);
965 	/* let user-space know about the new size */
966 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
967 
968 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
969 		      block_size(inode->i_bdev) : PAGE_SIZE);
970 
971 	lo->lo_state = Lo_bound;
972 	if (part_shift)
973 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
974 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
975 		loop_reread_partitions(lo, bdev);
976 
977 	/* Grab the block_device to prevent its destruction after we
978 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
979 	 */
980 	bdgrab(bdev);
981 	return 0;
982 
983  out_putf:
984 	fput(file);
985  out:
986 	/* This is safe: open() is still holding a reference. */
987 	module_put(THIS_MODULE);
988 	return error;
989 }
990 
991 static int
992 loop_release_xfer(struct loop_device *lo)
993 {
994 	int err = 0;
995 	struct loop_func_table *xfer = lo->lo_encryption;
996 
997 	if (xfer) {
998 		if (xfer->release)
999 			err = xfer->release(lo);
1000 		lo->transfer = NULL;
1001 		lo->lo_encryption = NULL;
1002 		module_put(xfer->owner);
1003 	}
1004 	return err;
1005 }
1006 
1007 static int
1008 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1009 	       const struct loop_info64 *i)
1010 {
1011 	int err = 0;
1012 
1013 	if (xfer) {
1014 		struct module *owner = xfer->owner;
1015 
1016 		if (!try_module_get(owner))
1017 			return -EINVAL;
1018 		if (xfer->init)
1019 			err = xfer->init(lo, i);
1020 		if (err)
1021 			module_put(owner);
1022 		else
1023 			lo->lo_encryption = xfer;
1024 	}
1025 	return err;
1026 }
1027 
1028 static int __loop_clr_fd(struct loop_device *lo)
1029 {
1030 	struct file *filp = NULL;
1031 	gfp_t gfp = lo->old_gfp_mask;
1032 	struct block_device *bdev = lo->lo_device;
1033 	int err = 0;
1034 
1035 	mutex_lock(&loop_ctl_mutex);
1036 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1037 		err = -ENXIO;
1038 		goto out_unlock;
1039 	}
1040 
1041 	filp = lo->lo_backing_file;
1042 	if (filp == NULL) {
1043 		err = -EINVAL;
1044 		goto out_unlock;
1045 	}
1046 
1047 	/* freeze request queue during the transition */
1048 	blk_mq_freeze_queue(lo->lo_queue);
1049 
1050 	spin_lock_irq(&lo->lo_lock);
1051 	lo->lo_backing_file = NULL;
1052 	spin_unlock_irq(&lo->lo_lock);
1053 
1054 	loop_release_xfer(lo);
1055 	lo->transfer = NULL;
1056 	lo->ioctl = NULL;
1057 	lo->lo_device = NULL;
1058 	lo->lo_encryption = NULL;
1059 	lo->lo_offset = 0;
1060 	lo->lo_sizelimit = 0;
1061 	lo->lo_encrypt_key_size = 0;
1062 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1063 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1064 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1065 	blk_queue_logical_block_size(lo->lo_queue, 512);
1066 	blk_queue_physical_block_size(lo->lo_queue, 512);
1067 	blk_queue_io_min(lo->lo_queue, 512);
1068 	if (bdev) {
1069 		bdput(bdev);
1070 		invalidate_bdev(bdev);
1071 		bdev->bd_inode->i_mapping->wb_err = 0;
1072 	}
1073 	set_capacity(lo->lo_disk, 0);
1074 	loop_sysfs_exit(lo);
1075 	if (bdev) {
1076 		bd_set_size(bdev, 0);
1077 		/* let user-space know about this change */
1078 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1079 	}
1080 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1081 	lo->lo_state = Lo_unbound;
1082 	/* This is safe: open() is still holding a reference. */
1083 	module_put(THIS_MODULE);
1084 	blk_mq_unfreeze_queue(lo->lo_queue);
1085 
1086 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1087 		loop_reread_partitions(lo, bdev);
1088 	lo->lo_flags = 0;
1089 	if (!part_shift)
1090 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1091 	loop_unprepare_queue(lo);
1092 out_unlock:
1093 	mutex_unlock(&loop_ctl_mutex);
1094 	/*
1095 	 * Need not hold loop_ctl_mutex to fput backing file.
1096 	 * Calling fput holding loop_ctl_mutex triggers a circular
1097 	 * lock dependency possibility warning as fput can take
1098 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1099 	 */
1100 	if (filp)
1101 		fput(filp);
1102 	return err;
1103 }
1104 
1105 static int loop_clr_fd(struct loop_device *lo)
1106 {
1107 	int err;
1108 
1109 	err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1110 	if (err)
1111 		return err;
1112 	if (lo->lo_state != Lo_bound) {
1113 		mutex_unlock(&loop_ctl_mutex);
1114 		return -ENXIO;
1115 	}
1116 	/*
1117 	 * If we've explicitly asked to tear down the loop device,
1118 	 * and it has an elevated reference count, set it for auto-teardown when
1119 	 * the last reference goes away. This stops $!~#$@ udev from
1120 	 * preventing teardown because it decided that it needs to run blkid on
1121 	 * the loopback device whenever they appear. xfstests is notorious for
1122 	 * failing tests because blkid via udev races with a losetup
1123 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1124 	 * command to fail with EBUSY.
1125 	 */
1126 	if (atomic_read(&lo->lo_refcnt) > 1) {
1127 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1128 		mutex_unlock(&loop_ctl_mutex);
1129 		return 0;
1130 	}
1131 	lo->lo_state = Lo_rundown;
1132 	mutex_unlock(&loop_ctl_mutex);
1133 
1134 	return __loop_clr_fd(lo);
1135 }
1136 
1137 static int
1138 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1139 {
1140 	int err;
1141 	struct loop_func_table *xfer;
1142 	kuid_t uid = current_uid();
1143 
1144 	if (lo->lo_encrypt_key_size &&
1145 	    !uid_eq(lo->lo_key_owner, uid) &&
1146 	    !capable(CAP_SYS_ADMIN))
1147 		return -EPERM;
1148 	if (lo->lo_state != Lo_bound)
1149 		return -ENXIO;
1150 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1151 		return -EINVAL;
1152 
1153 	/* I/O need to be drained during transfer transition */
1154 	blk_mq_freeze_queue(lo->lo_queue);
1155 
1156 	err = loop_release_xfer(lo);
1157 	if (err)
1158 		goto exit;
1159 
1160 	if (info->lo_encrypt_type) {
1161 		unsigned int type = info->lo_encrypt_type;
1162 
1163 		if (type >= MAX_LO_CRYPT) {
1164 			err = -EINVAL;
1165 			goto exit;
1166 		}
1167 		xfer = xfer_funcs[type];
1168 		if (xfer == NULL) {
1169 			err = -EINVAL;
1170 			goto exit;
1171 		}
1172 	} else
1173 		xfer = NULL;
1174 
1175 	err = loop_init_xfer(lo, xfer, info);
1176 	if (err)
1177 		goto exit;
1178 
1179 	if (lo->lo_offset != info->lo_offset ||
1180 	    lo->lo_sizelimit != info->lo_sizelimit) {
1181 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1182 			err = -EFBIG;
1183 			goto exit;
1184 		}
1185 	}
1186 
1187 	loop_config_discard(lo);
1188 
1189 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1190 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1191 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1192 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1193 
1194 	if (!xfer)
1195 		xfer = &none_funcs;
1196 	lo->transfer = xfer->transfer;
1197 	lo->ioctl = xfer->ioctl;
1198 
1199 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1200 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1201 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1202 
1203 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1204 	lo->lo_init[0] = info->lo_init[0];
1205 	lo->lo_init[1] = info->lo_init[1];
1206 	if (info->lo_encrypt_key_size) {
1207 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1208 		       info->lo_encrypt_key_size);
1209 		lo->lo_key_owner = uid;
1210 	}
1211 
1212 	/* update dio if lo_offset or transfer is changed */
1213 	__loop_update_dio(lo, lo->use_dio);
1214 
1215  exit:
1216 	blk_mq_unfreeze_queue(lo->lo_queue);
1217 
1218 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1219 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1220 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1221 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1222 		loop_reread_partitions(lo, lo->lo_device);
1223 	}
1224 
1225 	return err;
1226 }
1227 
1228 static int
1229 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1230 {
1231 	struct path path;
1232 	struct kstat stat;
1233 	int ret;
1234 
1235 	ret = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1236 	if (ret)
1237 		return ret;
1238 	if (lo->lo_state != Lo_bound) {
1239 		mutex_unlock(&loop_ctl_mutex);
1240 		return -ENXIO;
1241 	}
1242 
1243 	memset(info, 0, sizeof(*info));
1244 	info->lo_number = lo->lo_number;
1245 	info->lo_offset = lo->lo_offset;
1246 	info->lo_sizelimit = lo->lo_sizelimit;
1247 	info->lo_flags = lo->lo_flags;
1248 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1249 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1250 	info->lo_encrypt_type =
1251 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1252 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1253 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1254 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1255 		       lo->lo_encrypt_key_size);
1256 	}
1257 
1258 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1259 	path = lo->lo_backing_file->f_path;
1260 	path_get(&path);
1261 	mutex_unlock(&loop_ctl_mutex);
1262 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1263 	if (!ret) {
1264 		info->lo_device = huge_encode_dev(stat.dev);
1265 		info->lo_inode = stat.ino;
1266 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1267 	}
1268 	path_put(&path);
1269 	return ret;
1270 }
1271 
1272 static void
1273 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1274 {
1275 	memset(info64, 0, sizeof(*info64));
1276 	info64->lo_number = info->lo_number;
1277 	info64->lo_device = info->lo_device;
1278 	info64->lo_inode = info->lo_inode;
1279 	info64->lo_rdevice = info->lo_rdevice;
1280 	info64->lo_offset = info->lo_offset;
1281 	info64->lo_sizelimit = 0;
1282 	info64->lo_encrypt_type = info->lo_encrypt_type;
1283 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1284 	info64->lo_flags = info->lo_flags;
1285 	info64->lo_init[0] = info->lo_init[0];
1286 	info64->lo_init[1] = info->lo_init[1];
1287 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1288 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1289 	else
1290 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1291 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1292 }
1293 
1294 static int
1295 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1296 {
1297 	memset(info, 0, sizeof(*info));
1298 	info->lo_number = info64->lo_number;
1299 	info->lo_device = info64->lo_device;
1300 	info->lo_inode = info64->lo_inode;
1301 	info->lo_rdevice = info64->lo_rdevice;
1302 	info->lo_offset = info64->lo_offset;
1303 	info->lo_encrypt_type = info64->lo_encrypt_type;
1304 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1305 	info->lo_flags = info64->lo_flags;
1306 	info->lo_init[0] = info64->lo_init[0];
1307 	info->lo_init[1] = info64->lo_init[1];
1308 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1309 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1310 	else
1311 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1312 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1313 
1314 	/* error in case values were truncated */
1315 	if (info->lo_device != info64->lo_device ||
1316 	    info->lo_rdevice != info64->lo_rdevice ||
1317 	    info->lo_inode != info64->lo_inode ||
1318 	    info->lo_offset != info64->lo_offset)
1319 		return -EOVERFLOW;
1320 
1321 	return 0;
1322 }
1323 
1324 static int
1325 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1326 {
1327 	struct loop_info info;
1328 	struct loop_info64 info64;
1329 
1330 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1331 		return -EFAULT;
1332 	loop_info64_from_old(&info, &info64);
1333 	return loop_set_status(lo, &info64);
1334 }
1335 
1336 static int
1337 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1338 {
1339 	struct loop_info64 info64;
1340 
1341 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1342 		return -EFAULT;
1343 	return loop_set_status(lo, &info64);
1344 }
1345 
1346 static int
1347 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1348 	struct loop_info info;
1349 	struct loop_info64 info64;
1350 	int err;
1351 
1352 	if (!arg)
1353 		return -EINVAL;
1354 	err = loop_get_status(lo, &info64);
1355 	if (!err)
1356 		err = loop_info64_to_old(&info64, &info);
1357 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1358 		err = -EFAULT;
1359 
1360 	return err;
1361 }
1362 
1363 static int
1364 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1365 	struct loop_info64 info64;
1366 	int err;
1367 
1368 	if (!arg)
1369 		return -EINVAL;
1370 	err = loop_get_status(lo, &info64);
1371 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1372 		err = -EFAULT;
1373 
1374 	return err;
1375 }
1376 
1377 static int loop_set_capacity(struct loop_device *lo)
1378 {
1379 	if (unlikely(lo->lo_state != Lo_bound))
1380 		return -ENXIO;
1381 
1382 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1383 }
1384 
1385 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1386 {
1387 	int error = -ENXIO;
1388 	if (lo->lo_state != Lo_bound)
1389 		goto out;
1390 
1391 	__loop_update_dio(lo, !!arg);
1392 	if (lo->use_dio == !!arg)
1393 		return 0;
1394 	error = -EINVAL;
1395  out:
1396 	return error;
1397 }
1398 
1399 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1400 {
1401 	if (lo->lo_state != Lo_bound)
1402 		return -ENXIO;
1403 
1404 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1405 		return -EINVAL;
1406 
1407 	blk_mq_freeze_queue(lo->lo_queue);
1408 
1409 	blk_queue_logical_block_size(lo->lo_queue, arg);
1410 	blk_queue_physical_block_size(lo->lo_queue, arg);
1411 	blk_queue_io_min(lo->lo_queue, arg);
1412 	loop_update_dio(lo);
1413 
1414 	blk_mq_unfreeze_queue(lo->lo_queue);
1415 
1416 	return 0;
1417 }
1418 
1419 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1420 			   unsigned long arg)
1421 {
1422 	int err;
1423 
1424 	err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1425 	if (err)
1426 		return err;
1427 	switch (cmd) {
1428 	case LOOP_SET_CAPACITY:
1429 		err = loop_set_capacity(lo);
1430 		break;
1431 	case LOOP_SET_DIRECT_IO:
1432 		err = loop_set_dio(lo, arg);
1433 		break;
1434 	case LOOP_SET_BLOCK_SIZE:
1435 		err = loop_set_block_size(lo, arg);
1436 		break;
1437 	default:
1438 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1439 	}
1440 	mutex_unlock(&loop_ctl_mutex);
1441 	return err;
1442 }
1443 
1444 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1445 	unsigned int cmd, unsigned long arg)
1446 {
1447 	struct loop_device *lo = bdev->bd_disk->private_data;
1448 	int err;
1449 
1450 	switch (cmd) {
1451 	case LOOP_SET_FD:
1452 		err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1453 		if (err)
1454 			return err;
1455 		err = loop_set_fd(lo, mode, bdev, arg);
1456 		mutex_unlock(&loop_ctl_mutex);
1457 		break;
1458 	case LOOP_CHANGE_FD:
1459 		err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1460 		if (err)
1461 			return err;
1462 		err = loop_change_fd(lo, bdev, arg);
1463 		mutex_unlock(&loop_ctl_mutex);
1464 		break;
1465 	case LOOP_CLR_FD:
1466 		return loop_clr_fd(lo);
1467 	case LOOP_SET_STATUS:
1468 		err = -EPERM;
1469 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1470 			err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1471 			if (err)
1472 				return err;
1473 			err = loop_set_status_old(lo,
1474 					(struct loop_info __user *)arg);
1475 			mutex_unlock(&loop_ctl_mutex);
1476 		}
1477 		break;
1478 	case LOOP_GET_STATUS:
1479 		return loop_get_status_old(lo, (struct loop_info __user *) arg);
1480 	case LOOP_SET_STATUS64:
1481 		err = -EPERM;
1482 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1483 			err = mutex_lock_killable_nested(&loop_ctl_mutex, 1);
1484 			if (err)
1485 				return err;
1486 			err = loop_set_status64(lo,
1487 					(struct loop_info64 __user *) arg);
1488 			mutex_unlock(&loop_ctl_mutex);
1489 		}
1490 		break;
1491 	case LOOP_GET_STATUS64:
1492 		return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1493 	case LOOP_SET_CAPACITY:
1494 	case LOOP_SET_DIRECT_IO:
1495 	case LOOP_SET_BLOCK_SIZE:
1496 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1497 			return -EPERM;
1498 		/* Fall through */
1499 	default:
1500 		err = lo_simple_ioctl(lo, cmd, arg);
1501 		break;
1502 	}
1503 
1504 	return err;
1505 }
1506 
1507 #ifdef CONFIG_COMPAT
1508 struct compat_loop_info {
1509 	compat_int_t	lo_number;      /* ioctl r/o */
1510 	compat_dev_t	lo_device;      /* ioctl r/o */
1511 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1512 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1513 	compat_int_t	lo_offset;
1514 	compat_int_t	lo_encrypt_type;
1515 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1516 	compat_int_t	lo_flags;       /* ioctl r/o */
1517 	char		lo_name[LO_NAME_SIZE];
1518 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1519 	compat_ulong_t	lo_init[2];
1520 	char		reserved[4];
1521 };
1522 
1523 /*
1524  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1525  * - noinlined to reduce stack space usage in main part of driver
1526  */
1527 static noinline int
1528 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1529 			struct loop_info64 *info64)
1530 {
1531 	struct compat_loop_info info;
1532 
1533 	if (copy_from_user(&info, arg, sizeof(info)))
1534 		return -EFAULT;
1535 
1536 	memset(info64, 0, sizeof(*info64));
1537 	info64->lo_number = info.lo_number;
1538 	info64->lo_device = info.lo_device;
1539 	info64->lo_inode = info.lo_inode;
1540 	info64->lo_rdevice = info.lo_rdevice;
1541 	info64->lo_offset = info.lo_offset;
1542 	info64->lo_sizelimit = 0;
1543 	info64->lo_encrypt_type = info.lo_encrypt_type;
1544 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1545 	info64->lo_flags = info.lo_flags;
1546 	info64->lo_init[0] = info.lo_init[0];
1547 	info64->lo_init[1] = info.lo_init[1];
1548 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1549 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1550 	else
1551 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1552 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1553 	return 0;
1554 }
1555 
1556 /*
1557  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1558  * - noinlined to reduce stack space usage in main part of driver
1559  */
1560 static noinline int
1561 loop_info64_to_compat(const struct loop_info64 *info64,
1562 		      struct compat_loop_info __user *arg)
1563 {
1564 	struct compat_loop_info info;
1565 
1566 	memset(&info, 0, sizeof(info));
1567 	info.lo_number = info64->lo_number;
1568 	info.lo_device = info64->lo_device;
1569 	info.lo_inode = info64->lo_inode;
1570 	info.lo_rdevice = info64->lo_rdevice;
1571 	info.lo_offset = info64->lo_offset;
1572 	info.lo_encrypt_type = info64->lo_encrypt_type;
1573 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1574 	info.lo_flags = info64->lo_flags;
1575 	info.lo_init[0] = info64->lo_init[0];
1576 	info.lo_init[1] = info64->lo_init[1];
1577 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1578 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1579 	else
1580 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1581 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1582 
1583 	/* error in case values were truncated */
1584 	if (info.lo_device != info64->lo_device ||
1585 	    info.lo_rdevice != info64->lo_rdevice ||
1586 	    info.lo_inode != info64->lo_inode ||
1587 	    info.lo_offset != info64->lo_offset ||
1588 	    info.lo_init[0] != info64->lo_init[0] ||
1589 	    info.lo_init[1] != info64->lo_init[1])
1590 		return -EOVERFLOW;
1591 
1592 	if (copy_to_user(arg, &info, sizeof(info)))
1593 		return -EFAULT;
1594 	return 0;
1595 }
1596 
1597 static int
1598 loop_set_status_compat(struct loop_device *lo,
1599 		       const struct compat_loop_info __user *arg)
1600 {
1601 	struct loop_info64 info64;
1602 	int ret;
1603 
1604 	ret = loop_info64_from_compat(arg, &info64);
1605 	if (ret < 0)
1606 		return ret;
1607 	return loop_set_status(lo, &info64);
1608 }
1609 
1610 static int
1611 loop_get_status_compat(struct loop_device *lo,
1612 		       struct compat_loop_info __user *arg)
1613 {
1614 	struct loop_info64 info64;
1615 	int err;
1616 
1617 	if (!arg)
1618 		return -EINVAL;
1619 	err = loop_get_status(lo, &info64);
1620 	if (!err)
1621 		err = loop_info64_to_compat(&info64, arg);
1622 	return err;
1623 }
1624 
1625 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1626 			   unsigned int cmd, unsigned long arg)
1627 {
1628 	struct loop_device *lo = bdev->bd_disk->private_data;
1629 	int err;
1630 
1631 	switch(cmd) {
1632 	case LOOP_SET_STATUS:
1633 		err = mutex_lock_killable(&loop_ctl_mutex);
1634 		if (!err) {
1635 			err = loop_set_status_compat(lo,
1636 						     (const struct compat_loop_info __user *)arg);
1637 			mutex_unlock(&loop_ctl_mutex);
1638 		}
1639 		break;
1640 	case LOOP_GET_STATUS:
1641 		err = loop_get_status_compat(lo,
1642 				     (struct compat_loop_info __user *)arg);
1643 		break;
1644 	case LOOP_SET_CAPACITY:
1645 	case LOOP_CLR_FD:
1646 	case LOOP_GET_STATUS64:
1647 	case LOOP_SET_STATUS64:
1648 		arg = (unsigned long) compat_ptr(arg);
1649 		/* fall through */
1650 	case LOOP_SET_FD:
1651 	case LOOP_CHANGE_FD:
1652 	case LOOP_SET_BLOCK_SIZE:
1653 		err = lo_ioctl(bdev, mode, cmd, arg);
1654 		break;
1655 	default:
1656 		err = -ENOIOCTLCMD;
1657 		break;
1658 	}
1659 	return err;
1660 }
1661 #endif
1662 
1663 static int lo_open(struct block_device *bdev, fmode_t mode)
1664 {
1665 	struct loop_device *lo;
1666 	int err;
1667 
1668 	err = mutex_lock_killable(&loop_ctl_mutex);
1669 	if (err)
1670 		return err;
1671 	lo = bdev->bd_disk->private_data;
1672 	if (!lo) {
1673 		err = -ENXIO;
1674 		goto out;
1675 	}
1676 
1677 	atomic_inc(&lo->lo_refcnt);
1678 out:
1679 	mutex_unlock(&loop_ctl_mutex);
1680 	return err;
1681 }
1682 
1683 static void lo_release(struct gendisk *disk, fmode_t mode)
1684 {
1685 	struct loop_device *lo;
1686 
1687 	mutex_lock(&loop_ctl_mutex);
1688 	lo = disk->private_data;
1689 	if (atomic_dec_return(&lo->lo_refcnt))
1690 		goto out_unlock;
1691 
1692 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1693 		if (lo->lo_state != Lo_bound)
1694 			goto out_unlock;
1695 		lo->lo_state = Lo_rundown;
1696 		mutex_unlock(&loop_ctl_mutex);
1697 		/*
1698 		 * In autoclear mode, stop the loop thread
1699 		 * and remove configuration after last close.
1700 		 */
1701 		__loop_clr_fd(lo);
1702 		return;
1703 	} else if (lo->lo_state == Lo_bound) {
1704 		/*
1705 		 * Otherwise keep thread (if running) and config,
1706 		 * but flush possible ongoing bios in thread.
1707 		 */
1708 		blk_mq_freeze_queue(lo->lo_queue);
1709 		blk_mq_unfreeze_queue(lo->lo_queue);
1710 	}
1711 
1712 out_unlock:
1713 	mutex_unlock(&loop_ctl_mutex);
1714 }
1715 
1716 static const struct block_device_operations lo_fops = {
1717 	.owner =	THIS_MODULE,
1718 	.open =		lo_open,
1719 	.release =	lo_release,
1720 	.ioctl =	lo_ioctl,
1721 #ifdef CONFIG_COMPAT
1722 	.compat_ioctl =	lo_compat_ioctl,
1723 #endif
1724 };
1725 
1726 /*
1727  * And now the modules code and kernel interface.
1728  */
1729 static int max_loop;
1730 module_param(max_loop, int, 0444);
1731 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1732 module_param(max_part, int, 0444);
1733 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1734 MODULE_LICENSE("GPL");
1735 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1736 
1737 int loop_register_transfer(struct loop_func_table *funcs)
1738 {
1739 	unsigned int n = funcs->number;
1740 
1741 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1742 		return -EINVAL;
1743 	xfer_funcs[n] = funcs;
1744 	return 0;
1745 }
1746 
1747 static int unregister_transfer_cb(int id, void *ptr, void *data)
1748 {
1749 	struct loop_device *lo = ptr;
1750 	struct loop_func_table *xfer = data;
1751 
1752 	mutex_lock(&loop_ctl_mutex);
1753 	if (lo->lo_encryption == xfer)
1754 		loop_release_xfer(lo);
1755 	mutex_unlock(&loop_ctl_mutex);
1756 	return 0;
1757 }
1758 
1759 int loop_unregister_transfer(int number)
1760 {
1761 	unsigned int n = number;
1762 	struct loop_func_table *xfer;
1763 
1764 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1765 		return -EINVAL;
1766 
1767 	xfer_funcs[n] = NULL;
1768 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1769 	return 0;
1770 }
1771 
1772 EXPORT_SYMBOL(loop_register_transfer);
1773 EXPORT_SYMBOL(loop_unregister_transfer);
1774 
1775 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1776 		const struct blk_mq_queue_data *bd)
1777 {
1778 	struct request *rq = bd->rq;
1779 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1780 	struct loop_device *lo = rq->q->queuedata;
1781 
1782 	blk_mq_start_request(rq);
1783 
1784 	if (lo->lo_state != Lo_bound)
1785 		return BLK_STS_IOERR;
1786 
1787 	switch (req_op(rq)) {
1788 	case REQ_OP_FLUSH:
1789 	case REQ_OP_DISCARD:
1790 	case REQ_OP_WRITE_ZEROES:
1791 		cmd->use_aio = false;
1792 		break;
1793 	default:
1794 		cmd->use_aio = lo->use_dio;
1795 		break;
1796 	}
1797 
1798 	/* always use the first bio's css */
1799 #ifdef CONFIG_BLK_CGROUP
1800 	if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1801 		cmd->css = rq->bio->bi_css;
1802 		css_get(cmd->css);
1803 	} else
1804 #endif
1805 		cmd->css = NULL;
1806 	kthread_queue_work(&lo->worker, &cmd->work);
1807 
1808 	return BLK_STS_OK;
1809 }
1810 
1811 static void loop_handle_cmd(struct loop_cmd *cmd)
1812 {
1813 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1814 	const bool write = op_is_write(req_op(rq));
1815 	struct loop_device *lo = rq->q->queuedata;
1816 	int ret = 0;
1817 
1818 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1819 		ret = -EIO;
1820 		goto failed;
1821 	}
1822 
1823 	ret = do_req_filebacked(lo, rq);
1824  failed:
1825 	/* complete non-aio request */
1826 	if (!cmd->use_aio || ret) {
1827 		cmd->ret = ret ? -EIO : 0;
1828 		blk_mq_complete_request(rq);
1829 	}
1830 }
1831 
1832 static void loop_queue_work(struct kthread_work *work)
1833 {
1834 	struct loop_cmd *cmd =
1835 		container_of(work, struct loop_cmd, work);
1836 
1837 	loop_handle_cmd(cmd);
1838 }
1839 
1840 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1841 		unsigned int hctx_idx, unsigned int numa_node)
1842 {
1843 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1844 
1845 	kthread_init_work(&cmd->work, loop_queue_work);
1846 	return 0;
1847 }
1848 
1849 static const struct blk_mq_ops loop_mq_ops = {
1850 	.queue_rq       = loop_queue_rq,
1851 	.init_request	= loop_init_request,
1852 	.complete	= lo_complete_rq,
1853 };
1854 
1855 static int loop_add(struct loop_device **l, int i)
1856 {
1857 	struct loop_device *lo;
1858 	struct gendisk *disk;
1859 	int err;
1860 
1861 	err = -ENOMEM;
1862 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1863 	if (!lo)
1864 		goto out;
1865 
1866 	lo->lo_state = Lo_unbound;
1867 
1868 	/* allocate id, if @id >= 0, we're requesting that specific id */
1869 	if (i >= 0) {
1870 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1871 		if (err == -ENOSPC)
1872 			err = -EEXIST;
1873 	} else {
1874 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1875 	}
1876 	if (err < 0)
1877 		goto out_free_dev;
1878 	i = err;
1879 
1880 	err = -ENOMEM;
1881 	lo->tag_set.ops = &loop_mq_ops;
1882 	lo->tag_set.nr_hw_queues = 1;
1883 	lo->tag_set.queue_depth = 128;
1884 	lo->tag_set.numa_node = NUMA_NO_NODE;
1885 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1886 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1887 	lo->tag_set.driver_data = lo;
1888 
1889 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1890 	if (err)
1891 		goto out_free_idr;
1892 
1893 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1894 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1895 		err = PTR_ERR(lo->lo_queue);
1896 		goto out_cleanup_tags;
1897 	}
1898 	lo->lo_queue->queuedata = lo;
1899 
1900 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1901 
1902 	/*
1903 	 * By default, we do buffer IO, so it doesn't make sense to enable
1904 	 * merge because the I/O submitted to backing file is handled page by
1905 	 * page. For directio mode, merge does help to dispatch bigger request
1906 	 * to underlayer disk. We will enable merge once directio is enabled.
1907 	 */
1908 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1909 
1910 	err = -ENOMEM;
1911 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1912 	if (!disk)
1913 		goto out_free_queue;
1914 
1915 	/*
1916 	 * Disable partition scanning by default. The in-kernel partition
1917 	 * scanning can be requested individually per-device during its
1918 	 * setup. Userspace can always add and remove partitions from all
1919 	 * devices. The needed partition minors are allocated from the
1920 	 * extended minor space, the main loop device numbers will continue
1921 	 * to match the loop minors, regardless of the number of partitions
1922 	 * used.
1923 	 *
1924 	 * If max_part is given, partition scanning is globally enabled for
1925 	 * all loop devices. The minors for the main loop devices will be
1926 	 * multiples of max_part.
1927 	 *
1928 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1929 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1930 	 * complicated, are too static, inflexible and may surprise
1931 	 * userspace tools. Parameters like this in general should be avoided.
1932 	 */
1933 	if (!part_shift)
1934 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1935 	disk->flags |= GENHD_FL_EXT_DEVT;
1936 	atomic_set(&lo->lo_refcnt, 0);
1937 	lo->lo_number		= i;
1938 	spin_lock_init(&lo->lo_lock);
1939 	disk->major		= LOOP_MAJOR;
1940 	disk->first_minor	= i << part_shift;
1941 	disk->fops		= &lo_fops;
1942 	disk->private_data	= lo;
1943 	disk->queue		= lo->lo_queue;
1944 	sprintf(disk->disk_name, "loop%d", i);
1945 	add_disk(disk);
1946 	*l = lo;
1947 	return lo->lo_number;
1948 
1949 out_free_queue:
1950 	blk_cleanup_queue(lo->lo_queue);
1951 out_cleanup_tags:
1952 	blk_mq_free_tag_set(&lo->tag_set);
1953 out_free_idr:
1954 	idr_remove(&loop_index_idr, i);
1955 out_free_dev:
1956 	kfree(lo);
1957 out:
1958 	return err;
1959 }
1960 
1961 static void loop_remove(struct loop_device *lo)
1962 {
1963 	del_gendisk(lo->lo_disk);
1964 	blk_cleanup_queue(lo->lo_queue);
1965 	blk_mq_free_tag_set(&lo->tag_set);
1966 	put_disk(lo->lo_disk);
1967 	kfree(lo);
1968 }
1969 
1970 static int find_free_cb(int id, void *ptr, void *data)
1971 {
1972 	struct loop_device *lo = ptr;
1973 	struct loop_device **l = data;
1974 
1975 	if (lo->lo_state == Lo_unbound) {
1976 		*l = lo;
1977 		return 1;
1978 	}
1979 	return 0;
1980 }
1981 
1982 static int loop_lookup(struct loop_device **l, int i)
1983 {
1984 	struct loop_device *lo;
1985 	int ret = -ENODEV;
1986 
1987 	if (i < 0) {
1988 		int err;
1989 
1990 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1991 		if (err == 1) {
1992 			*l = lo;
1993 			ret = lo->lo_number;
1994 		}
1995 		goto out;
1996 	}
1997 
1998 	/* lookup and return a specific i */
1999 	lo = idr_find(&loop_index_idr, i);
2000 	if (lo) {
2001 		*l = lo;
2002 		ret = lo->lo_number;
2003 	}
2004 out:
2005 	return ret;
2006 }
2007 
2008 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2009 {
2010 	struct loop_device *lo;
2011 	struct kobject *kobj;
2012 	int err;
2013 
2014 	mutex_lock(&loop_ctl_mutex);
2015 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2016 	if (err < 0)
2017 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2018 	if (err < 0)
2019 		kobj = NULL;
2020 	else
2021 		kobj = get_disk_and_module(lo->lo_disk);
2022 	mutex_unlock(&loop_ctl_mutex);
2023 
2024 	*part = 0;
2025 	return kobj;
2026 }
2027 
2028 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2029 			       unsigned long parm)
2030 {
2031 	struct loop_device *lo;
2032 	int ret;
2033 
2034 	ret = mutex_lock_killable(&loop_ctl_mutex);
2035 	if (ret)
2036 		return ret;
2037 
2038 	ret = -ENOSYS;
2039 	switch (cmd) {
2040 	case LOOP_CTL_ADD:
2041 		ret = loop_lookup(&lo, parm);
2042 		if (ret >= 0) {
2043 			ret = -EEXIST;
2044 			break;
2045 		}
2046 		ret = loop_add(&lo, parm);
2047 		break;
2048 	case LOOP_CTL_REMOVE:
2049 		ret = loop_lookup(&lo, parm);
2050 		if (ret < 0)
2051 			break;
2052 		if (lo->lo_state != Lo_unbound) {
2053 			ret = -EBUSY;
2054 			mutex_unlock(&loop_ctl_mutex);
2055 			break;
2056 		}
2057 		if (atomic_read(&lo->lo_refcnt) > 0) {
2058 			ret = -EBUSY;
2059 			mutex_unlock(&loop_ctl_mutex);
2060 			break;
2061 		}
2062 		lo->lo_disk->private_data = NULL;
2063 		idr_remove(&loop_index_idr, lo->lo_number);
2064 		loop_remove(lo);
2065 		break;
2066 	case LOOP_CTL_GET_FREE:
2067 		ret = loop_lookup(&lo, -1);
2068 		if (ret >= 0)
2069 			break;
2070 		ret = loop_add(&lo, -1);
2071 	}
2072 	mutex_unlock(&loop_ctl_mutex);
2073 
2074 	return ret;
2075 }
2076 
2077 static const struct file_operations loop_ctl_fops = {
2078 	.open		= nonseekable_open,
2079 	.unlocked_ioctl	= loop_control_ioctl,
2080 	.compat_ioctl	= loop_control_ioctl,
2081 	.owner		= THIS_MODULE,
2082 	.llseek		= noop_llseek,
2083 };
2084 
2085 static struct miscdevice loop_misc = {
2086 	.minor		= LOOP_CTRL_MINOR,
2087 	.name		= "loop-control",
2088 	.fops		= &loop_ctl_fops,
2089 };
2090 
2091 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2092 MODULE_ALIAS("devname:loop-control");
2093 
2094 static int __init loop_init(void)
2095 {
2096 	int i, nr;
2097 	unsigned long range;
2098 	struct loop_device *lo;
2099 	int err;
2100 
2101 	part_shift = 0;
2102 	if (max_part > 0) {
2103 		part_shift = fls(max_part);
2104 
2105 		/*
2106 		 * Adjust max_part according to part_shift as it is exported
2107 		 * to user space so that user can decide correct minor number
2108 		 * if [s]he want to create more devices.
2109 		 *
2110 		 * Note that -1 is required because partition 0 is reserved
2111 		 * for the whole disk.
2112 		 */
2113 		max_part = (1UL << part_shift) - 1;
2114 	}
2115 
2116 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2117 		err = -EINVAL;
2118 		goto err_out;
2119 	}
2120 
2121 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2122 		err = -EINVAL;
2123 		goto err_out;
2124 	}
2125 
2126 	/*
2127 	 * If max_loop is specified, create that many devices upfront.
2128 	 * This also becomes a hard limit. If max_loop is not specified,
2129 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2130 	 * init time. Loop devices can be requested on-demand with the
2131 	 * /dev/loop-control interface, or be instantiated by accessing
2132 	 * a 'dead' device node.
2133 	 */
2134 	if (max_loop) {
2135 		nr = max_loop;
2136 		range = max_loop << part_shift;
2137 	} else {
2138 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2139 		range = 1UL << MINORBITS;
2140 	}
2141 
2142 	err = misc_register(&loop_misc);
2143 	if (err < 0)
2144 		goto err_out;
2145 
2146 
2147 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2148 		err = -EIO;
2149 		goto misc_out;
2150 	}
2151 
2152 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2153 				  THIS_MODULE, loop_probe, NULL, NULL);
2154 
2155 	/* pre-create number of devices given by config or max_loop */
2156 	mutex_lock(&loop_ctl_mutex);
2157 	for (i = 0; i < nr; i++)
2158 		loop_add(&lo, i);
2159 	mutex_unlock(&loop_ctl_mutex);
2160 
2161 	printk(KERN_INFO "loop: module loaded\n");
2162 	return 0;
2163 
2164 misc_out:
2165 	misc_deregister(&loop_misc);
2166 err_out:
2167 	return err;
2168 }
2169 
2170 static int loop_exit_cb(int id, void *ptr, void *data)
2171 {
2172 	struct loop_device *lo = ptr;
2173 
2174 	loop_remove(lo);
2175 	return 0;
2176 }
2177 
2178 static void __exit loop_exit(void)
2179 {
2180 	unsigned long range;
2181 
2182 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2183 
2184 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2185 	idr_destroy(&loop_index_idr);
2186 
2187 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2188 	unregister_blkdev(LOOP_MAJOR, "loop");
2189 
2190 	misc_deregister(&loop_misc);
2191 }
2192 
2193 module_init(loop_init);
2194 module_exit(loop_exit);
2195 
2196 #ifndef MODULE
2197 static int __init max_loop_setup(char *str)
2198 {
2199 	max_loop = simple_strtol(str, NULL, 0);
2200 	return 1;
2201 }
2202 
2203 __setup("max_loop=", max_loop_setup);
2204 #endif
2205