xref: /openbmc/linux/drivers/block/loop.c (revision 40326d8a)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <linux/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane applications should be PAGE_SIZE aligned
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio) {
217 		queue_flag_clear_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
218 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
219 	} else {
220 		queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
222 	}
223 	blk_mq_unfreeze_queue(lo->lo_queue);
224 }
225 
226 static int
227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
228 {
229 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
230 	sector_t x = (sector_t)size;
231 	struct block_device *bdev = lo->lo_device;
232 
233 	if (unlikely((loff_t)x != size))
234 		return -EFBIG;
235 	if (lo->lo_offset != offset)
236 		lo->lo_offset = offset;
237 	if (lo->lo_sizelimit != sizelimit)
238 		lo->lo_sizelimit = sizelimit;
239 	set_capacity(lo->lo_disk, x);
240 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
241 	/* let user-space know about the new size */
242 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
243 	return 0;
244 }
245 
246 static inline int
247 lo_do_transfer(struct loop_device *lo, int cmd,
248 	       struct page *rpage, unsigned roffs,
249 	       struct page *lpage, unsigned loffs,
250 	       int size, sector_t rblock)
251 {
252 	int ret;
253 
254 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
255 	if (likely(!ret))
256 		return 0;
257 
258 	printk_ratelimited(KERN_ERR
259 		"loop: Transfer error at byte offset %llu, length %i.\n",
260 		(unsigned long long)rblock << 9, size);
261 	return ret;
262 }
263 
264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
265 {
266 	struct iov_iter i;
267 	ssize_t bw;
268 
269 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
270 
271 	file_start_write(file);
272 	bw = vfs_iter_write(file, &i, ppos, 0);
273 	file_end_write(file);
274 
275 	if (likely(bw ==  bvec->bv_len))
276 		return 0;
277 
278 	printk_ratelimited(KERN_ERR
279 		"loop: Write error at byte offset %llu, length %i.\n",
280 		(unsigned long long)*ppos, bvec->bv_len);
281 	if (bw >= 0)
282 		bw = -EIO;
283 	return bw;
284 }
285 
286 static int lo_write_simple(struct loop_device *lo, struct request *rq,
287 		loff_t pos)
288 {
289 	struct bio_vec bvec;
290 	struct req_iterator iter;
291 	int ret = 0;
292 
293 	rq_for_each_segment(bvec, rq, iter) {
294 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
295 		if (ret < 0)
296 			break;
297 		cond_resched();
298 	}
299 
300 	return ret;
301 }
302 
303 /*
304  * This is the slow, transforming version that needs to double buffer the
305  * data as it cannot do the transformations in place without having direct
306  * access to the destination pages of the backing file.
307  */
308 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
309 		loff_t pos)
310 {
311 	struct bio_vec bvec, b;
312 	struct req_iterator iter;
313 	struct page *page;
314 	int ret = 0;
315 
316 	page = alloc_page(GFP_NOIO);
317 	if (unlikely(!page))
318 		return -ENOMEM;
319 
320 	rq_for_each_segment(bvec, rq, iter) {
321 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
322 			bvec.bv_offset, bvec.bv_len, pos >> 9);
323 		if (unlikely(ret))
324 			break;
325 
326 		b.bv_page = page;
327 		b.bv_offset = 0;
328 		b.bv_len = bvec.bv_len;
329 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
330 		if (ret < 0)
331 			break;
332 	}
333 
334 	__free_page(page);
335 	return ret;
336 }
337 
338 static int lo_read_simple(struct loop_device *lo, struct request *rq,
339 		loff_t pos)
340 {
341 	struct bio_vec bvec;
342 	struct req_iterator iter;
343 	struct iov_iter i;
344 	ssize_t len;
345 
346 	rq_for_each_segment(bvec, rq, iter) {
347 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
348 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
349 		if (len < 0)
350 			return len;
351 
352 		flush_dcache_page(bvec.bv_page);
353 
354 		if (len != bvec.bv_len) {
355 			struct bio *bio;
356 
357 			__rq_for_each_bio(bio, rq)
358 				zero_fill_bio(bio);
359 			break;
360 		}
361 		cond_resched();
362 	}
363 
364 	return 0;
365 }
366 
367 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
368 		loff_t pos)
369 {
370 	struct bio_vec bvec, b;
371 	struct req_iterator iter;
372 	struct iov_iter i;
373 	struct page *page;
374 	ssize_t len;
375 	int ret = 0;
376 
377 	page = alloc_page(GFP_NOIO);
378 	if (unlikely(!page))
379 		return -ENOMEM;
380 
381 	rq_for_each_segment(bvec, rq, iter) {
382 		loff_t offset = pos;
383 
384 		b.bv_page = page;
385 		b.bv_offset = 0;
386 		b.bv_len = bvec.bv_len;
387 
388 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
389 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
390 		if (len < 0) {
391 			ret = len;
392 			goto out_free_page;
393 		}
394 
395 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
396 			bvec.bv_offset, len, offset >> 9);
397 		if (ret)
398 			goto out_free_page;
399 
400 		flush_dcache_page(bvec.bv_page);
401 
402 		if (len != bvec.bv_len) {
403 			struct bio *bio;
404 
405 			__rq_for_each_bio(bio, rq)
406 				zero_fill_bio(bio);
407 			break;
408 		}
409 	}
410 
411 	ret = 0;
412 out_free_page:
413 	__free_page(page);
414 	return ret;
415 }
416 
417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
418 {
419 	/*
420 	 * We use punch hole to reclaim the free space used by the
421 	 * image a.k.a. discard. However we do not support discard if
422 	 * encryption is enabled, because it may give an attacker
423 	 * useful information.
424 	 */
425 	struct file *file = lo->lo_backing_file;
426 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
427 	int ret;
428 
429 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
430 		ret = -EOPNOTSUPP;
431 		goto out;
432 	}
433 
434 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
435 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
436 		ret = -EIO;
437  out:
438 	return ret;
439 }
440 
441 static int lo_req_flush(struct loop_device *lo, struct request *rq)
442 {
443 	struct file *file = lo->lo_backing_file;
444 	int ret = vfs_fsync(file, 0);
445 	if (unlikely(ret && ret != -EINVAL))
446 		ret = -EIO;
447 
448 	return ret;
449 }
450 
451 static void lo_complete_rq(struct request *rq)
452 {
453 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
454 
455 	if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
456 		     cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
457 		struct bio *bio = cmd->rq->bio;
458 
459 		bio_advance(bio, cmd->ret);
460 		zero_fill_bio(bio);
461 	}
462 
463 	blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
464 }
465 
466 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
467 {
468 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
469 
470 	kfree(cmd->bvec);
471 	cmd->bvec = NULL;
472 	cmd->ret = ret;
473 	blk_mq_complete_request(cmd->rq);
474 }
475 
476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
477 		     loff_t pos, bool rw)
478 {
479 	struct iov_iter iter;
480 	struct bio_vec *bvec;
481 	struct request *rq = cmd->rq;
482 	struct bio *bio = rq->bio;
483 	struct file *file = lo->lo_backing_file;
484 	unsigned int offset;
485 	int segments = 0;
486 	int ret;
487 
488 	if (rq->bio != rq->biotail) {
489 		struct req_iterator iter;
490 		struct bio_vec tmp;
491 
492 		__rq_for_each_bio(bio, rq)
493 			segments += bio_segments(bio);
494 		bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO);
495 		if (!bvec)
496 			return -EIO;
497 		cmd->bvec = bvec;
498 
499 		/*
500 		 * The bios of the request may be started from the middle of
501 		 * the 'bvec' because of bio splitting, so we can't directly
502 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
503 		 * API will take care of all details for us.
504 		 */
505 		rq_for_each_segment(tmp, rq, iter) {
506 			*bvec = tmp;
507 			bvec++;
508 		}
509 		bvec = cmd->bvec;
510 		offset = 0;
511 	} else {
512 		/*
513 		 * Same here, this bio may be started from the middle of the
514 		 * 'bvec' because of bio splitting, so offset from the bvec
515 		 * must be passed to iov iterator
516 		 */
517 		offset = bio->bi_iter.bi_bvec_done;
518 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
519 		segments = bio_segments(bio);
520 	}
521 
522 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
523 		      segments, blk_rq_bytes(rq));
524 	iter.iov_offset = offset;
525 
526 	cmd->iocb.ki_pos = pos;
527 	cmd->iocb.ki_filp = file;
528 	cmd->iocb.ki_complete = lo_rw_aio_complete;
529 	cmd->iocb.ki_flags = IOCB_DIRECT;
530 
531 	if (rw == WRITE)
532 		ret = call_write_iter(file, &cmd->iocb, &iter);
533 	else
534 		ret = call_read_iter(file, &cmd->iocb, &iter);
535 
536 	if (ret != -EIOCBQUEUED)
537 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
538 	return 0;
539 }
540 
541 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
542 {
543 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
544 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
545 
546 	/*
547 	 * lo_write_simple and lo_read_simple should have been covered
548 	 * by io submit style function like lo_rw_aio(), one blocker
549 	 * is that lo_read_simple() need to call flush_dcache_page after
550 	 * the page is written from kernel, and it isn't easy to handle
551 	 * this in io submit style function which submits all segments
552 	 * of the req at one time. And direct read IO doesn't need to
553 	 * run flush_dcache_page().
554 	 */
555 	switch (req_op(rq)) {
556 	case REQ_OP_FLUSH:
557 		return lo_req_flush(lo, rq);
558 	case REQ_OP_DISCARD:
559 	case REQ_OP_WRITE_ZEROES:
560 		return lo_discard(lo, rq, pos);
561 	case REQ_OP_WRITE:
562 		if (lo->transfer)
563 			return lo_write_transfer(lo, rq, pos);
564 		else if (cmd->use_aio)
565 			return lo_rw_aio(lo, cmd, pos, WRITE);
566 		else
567 			return lo_write_simple(lo, rq, pos);
568 	case REQ_OP_READ:
569 		if (lo->transfer)
570 			return lo_read_transfer(lo, rq, pos);
571 		else if (cmd->use_aio)
572 			return lo_rw_aio(lo, cmd, pos, READ);
573 		else
574 			return lo_read_simple(lo, rq, pos);
575 	default:
576 		WARN_ON_ONCE(1);
577 		return -EIO;
578 		break;
579 	}
580 }
581 
582 static inline void loop_update_dio(struct loop_device *lo)
583 {
584 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
585 			lo->use_dio);
586 }
587 
588 static void loop_reread_partitions(struct loop_device *lo,
589 				   struct block_device *bdev)
590 {
591 	int rc;
592 
593 	/*
594 	 * bd_mutex has been held already in release path, so don't
595 	 * acquire it if this function is called in such case.
596 	 *
597 	 * If the reread partition isn't from release path, lo_refcnt
598 	 * must be at least one and it can only become zero when the
599 	 * current holder is released.
600 	 */
601 	if (!atomic_read(&lo->lo_refcnt))
602 		rc = __blkdev_reread_part(bdev);
603 	else
604 		rc = blkdev_reread_part(bdev);
605 	if (rc)
606 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
607 			__func__, lo->lo_number, lo->lo_file_name, rc);
608 }
609 
610 /*
611  * loop_change_fd switched the backing store of a loopback device to
612  * a new file. This is useful for operating system installers to free up
613  * the original file and in High Availability environments to switch to
614  * an alternative location for the content in case of server meltdown.
615  * This can only work if the loop device is used read-only, and if the
616  * new backing store is the same size and type as the old backing store.
617  */
618 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
619 			  unsigned int arg)
620 {
621 	struct file	*file, *old_file;
622 	struct inode	*inode;
623 	int		error;
624 
625 	error = -ENXIO;
626 	if (lo->lo_state != Lo_bound)
627 		goto out;
628 
629 	/* the loop device has to be read-only */
630 	error = -EINVAL;
631 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
632 		goto out;
633 
634 	error = -EBADF;
635 	file = fget(arg);
636 	if (!file)
637 		goto out;
638 
639 	inode = file->f_mapping->host;
640 	old_file = lo->lo_backing_file;
641 
642 	error = -EINVAL;
643 
644 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
645 		goto out_putf;
646 
647 	/* size of the new backing store needs to be the same */
648 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
649 		goto out_putf;
650 
651 	/* and ... switch */
652 	blk_mq_freeze_queue(lo->lo_queue);
653 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
654 	lo->lo_backing_file = file;
655 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
656 	mapping_set_gfp_mask(file->f_mapping,
657 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
658 	loop_update_dio(lo);
659 	blk_mq_unfreeze_queue(lo->lo_queue);
660 
661 	fput(old_file);
662 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
663 		loop_reread_partitions(lo, bdev);
664 	return 0;
665 
666  out_putf:
667 	fput(file);
668  out:
669 	return error;
670 }
671 
672 static inline int is_loop_device(struct file *file)
673 {
674 	struct inode *i = file->f_mapping->host;
675 
676 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
677 }
678 
679 /* loop sysfs attributes */
680 
681 static ssize_t loop_attr_show(struct device *dev, char *page,
682 			      ssize_t (*callback)(struct loop_device *, char *))
683 {
684 	struct gendisk *disk = dev_to_disk(dev);
685 	struct loop_device *lo = disk->private_data;
686 
687 	return callback(lo, page);
688 }
689 
690 #define LOOP_ATTR_RO(_name)						\
691 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
692 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
693 				struct device_attribute *attr, char *b)	\
694 {									\
695 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
696 }									\
697 static struct device_attribute loop_attr_##_name =			\
698 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
699 
700 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
701 {
702 	ssize_t ret;
703 	char *p = NULL;
704 
705 	spin_lock_irq(&lo->lo_lock);
706 	if (lo->lo_backing_file)
707 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
708 	spin_unlock_irq(&lo->lo_lock);
709 
710 	if (IS_ERR_OR_NULL(p))
711 		ret = PTR_ERR(p);
712 	else {
713 		ret = strlen(p);
714 		memmove(buf, p, ret);
715 		buf[ret++] = '\n';
716 		buf[ret] = 0;
717 	}
718 
719 	return ret;
720 }
721 
722 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
723 {
724 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
725 }
726 
727 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
728 {
729 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
730 }
731 
732 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
733 {
734 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
735 
736 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
737 }
738 
739 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
740 {
741 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
742 
743 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
744 }
745 
746 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
747 {
748 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
749 
750 	return sprintf(buf, "%s\n", dio ? "1" : "0");
751 }
752 
753 LOOP_ATTR_RO(backing_file);
754 LOOP_ATTR_RO(offset);
755 LOOP_ATTR_RO(sizelimit);
756 LOOP_ATTR_RO(autoclear);
757 LOOP_ATTR_RO(partscan);
758 LOOP_ATTR_RO(dio);
759 
760 static struct attribute *loop_attrs[] = {
761 	&loop_attr_backing_file.attr,
762 	&loop_attr_offset.attr,
763 	&loop_attr_sizelimit.attr,
764 	&loop_attr_autoclear.attr,
765 	&loop_attr_partscan.attr,
766 	&loop_attr_dio.attr,
767 	NULL,
768 };
769 
770 static struct attribute_group loop_attribute_group = {
771 	.name = "loop",
772 	.attrs= loop_attrs,
773 };
774 
775 static int loop_sysfs_init(struct loop_device *lo)
776 {
777 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
778 				  &loop_attribute_group);
779 }
780 
781 static void loop_sysfs_exit(struct loop_device *lo)
782 {
783 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
784 			   &loop_attribute_group);
785 }
786 
787 static void loop_config_discard(struct loop_device *lo)
788 {
789 	struct file *file = lo->lo_backing_file;
790 	struct inode *inode = file->f_mapping->host;
791 	struct request_queue *q = lo->lo_queue;
792 
793 	/*
794 	 * We use punch hole to reclaim the free space used by the
795 	 * image a.k.a. discard. However we do not support discard if
796 	 * encryption is enabled, because it may give an attacker
797 	 * useful information.
798 	 */
799 	if ((!file->f_op->fallocate) ||
800 	    lo->lo_encrypt_key_size) {
801 		q->limits.discard_granularity = 0;
802 		q->limits.discard_alignment = 0;
803 		blk_queue_max_discard_sectors(q, 0);
804 		blk_queue_max_write_zeroes_sectors(q, 0);
805 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
806 		return;
807 	}
808 
809 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
810 	q->limits.discard_alignment = 0;
811 
812 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
813 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
814 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
815 }
816 
817 static void loop_unprepare_queue(struct loop_device *lo)
818 {
819 	kthread_flush_worker(&lo->worker);
820 	kthread_stop(lo->worker_task);
821 }
822 
823 static int loop_kthread_worker_fn(void *worker_ptr)
824 {
825 	current->flags |= PF_LESS_THROTTLE;
826 	return kthread_worker_fn(worker_ptr);
827 }
828 
829 static int loop_prepare_queue(struct loop_device *lo)
830 {
831 	kthread_init_worker(&lo->worker);
832 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
833 			&lo->worker, "loop%d", lo->lo_number);
834 	if (IS_ERR(lo->worker_task))
835 		return -ENOMEM;
836 	set_user_nice(lo->worker_task, MIN_NICE);
837 	return 0;
838 }
839 
840 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
841 		       struct block_device *bdev, unsigned int arg)
842 {
843 	struct file	*file, *f;
844 	struct inode	*inode;
845 	struct address_space *mapping;
846 	int		lo_flags = 0;
847 	int		error;
848 	loff_t		size;
849 
850 	/* This is safe, since we have a reference from open(). */
851 	__module_get(THIS_MODULE);
852 
853 	error = -EBADF;
854 	file = fget(arg);
855 	if (!file)
856 		goto out;
857 
858 	error = -EBUSY;
859 	if (lo->lo_state != Lo_unbound)
860 		goto out_putf;
861 
862 	/* Avoid recursion */
863 	f = file;
864 	while (is_loop_device(f)) {
865 		struct loop_device *l;
866 
867 		if (f->f_mapping->host->i_bdev == bdev)
868 			goto out_putf;
869 
870 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
871 		if (l->lo_state == Lo_unbound) {
872 			error = -EINVAL;
873 			goto out_putf;
874 		}
875 		f = l->lo_backing_file;
876 	}
877 
878 	mapping = file->f_mapping;
879 	inode = mapping->host;
880 
881 	error = -EINVAL;
882 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
883 		goto out_putf;
884 
885 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
886 	    !file->f_op->write_iter)
887 		lo_flags |= LO_FLAGS_READ_ONLY;
888 
889 	error = -EFBIG;
890 	size = get_loop_size(lo, file);
891 	if ((loff_t)(sector_t)size != size)
892 		goto out_putf;
893 	error = loop_prepare_queue(lo);
894 	if (error)
895 		goto out_putf;
896 
897 	error = 0;
898 
899 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
900 
901 	lo->use_dio = false;
902 	lo->lo_device = bdev;
903 	lo->lo_flags = lo_flags;
904 	lo->lo_backing_file = file;
905 	lo->transfer = NULL;
906 	lo->ioctl = NULL;
907 	lo->lo_sizelimit = 0;
908 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
909 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
910 
911 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
912 		blk_queue_write_cache(lo->lo_queue, true, false);
913 
914 	loop_update_dio(lo);
915 	set_capacity(lo->lo_disk, size);
916 	bd_set_size(bdev, size << 9);
917 	loop_sysfs_init(lo);
918 	/* let user-space know about the new size */
919 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
920 
921 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
922 		      block_size(inode->i_bdev) : PAGE_SIZE);
923 
924 	lo->lo_state = Lo_bound;
925 	if (part_shift)
926 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
927 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
928 		loop_reread_partitions(lo, bdev);
929 
930 	/* Grab the block_device to prevent its destruction after we
931 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
932 	 */
933 	bdgrab(bdev);
934 	return 0;
935 
936  out_putf:
937 	fput(file);
938  out:
939 	/* This is safe: open() is still holding a reference. */
940 	module_put(THIS_MODULE);
941 	return error;
942 }
943 
944 static int
945 loop_release_xfer(struct loop_device *lo)
946 {
947 	int err = 0;
948 	struct loop_func_table *xfer = lo->lo_encryption;
949 
950 	if (xfer) {
951 		if (xfer->release)
952 			err = xfer->release(lo);
953 		lo->transfer = NULL;
954 		lo->lo_encryption = NULL;
955 		module_put(xfer->owner);
956 	}
957 	return err;
958 }
959 
960 static int
961 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
962 	       const struct loop_info64 *i)
963 {
964 	int err = 0;
965 
966 	if (xfer) {
967 		struct module *owner = xfer->owner;
968 
969 		if (!try_module_get(owner))
970 			return -EINVAL;
971 		if (xfer->init)
972 			err = xfer->init(lo, i);
973 		if (err)
974 			module_put(owner);
975 		else
976 			lo->lo_encryption = xfer;
977 	}
978 	return err;
979 }
980 
981 static int loop_clr_fd(struct loop_device *lo)
982 {
983 	struct file *filp = lo->lo_backing_file;
984 	gfp_t gfp = lo->old_gfp_mask;
985 	struct block_device *bdev = lo->lo_device;
986 
987 	if (lo->lo_state != Lo_bound)
988 		return -ENXIO;
989 
990 	/*
991 	 * If we've explicitly asked to tear down the loop device,
992 	 * and it has an elevated reference count, set it for auto-teardown when
993 	 * the last reference goes away. This stops $!~#$@ udev from
994 	 * preventing teardown because it decided that it needs to run blkid on
995 	 * the loopback device whenever they appear. xfstests is notorious for
996 	 * failing tests because blkid via udev races with a losetup
997 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
998 	 * command to fail with EBUSY.
999 	 */
1000 	if (atomic_read(&lo->lo_refcnt) > 1) {
1001 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1002 		mutex_unlock(&lo->lo_ctl_mutex);
1003 		return 0;
1004 	}
1005 
1006 	if (filp == NULL)
1007 		return -EINVAL;
1008 
1009 	/* freeze request queue during the transition */
1010 	blk_mq_freeze_queue(lo->lo_queue);
1011 
1012 	spin_lock_irq(&lo->lo_lock);
1013 	lo->lo_state = Lo_rundown;
1014 	lo->lo_backing_file = NULL;
1015 	spin_unlock_irq(&lo->lo_lock);
1016 
1017 	loop_release_xfer(lo);
1018 	lo->transfer = NULL;
1019 	lo->ioctl = NULL;
1020 	lo->lo_device = NULL;
1021 	lo->lo_encryption = NULL;
1022 	lo->lo_offset = 0;
1023 	lo->lo_sizelimit = 0;
1024 	lo->lo_encrypt_key_size = 0;
1025 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1026 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1027 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1028 	blk_queue_logical_block_size(lo->lo_queue, 512);
1029 	if (bdev) {
1030 		bdput(bdev);
1031 		invalidate_bdev(bdev);
1032 	}
1033 	set_capacity(lo->lo_disk, 0);
1034 	loop_sysfs_exit(lo);
1035 	if (bdev) {
1036 		bd_set_size(bdev, 0);
1037 		/* let user-space know about this change */
1038 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1039 	}
1040 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1041 	lo->lo_state = Lo_unbound;
1042 	/* This is safe: open() is still holding a reference. */
1043 	module_put(THIS_MODULE);
1044 	blk_mq_unfreeze_queue(lo->lo_queue);
1045 
1046 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1047 		loop_reread_partitions(lo, bdev);
1048 	lo->lo_flags = 0;
1049 	if (!part_shift)
1050 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1051 	loop_unprepare_queue(lo);
1052 	mutex_unlock(&lo->lo_ctl_mutex);
1053 	/*
1054 	 * Need not hold lo_ctl_mutex to fput backing file.
1055 	 * Calling fput holding lo_ctl_mutex triggers a circular
1056 	 * lock dependency possibility warning as fput can take
1057 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1058 	 */
1059 	fput(filp);
1060 	return 0;
1061 }
1062 
1063 static int
1064 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1065 {
1066 	int err;
1067 	struct loop_func_table *xfer;
1068 	kuid_t uid = current_uid();
1069 
1070 	if (lo->lo_encrypt_key_size &&
1071 	    !uid_eq(lo->lo_key_owner, uid) &&
1072 	    !capable(CAP_SYS_ADMIN))
1073 		return -EPERM;
1074 	if (lo->lo_state != Lo_bound)
1075 		return -ENXIO;
1076 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1077 		return -EINVAL;
1078 
1079 	/* I/O need to be drained during transfer transition */
1080 	blk_mq_freeze_queue(lo->lo_queue);
1081 
1082 	err = loop_release_xfer(lo);
1083 	if (err)
1084 		goto exit;
1085 
1086 	if (info->lo_encrypt_type) {
1087 		unsigned int type = info->lo_encrypt_type;
1088 
1089 		if (type >= MAX_LO_CRYPT)
1090 			return -EINVAL;
1091 		xfer = xfer_funcs[type];
1092 		if (xfer == NULL)
1093 			return -EINVAL;
1094 	} else
1095 		xfer = NULL;
1096 
1097 	err = loop_init_xfer(lo, xfer, info);
1098 	if (err)
1099 		goto exit;
1100 
1101 	if (lo->lo_offset != info->lo_offset ||
1102 	    lo->lo_sizelimit != info->lo_sizelimit) {
1103 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1104 			err = -EFBIG;
1105 			goto exit;
1106 		}
1107 	}
1108 
1109 	loop_config_discard(lo);
1110 
1111 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1112 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1113 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1114 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1115 
1116 	if (!xfer)
1117 		xfer = &none_funcs;
1118 	lo->transfer = xfer->transfer;
1119 	lo->ioctl = xfer->ioctl;
1120 
1121 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1122 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1123 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1124 
1125 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1126 	lo->lo_init[0] = info->lo_init[0];
1127 	lo->lo_init[1] = info->lo_init[1];
1128 	if (info->lo_encrypt_key_size) {
1129 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1130 		       info->lo_encrypt_key_size);
1131 		lo->lo_key_owner = uid;
1132 	}
1133 
1134 	/* update dio if lo_offset or transfer is changed */
1135 	__loop_update_dio(lo, lo->use_dio);
1136 
1137  exit:
1138 	blk_mq_unfreeze_queue(lo->lo_queue);
1139 
1140 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1141 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1142 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1143 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1144 		loop_reread_partitions(lo, lo->lo_device);
1145 	}
1146 
1147 	return err;
1148 }
1149 
1150 static int
1151 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1152 {
1153 	struct file *file = lo->lo_backing_file;
1154 	struct kstat stat;
1155 	int error;
1156 
1157 	if (lo->lo_state != Lo_bound)
1158 		return -ENXIO;
1159 	error = vfs_getattr(&file->f_path, &stat,
1160 			    STATX_INO, AT_STATX_SYNC_AS_STAT);
1161 	if (error)
1162 		return error;
1163 	memset(info, 0, sizeof(*info));
1164 	info->lo_number = lo->lo_number;
1165 	info->lo_device = huge_encode_dev(stat.dev);
1166 	info->lo_inode = stat.ino;
1167 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1168 	info->lo_offset = lo->lo_offset;
1169 	info->lo_sizelimit = lo->lo_sizelimit;
1170 	info->lo_flags = lo->lo_flags;
1171 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1172 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1173 	info->lo_encrypt_type =
1174 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1175 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1176 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1177 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1178 		       lo->lo_encrypt_key_size);
1179 	}
1180 	return 0;
1181 }
1182 
1183 static void
1184 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1185 {
1186 	memset(info64, 0, sizeof(*info64));
1187 	info64->lo_number = info->lo_number;
1188 	info64->lo_device = info->lo_device;
1189 	info64->lo_inode = info->lo_inode;
1190 	info64->lo_rdevice = info->lo_rdevice;
1191 	info64->lo_offset = info->lo_offset;
1192 	info64->lo_sizelimit = 0;
1193 	info64->lo_encrypt_type = info->lo_encrypt_type;
1194 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1195 	info64->lo_flags = info->lo_flags;
1196 	info64->lo_init[0] = info->lo_init[0];
1197 	info64->lo_init[1] = info->lo_init[1];
1198 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1199 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1200 	else
1201 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1202 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1203 }
1204 
1205 static int
1206 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1207 {
1208 	memset(info, 0, sizeof(*info));
1209 	info->lo_number = info64->lo_number;
1210 	info->lo_device = info64->lo_device;
1211 	info->lo_inode = info64->lo_inode;
1212 	info->lo_rdevice = info64->lo_rdevice;
1213 	info->lo_offset = info64->lo_offset;
1214 	info->lo_encrypt_type = info64->lo_encrypt_type;
1215 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1216 	info->lo_flags = info64->lo_flags;
1217 	info->lo_init[0] = info64->lo_init[0];
1218 	info->lo_init[1] = info64->lo_init[1];
1219 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1220 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1221 	else
1222 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1223 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1224 
1225 	/* error in case values were truncated */
1226 	if (info->lo_device != info64->lo_device ||
1227 	    info->lo_rdevice != info64->lo_rdevice ||
1228 	    info->lo_inode != info64->lo_inode ||
1229 	    info->lo_offset != info64->lo_offset)
1230 		return -EOVERFLOW;
1231 
1232 	return 0;
1233 }
1234 
1235 static int
1236 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1237 {
1238 	struct loop_info info;
1239 	struct loop_info64 info64;
1240 
1241 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1242 		return -EFAULT;
1243 	loop_info64_from_old(&info, &info64);
1244 	return loop_set_status(lo, &info64);
1245 }
1246 
1247 static int
1248 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1249 {
1250 	struct loop_info64 info64;
1251 
1252 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1253 		return -EFAULT;
1254 	return loop_set_status(lo, &info64);
1255 }
1256 
1257 static int
1258 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1259 	struct loop_info info;
1260 	struct loop_info64 info64;
1261 	int err = 0;
1262 
1263 	if (!arg)
1264 		err = -EINVAL;
1265 	if (!err)
1266 		err = loop_get_status(lo, &info64);
1267 	if (!err)
1268 		err = loop_info64_to_old(&info64, &info);
1269 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1270 		err = -EFAULT;
1271 
1272 	return err;
1273 }
1274 
1275 static int
1276 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1277 	struct loop_info64 info64;
1278 	int err = 0;
1279 
1280 	if (!arg)
1281 		err = -EINVAL;
1282 	if (!err)
1283 		err = loop_get_status(lo, &info64);
1284 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1285 		err = -EFAULT;
1286 
1287 	return err;
1288 }
1289 
1290 static int loop_set_capacity(struct loop_device *lo)
1291 {
1292 	if (unlikely(lo->lo_state != Lo_bound))
1293 		return -ENXIO;
1294 
1295 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1296 }
1297 
1298 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1299 {
1300 	int error = -ENXIO;
1301 	if (lo->lo_state != Lo_bound)
1302 		goto out;
1303 
1304 	__loop_update_dio(lo, !!arg);
1305 	if (lo->use_dio == !!arg)
1306 		return 0;
1307 	error = -EINVAL;
1308  out:
1309 	return error;
1310 }
1311 
1312 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1313 {
1314 	if (lo->lo_state != Lo_bound)
1315 		return -ENXIO;
1316 
1317 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1318 		return -EINVAL;
1319 
1320 	blk_mq_freeze_queue(lo->lo_queue);
1321 
1322 	blk_queue_logical_block_size(lo->lo_queue, arg);
1323 	loop_update_dio(lo);
1324 
1325 	blk_mq_unfreeze_queue(lo->lo_queue);
1326 
1327 	return 0;
1328 }
1329 
1330 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1331 	unsigned int cmd, unsigned long arg)
1332 {
1333 	struct loop_device *lo = bdev->bd_disk->private_data;
1334 	int err;
1335 
1336 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1337 	switch (cmd) {
1338 	case LOOP_SET_FD:
1339 		err = loop_set_fd(lo, mode, bdev, arg);
1340 		break;
1341 	case LOOP_CHANGE_FD:
1342 		err = loop_change_fd(lo, bdev, arg);
1343 		break;
1344 	case LOOP_CLR_FD:
1345 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1346 		err = loop_clr_fd(lo);
1347 		if (!err)
1348 			goto out_unlocked;
1349 		break;
1350 	case LOOP_SET_STATUS:
1351 		err = -EPERM;
1352 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1353 			err = loop_set_status_old(lo,
1354 					(struct loop_info __user *)arg);
1355 		break;
1356 	case LOOP_GET_STATUS:
1357 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1358 		break;
1359 	case LOOP_SET_STATUS64:
1360 		err = -EPERM;
1361 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1362 			err = loop_set_status64(lo,
1363 					(struct loop_info64 __user *) arg);
1364 		break;
1365 	case LOOP_GET_STATUS64:
1366 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1367 		break;
1368 	case LOOP_SET_CAPACITY:
1369 		err = -EPERM;
1370 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1371 			err = loop_set_capacity(lo);
1372 		break;
1373 	case LOOP_SET_DIRECT_IO:
1374 		err = -EPERM;
1375 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1376 			err = loop_set_dio(lo, arg);
1377 		break;
1378 	case LOOP_SET_BLOCK_SIZE:
1379 		err = -EPERM;
1380 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1381 			err = loop_set_block_size(lo, arg);
1382 		break;
1383 	default:
1384 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1385 	}
1386 	mutex_unlock(&lo->lo_ctl_mutex);
1387 
1388 out_unlocked:
1389 	return err;
1390 }
1391 
1392 #ifdef CONFIG_COMPAT
1393 struct compat_loop_info {
1394 	compat_int_t	lo_number;      /* ioctl r/o */
1395 	compat_dev_t	lo_device;      /* ioctl r/o */
1396 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1397 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1398 	compat_int_t	lo_offset;
1399 	compat_int_t	lo_encrypt_type;
1400 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1401 	compat_int_t	lo_flags;       /* ioctl r/o */
1402 	char		lo_name[LO_NAME_SIZE];
1403 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1404 	compat_ulong_t	lo_init[2];
1405 	char		reserved[4];
1406 };
1407 
1408 /*
1409  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1410  * - noinlined to reduce stack space usage in main part of driver
1411  */
1412 static noinline int
1413 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1414 			struct loop_info64 *info64)
1415 {
1416 	struct compat_loop_info info;
1417 
1418 	if (copy_from_user(&info, arg, sizeof(info)))
1419 		return -EFAULT;
1420 
1421 	memset(info64, 0, sizeof(*info64));
1422 	info64->lo_number = info.lo_number;
1423 	info64->lo_device = info.lo_device;
1424 	info64->lo_inode = info.lo_inode;
1425 	info64->lo_rdevice = info.lo_rdevice;
1426 	info64->lo_offset = info.lo_offset;
1427 	info64->lo_sizelimit = 0;
1428 	info64->lo_encrypt_type = info.lo_encrypt_type;
1429 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1430 	info64->lo_flags = info.lo_flags;
1431 	info64->lo_init[0] = info.lo_init[0];
1432 	info64->lo_init[1] = info.lo_init[1];
1433 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1434 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1435 	else
1436 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1437 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1438 	return 0;
1439 }
1440 
1441 /*
1442  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1443  * - noinlined to reduce stack space usage in main part of driver
1444  */
1445 static noinline int
1446 loop_info64_to_compat(const struct loop_info64 *info64,
1447 		      struct compat_loop_info __user *arg)
1448 {
1449 	struct compat_loop_info info;
1450 
1451 	memset(&info, 0, sizeof(info));
1452 	info.lo_number = info64->lo_number;
1453 	info.lo_device = info64->lo_device;
1454 	info.lo_inode = info64->lo_inode;
1455 	info.lo_rdevice = info64->lo_rdevice;
1456 	info.lo_offset = info64->lo_offset;
1457 	info.lo_encrypt_type = info64->lo_encrypt_type;
1458 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1459 	info.lo_flags = info64->lo_flags;
1460 	info.lo_init[0] = info64->lo_init[0];
1461 	info.lo_init[1] = info64->lo_init[1];
1462 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1463 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1464 	else
1465 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1466 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1467 
1468 	/* error in case values were truncated */
1469 	if (info.lo_device != info64->lo_device ||
1470 	    info.lo_rdevice != info64->lo_rdevice ||
1471 	    info.lo_inode != info64->lo_inode ||
1472 	    info.lo_offset != info64->lo_offset ||
1473 	    info.lo_init[0] != info64->lo_init[0] ||
1474 	    info.lo_init[1] != info64->lo_init[1])
1475 		return -EOVERFLOW;
1476 
1477 	if (copy_to_user(arg, &info, sizeof(info)))
1478 		return -EFAULT;
1479 	return 0;
1480 }
1481 
1482 static int
1483 loop_set_status_compat(struct loop_device *lo,
1484 		       const struct compat_loop_info __user *arg)
1485 {
1486 	struct loop_info64 info64;
1487 	int ret;
1488 
1489 	ret = loop_info64_from_compat(arg, &info64);
1490 	if (ret < 0)
1491 		return ret;
1492 	return loop_set_status(lo, &info64);
1493 }
1494 
1495 static int
1496 loop_get_status_compat(struct loop_device *lo,
1497 		       struct compat_loop_info __user *arg)
1498 {
1499 	struct loop_info64 info64;
1500 	int err = 0;
1501 
1502 	if (!arg)
1503 		err = -EINVAL;
1504 	if (!err)
1505 		err = loop_get_status(lo, &info64);
1506 	if (!err)
1507 		err = loop_info64_to_compat(&info64, arg);
1508 	return err;
1509 }
1510 
1511 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1512 			   unsigned int cmd, unsigned long arg)
1513 {
1514 	struct loop_device *lo = bdev->bd_disk->private_data;
1515 	int err;
1516 
1517 	switch(cmd) {
1518 	case LOOP_SET_STATUS:
1519 		mutex_lock(&lo->lo_ctl_mutex);
1520 		err = loop_set_status_compat(
1521 			lo, (const struct compat_loop_info __user *) arg);
1522 		mutex_unlock(&lo->lo_ctl_mutex);
1523 		break;
1524 	case LOOP_GET_STATUS:
1525 		mutex_lock(&lo->lo_ctl_mutex);
1526 		err = loop_get_status_compat(
1527 			lo, (struct compat_loop_info __user *) arg);
1528 		mutex_unlock(&lo->lo_ctl_mutex);
1529 		break;
1530 	case LOOP_SET_CAPACITY:
1531 	case LOOP_CLR_FD:
1532 	case LOOP_GET_STATUS64:
1533 	case LOOP_SET_STATUS64:
1534 		arg = (unsigned long) compat_ptr(arg);
1535 	case LOOP_SET_FD:
1536 	case LOOP_CHANGE_FD:
1537 		err = lo_ioctl(bdev, mode, cmd, arg);
1538 		break;
1539 	default:
1540 		err = -ENOIOCTLCMD;
1541 		break;
1542 	}
1543 	return err;
1544 }
1545 #endif
1546 
1547 static int lo_open(struct block_device *bdev, fmode_t mode)
1548 {
1549 	struct loop_device *lo;
1550 	int err = 0;
1551 
1552 	mutex_lock(&loop_index_mutex);
1553 	lo = bdev->bd_disk->private_data;
1554 	if (!lo) {
1555 		err = -ENXIO;
1556 		goto out;
1557 	}
1558 
1559 	atomic_inc(&lo->lo_refcnt);
1560 out:
1561 	mutex_unlock(&loop_index_mutex);
1562 	return err;
1563 }
1564 
1565 static void lo_release(struct gendisk *disk, fmode_t mode)
1566 {
1567 	struct loop_device *lo = disk->private_data;
1568 	int err;
1569 
1570 	if (atomic_dec_return(&lo->lo_refcnt))
1571 		return;
1572 
1573 	mutex_lock(&lo->lo_ctl_mutex);
1574 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1575 		/*
1576 		 * In autoclear mode, stop the loop thread
1577 		 * and remove configuration after last close.
1578 		 */
1579 		err = loop_clr_fd(lo);
1580 		if (!err)
1581 			return;
1582 	} else if (lo->lo_state == Lo_bound) {
1583 		/*
1584 		 * Otherwise keep thread (if running) and config,
1585 		 * but flush possible ongoing bios in thread.
1586 		 */
1587 		blk_mq_freeze_queue(lo->lo_queue);
1588 		blk_mq_unfreeze_queue(lo->lo_queue);
1589 	}
1590 
1591 	mutex_unlock(&lo->lo_ctl_mutex);
1592 }
1593 
1594 static const struct block_device_operations lo_fops = {
1595 	.owner =	THIS_MODULE,
1596 	.open =		lo_open,
1597 	.release =	lo_release,
1598 	.ioctl =	lo_ioctl,
1599 #ifdef CONFIG_COMPAT
1600 	.compat_ioctl =	lo_compat_ioctl,
1601 #endif
1602 };
1603 
1604 /*
1605  * And now the modules code and kernel interface.
1606  */
1607 static int max_loop;
1608 module_param(max_loop, int, S_IRUGO);
1609 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1610 module_param(max_part, int, S_IRUGO);
1611 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1612 MODULE_LICENSE("GPL");
1613 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1614 
1615 int loop_register_transfer(struct loop_func_table *funcs)
1616 {
1617 	unsigned int n = funcs->number;
1618 
1619 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1620 		return -EINVAL;
1621 	xfer_funcs[n] = funcs;
1622 	return 0;
1623 }
1624 
1625 static int unregister_transfer_cb(int id, void *ptr, void *data)
1626 {
1627 	struct loop_device *lo = ptr;
1628 	struct loop_func_table *xfer = data;
1629 
1630 	mutex_lock(&lo->lo_ctl_mutex);
1631 	if (lo->lo_encryption == xfer)
1632 		loop_release_xfer(lo);
1633 	mutex_unlock(&lo->lo_ctl_mutex);
1634 	return 0;
1635 }
1636 
1637 int loop_unregister_transfer(int number)
1638 {
1639 	unsigned int n = number;
1640 	struct loop_func_table *xfer;
1641 
1642 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1643 		return -EINVAL;
1644 
1645 	xfer_funcs[n] = NULL;
1646 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1647 	return 0;
1648 }
1649 
1650 EXPORT_SYMBOL(loop_register_transfer);
1651 EXPORT_SYMBOL(loop_unregister_transfer);
1652 
1653 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1654 		const struct blk_mq_queue_data *bd)
1655 {
1656 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1657 	struct loop_device *lo = cmd->rq->q->queuedata;
1658 
1659 	blk_mq_start_request(bd->rq);
1660 
1661 	if (lo->lo_state != Lo_bound)
1662 		return BLK_STS_IOERR;
1663 
1664 	switch (req_op(cmd->rq)) {
1665 	case REQ_OP_FLUSH:
1666 	case REQ_OP_DISCARD:
1667 	case REQ_OP_WRITE_ZEROES:
1668 		cmd->use_aio = false;
1669 		break;
1670 	default:
1671 		cmd->use_aio = lo->use_dio;
1672 		break;
1673 	}
1674 
1675 	kthread_queue_work(&lo->worker, &cmd->work);
1676 
1677 	return BLK_STS_OK;
1678 }
1679 
1680 static void loop_handle_cmd(struct loop_cmd *cmd)
1681 {
1682 	const bool write = op_is_write(req_op(cmd->rq));
1683 	struct loop_device *lo = cmd->rq->q->queuedata;
1684 	int ret = 0;
1685 
1686 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1687 		ret = -EIO;
1688 		goto failed;
1689 	}
1690 
1691 	ret = do_req_filebacked(lo, cmd->rq);
1692  failed:
1693 	/* complete non-aio request */
1694 	if (!cmd->use_aio || ret) {
1695 		cmd->ret = ret ? -EIO : 0;
1696 		blk_mq_complete_request(cmd->rq);
1697 	}
1698 }
1699 
1700 static void loop_queue_work(struct kthread_work *work)
1701 {
1702 	struct loop_cmd *cmd =
1703 		container_of(work, struct loop_cmd, work);
1704 
1705 	loop_handle_cmd(cmd);
1706 }
1707 
1708 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1709 		unsigned int hctx_idx, unsigned int numa_node)
1710 {
1711 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1712 
1713 	cmd->rq = rq;
1714 	kthread_init_work(&cmd->work, loop_queue_work);
1715 
1716 	return 0;
1717 }
1718 
1719 static const struct blk_mq_ops loop_mq_ops = {
1720 	.queue_rq       = loop_queue_rq,
1721 	.init_request	= loop_init_request,
1722 	.complete	= lo_complete_rq,
1723 };
1724 
1725 static int loop_add(struct loop_device **l, int i)
1726 {
1727 	struct loop_device *lo;
1728 	struct gendisk *disk;
1729 	int err;
1730 
1731 	err = -ENOMEM;
1732 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1733 	if (!lo)
1734 		goto out;
1735 
1736 	lo->lo_state = Lo_unbound;
1737 
1738 	/* allocate id, if @id >= 0, we're requesting that specific id */
1739 	if (i >= 0) {
1740 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1741 		if (err == -ENOSPC)
1742 			err = -EEXIST;
1743 	} else {
1744 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1745 	}
1746 	if (err < 0)
1747 		goto out_free_dev;
1748 	i = err;
1749 
1750 	err = -ENOMEM;
1751 	lo->tag_set.ops = &loop_mq_ops;
1752 	lo->tag_set.nr_hw_queues = 1;
1753 	lo->tag_set.queue_depth = 128;
1754 	lo->tag_set.numa_node = NUMA_NO_NODE;
1755 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1756 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1757 	lo->tag_set.driver_data = lo;
1758 
1759 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1760 	if (err)
1761 		goto out_free_idr;
1762 
1763 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1764 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1765 		err = PTR_ERR(lo->lo_queue);
1766 		goto out_cleanup_tags;
1767 	}
1768 	lo->lo_queue->queuedata = lo;
1769 
1770 	blk_queue_physical_block_size(lo->lo_queue, PAGE_SIZE);
1771 
1772 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1773 
1774 	/*
1775 	 * By default, we do buffer IO, so it doesn't make sense to enable
1776 	 * merge because the I/O submitted to backing file is handled page by
1777 	 * page. For directio mode, merge does help to dispatch bigger request
1778 	 * to underlayer disk. We will enable merge once directio is enabled.
1779 	 */
1780 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1781 
1782 	err = -ENOMEM;
1783 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1784 	if (!disk)
1785 		goto out_free_queue;
1786 
1787 	/*
1788 	 * Disable partition scanning by default. The in-kernel partition
1789 	 * scanning can be requested individually per-device during its
1790 	 * setup. Userspace can always add and remove partitions from all
1791 	 * devices. The needed partition minors are allocated from the
1792 	 * extended minor space, the main loop device numbers will continue
1793 	 * to match the loop minors, regardless of the number of partitions
1794 	 * used.
1795 	 *
1796 	 * If max_part is given, partition scanning is globally enabled for
1797 	 * all loop devices. The minors for the main loop devices will be
1798 	 * multiples of max_part.
1799 	 *
1800 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1801 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1802 	 * complicated, are too static, inflexible and may surprise
1803 	 * userspace tools. Parameters like this in general should be avoided.
1804 	 */
1805 	if (!part_shift)
1806 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1807 	disk->flags |= GENHD_FL_EXT_DEVT;
1808 	mutex_init(&lo->lo_ctl_mutex);
1809 	atomic_set(&lo->lo_refcnt, 0);
1810 	lo->lo_number		= i;
1811 	spin_lock_init(&lo->lo_lock);
1812 	disk->major		= LOOP_MAJOR;
1813 	disk->first_minor	= i << part_shift;
1814 	disk->fops		= &lo_fops;
1815 	disk->private_data	= lo;
1816 	disk->queue		= lo->lo_queue;
1817 	sprintf(disk->disk_name, "loop%d", i);
1818 	add_disk(disk);
1819 	*l = lo;
1820 	return lo->lo_number;
1821 
1822 out_free_queue:
1823 	blk_cleanup_queue(lo->lo_queue);
1824 out_cleanup_tags:
1825 	blk_mq_free_tag_set(&lo->tag_set);
1826 out_free_idr:
1827 	idr_remove(&loop_index_idr, i);
1828 out_free_dev:
1829 	kfree(lo);
1830 out:
1831 	return err;
1832 }
1833 
1834 static void loop_remove(struct loop_device *lo)
1835 {
1836 	blk_cleanup_queue(lo->lo_queue);
1837 	del_gendisk(lo->lo_disk);
1838 	blk_mq_free_tag_set(&lo->tag_set);
1839 	put_disk(lo->lo_disk);
1840 	kfree(lo);
1841 }
1842 
1843 static int find_free_cb(int id, void *ptr, void *data)
1844 {
1845 	struct loop_device *lo = ptr;
1846 	struct loop_device **l = data;
1847 
1848 	if (lo->lo_state == Lo_unbound) {
1849 		*l = lo;
1850 		return 1;
1851 	}
1852 	return 0;
1853 }
1854 
1855 static int loop_lookup(struct loop_device **l, int i)
1856 {
1857 	struct loop_device *lo;
1858 	int ret = -ENODEV;
1859 
1860 	if (i < 0) {
1861 		int err;
1862 
1863 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1864 		if (err == 1) {
1865 			*l = lo;
1866 			ret = lo->lo_number;
1867 		}
1868 		goto out;
1869 	}
1870 
1871 	/* lookup and return a specific i */
1872 	lo = idr_find(&loop_index_idr, i);
1873 	if (lo) {
1874 		*l = lo;
1875 		ret = lo->lo_number;
1876 	}
1877 out:
1878 	return ret;
1879 }
1880 
1881 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1882 {
1883 	struct loop_device *lo;
1884 	struct kobject *kobj;
1885 	int err;
1886 
1887 	mutex_lock(&loop_index_mutex);
1888 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1889 	if (err < 0)
1890 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1891 	if (err < 0)
1892 		kobj = NULL;
1893 	else
1894 		kobj = get_disk(lo->lo_disk);
1895 	mutex_unlock(&loop_index_mutex);
1896 
1897 	*part = 0;
1898 	return kobj;
1899 }
1900 
1901 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1902 			       unsigned long parm)
1903 {
1904 	struct loop_device *lo;
1905 	int ret = -ENOSYS;
1906 
1907 	mutex_lock(&loop_index_mutex);
1908 	switch (cmd) {
1909 	case LOOP_CTL_ADD:
1910 		ret = loop_lookup(&lo, parm);
1911 		if (ret >= 0) {
1912 			ret = -EEXIST;
1913 			break;
1914 		}
1915 		ret = loop_add(&lo, parm);
1916 		break;
1917 	case LOOP_CTL_REMOVE:
1918 		ret = loop_lookup(&lo, parm);
1919 		if (ret < 0)
1920 			break;
1921 		mutex_lock(&lo->lo_ctl_mutex);
1922 		if (lo->lo_state != Lo_unbound) {
1923 			ret = -EBUSY;
1924 			mutex_unlock(&lo->lo_ctl_mutex);
1925 			break;
1926 		}
1927 		if (atomic_read(&lo->lo_refcnt) > 0) {
1928 			ret = -EBUSY;
1929 			mutex_unlock(&lo->lo_ctl_mutex);
1930 			break;
1931 		}
1932 		lo->lo_disk->private_data = NULL;
1933 		mutex_unlock(&lo->lo_ctl_mutex);
1934 		idr_remove(&loop_index_idr, lo->lo_number);
1935 		loop_remove(lo);
1936 		break;
1937 	case LOOP_CTL_GET_FREE:
1938 		ret = loop_lookup(&lo, -1);
1939 		if (ret >= 0)
1940 			break;
1941 		ret = loop_add(&lo, -1);
1942 	}
1943 	mutex_unlock(&loop_index_mutex);
1944 
1945 	return ret;
1946 }
1947 
1948 static const struct file_operations loop_ctl_fops = {
1949 	.open		= nonseekable_open,
1950 	.unlocked_ioctl	= loop_control_ioctl,
1951 	.compat_ioctl	= loop_control_ioctl,
1952 	.owner		= THIS_MODULE,
1953 	.llseek		= noop_llseek,
1954 };
1955 
1956 static struct miscdevice loop_misc = {
1957 	.minor		= LOOP_CTRL_MINOR,
1958 	.name		= "loop-control",
1959 	.fops		= &loop_ctl_fops,
1960 };
1961 
1962 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1963 MODULE_ALIAS("devname:loop-control");
1964 
1965 static int __init loop_init(void)
1966 {
1967 	int i, nr;
1968 	unsigned long range;
1969 	struct loop_device *lo;
1970 	int err;
1971 
1972 	part_shift = 0;
1973 	if (max_part > 0) {
1974 		part_shift = fls(max_part);
1975 
1976 		/*
1977 		 * Adjust max_part according to part_shift as it is exported
1978 		 * to user space so that user can decide correct minor number
1979 		 * if [s]he want to create more devices.
1980 		 *
1981 		 * Note that -1 is required because partition 0 is reserved
1982 		 * for the whole disk.
1983 		 */
1984 		max_part = (1UL << part_shift) - 1;
1985 	}
1986 
1987 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1988 		err = -EINVAL;
1989 		goto err_out;
1990 	}
1991 
1992 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1993 		err = -EINVAL;
1994 		goto err_out;
1995 	}
1996 
1997 	/*
1998 	 * If max_loop is specified, create that many devices upfront.
1999 	 * This also becomes a hard limit. If max_loop is not specified,
2000 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2001 	 * init time. Loop devices can be requested on-demand with the
2002 	 * /dev/loop-control interface, or be instantiated by accessing
2003 	 * a 'dead' device node.
2004 	 */
2005 	if (max_loop) {
2006 		nr = max_loop;
2007 		range = max_loop << part_shift;
2008 	} else {
2009 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2010 		range = 1UL << MINORBITS;
2011 	}
2012 
2013 	err = misc_register(&loop_misc);
2014 	if (err < 0)
2015 		goto err_out;
2016 
2017 
2018 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2019 		err = -EIO;
2020 		goto misc_out;
2021 	}
2022 
2023 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2024 				  THIS_MODULE, loop_probe, NULL, NULL);
2025 
2026 	/* pre-create number of devices given by config or max_loop */
2027 	mutex_lock(&loop_index_mutex);
2028 	for (i = 0; i < nr; i++)
2029 		loop_add(&lo, i);
2030 	mutex_unlock(&loop_index_mutex);
2031 
2032 	printk(KERN_INFO "loop: module loaded\n");
2033 	return 0;
2034 
2035 misc_out:
2036 	misc_deregister(&loop_misc);
2037 err_out:
2038 	return err;
2039 }
2040 
2041 static int loop_exit_cb(int id, void *ptr, void *data)
2042 {
2043 	struct loop_device *lo = ptr;
2044 
2045 	loop_remove(lo);
2046 	return 0;
2047 }
2048 
2049 static void __exit loop_exit(void)
2050 {
2051 	unsigned long range;
2052 
2053 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2054 
2055 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2056 	idr_destroy(&loop_index_idr);
2057 
2058 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2059 	unregister_blkdev(LOOP_MAJOR, "loop");
2060 
2061 	misc_deregister(&loop_misc);
2062 }
2063 
2064 module_init(loop_init);
2065 module_exit(loop_exit);
2066 
2067 #ifndef MODULE
2068 static int __init max_loop_setup(char *str)
2069 {
2070 	max_loop = simple_strtol(str, NULL, 0);
2071 	return 1;
2072 }
2073 
2074 __setup("max_loop=", max_loop_setup);
2075 #endif
2076