xref: /openbmc/linux/drivers/block/loop.c (revision 38a3499f)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	blk_mq_freeze_queue(lo->lo_queue);
218 	lo->use_dio = use_dio;
219 	if (use_dio) {
220 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
222 	} else {
223 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
224 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
225 	}
226 	blk_mq_unfreeze_queue(lo->lo_queue);
227 }
228 
229 static int
230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
231 {
232 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
233 	sector_t x = (sector_t)size;
234 	struct block_device *bdev = lo->lo_device;
235 
236 	if (unlikely((loff_t)x != size))
237 		return -EFBIG;
238 	if (lo->lo_offset != offset)
239 		lo->lo_offset = offset;
240 	if (lo->lo_sizelimit != sizelimit)
241 		lo->lo_sizelimit = sizelimit;
242 	set_capacity(lo->lo_disk, x);
243 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
244 	/* let user-space know about the new size */
245 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
246 	return 0;
247 }
248 
249 static inline int
250 lo_do_transfer(struct loop_device *lo, int cmd,
251 	       struct page *rpage, unsigned roffs,
252 	       struct page *lpage, unsigned loffs,
253 	       int size, sector_t rblock)
254 {
255 	int ret;
256 
257 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
258 	if (likely(!ret))
259 		return 0;
260 
261 	printk_ratelimited(KERN_ERR
262 		"loop: Transfer error at byte offset %llu, length %i.\n",
263 		(unsigned long long)rblock << 9, size);
264 	return ret;
265 }
266 
267 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
268 {
269 	struct iov_iter i;
270 	ssize_t bw;
271 
272 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
273 
274 	file_start_write(file);
275 	bw = vfs_iter_write(file, &i, ppos, 0);
276 	file_end_write(file);
277 
278 	if (likely(bw ==  bvec->bv_len))
279 		return 0;
280 
281 	printk_ratelimited(KERN_ERR
282 		"loop: Write error at byte offset %llu, length %i.\n",
283 		(unsigned long long)*ppos, bvec->bv_len);
284 	if (bw >= 0)
285 		bw = -EIO;
286 	return bw;
287 }
288 
289 static int lo_write_simple(struct loop_device *lo, struct request *rq,
290 		loff_t pos)
291 {
292 	struct bio_vec bvec;
293 	struct req_iterator iter;
294 	int ret = 0;
295 
296 	rq_for_each_segment(bvec, rq, iter) {
297 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
298 		if (ret < 0)
299 			break;
300 		cond_resched();
301 	}
302 
303 	return ret;
304 }
305 
306 /*
307  * This is the slow, transforming version that needs to double buffer the
308  * data as it cannot do the transformations in place without having direct
309  * access to the destination pages of the backing file.
310  */
311 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
312 		loff_t pos)
313 {
314 	struct bio_vec bvec, b;
315 	struct req_iterator iter;
316 	struct page *page;
317 	int ret = 0;
318 
319 	page = alloc_page(GFP_NOIO);
320 	if (unlikely(!page))
321 		return -ENOMEM;
322 
323 	rq_for_each_segment(bvec, rq, iter) {
324 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
325 			bvec.bv_offset, bvec.bv_len, pos >> 9);
326 		if (unlikely(ret))
327 			break;
328 
329 		b.bv_page = page;
330 		b.bv_offset = 0;
331 		b.bv_len = bvec.bv_len;
332 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
333 		if (ret < 0)
334 			break;
335 	}
336 
337 	__free_page(page);
338 	return ret;
339 }
340 
341 static int lo_read_simple(struct loop_device *lo, struct request *rq,
342 		loff_t pos)
343 {
344 	struct bio_vec bvec;
345 	struct req_iterator iter;
346 	struct iov_iter i;
347 	ssize_t len;
348 
349 	rq_for_each_segment(bvec, rq, iter) {
350 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
351 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
352 		if (len < 0)
353 			return len;
354 
355 		flush_dcache_page(bvec.bv_page);
356 
357 		if (len != bvec.bv_len) {
358 			struct bio *bio;
359 
360 			__rq_for_each_bio(bio, rq)
361 				zero_fill_bio(bio);
362 			break;
363 		}
364 		cond_resched();
365 	}
366 
367 	return 0;
368 }
369 
370 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
371 		loff_t pos)
372 {
373 	struct bio_vec bvec, b;
374 	struct req_iterator iter;
375 	struct iov_iter i;
376 	struct page *page;
377 	ssize_t len;
378 	int ret = 0;
379 
380 	page = alloc_page(GFP_NOIO);
381 	if (unlikely(!page))
382 		return -ENOMEM;
383 
384 	rq_for_each_segment(bvec, rq, iter) {
385 		loff_t offset = pos;
386 
387 		b.bv_page = page;
388 		b.bv_offset = 0;
389 		b.bv_len = bvec.bv_len;
390 
391 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
392 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
393 		if (len < 0) {
394 			ret = len;
395 			goto out_free_page;
396 		}
397 
398 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
399 			bvec.bv_offset, len, offset >> 9);
400 		if (ret)
401 			goto out_free_page;
402 
403 		flush_dcache_page(bvec.bv_page);
404 
405 		if (len != bvec.bv_len) {
406 			struct bio *bio;
407 
408 			__rq_for_each_bio(bio, rq)
409 				zero_fill_bio(bio);
410 			break;
411 		}
412 	}
413 
414 	ret = 0;
415 out_free_page:
416 	__free_page(page);
417 	return ret;
418 }
419 
420 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
421 {
422 	/*
423 	 * We use punch hole to reclaim the free space used by the
424 	 * image a.k.a. discard. However we do not support discard if
425 	 * encryption is enabled, because it may give an attacker
426 	 * useful information.
427 	 */
428 	struct file *file = lo->lo_backing_file;
429 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
430 	int ret;
431 
432 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
433 		ret = -EOPNOTSUPP;
434 		goto out;
435 	}
436 
437 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
438 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
439 		ret = -EIO;
440  out:
441 	return ret;
442 }
443 
444 static int lo_req_flush(struct loop_device *lo, struct request *rq)
445 {
446 	struct file *file = lo->lo_backing_file;
447 	int ret = vfs_fsync(file, 0);
448 	if (unlikely(ret && ret != -EINVAL))
449 		ret = -EIO;
450 
451 	return ret;
452 }
453 
454 static void lo_complete_rq(struct request *rq)
455 {
456 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
457 	blk_status_t ret = BLK_STS_OK;
458 
459 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
460 	    req_op(rq) != REQ_OP_READ) {
461 		if (cmd->ret < 0)
462 			ret = BLK_STS_IOERR;
463 		goto end_io;
464 	}
465 
466 	/*
467 	 * Short READ - if we got some data, advance our request and
468 	 * retry it. If we got no data, end the rest with EIO.
469 	 */
470 	if (cmd->ret) {
471 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
472 		cmd->ret = 0;
473 		blk_mq_requeue_request(rq, true);
474 	} else {
475 		if (cmd->use_aio) {
476 			struct bio *bio = rq->bio;
477 
478 			while (bio) {
479 				zero_fill_bio(bio);
480 				bio = bio->bi_next;
481 			}
482 		}
483 		ret = BLK_STS_IOERR;
484 end_io:
485 		blk_mq_end_request(rq, ret);
486 	}
487 }
488 
489 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
490 {
491 	struct request *rq = blk_mq_rq_from_pdu(cmd);
492 
493 	if (!atomic_dec_and_test(&cmd->ref))
494 		return;
495 	kfree(cmd->bvec);
496 	cmd->bvec = NULL;
497 	blk_mq_complete_request(rq);
498 }
499 
500 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
501 {
502 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
503 
504 	if (cmd->css)
505 		css_put(cmd->css);
506 	cmd->ret = ret;
507 	lo_rw_aio_do_completion(cmd);
508 }
509 
510 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
511 		     loff_t pos, bool rw)
512 {
513 	struct iov_iter iter;
514 	struct bio_vec *bvec;
515 	struct request *rq = blk_mq_rq_from_pdu(cmd);
516 	struct bio *bio = rq->bio;
517 	struct file *file = lo->lo_backing_file;
518 	unsigned int offset;
519 	int segments = 0;
520 	int ret;
521 
522 	if (rq->bio != rq->biotail) {
523 		struct req_iterator iter;
524 		struct bio_vec tmp;
525 
526 		__rq_for_each_bio(bio, rq)
527 			segments += bio_segments(bio);
528 		bvec = kmalloc_array(segments, sizeof(struct bio_vec),
529 				     GFP_NOIO);
530 		if (!bvec)
531 			return -EIO;
532 		cmd->bvec = bvec;
533 
534 		/*
535 		 * The bios of the request may be started from the middle of
536 		 * the 'bvec' because of bio splitting, so we can't directly
537 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
538 		 * API will take care of all details for us.
539 		 */
540 		rq_for_each_segment(tmp, rq, iter) {
541 			*bvec = tmp;
542 			bvec++;
543 		}
544 		bvec = cmd->bvec;
545 		offset = 0;
546 	} else {
547 		/*
548 		 * Same here, this bio may be started from the middle of the
549 		 * 'bvec' because of bio splitting, so offset from the bvec
550 		 * must be passed to iov iterator
551 		 */
552 		offset = bio->bi_iter.bi_bvec_done;
553 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
554 		segments = bio_segments(bio);
555 	}
556 	atomic_set(&cmd->ref, 2);
557 
558 	iov_iter_bvec(&iter, rw, bvec, segments, blk_rq_bytes(rq));
559 	iter.iov_offset = offset;
560 
561 	cmd->iocb.ki_pos = pos;
562 	cmd->iocb.ki_filp = file;
563 	cmd->iocb.ki_complete = lo_rw_aio_complete;
564 	cmd->iocb.ki_flags = IOCB_DIRECT;
565 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
566 	if (cmd->css)
567 		kthread_associate_blkcg(cmd->css);
568 
569 	if (rw == WRITE)
570 		ret = call_write_iter(file, &cmd->iocb, &iter);
571 	else
572 		ret = call_read_iter(file, &cmd->iocb, &iter);
573 
574 	lo_rw_aio_do_completion(cmd);
575 	kthread_associate_blkcg(NULL);
576 
577 	if (ret != -EIOCBQUEUED)
578 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
579 	return 0;
580 }
581 
582 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
583 {
584 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
585 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
586 
587 	/*
588 	 * lo_write_simple and lo_read_simple should have been covered
589 	 * by io submit style function like lo_rw_aio(), one blocker
590 	 * is that lo_read_simple() need to call flush_dcache_page after
591 	 * the page is written from kernel, and it isn't easy to handle
592 	 * this in io submit style function which submits all segments
593 	 * of the req at one time. And direct read IO doesn't need to
594 	 * run flush_dcache_page().
595 	 */
596 	switch (req_op(rq)) {
597 	case REQ_OP_FLUSH:
598 		return lo_req_flush(lo, rq);
599 	case REQ_OP_DISCARD:
600 	case REQ_OP_WRITE_ZEROES:
601 		return lo_discard(lo, rq, pos);
602 	case REQ_OP_WRITE:
603 		if (lo->transfer)
604 			return lo_write_transfer(lo, rq, pos);
605 		else if (cmd->use_aio)
606 			return lo_rw_aio(lo, cmd, pos, WRITE);
607 		else
608 			return lo_write_simple(lo, rq, pos);
609 	case REQ_OP_READ:
610 		if (lo->transfer)
611 			return lo_read_transfer(lo, rq, pos);
612 		else if (cmd->use_aio)
613 			return lo_rw_aio(lo, cmd, pos, READ);
614 		else
615 			return lo_read_simple(lo, rq, pos);
616 	default:
617 		WARN_ON_ONCE(1);
618 		return -EIO;
619 		break;
620 	}
621 }
622 
623 static inline void loop_update_dio(struct loop_device *lo)
624 {
625 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
626 			lo->use_dio);
627 }
628 
629 static void loop_reread_partitions(struct loop_device *lo,
630 				   struct block_device *bdev)
631 {
632 	int rc;
633 
634 	rc = blkdev_reread_part(bdev);
635 	if (rc)
636 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
637 			__func__, lo->lo_number, lo->lo_file_name, rc);
638 }
639 
640 static inline int is_loop_device(struct file *file)
641 {
642 	struct inode *i = file->f_mapping->host;
643 
644 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
645 }
646 
647 static int loop_validate_file(struct file *file, struct block_device *bdev)
648 {
649 	struct inode	*inode = file->f_mapping->host;
650 	struct file	*f = file;
651 
652 	/* Avoid recursion */
653 	while (is_loop_device(f)) {
654 		struct loop_device *l;
655 
656 		if (f->f_mapping->host->i_bdev == bdev)
657 			return -EBADF;
658 
659 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
660 		if (l->lo_state == Lo_unbound) {
661 			return -EINVAL;
662 		}
663 		f = l->lo_backing_file;
664 	}
665 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
666 		return -EINVAL;
667 	return 0;
668 }
669 
670 /*
671  * loop_change_fd switched the backing store of a loopback device to
672  * a new file. This is useful for operating system installers to free up
673  * the original file and in High Availability environments to switch to
674  * an alternative location for the content in case of server meltdown.
675  * This can only work if the loop device is used read-only, and if the
676  * new backing store is the same size and type as the old backing store.
677  */
678 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
679 			  unsigned int arg)
680 {
681 	struct file	*file = NULL, *old_file;
682 	int		error;
683 	bool		partscan;
684 
685 	error = mutex_lock_killable(&loop_ctl_mutex);
686 	if (error)
687 		return error;
688 	error = -ENXIO;
689 	if (lo->lo_state != Lo_bound)
690 		goto out_err;
691 
692 	/* the loop device has to be read-only */
693 	error = -EINVAL;
694 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
695 		goto out_err;
696 
697 	error = -EBADF;
698 	file = fget(arg);
699 	if (!file)
700 		goto out_err;
701 
702 	error = loop_validate_file(file, bdev);
703 	if (error)
704 		goto out_err;
705 
706 	old_file = lo->lo_backing_file;
707 
708 	error = -EINVAL;
709 
710 	/* size of the new backing store needs to be the same */
711 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
712 		goto out_err;
713 
714 	/* and ... switch */
715 	blk_mq_freeze_queue(lo->lo_queue);
716 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
717 	lo->lo_backing_file = file;
718 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
719 	mapping_set_gfp_mask(file->f_mapping,
720 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
721 	loop_update_dio(lo);
722 	blk_mq_unfreeze_queue(lo->lo_queue);
723 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
724 	mutex_unlock(&loop_ctl_mutex);
725 	/*
726 	 * We must drop file reference outside of loop_ctl_mutex as dropping
727 	 * the file ref can take bd_mutex which creates circular locking
728 	 * dependency.
729 	 */
730 	fput(old_file);
731 	if (partscan)
732 		loop_reread_partitions(lo, bdev);
733 	return 0;
734 
735 out_err:
736 	mutex_unlock(&loop_ctl_mutex);
737 	if (file)
738 		fput(file);
739 	return error;
740 }
741 
742 /* loop sysfs attributes */
743 
744 static ssize_t loop_attr_show(struct device *dev, char *page,
745 			      ssize_t (*callback)(struct loop_device *, char *))
746 {
747 	struct gendisk *disk = dev_to_disk(dev);
748 	struct loop_device *lo = disk->private_data;
749 
750 	return callback(lo, page);
751 }
752 
753 #define LOOP_ATTR_RO(_name)						\
754 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
755 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
756 				struct device_attribute *attr, char *b)	\
757 {									\
758 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
759 }									\
760 static struct device_attribute loop_attr_##_name =			\
761 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
762 
763 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
764 {
765 	ssize_t ret;
766 	char *p = NULL;
767 
768 	spin_lock_irq(&lo->lo_lock);
769 	if (lo->lo_backing_file)
770 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
771 	spin_unlock_irq(&lo->lo_lock);
772 
773 	if (IS_ERR_OR_NULL(p))
774 		ret = PTR_ERR(p);
775 	else {
776 		ret = strlen(p);
777 		memmove(buf, p, ret);
778 		buf[ret++] = '\n';
779 		buf[ret] = 0;
780 	}
781 
782 	return ret;
783 }
784 
785 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
786 {
787 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
788 }
789 
790 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
791 {
792 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
793 }
794 
795 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
796 {
797 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
798 
799 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
800 }
801 
802 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
803 {
804 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
805 
806 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
807 }
808 
809 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
810 {
811 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
812 
813 	return sprintf(buf, "%s\n", dio ? "1" : "0");
814 }
815 
816 LOOP_ATTR_RO(backing_file);
817 LOOP_ATTR_RO(offset);
818 LOOP_ATTR_RO(sizelimit);
819 LOOP_ATTR_RO(autoclear);
820 LOOP_ATTR_RO(partscan);
821 LOOP_ATTR_RO(dio);
822 
823 static struct attribute *loop_attrs[] = {
824 	&loop_attr_backing_file.attr,
825 	&loop_attr_offset.attr,
826 	&loop_attr_sizelimit.attr,
827 	&loop_attr_autoclear.attr,
828 	&loop_attr_partscan.attr,
829 	&loop_attr_dio.attr,
830 	NULL,
831 };
832 
833 static struct attribute_group loop_attribute_group = {
834 	.name = "loop",
835 	.attrs= loop_attrs,
836 };
837 
838 static void loop_sysfs_init(struct loop_device *lo)
839 {
840 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
841 						&loop_attribute_group);
842 }
843 
844 static void loop_sysfs_exit(struct loop_device *lo)
845 {
846 	if (lo->sysfs_inited)
847 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
848 				   &loop_attribute_group);
849 }
850 
851 static void loop_config_discard(struct loop_device *lo)
852 {
853 	struct file *file = lo->lo_backing_file;
854 	struct inode *inode = file->f_mapping->host;
855 	struct request_queue *q = lo->lo_queue;
856 
857 	/*
858 	 * We use punch hole to reclaim the free space used by the
859 	 * image a.k.a. discard. However we do not support discard if
860 	 * encryption is enabled, because it may give an attacker
861 	 * useful information.
862 	 */
863 	if ((!file->f_op->fallocate) ||
864 	    lo->lo_encrypt_key_size) {
865 		q->limits.discard_granularity = 0;
866 		q->limits.discard_alignment = 0;
867 		blk_queue_max_discard_sectors(q, 0);
868 		blk_queue_max_write_zeroes_sectors(q, 0);
869 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
870 		return;
871 	}
872 
873 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
874 	q->limits.discard_alignment = 0;
875 
876 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
877 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
878 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
879 }
880 
881 static void loop_unprepare_queue(struct loop_device *lo)
882 {
883 	kthread_flush_worker(&lo->worker);
884 	kthread_stop(lo->worker_task);
885 }
886 
887 static int loop_kthread_worker_fn(void *worker_ptr)
888 {
889 	current->flags |= PF_LESS_THROTTLE;
890 	return kthread_worker_fn(worker_ptr);
891 }
892 
893 static int loop_prepare_queue(struct loop_device *lo)
894 {
895 	kthread_init_worker(&lo->worker);
896 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
897 			&lo->worker, "loop%d", lo->lo_number);
898 	if (IS_ERR(lo->worker_task))
899 		return -ENOMEM;
900 	set_user_nice(lo->worker_task, MIN_NICE);
901 	return 0;
902 }
903 
904 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
905 		       struct block_device *bdev, unsigned int arg)
906 {
907 	struct file	*file;
908 	struct inode	*inode;
909 	struct address_space *mapping;
910 	int		lo_flags = 0;
911 	int		error;
912 	loff_t		size;
913 	bool		partscan;
914 
915 	/* This is safe, since we have a reference from open(). */
916 	__module_get(THIS_MODULE);
917 
918 	error = -EBADF;
919 	file = fget(arg);
920 	if (!file)
921 		goto out;
922 
923 	error = mutex_lock_killable(&loop_ctl_mutex);
924 	if (error)
925 		goto out_putf;
926 
927 	error = -EBUSY;
928 	if (lo->lo_state != Lo_unbound)
929 		goto out_unlock;
930 
931 	error = loop_validate_file(file, bdev);
932 	if (error)
933 		goto out_unlock;
934 
935 	mapping = file->f_mapping;
936 	inode = mapping->host;
937 
938 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
939 	    !file->f_op->write_iter)
940 		lo_flags |= LO_FLAGS_READ_ONLY;
941 
942 	error = -EFBIG;
943 	size = get_loop_size(lo, file);
944 	if ((loff_t)(sector_t)size != size)
945 		goto out_unlock;
946 	error = loop_prepare_queue(lo);
947 	if (error)
948 		goto out_unlock;
949 
950 	error = 0;
951 
952 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
953 
954 	lo->use_dio = false;
955 	lo->lo_device = bdev;
956 	lo->lo_flags = lo_flags;
957 	lo->lo_backing_file = file;
958 	lo->transfer = NULL;
959 	lo->ioctl = NULL;
960 	lo->lo_sizelimit = 0;
961 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
962 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
963 
964 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
965 		blk_queue_write_cache(lo->lo_queue, true, false);
966 
967 	loop_update_dio(lo);
968 	set_capacity(lo->lo_disk, size);
969 	bd_set_size(bdev, size << 9);
970 	loop_sysfs_init(lo);
971 	/* let user-space know about the new size */
972 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
973 
974 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
975 		      block_size(inode->i_bdev) : PAGE_SIZE);
976 
977 	lo->lo_state = Lo_bound;
978 	if (part_shift)
979 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
980 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
981 
982 	/* Grab the block_device to prevent its destruction after we
983 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
984 	 */
985 	bdgrab(bdev);
986 	mutex_unlock(&loop_ctl_mutex);
987 	if (partscan)
988 		loop_reread_partitions(lo, bdev);
989 	return 0;
990 
991 out_unlock:
992 	mutex_unlock(&loop_ctl_mutex);
993 out_putf:
994 	fput(file);
995 out:
996 	/* This is safe: open() is still holding a reference. */
997 	module_put(THIS_MODULE);
998 	return error;
999 }
1000 
1001 static int
1002 loop_release_xfer(struct loop_device *lo)
1003 {
1004 	int err = 0;
1005 	struct loop_func_table *xfer = lo->lo_encryption;
1006 
1007 	if (xfer) {
1008 		if (xfer->release)
1009 			err = xfer->release(lo);
1010 		lo->transfer = NULL;
1011 		lo->lo_encryption = NULL;
1012 		module_put(xfer->owner);
1013 	}
1014 	return err;
1015 }
1016 
1017 static int
1018 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1019 	       const struct loop_info64 *i)
1020 {
1021 	int err = 0;
1022 
1023 	if (xfer) {
1024 		struct module *owner = xfer->owner;
1025 
1026 		if (!try_module_get(owner))
1027 			return -EINVAL;
1028 		if (xfer->init)
1029 			err = xfer->init(lo, i);
1030 		if (err)
1031 			module_put(owner);
1032 		else
1033 			lo->lo_encryption = xfer;
1034 	}
1035 	return err;
1036 }
1037 
1038 static int __loop_clr_fd(struct loop_device *lo, bool release)
1039 {
1040 	struct file *filp = NULL;
1041 	gfp_t gfp = lo->old_gfp_mask;
1042 	struct block_device *bdev = lo->lo_device;
1043 	int err = 0;
1044 	bool partscan = false;
1045 	int lo_number;
1046 
1047 	mutex_lock(&loop_ctl_mutex);
1048 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1049 		err = -ENXIO;
1050 		goto out_unlock;
1051 	}
1052 
1053 	filp = lo->lo_backing_file;
1054 	if (filp == NULL) {
1055 		err = -EINVAL;
1056 		goto out_unlock;
1057 	}
1058 
1059 	/* freeze request queue during the transition */
1060 	blk_mq_freeze_queue(lo->lo_queue);
1061 
1062 	spin_lock_irq(&lo->lo_lock);
1063 	lo->lo_backing_file = NULL;
1064 	spin_unlock_irq(&lo->lo_lock);
1065 
1066 	loop_release_xfer(lo);
1067 	lo->transfer = NULL;
1068 	lo->ioctl = NULL;
1069 	lo->lo_device = NULL;
1070 	lo->lo_encryption = NULL;
1071 	lo->lo_offset = 0;
1072 	lo->lo_sizelimit = 0;
1073 	lo->lo_encrypt_key_size = 0;
1074 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1075 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1076 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1077 	blk_queue_logical_block_size(lo->lo_queue, 512);
1078 	blk_queue_physical_block_size(lo->lo_queue, 512);
1079 	blk_queue_io_min(lo->lo_queue, 512);
1080 	if (bdev) {
1081 		bdput(bdev);
1082 		invalidate_bdev(bdev);
1083 		bdev->bd_inode->i_mapping->wb_err = 0;
1084 	}
1085 	set_capacity(lo->lo_disk, 0);
1086 	loop_sysfs_exit(lo);
1087 	if (bdev) {
1088 		bd_set_size(bdev, 0);
1089 		/* let user-space know about this change */
1090 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1091 	}
1092 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1093 	lo->lo_state = Lo_unbound;
1094 	/* This is safe: open() is still holding a reference. */
1095 	module_put(THIS_MODULE);
1096 	blk_mq_unfreeze_queue(lo->lo_queue);
1097 
1098 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1099 	lo_number = lo->lo_number;
1100 	lo->lo_flags = 0;
1101 	if (!part_shift)
1102 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1103 	loop_unprepare_queue(lo);
1104 out_unlock:
1105 	mutex_unlock(&loop_ctl_mutex);
1106 	if (partscan) {
1107 		/*
1108 		 * bd_mutex has been held already in release path, so don't
1109 		 * acquire it if this function is called in such case.
1110 		 *
1111 		 * If the reread partition isn't from release path, lo_refcnt
1112 		 * must be at least one and it can only become zero when the
1113 		 * current holder is released.
1114 		 */
1115 		if (release)
1116 			err = __blkdev_reread_part(bdev);
1117 		else
1118 			err = blkdev_reread_part(bdev);
1119 		pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1120 			__func__, lo_number, err);
1121 		/* Device is gone, no point in returning error */
1122 		err = 0;
1123 	}
1124 	/*
1125 	 * Need not hold loop_ctl_mutex to fput backing file.
1126 	 * Calling fput holding loop_ctl_mutex triggers a circular
1127 	 * lock dependency possibility warning as fput can take
1128 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1129 	 */
1130 	if (filp)
1131 		fput(filp);
1132 	return err;
1133 }
1134 
1135 static int loop_clr_fd(struct loop_device *lo)
1136 {
1137 	int err;
1138 
1139 	err = mutex_lock_killable(&loop_ctl_mutex);
1140 	if (err)
1141 		return err;
1142 	if (lo->lo_state != Lo_bound) {
1143 		mutex_unlock(&loop_ctl_mutex);
1144 		return -ENXIO;
1145 	}
1146 	/*
1147 	 * If we've explicitly asked to tear down the loop device,
1148 	 * and it has an elevated reference count, set it for auto-teardown when
1149 	 * the last reference goes away. This stops $!~#$@ udev from
1150 	 * preventing teardown because it decided that it needs to run blkid on
1151 	 * the loopback device whenever they appear. xfstests is notorious for
1152 	 * failing tests because blkid via udev races with a losetup
1153 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1154 	 * command to fail with EBUSY.
1155 	 */
1156 	if (atomic_read(&lo->lo_refcnt) > 1) {
1157 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1158 		mutex_unlock(&loop_ctl_mutex);
1159 		return 0;
1160 	}
1161 	lo->lo_state = Lo_rundown;
1162 	mutex_unlock(&loop_ctl_mutex);
1163 
1164 	return __loop_clr_fd(lo, false);
1165 }
1166 
1167 static int
1168 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1169 {
1170 	int err;
1171 	struct loop_func_table *xfer;
1172 	kuid_t uid = current_uid();
1173 	struct block_device *bdev;
1174 	bool partscan = false;
1175 
1176 	err = mutex_lock_killable(&loop_ctl_mutex);
1177 	if (err)
1178 		return err;
1179 	if (lo->lo_encrypt_key_size &&
1180 	    !uid_eq(lo->lo_key_owner, uid) &&
1181 	    !capable(CAP_SYS_ADMIN)) {
1182 		err = -EPERM;
1183 		goto out_unlock;
1184 	}
1185 	if (lo->lo_state != Lo_bound) {
1186 		err = -ENXIO;
1187 		goto out_unlock;
1188 	}
1189 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1190 		err = -EINVAL;
1191 		goto out_unlock;
1192 	}
1193 
1194 	/* I/O need to be drained during transfer transition */
1195 	blk_mq_freeze_queue(lo->lo_queue);
1196 
1197 	err = loop_release_xfer(lo);
1198 	if (err)
1199 		goto out_unfreeze;
1200 
1201 	if (info->lo_encrypt_type) {
1202 		unsigned int type = info->lo_encrypt_type;
1203 
1204 		if (type >= MAX_LO_CRYPT) {
1205 			err = -EINVAL;
1206 			goto out_unfreeze;
1207 		}
1208 		xfer = xfer_funcs[type];
1209 		if (xfer == NULL) {
1210 			err = -EINVAL;
1211 			goto out_unfreeze;
1212 		}
1213 	} else
1214 		xfer = NULL;
1215 
1216 	err = loop_init_xfer(lo, xfer, info);
1217 	if (err)
1218 		goto out_unfreeze;
1219 
1220 	if (lo->lo_offset != info->lo_offset ||
1221 	    lo->lo_sizelimit != info->lo_sizelimit) {
1222 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1223 			err = -EFBIG;
1224 			goto out_unfreeze;
1225 		}
1226 	}
1227 
1228 	loop_config_discard(lo);
1229 
1230 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1231 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1232 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1233 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1234 
1235 	if (!xfer)
1236 		xfer = &none_funcs;
1237 	lo->transfer = xfer->transfer;
1238 	lo->ioctl = xfer->ioctl;
1239 
1240 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1241 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1242 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1243 
1244 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1245 	lo->lo_init[0] = info->lo_init[0];
1246 	lo->lo_init[1] = info->lo_init[1];
1247 	if (info->lo_encrypt_key_size) {
1248 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1249 		       info->lo_encrypt_key_size);
1250 		lo->lo_key_owner = uid;
1251 	}
1252 
1253 	/* update dio if lo_offset or transfer is changed */
1254 	__loop_update_dio(lo, lo->use_dio);
1255 
1256 out_unfreeze:
1257 	blk_mq_unfreeze_queue(lo->lo_queue);
1258 
1259 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1260 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1261 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1262 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1263 		bdev = lo->lo_device;
1264 		partscan = true;
1265 	}
1266 out_unlock:
1267 	mutex_unlock(&loop_ctl_mutex);
1268 	if (partscan)
1269 		loop_reread_partitions(lo, bdev);
1270 
1271 	return err;
1272 }
1273 
1274 static int
1275 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1276 {
1277 	struct path path;
1278 	struct kstat stat;
1279 	int ret;
1280 
1281 	ret = mutex_lock_killable(&loop_ctl_mutex);
1282 	if (ret)
1283 		return ret;
1284 	if (lo->lo_state != Lo_bound) {
1285 		mutex_unlock(&loop_ctl_mutex);
1286 		return -ENXIO;
1287 	}
1288 
1289 	memset(info, 0, sizeof(*info));
1290 	info->lo_number = lo->lo_number;
1291 	info->lo_offset = lo->lo_offset;
1292 	info->lo_sizelimit = lo->lo_sizelimit;
1293 	info->lo_flags = lo->lo_flags;
1294 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1295 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1296 	info->lo_encrypt_type =
1297 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1298 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1299 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1300 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1301 		       lo->lo_encrypt_key_size);
1302 	}
1303 
1304 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1305 	path = lo->lo_backing_file->f_path;
1306 	path_get(&path);
1307 	mutex_unlock(&loop_ctl_mutex);
1308 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1309 	if (!ret) {
1310 		info->lo_device = huge_encode_dev(stat.dev);
1311 		info->lo_inode = stat.ino;
1312 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1313 	}
1314 	path_put(&path);
1315 	return ret;
1316 }
1317 
1318 static void
1319 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1320 {
1321 	memset(info64, 0, sizeof(*info64));
1322 	info64->lo_number = info->lo_number;
1323 	info64->lo_device = info->lo_device;
1324 	info64->lo_inode = info->lo_inode;
1325 	info64->lo_rdevice = info->lo_rdevice;
1326 	info64->lo_offset = info->lo_offset;
1327 	info64->lo_sizelimit = 0;
1328 	info64->lo_encrypt_type = info->lo_encrypt_type;
1329 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1330 	info64->lo_flags = info->lo_flags;
1331 	info64->lo_init[0] = info->lo_init[0];
1332 	info64->lo_init[1] = info->lo_init[1];
1333 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1334 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1335 	else
1336 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1337 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1338 }
1339 
1340 static int
1341 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1342 {
1343 	memset(info, 0, sizeof(*info));
1344 	info->lo_number = info64->lo_number;
1345 	info->lo_device = info64->lo_device;
1346 	info->lo_inode = info64->lo_inode;
1347 	info->lo_rdevice = info64->lo_rdevice;
1348 	info->lo_offset = info64->lo_offset;
1349 	info->lo_encrypt_type = info64->lo_encrypt_type;
1350 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1351 	info->lo_flags = info64->lo_flags;
1352 	info->lo_init[0] = info64->lo_init[0];
1353 	info->lo_init[1] = info64->lo_init[1];
1354 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1355 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1356 	else
1357 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1358 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1359 
1360 	/* error in case values were truncated */
1361 	if (info->lo_device != info64->lo_device ||
1362 	    info->lo_rdevice != info64->lo_rdevice ||
1363 	    info->lo_inode != info64->lo_inode ||
1364 	    info->lo_offset != info64->lo_offset)
1365 		return -EOVERFLOW;
1366 
1367 	return 0;
1368 }
1369 
1370 static int
1371 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1372 {
1373 	struct loop_info info;
1374 	struct loop_info64 info64;
1375 
1376 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1377 		return -EFAULT;
1378 	loop_info64_from_old(&info, &info64);
1379 	return loop_set_status(lo, &info64);
1380 }
1381 
1382 static int
1383 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1384 {
1385 	struct loop_info64 info64;
1386 
1387 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1388 		return -EFAULT;
1389 	return loop_set_status(lo, &info64);
1390 }
1391 
1392 static int
1393 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1394 	struct loop_info info;
1395 	struct loop_info64 info64;
1396 	int err;
1397 
1398 	if (!arg)
1399 		return -EINVAL;
1400 	err = loop_get_status(lo, &info64);
1401 	if (!err)
1402 		err = loop_info64_to_old(&info64, &info);
1403 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1404 		err = -EFAULT;
1405 
1406 	return err;
1407 }
1408 
1409 static int
1410 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1411 	struct loop_info64 info64;
1412 	int err;
1413 
1414 	if (!arg)
1415 		return -EINVAL;
1416 	err = loop_get_status(lo, &info64);
1417 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1418 		err = -EFAULT;
1419 
1420 	return err;
1421 }
1422 
1423 static int loop_set_capacity(struct loop_device *lo)
1424 {
1425 	if (unlikely(lo->lo_state != Lo_bound))
1426 		return -ENXIO;
1427 
1428 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1429 }
1430 
1431 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1432 {
1433 	int error = -ENXIO;
1434 	if (lo->lo_state != Lo_bound)
1435 		goto out;
1436 
1437 	__loop_update_dio(lo, !!arg);
1438 	if (lo->use_dio == !!arg)
1439 		return 0;
1440 	error = -EINVAL;
1441  out:
1442 	return error;
1443 }
1444 
1445 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1446 {
1447 	if (lo->lo_state != Lo_bound)
1448 		return -ENXIO;
1449 
1450 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1451 		return -EINVAL;
1452 
1453 	blk_mq_freeze_queue(lo->lo_queue);
1454 
1455 	blk_queue_logical_block_size(lo->lo_queue, arg);
1456 	blk_queue_physical_block_size(lo->lo_queue, arg);
1457 	blk_queue_io_min(lo->lo_queue, arg);
1458 	loop_update_dio(lo);
1459 
1460 	blk_mq_unfreeze_queue(lo->lo_queue);
1461 
1462 	return 0;
1463 }
1464 
1465 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1466 			   unsigned long arg)
1467 {
1468 	int err;
1469 
1470 	err = mutex_lock_killable(&loop_ctl_mutex);
1471 	if (err)
1472 		return err;
1473 	switch (cmd) {
1474 	case LOOP_SET_CAPACITY:
1475 		err = loop_set_capacity(lo);
1476 		break;
1477 	case LOOP_SET_DIRECT_IO:
1478 		err = loop_set_dio(lo, arg);
1479 		break;
1480 	case LOOP_SET_BLOCK_SIZE:
1481 		err = loop_set_block_size(lo, arg);
1482 		break;
1483 	default:
1484 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1485 	}
1486 	mutex_unlock(&loop_ctl_mutex);
1487 	return err;
1488 }
1489 
1490 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1491 	unsigned int cmd, unsigned long arg)
1492 {
1493 	struct loop_device *lo = bdev->bd_disk->private_data;
1494 	int err;
1495 
1496 	switch (cmd) {
1497 	case LOOP_SET_FD:
1498 		return loop_set_fd(lo, mode, bdev, arg);
1499 	case LOOP_CHANGE_FD:
1500 		return loop_change_fd(lo, bdev, arg);
1501 	case LOOP_CLR_FD:
1502 		return loop_clr_fd(lo);
1503 	case LOOP_SET_STATUS:
1504 		err = -EPERM;
1505 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1506 			err = loop_set_status_old(lo,
1507 					(struct loop_info __user *)arg);
1508 		}
1509 		break;
1510 	case LOOP_GET_STATUS:
1511 		return loop_get_status_old(lo, (struct loop_info __user *) arg);
1512 	case LOOP_SET_STATUS64:
1513 		err = -EPERM;
1514 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1515 			err = loop_set_status64(lo,
1516 					(struct loop_info64 __user *) arg);
1517 		}
1518 		break;
1519 	case LOOP_GET_STATUS64:
1520 		return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1521 	case LOOP_SET_CAPACITY:
1522 	case LOOP_SET_DIRECT_IO:
1523 	case LOOP_SET_BLOCK_SIZE:
1524 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1525 			return -EPERM;
1526 		/* Fall through */
1527 	default:
1528 		err = lo_simple_ioctl(lo, cmd, arg);
1529 		break;
1530 	}
1531 
1532 	return err;
1533 }
1534 
1535 #ifdef CONFIG_COMPAT
1536 struct compat_loop_info {
1537 	compat_int_t	lo_number;      /* ioctl r/o */
1538 	compat_dev_t	lo_device;      /* ioctl r/o */
1539 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1540 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1541 	compat_int_t	lo_offset;
1542 	compat_int_t	lo_encrypt_type;
1543 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1544 	compat_int_t	lo_flags;       /* ioctl r/o */
1545 	char		lo_name[LO_NAME_SIZE];
1546 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1547 	compat_ulong_t	lo_init[2];
1548 	char		reserved[4];
1549 };
1550 
1551 /*
1552  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1553  * - noinlined to reduce stack space usage in main part of driver
1554  */
1555 static noinline int
1556 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1557 			struct loop_info64 *info64)
1558 {
1559 	struct compat_loop_info info;
1560 
1561 	if (copy_from_user(&info, arg, sizeof(info)))
1562 		return -EFAULT;
1563 
1564 	memset(info64, 0, sizeof(*info64));
1565 	info64->lo_number = info.lo_number;
1566 	info64->lo_device = info.lo_device;
1567 	info64->lo_inode = info.lo_inode;
1568 	info64->lo_rdevice = info.lo_rdevice;
1569 	info64->lo_offset = info.lo_offset;
1570 	info64->lo_sizelimit = 0;
1571 	info64->lo_encrypt_type = info.lo_encrypt_type;
1572 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1573 	info64->lo_flags = info.lo_flags;
1574 	info64->lo_init[0] = info.lo_init[0];
1575 	info64->lo_init[1] = info.lo_init[1];
1576 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1577 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1578 	else
1579 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1580 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1581 	return 0;
1582 }
1583 
1584 /*
1585  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1586  * - noinlined to reduce stack space usage in main part of driver
1587  */
1588 static noinline int
1589 loop_info64_to_compat(const struct loop_info64 *info64,
1590 		      struct compat_loop_info __user *arg)
1591 {
1592 	struct compat_loop_info info;
1593 
1594 	memset(&info, 0, sizeof(info));
1595 	info.lo_number = info64->lo_number;
1596 	info.lo_device = info64->lo_device;
1597 	info.lo_inode = info64->lo_inode;
1598 	info.lo_rdevice = info64->lo_rdevice;
1599 	info.lo_offset = info64->lo_offset;
1600 	info.lo_encrypt_type = info64->lo_encrypt_type;
1601 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1602 	info.lo_flags = info64->lo_flags;
1603 	info.lo_init[0] = info64->lo_init[0];
1604 	info.lo_init[1] = info64->lo_init[1];
1605 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1606 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1607 	else
1608 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1609 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1610 
1611 	/* error in case values were truncated */
1612 	if (info.lo_device != info64->lo_device ||
1613 	    info.lo_rdevice != info64->lo_rdevice ||
1614 	    info.lo_inode != info64->lo_inode ||
1615 	    info.lo_offset != info64->lo_offset ||
1616 	    info.lo_init[0] != info64->lo_init[0] ||
1617 	    info.lo_init[1] != info64->lo_init[1])
1618 		return -EOVERFLOW;
1619 
1620 	if (copy_to_user(arg, &info, sizeof(info)))
1621 		return -EFAULT;
1622 	return 0;
1623 }
1624 
1625 static int
1626 loop_set_status_compat(struct loop_device *lo,
1627 		       const struct compat_loop_info __user *arg)
1628 {
1629 	struct loop_info64 info64;
1630 	int ret;
1631 
1632 	ret = loop_info64_from_compat(arg, &info64);
1633 	if (ret < 0)
1634 		return ret;
1635 	return loop_set_status(lo, &info64);
1636 }
1637 
1638 static int
1639 loop_get_status_compat(struct loop_device *lo,
1640 		       struct compat_loop_info __user *arg)
1641 {
1642 	struct loop_info64 info64;
1643 	int err;
1644 
1645 	if (!arg)
1646 		return -EINVAL;
1647 	err = loop_get_status(lo, &info64);
1648 	if (!err)
1649 		err = loop_info64_to_compat(&info64, arg);
1650 	return err;
1651 }
1652 
1653 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1654 			   unsigned int cmd, unsigned long arg)
1655 {
1656 	struct loop_device *lo = bdev->bd_disk->private_data;
1657 	int err;
1658 
1659 	switch(cmd) {
1660 	case LOOP_SET_STATUS:
1661 		err = loop_set_status_compat(lo,
1662 			     (const struct compat_loop_info __user *)arg);
1663 		break;
1664 	case LOOP_GET_STATUS:
1665 		err = loop_get_status_compat(lo,
1666 				     (struct compat_loop_info __user *)arg);
1667 		break;
1668 	case LOOP_SET_CAPACITY:
1669 	case LOOP_CLR_FD:
1670 	case LOOP_GET_STATUS64:
1671 	case LOOP_SET_STATUS64:
1672 		arg = (unsigned long) compat_ptr(arg);
1673 		/* fall through */
1674 	case LOOP_SET_FD:
1675 	case LOOP_CHANGE_FD:
1676 	case LOOP_SET_BLOCK_SIZE:
1677 		err = lo_ioctl(bdev, mode, cmd, arg);
1678 		break;
1679 	default:
1680 		err = -ENOIOCTLCMD;
1681 		break;
1682 	}
1683 	return err;
1684 }
1685 #endif
1686 
1687 static int lo_open(struct block_device *bdev, fmode_t mode)
1688 {
1689 	struct loop_device *lo;
1690 	int err;
1691 
1692 	err = mutex_lock_killable(&loop_ctl_mutex);
1693 	if (err)
1694 		return err;
1695 	lo = bdev->bd_disk->private_data;
1696 	if (!lo) {
1697 		err = -ENXIO;
1698 		goto out;
1699 	}
1700 
1701 	atomic_inc(&lo->lo_refcnt);
1702 out:
1703 	mutex_unlock(&loop_ctl_mutex);
1704 	return err;
1705 }
1706 
1707 static void lo_release(struct gendisk *disk, fmode_t mode)
1708 {
1709 	struct loop_device *lo;
1710 
1711 	mutex_lock(&loop_ctl_mutex);
1712 	lo = disk->private_data;
1713 	if (atomic_dec_return(&lo->lo_refcnt))
1714 		goto out_unlock;
1715 
1716 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1717 		if (lo->lo_state != Lo_bound)
1718 			goto out_unlock;
1719 		lo->lo_state = Lo_rundown;
1720 		mutex_unlock(&loop_ctl_mutex);
1721 		/*
1722 		 * In autoclear mode, stop the loop thread
1723 		 * and remove configuration after last close.
1724 		 */
1725 		__loop_clr_fd(lo, true);
1726 		return;
1727 	} else if (lo->lo_state == Lo_bound) {
1728 		/*
1729 		 * Otherwise keep thread (if running) and config,
1730 		 * but flush possible ongoing bios in thread.
1731 		 */
1732 		blk_mq_freeze_queue(lo->lo_queue);
1733 		blk_mq_unfreeze_queue(lo->lo_queue);
1734 	}
1735 
1736 out_unlock:
1737 	mutex_unlock(&loop_ctl_mutex);
1738 }
1739 
1740 static const struct block_device_operations lo_fops = {
1741 	.owner =	THIS_MODULE,
1742 	.open =		lo_open,
1743 	.release =	lo_release,
1744 	.ioctl =	lo_ioctl,
1745 #ifdef CONFIG_COMPAT
1746 	.compat_ioctl =	lo_compat_ioctl,
1747 #endif
1748 };
1749 
1750 /*
1751  * And now the modules code and kernel interface.
1752  */
1753 static int max_loop;
1754 module_param(max_loop, int, 0444);
1755 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1756 module_param(max_part, int, 0444);
1757 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1758 MODULE_LICENSE("GPL");
1759 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1760 
1761 int loop_register_transfer(struct loop_func_table *funcs)
1762 {
1763 	unsigned int n = funcs->number;
1764 
1765 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1766 		return -EINVAL;
1767 	xfer_funcs[n] = funcs;
1768 	return 0;
1769 }
1770 
1771 static int unregister_transfer_cb(int id, void *ptr, void *data)
1772 {
1773 	struct loop_device *lo = ptr;
1774 	struct loop_func_table *xfer = data;
1775 
1776 	mutex_lock(&loop_ctl_mutex);
1777 	if (lo->lo_encryption == xfer)
1778 		loop_release_xfer(lo);
1779 	mutex_unlock(&loop_ctl_mutex);
1780 	return 0;
1781 }
1782 
1783 int loop_unregister_transfer(int number)
1784 {
1785 	unsigned int n = number;
1786 	struct loop_func_table *xfer;
1787 
1788 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1789 		return -EINVAL;
1790 
1791 	xfer_funcs[n] = NULL;
1792 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1793 	return 0;
1794 }
1795 
1796 EXPORT_SYMBOL(loop_register_transfer);
1797 EXPORT_SYMBOL(loop_unregister_transfer);
1798 
1799 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1800 		const struct blk_mq_queue_data *bd)
1801 {
1802 	struct request *rq = bd->rq;
1803 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1804 	struct loop_device *lo = rq->q->queuedata;
1805 
1806 	blk_mq_start_request(rq);
1807 
1808 	if (lo->lo_state != Lo_bound)
1809 		return BLK_STS_IOERR;
1810 
1811 	switch (req_op(rq)) {
1812 	case REQ_OP_FLUSH:
1813 	case REQ_OP_DISCARD:
1814 	case REQ_OP_WRITE_ZEROES:
1815 		cmd->use_aio = false;
1816 		break;
1817 	default:
1818 		cmd->use_aio = lo->use_dio;
1819 		break;
1820 	}
1821 
1822 	/* always use the first bio's css */
1823 #ifdef CONFIG_BLK_CGROUP
1824 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1825 		cmd->css = &bio_blkcg(rq->bio)->css;
1826 		css_get(cmd->css);
1827 	} else
1828 #endif
1829 		cmd->css = NULL;
1830 	kthread_queue_work(&lo->worker, &cmd->work);
1831 
1832 	return BLK_STS_OK;
1833 }
1834 
1835 static void loop_handle_cmd(struct loop_cmd *cmd)
1836 {
1837 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1838 	const bool write = op_is_write(req_op(rq));
1839 	struct loop_device *lo = rq->q->queuedata;
1840 	int ret = 0;
1841 
1842 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1843 		ret = -EIO;
1844 		goto failed;
1845 	}
1846 
1847 	ret = do_req_filebacked(lo, rq);
1848  failed:
1849 	/* complete non-aio request */
1850 	if (!cmd->use_aio || ret) {
1851 		cmd->ret = ret ? -EIO : 0;
1852 		blk_mq_complete_request(rq);
1853 	}
1854 }
1855 
1856 static void loop_queue_work(struct kthread_work *work)
1857 {
1858 	struct loop_cmd *cmd =
1859 		container_of(work, struct loop_cmd, work);
1860 
1861 	loop_handle_cmd(cmd);
1862 }
1863 
1864 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1865 		unsigned int hctx_idx, unsigned int numa_node)
1866 {
1867 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1868 
1869 	kthread_init_work(&cmd->work, loop_queue_work);
1870 	return 0;
1871 }
1872 
1873 static const struct blk_mq_ops loop_mq_ops = {
1874 	.queue_rq       = loop_queue_rq,
1875 	.init_request	= loop_init_request,
1876 	.complete	= lo_complete_rq,
1877 };
1878 
1879 static int loop_add(struct loop_device **l, int i)
1880 {
1881 	struct loop_device *lo;
1882 	struct gendisk *disk;
1883 	int err;
1884 
1885 	err = -ENOMEM;
1886 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1887 	if (!lo)
1888 		goto out;
1889 
1890 	lo->lo_state = Lo_unbound;
1891 
1892 	/* allocate id, if @id >= 0, we're requesting that specific id */
1893 	if (i >= 0) {
1894 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1895 		if (err == -ENOSPC)
1896 			err = -EEXIST;
1897 	} else {
1898 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1899 	}
1900 	if (err < 0)
1901 		goto out_free_dev;
1902 	i = err;
1903 
1904 	err = -ENOMEM;
1905 	lo->tag_set.ops = &loop_mq_ops;
1906 	lo->tag_set.nr_hw_queues = 1;
1907 	lo->tag_set.queue_depth = 128;
1908 	lo->tag_set.numa_node = NUMA_NO_NODE;
1909 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1910 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1911 	lo->tag_set.driver_data = lo;
1912 
1913 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1914 	if (err)
1915 		goto out_free_idr;
1916 
1917 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1918 	if (IS_ERR(lo->lo_queue)) {
1919 		err = PTR_ERR(lo->lo_queue);
1920 		goto out_cleanup_tags;
1921 	}
1922 	lo->lo_queue->queuedata = lo;
1923 
1924 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1925 
1926 	/*
1927 	 * By default, we do buffer IO, so it doesn't make sense to enable
1928 	 * merge because the I/O submitted to backing file is handled page by
1929 	 * page. For directio mode, merge does help to dispatch bigger request
1930 	 * to underlayer disk. We will enable merge once directio is enabled.
1931 	 */
1932 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1933 
1934 	err = -ENOMEM;
1935 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1936 	if (!disk)
1937 		goto out_free_queue;
1938 
1939 	/*
1940 	 * Disable partition scanning by default. The in-kernel partition
1941 	 * scanning can be requested individually per-device during its
1942 	 * setup. Userspace can always add and remove partitions from all
1943 	 * devices. The needed partition minors are allocated from the
1944 	 * extended minor space, the main loop device numbers will continue
1945 	 * to match the loop minors, regardless of the number of partitions
1946 	 * used.
1947 	 *
1948 	 * If max_part is given, partition scanning is globally enabled for
1949 	 * all loop devices. The minors for the main loop devices will be
1950 	 * multiples of max_part.
1951 	 *
1952 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1953 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1954 	 * complicated, are too static, inflexible and may surprise
1955 	 * userspace tools. Parameters like this in general should be avoided.
1956 	 */
1957 	if (!part_shift)
1958 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1959 	disk->flags |= GENHD_FL_EXT_DEVT;
1960 	atomic_set(&lo->lo_refcnt, 0);
1961 	lo->lo_number		= i;
1962 	spin_lock_init(&lo->lo_lock);
1963 	disk->major		= LOOP_MAJOR;
1964 	disk->first_minor	= i << part_shift;
1965 	disk->fops		= &lo_fops;
1966 	disk->private_data	= lo;
1967 	disk->queue		= lo->lo_queue;
1968 	sprintf(disk->disk_name, "loop%d", i);
1969 	add_disk(disk);
1970 	*l = lo;
1971 	return lo->lo_number;
1972 
1973 out_free_queue:
1974 	blk_cleanup_queue(lo->lo_queue);
1975 out_cleanup_tags:
1976 	blk_mq_free_tag_set(&lo->tag_set);
1977 out_free_idr:
1978 	idr_remove(&loop_index_idr, i);
1979 out_free_dev:
1980 	kfree(lo);
1981 out:
1982 	return err;
1983 }
1984 
1985 static void loop_remove(struct loop_device *lo)
1986 {
1987 	del_gendisk(lo->lo_disk);
1988 	blk_cleanup_queue(lo->lo_queue);
1989 	blk_mq_free_tag_set(&lo->tag_set);
1990 	put_disk(lo->lo_disk);
1991 	kfree(lo);
1992 }
1993 
1994 static int find_free_cb(int id, void *ptr, void *data)
1995 {
1996 	struct loop_device *lo = ptr;
1997 	struct loop_device **l = data;
1998 
1999 	if (lo->lo_state == Lo_unbound) {
2000 		*l = lo;
2001 		return 1;
2002 	}
2003 	return 0;
2004 }
2005 
2006 static int loop_lookup(struct loop_device **l, int i)
2007 {
2008 	struct loop_device *lo;
2009 	int ret = -ENODEV;
2010 
2011 	if (i < 0) {
2012 		int err;
2013 
2014 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2015 		if (err == 1) {
2016 			*l = lo;
2017 			ret = lo->lo_number;
2018 		}
2019 		goto out;
2020 	}
2021 
2022 	/* lookup and return a specific i */
2023 	lo = idr_find(&loop_index_idr, i);
2024 	if (lo) {
2025 		*l = lo;
2026 		ret = lo->lo_number;
2027 	}
2028 out:
2029 	return ret;
2030 }
2031 
2032 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2033 {
2034 	struct loop_device *lo;
2035 	struct kobject *kobj;
2036 	int err;
2037 
2038 	mutex_lock(&loop_ctl_mutex);
2039 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2040 	if (err < 0)
2041 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2042 	if (err < 0)
2043 		kobj = NULL;
2044 	else
2045 		kobj = get_disk_and_module(lo->lo_disk);
2046 	mutex_unlock(&loop_ctl_mutex);
2047 
2048 	*part = 0;
2049 	return kobj;
2050 }
2051 
2052 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2053 			       unsigned long parm)
2054 {
2055 	struct loop_device *lo;
2056 	int ret;
2057 
2058 	ret = mutex_lock_killable(&loop_ctl_mutex);
2059 	if (ret)
2060 		return ret;
2061 
2062 	ret = -ENOSYS;
2063 	switch (cmd) {
2064 	case LOOP_CTL_ADD:
2065 		ret = loop_lookup(&lo, parm);
2066 		if (ret >= 0) {
2067 			ret = -EEXIST;
2068 			break;
2069 		}
2070 		ret = loop_add(&lo, parm);
2071 		break;
2072 	case LOOP_CTL_REMOVE:
2073 		ret = loop_lookup(&lo, parm);
2074 		if (ret < 0)
2075 			break;
2076 		if (lo->lo_state != Lo_unbound) {
2077 			ret = -EBUSY;
2078 			break;
2079 		}
2080 		if (atomic_read(&lo->lo_refcnt) > 0) {
2081 			ret = -EBUSY;
2082 			break;
2083 		}
2084 		lo->lo_disk->private_data = NULL;
2085 		idr_remove(&loop_index_idr, lo->lo_number);
2086 		loop_remove(lo);
2087 		break;
2088 	case LOOP_CTL_GET_FREE:
2089 		ret = loop_lookup(&lo, -1);
2090 		if (ret >= 0)
2091 			break;
2092 		ret = loop_add(&lo, -1);
2093 	}
2094 	mutex_unlock(&loop_ctl_mutex);
2095 
2096 	return ret;
2097 }
2098 
2099 static const struct file_operations loop_ctl_fops = {
2100 	.open		= nonseekable_open,
2101 	.unlocked_ioctl	= loop_control_ioctl,
2102 	.compat_ioctl	= loop_control_ioctl,
2103 	.owner		= THIS_MODULE,
2104 	.llseek		= noop_llseek,
2105 };
2106 
2107 static struct miscdevice loop_misc = {
2108 	.minor		= LOOP_CTRL_MINOR,
2109 	.name		= "loop-control",
2110 	.fops		= &loop_ctl_fops,
2111 };
2112 
2113 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2114 MODULE_ALIAS("devname:loop-control");
2115 
2116 static int __init loop_init(void)
2117 {
2118 	int i, nr;
2119 	unsigned long range;
2120 	struct loop_device *lo;
2121 	int err;
2122 
2123 	part_shift = 0;
2124 	if (max_part > 0) {
2125 		part_shift = fls(max_part);
2126 
2127 		/*
2128 		 * Adjust max_part according to part_shift as it is exported
2129 		 * to user space so that user can decide correct minor number
2130 		 * if [s]he want to create more devices.
2131 		 *
2132 		 * Note that -1 is required because partition 0 is reserved
2133 		 * for the whole disk.
2134 		 */
2135 		max_part = (1UL << part_shift) - 1;
2136 	}
2137 
2138 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2139 		err = -EINVAL;
2140 		goto err_out;
2141 	}
2142 
2143 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2144 		err = -EINVAL;
2145 		goto err_out;
2146 	}
2147 
2148 	/*
2149 	 * If max_loop is specified, create that many devices upfront.
2150 	 * This also becomes a hard limit. If max_loop is not specified,
2151 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2152 	 * init time. Loop devices can be requested on-demand with the
2153 	 * /dev/loop-control interface, or be instantiated by accessing
2154 	 * a 'dead' device node.
2155 	 */
2156 	if (max_loop) {
2157 		nr = max_loop;
2158 		range = max_loop << part_shift;
2159 	} else {
2160 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2161 		range = 1UL << MINORBITS;
2162 	}
2163 
2164 	err = misc_register(&loop_misc);
2165 	if (err < 0)
2166 		goto err_out;
2167 
2168 
2169 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2170 		err = -EIO;
2171 		goto misc_out;
2172 	}
2173 
2174 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2175 				  THIS_MODULE, loop_probe, NULL, NULL);
2176 
2177 	/* pre-create number of devices given by config or max_loop */
2178 	mutex_lock(&loop_ctl_mutex);
2179 	for (i = 0; i < nr; i++)
2180 		loop_add(&lo, i);
2181 	mutex_unlock(&loop_ctl_mutex);
2182 
2183 	printk(KERN_INFO "loop: module loaded\n");
2184 	return 0;
2185 
2186 misc_out:
2187 	misc_deregister(&loop_misc);
2188 err_out:
2189 	return err;
2190 }
2191 
2192 static int loop_exit_cb(int id, void *ptr, void *data)
2193 {
2194 	struct loop_device *lo = ptr;
2195 
2196 	loop_remove(lo);
2197 	return 0;
2198 }
2199 
2200 static void __exit loop_exit(void)
2201 {
2202 	unsigned long range;
2203 
2204 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2205 
2206 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2207 	idr_destroy(&loop_index_idr);
2208 
2209 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2210 	unregister_blkdev(LOOP_MAJOR, "loop");
2211 
2212 	misc_deregister(&loop_misc);
2213 }
2214 
2215 module_init(loop_init);
2216 module_exit(loop_exit);
2217 
2218 #ifndef MODULE
2219 static int __init max_loop_setup(char *str)
2220 {
2221 	max_loop = simple_strtol(str, NULL, 0);
2222 	return 1;
2223 }
2224 
2225 __setup("max_loop=", max_loop_setup);
2226 #endif
2227