xref: /openbmc/linux/drivers/block/loop.c (revision 35a82d1a)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/sched.h>
57 #include <linux/fs.h>
58 #include <linux/file.h>
59 #include <linux/stat.h>
60 #include <linux/errno.h>
61 #include <linux/major.h>
62 #include <linux/wait.h>
63 #include <linux/blkdev.h>
64 #include <linux/blkpg.h>
65 #include <linux/init.h>
66 #include <linux/devfs_fs_kernel.h>
67 #include <linux/smp_lock.h>
68 #include <linux/swap.h>
69 #include <linux/slab.h>
70 #include <linux/loop.h>
71 #include <linux/suspend.h>
72 #include <linux/writeback.h>
73 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
74 #include <linux/completion.h>
75 #include <linux/highmem.h>
76 #include <linux/gfp.h>
77 
78 #include <asm/uaccess.h>
79 
80 static int max_loop = 8;
81 static struct loop_device *loop_dev;
82 static struct gendisk **disks;
83 
84 /*
85  * Transfer functions
86  */
87 static int transfer_none(struct loop_device *lo, int cmd,
88 			 struct page *raw_page, unsigned raw_off,
89 			 struct page *loop_page, unsigned loop_off,
90 			 int size, sector_t real_block)
91 {
92 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
93 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
94 
95 	if (cmd == READ)
96 		memcpy(loop_buf, raw_buf, size);
97 	else
98 		memcpy(raw_buf, loop_buf, size);
99 
100 	kunmap_atomic(raw_buf, KM_USER0);
101 	kunmap_atomic(loop_buf, KM_USER1);
102 	cond_resched();
103 	return 0;
104 }
105 
106 static int transfer_xor(struct loop_device *lo, int cmd,
107 			struct page *raw_page, unsigned raw_off,
108 			struct page *loop_page, unsigned loop_off,
109 			int size, sector_t real_block)
110 {
111 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
112 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
113 	char *in, *out, *key;
114 	int i, keysize;
115 
116 	if (cmd == READ) {
117 		in = raw_buf;
118 		out = loop_buf;
119 	} else {
120 		in = loop_buf;
121 		out = raw_buf;
122 	}
123 
124 	key = lo->lo_encrypt_key;
125 	keysize = lo->lo_encrypt_key_size;
126 	for (i = 0; i < size; i++)
127 		*out++ = *in++ ^ key[(i & 511) % keysize];
128 
129 	kunmap_atomic(raw_buf, KM_USER0);
130 	kunmap_atomic(loop_buf, KM_USER1);
131 	cond_resched();
132 	return 0;
133 }
134 
135 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
136 {
137 	if (unlikely(info->lo_encrypt_key_size <= 0))
138 		return -EINVAL;
139 	return 0;
140 }
141 
142 static struct loop_func_table none_funcs = {
143 	.number = LO_CRYPT_NONE,
144 	.transfer = transfer_none,
145 };
146 
147 static struct loop_func_table xor_funcs = {
148 	.number = LO_CRYPT_XOR,
149 	.transfer = transfer_xor,
150 	.init = xor_init
151 };
152 
153 /* xfer_funcs[0] is special - its release function is never called */
154 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
155 	&none_funcs,
156 	&xor_funcs
157 };
158 
159 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
160 {
161 	loff_t size, offset, loopsize;
162 
163 	/* Compute loopsize in bytes */
164 	size = i_size_read(file->f_mapping->host);
165 	offset = lo->lo_offset;
166 	loopsize = size - offset;
167 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
168 		loopsize = lo->lo_sizelimit;
169 
170 	/*
171 	 * Unfortunately, if we want to do I/O on the device,
172 	 * the number of 512-byte sectors has to fit into a sector_t.
173 	 */
174 	return loopsize >> 9;
175 }
176 
177 static int
178 figure_loop_size(struct loop_device *lo)
179 {
180 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
181 	sector_t x = (sector_t)size;
182 
183 	if (unlikely((loff_t)x != size))
184 		return -EFBIG;
185 
186 	set_capacity(disks[lo->lo_number], x);
187 	return 0;
188 }
189 
190 static inline int
191 lo_do_transfer(struct loop_device *lo, int cmd,
192 	       struct page *rpage, unsigned roffs,
193 	       struct page *lpage, unsigned loffs,
194 	       int size, sector_t rblock)
195 {
196 	if (unlikely(!lo->transfer))
197 		return 0;
198 
199 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
200 }
201 
202 /**
203  * do_lo_send_aops - helper for writing data to a loop device
204  *
205  * This is the fast version for backing filesystems which implement the address
206  * space operations prepare_write and commit_write.
207  */
208 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
209 		int bsize, loff_t pos, struct page *page)
210 {
211 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
212 	struct address_space *mapping = file->f_mapping;
213 	struct address_space_operations *aops = mapping->a_ops;
214 	pgoff_t index;
215 	unsigned offset, bv_offs;
216 	int len, ret = 0;
217 
218 	down(&mapping->host->i_sem);
219 	index = pos >> PAGE_CACHE_SHIFT;
220 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
221 	bv_offs = bvec->bv_offset;
222 	len = bvec->bv_len;
223 	while (len > 0) {
224 		sector_t IV;
225 		unsigned size;
226 		int transfer_result;
227 
228 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
229 		size = PAGE_CACHE_SIZE - offset;
230 		if (size > len)
231 			size = len;
232 		page = grab_cache_page(mapping, index);
233 		if (unlikely(!page))
234 			goto fail;
235 		if (unlikely(aops->prepare_write(file, page, offset,
236 				offset + size)))
237 			goto unlock;
238 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
239 				bvec->bv_page, bv_offs, size, IV);
240 		if (unlikely(transfer_result)) {
241 			char *kaddr;
242 
243 			/*
244 			 * The transfer failed, but we still write the data to
245 			 * keep prepare/commit calls balanced.
246 			 */
247 			printk(KERN_ERR "loop: transfer error block %llu\n",
248 			       (unsigned long long)index);
249 			kaddr = kmap_atomic(page, KM_USER0);
250 			memset(kaddr + offset, 0, size);
251 			kunmap_atomic(kaddr, KM_USER0);
252 		}
253 		flush_dcache_page(page);
254 		if (unlikely(aops->commit_write(file, page, offset,
255 				offset + size)))
256 			goto unlock;
257 		if (unlikely(transfer_result))
258 			goto unlock;
259 		bv_offs += size;
260 		len -= size;
261 		offset = 0;
262 		index++;
263 		pos += size;
264 		unlock_page(page);
265 		page_cache_release(page);
266 	}
267 out:
268 	up(&mapping->host->i_sem);
269 	return ret;
270 unlock:
271 	unlock_page(page);
272 	page_cache_release(page);
273 fail:
274 	ret = -1;
275 	goto out;
276 }
277 
278 /**
279  * __do_lo_send_write - helper for writing data to a loop device
280  *
281  * This helper just factors out common code between do_lo_send_direct_write()
282  * and do_lo_send_write().
283  */
284 static inline int __do_lo_send_write(struct file *file,
285 		u8 __user *buf, const int len, loff_t pos)
286 {
287 	ssize_t bw;
288 	mm_segment_t old_fs = get_fs();
289 
290 	set_fs(get_ds());
291 	bw = file->f_op->write(file, buf, len, &pos);
292 	set_fs(old_fs);
293 	if (likely(bw == len))
294 		return 0;
295 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
296 			(unsigned long long)pos, len);
297 	if (bw >= 0)
298 		bw = -EIO;
299 	return bw;
300 }
301 
302 /**
303  * do_lo_send_direct_write - helper for writing data to a loop device
304  *
305  * This is the fast, non-transforming version for backing filesystems which do
306  * not implement the address space operations prepare_write and commit_write.
307  * It uses the write file operation which should be present on all writeable
308  * filesystems.
309  */
310 static int do_lo_send_direct_write(struct loop_device *lo,
311 		struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
312 {
313 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
314 			(u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
315 			bvec->bv_len, pos);
316 	kunmap(bvec->bv_page);
317 	cond_resched();
318 	return bw;
319 }
320 
321 /**
322  * do_lo_send_write - helper for writing data to a loop device
323  *
324  * This is the slow, transforming version for filesystems which do not
325  * implement the address space operations prepare_write and commit_write.  It
326  * uses the write file operation which should be present on all writeable
327  * filesystems.
328  *
329  * Using fops->write is slower than using aops->{prepare,commit}_write in the
330  * transforming case because we need to double buffer the data as we cannot do
331  * the transformations in place as we do not have direct access to the
332  * destination pages of the backing file.
333  */
334 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
335 		int bsize, loff_t pos, struct page *page)
336 {
337 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
338 			bvec->bv_offset, bvec->bv_len, pos >> 9);
339 	if (likely(!ret))
340 		return __do_lo_send_write(lo->lo_backing_file,
341 				(u8 __user *)page_address(page), bvec->bv_len,
342 				pos);
343 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
344 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
345 	if (ret > 0)
346 		ret = -EIO;
347 	return ret;
348 }
349 
350 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
351 		loff_t pos)
352 {
353 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
354 			struct page *page);
355 	struct bio_vec *bvec;
356 	struct page *page = NULL;
357 	int i, ret = 0;
358 
359 	do_lo_send = do_lo_send_aops;
360 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
361 		do_lo_send = do_lo_send_direct_write;
362 		if (lo->transfer != transfer_none) {
363 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
364 			if (unlikely(!page))
365 				goto fail;
366 			kmap(page);
367 			do_lo_send = do_lo_send_write;
368 		}
369 	}
370 	bio_for_each_segment(bvec, bio, i) {
371 		ret = do_lo_send(lo, bvec, bsize, pos, page);
372 		if (ret < 0)
373 			break;
374 		pos += bvec->bv_len;
375 	}
376 	if (page) {
377 		kunmap(page);
378 		__free_page(page);
379 	}
380 out:
381 	return ret;
382 fail:
383 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
384 	ret = -ENOMEM;
385 	goto out;
386 }
387 
388 struct lo_read_data {
389 	struct loop_device *lo;
390 	struct page *page;
391 	unsigned offset;
392 	int bsize;
393 };
394 
395 static int
396 lo_read_actor(read_descriptor_t *desc, struct page *page,
397 	      unsigned long offset, unsigned long size)
398 {
399 	unsigned long count = desc->count;
400 	struct lo_read_data *p = desc->arg.data;
401 	struct loop_device *lo = p->lo;
402 	sector_t IV;
403 
404 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
405 
406 	if (size > count)
407 		size = count;
408 
409 	if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
410 		size = 0;
411 		printk(KERN_ERR "loop: transfer error block %ld\n",
412 		       page->index);
413 		desc->error = -EINVAL;
414 	}
415 
416 	flush_dcache_page(p->page);
417 
418 	desc->count = count - size;
419 	desc->written += size;
420 	p->offset += size;
421 	return size;
422 }
423 
424 static int
425 do_lo_receive(struct loop_device *lo,
426 	      struct bio_vec *bvec, int bsize, loff_t pos)
427 {
428 	struct lo_read_data cookie;
429 	struct file *file;
430 	int retval;
431 
432 	cookie.lo = lo;
433 	cookie.page = bvec->bv_page;
434 	cookie.offset = bvec->bv_offset;
435 	cookie.bsize = bsize;
436 	file = lo->lo_backing_file;
437 	retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
438 			lo_read_actor, &cookie);
439 	return (retval < 0)? retval: 0;
440 }
441 
442 static int
443 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
444 {
445 	struct bio_vec *bvec;
446 	int i, ret = 0;
447 
448 	bio_for_each_segment(bvec, bio, i) {
449 		ret = do_lo_receive(lo, bvec, bsize, pos);
450 		if (ret < 0)
451 			break;
452 		pos += bvec->bv_len;
453 	}
454 	return ret;
455 }
456 
457 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
458 {
459 	loff_t pos;
460 	int ret;
461 
462 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
463 	if (bio_rw(bio) == WRITE)
464 		ret = lo_send(lo, bio, lo->lo_blocksize, pos);
465 	else
466 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
467 	return ret;
468 }
469 
470 /*
471  * Add bio to back of pending list
472  */
473 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
474 {
475 	if (lo->lo_biotail) {
476 		lo->lo_biotail->bi_next = bio;
477 		lo->lo_biotail = bio;
478 	} else
479 		lo->lo_bio = lo->lo_biotail = bio;
480 }
481 
482 /*
483  * Grab first pending buffer
484  */
485 static struct bio *loop_get_bio(struct loop_device *lo)
486 {
487 	struct bio *bio;
488 
489 	if ((bio = lo->lo_bio)) {
490 		if (bio == lo->lo_biotail)
491 			lo->lo_biotail = NULL;
492 		lo->lo_bio = bio->bi_next;
493 		bio->bi_next = NULL;
494 	}
495 
496 	return bio;
497 }
498 
499 static int loop_make_request(request_queue_t *q, struct bio *old_bio)
500 {
501 	struct loop_device *lo = q->queuedata;
502 	int rw = bio_rw(old_bio);
503 
504 	if (rw == READA)
505 		rw = READ;
506 
507 	BUG_ON(!lo || (rw != READ && rw != WRITE));
508 
509 	spin_lock_irq(&lo->lo_lock);
510 	if (lo->lo_state != Lo_bound)
511 		goto out;
512 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
513 		goto out;
514 	lo->lo_pending++;
515 	loop_add_bio(lo, old_bio);
516 	spin_unlock_irq(&lo->lo_lock);
517 	up(&lo->lo_bh_mutex);
518 	return 0;
519 
520 out:
521 	if (lo->lo_pending == 0)
522 		up(&lo->lo_bh_mutex);
523 	spin_unlock_irq(&lo->lo_lock);
524 	bio_io_error(old_bio, old_bio->bi_size);
525 	return 0;
526 }
527 
528 /*
529  * kick off io on the underlying address space
530  */
531 static void loop_unplug(request_queue_t *q)
532 {
533 	struct loop_device *lo = q->queuedata;
534 
535 	clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
536 	blk_run_address_space(lo->lo_backing_file->f_mapping);
537 }
538 
539 struct switch_request {
540 	struct file *file;
541 	struct completion wait;
542 };
543 
544 static void do_loop_switch(struct loop_device *, struct switch_request *);
545 
546 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
547 {
548 	if (unlikely(!bio->bi_bdev)) {
549 		do_loop_switch(lo, bio->bi_private);
550 		bio_put(bio);
551 	} else {
552 		int ret = do_bio_filebacked(lo, bio);
553 		bio_endio(bio, bio->bi_size, ret);
554 	}
555 }
556 
557 /*
558  * worker thread that handles reads/writes to file backed loop devices,
559  * to avoid blocking in our make_request_fn. it also does loop decrypting
560  * on reads for block backed loop, as that is too heavy to do from
561  * b_end_io context where irqs may be disabled.
562  */
563 static int loop_thread(void *data)
564 {
565 	struct loop_device *lo = data;
566 	struct bio *bio;
567 
568 	daemonize("loop%d", lo->lo_number);
569 
570 	/*
571 	 * loop can be used in an encrypted device,
572 	 * hence, it mustn't be stopped at all
573 	 * because it could be indirectly used during suspension
574 	 */
575 	current->flags |= PF_NOFREEZE;
576 
577 	set_user_nice(current, -20);
578 
579 	lo->lo_state = Lo_bound;
580 	lo->lo_pending = 1;
581 
582 	/*
583 	 * up sem, we are running
584 	 */
585 	up(&lo->lo_sem);
586 
587 	for (;;) {
588 		int pending;
589 
590 		/*
591 		 * interruptible just to not contribute to load avg
592 		 */
593 		if (down_interruptible(&lo->lo_bh_mutex))
594 			continue;
595 
596 		spin_lock_irq(&lo->lo_lock);
597 
598 		/*
599 		 * could be upped because of tear-down, not pending work
600 		 */
601 		if (unlikely(!lo->lo_pending)) {
602 			spin_unlock_irq(&lo->lo_lock);
603 			break;
604 		}
605 
606 		bio = loop_get_bio(lo);
607 		lo->lo_pending--;
608 		pending = lo->lo_pending;
609 		spin_unlock_irq(&lo->lo_lock);
610 
611 		BUG_ON(!bio);
612 		loop_handle_bio(lo, bio);
613 
614 		/*
615 		 * upped both for pending work and tear-down, lo_pending
616 		 * will hit zero then
617 		 */
618 		if (unlikely(!pending))
619 			break;
620 	}
621 
622 	up(&lo->lo_sem);
623 	return 0;
624 }
625 
626 /*
627  * loop_switch performs the hard work of switching a backing store.
628  * First it needs to flush existing IO, it does this by sending a magic
629  * BIO down the pipe. The completion of this BIO does the actual switch.
630  */
631 static int loop_switch(struct loop_device *lo, struct file *file)
632 {
633 	struct switch_request w;
634 	struct bio *bio = bio_alloc(GFP_KERNEL, 1);
635 	if (!bio)
636 		return -ENOMEM;
637 	init_completion(&w.wait);
638 	w.file = file;
639 	bio->bi_private = &w;
640 	bio->bi_bdev = NULL;
641 	loop_make_request(lo->lo_queue, bio);
642 	wait_for_completion(&w.wait);
643 	return 0;
644 }
645 
646 /*
647  * Do the actual switch; called from the BIO completion routine
648  */
649 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
650 {
651 	struct file *file = p->file;
652 	struct file *old_file = lo->lo_backing_file;
653 	struct address_space *mapping = file->f_mapping;
654 
655 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
656 	lo->lo_backing_file = file;
657 	lo->lo_blocksize = mapping->host->i_blksize;
658 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
659 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
660 	complete(&p->wait);
661 }
662 
663 
664 /*
665  * loop_change_fd switched the backing store of a loopback device to
666  * a new file. This is useful for operating system installers to free up
667  * the original file and in High Availability environments to switch to
668  * an alternative location for the content in case of server meltdown.
669  * This can only work if the loop device is used read-only, and if the
670  * new backing store is the same size and type as the old backing store.
671  */
672 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
673 		       struct block_device *bdev, unsigned int arg)
674 {
675 	struct file	*file, *old_file;
676 	struct inode	*inode;
677 	int		error;
678 
679 	error = -ENXIO;
680 	if (lo->lo_state != Lo_bound)
681 		goto out;
682 
683 	/* the loop device has to be read-only */
684 	error = -EINVAL;
685 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
686 		goto out;
687 
688 	error = -EBADF;
689 	file = fget(arg);
690 	if (!file)
691 		goto out;
692 
693 	inode = file->f_mapping->host;
694 	old_file = lo->lo_backing_file;
695 
696 	error = -EINVAL;
697 
698 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
699 		goto out_putf;
700 
701 	/* new backing store needs to support loop (eg sendfile) */
702 	if (!inode->i_fop->sendfile)
703 		goto out_putf;
704 
705 	/* size of the new backing store needs to be the same */
706 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
707 		goto out_putf;
708 
709 	/* and ... switch */
710 	error = loop_switch(lo, file);
711 	if (error)
712 		goto out_putf;
713 
714 	fput(old_file);
715 	return 0;
716 
717  out_putf:
718 	fput(file);
719  out:
720 	return error;
721 }
722 
723 static inline int is_loop_device(struct file *file)
724 {
725 	struct inode *i = file->f_mapping->host;
726 
727 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
728 }
729 
730 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
731 		       struct block_device *bdev, unsigned int arg)
732 {
733 	struct file	*file, *f;
734 	struct inode	*inode;
735 	struct address_space *mapping;
736 	unsigned lo_blocksize;
737 	int		lo_flags = 0;
738 	int		error;
739 	loff_t		size;
740 
741 	/* This is safe, since we have a reference from open(). */
742 	__module_get(THIS_MODULE);
743 
744 	error = -EBADF;
745 	file = fget(arg);
746 	if (!file)
747 		goto out;
748 
749 	error = -EBUSY;
750 	if (lo->lo_state != Lo_unbound)
751 		goto out_putf;
752 
753 	/* Avoid recursion */
754 	f = file;
755 	while (is_loop_device(f)) {
756 		struct loop_device *l;
757 
758 		if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
759 			goto out_putf;
760 
761 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
762 		if (l->lo_state == Lo_unbound) {
763 			error = -EINVAL;
764 			goto out_putf;
765 		}
766 		f = l->lo_backing_file;
767 	}
768 
769 	mapping = file->f_mapping;
770 	inode = mapping->host;
771 
772 	if (!(file->f_mode & FMODE_WRITE))
773 		lo_flags |= LO_FLAGS_READ_ONLY;
774 
775 	error = -EINVAL;
776 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
777 		struct address_space_operations *aops = mapping->a_ops;
778 		/*
779 		 * If we can't read - sorry. If we only can't write - well,
780 		 * it's going to be read-only.
781 		 */
782 		if (!file->f_op->sendfile)
783 			goto out_putf;
784 		if (aops->prepare_write && aops->commit_write)
785 			lo_flags |= LO_FLAGS_USE_AOPS;
786 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
787 			lo_flags |= LO_FLAGS_READ_ONLY;
788 
789 		lo_blocksize = inode->i_blksize;
790 		error = 0;
791 	} else {
792 		goto out_putf;
793 	}
794 
795 	size = get_loop_size(lo, file);
796 
797 	if ((loff_t)(sector_t)size != size) {
798 		error = -EFBIG;
799 		goto out_putf;
800 	}
801 
802 	if (!(lo_file->f_mode & FMODE_WRITE))
803 		lo_flags |= LO_FLAGS_READ_ONLY;
804 
805 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
806 
807 	lo->lo_blocksize = lo_blocksize;
808 	lo->lo_device = bdev;
809 	lo->lo_flags = lo_flags;
810 	lo->lo_backing_file = file;
811 	lo->transfer = NULL;
812 	lo->ioctl = NULL;
813 	lo->lo_sizelimit = 0;
814 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
815 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
816 
817 	lo->lo_bio = lo->lo_biotail = NULL;
818 
819 	/*
820 	 * set queue make_request_fn, and add limits based on lower level
821 	 * device
822 	 */
823 	blk_queue_make_request(lo->lo_queue, loop_make_request);
824 	lo->lo_queue->queuedata = lo;
825 	lo->lo_queue->unplug_fn = loop_unplug;
826 
827 	set_capacity(disks[lo->lo_number], size);
828 	bd_set_size(bdev, size << 9);
829 
830 	set_blocksize(bdev, lo_blocksize);
831 
832 	kernel_thread(loop_thread, lo, CLONE_KERNEL);
833 	down(&lo->lo_sem);
834 	return 0;
835 
836  out_putf:
837 	fput(file);
838  out:
839 	/* This is safe: open() is still holding a reference. */
840 	module_put(THIS_MODULE);
841 	return error;
842 }
843 
844 static int
845 loop_release_xfer(struct loop_device *lo)
846 {
847 	int err = 0;
848 	struct loop_func_table *xfer = lo->lo_encryption;
849 
850 	if (xfer) {
851 		if (xfer->release)
852 			err = xfer->release(lo);
853 		lo->transfer = NULL;
854 		lo->lo_encryption = NULL;
855 		module_put(xfer->owner);
856 	}
857 	return err;
858 }
859 
860 static int
861 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
862 	       const struct loop_info64 *i)
863 {
864 	int err = 0;
865 
866 	if (xfer) {
867 		struct module *owner = xfer->owner;
868 
869 		if (!try_module_get(owner))
870 			return -EINVAL;
871 		if (xfer->init)
872 			err = xfer->init(lo, i);
873 		if (err)
874 			module_put(owner);
875 		else
876 			lo->lo_encryption = xfer;
877 	}
878 	return err;
879 }
880 
881 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
882 {
883 	struct file *filp = lo->lo_backing_file;
884 	int gfp = lo->old_gfp_mask;
885 
886 	if (lo->lo_state != Lo_bound)
887 		return -ENXIO;
888 
889 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
890 		return -EBUSY;
891 
892 	if (filp == NULL)
893 		return -EINVAL;
894 
895 	spin_lock_irq(&lo->lo_lock);
896 	lo->lo_state = Lo_rundown;
897 	lo->lo_pending--;
898 	if (!lo->lo_pending)
899 		up(&lo->lo_bh_mutex);
900 	spin_unlock_irq(&lo->lo_lock);
901 
902 	down(&lo->lo_sem);
903 
904 	lo->lo_backing_file = NULL;
905 
906 	loop_release_xfer(lo);
907 	lo->transfer = NULL;
908 	lo->ioctl = NULL;
909 	lo->lo_device = NULL;
910 	lo->lo_encryption = NULL;
911 	lo->lo_offset = 0;
912 	lo->lo_sizelimit = 0;
913 	lo->lo_encrypt_key_size = 0;
914 	lo->lo_flags = 0;
915 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
916 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
917 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
918 	invalidate_bdev(bdev, 0);
919 	set_capacity(disks[lo->lo_number], 0);
920 	bd_set_size(bdev, 0);
921 	mapping_set_gfp_mask(filp->f_mapping, gfp);
922 	lo->lo_state = Lo_unbound;
923 	fput(filp);
924 	/* This is safe: open() is still holding a reference. */
925 	module_put(THIS_MODULE);
926 	return 0;
927 }
928 
929 static int
930 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
931 {
932 	int err;
933 	struct loop_func_table *xfer;
934 
935 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
936 	    !capable(CAP_SYS_ADMIN))
937 		return -EPERM;
938 	if (lo->lo_state != Lo_bound)
939 		return -ENXIO;
940 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
941 		return -EINVAL;
942 
943 	err = loop_release_xfer(lo);
944 	if (err)
945 		return err;
946 
947 	if (info->lo_encrypt_type) {
948 		unsigned int type = info->lo_encrypt_type;
949 
950 		if (type >= MAX_LO_CRYPT)
951 			return -EINVAL;
952 		xfer = xfer_funcs[type];
953 		if (xfer == NULL)
954 			return -EINVAL;
955 	} else
956 		xfer = NULL;
957 
958 	err = loop_init_xfer(lo, xfer, info);
959 	if (err)
960 		return err;
961 
962 	if (lo->lo_offset != info->lo_offset ||
963 	    lo->lo_sizelimit != info->lo_sizelimit) {
964 		lo->lo_offset = info->lo_offset;
965 		lo->lo_sizelimit = info->lo_sizelimit;
966 		if (figure_loop_size(lo))
967 			return -EFBIG;
968 	}
969 
970 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
971 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
972 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
973 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
974 
975 	if (!xfer)
976 		xfer = &none_funcs;
977 	lo->transfer = xfer->transfer;
978 	lo->ioctl = xfer->ioctl;
979 
980 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
981 	lo->lo_init[0] = info->lo_init[0];
982 	lo->lo_init[1] = info->lo_init[1];
983 	if (info->lo_encrypt_key_size) {
984 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
985 		       info->lo_encrypt_key_size);
986 		lo->lo_key_owner = current->uid;
987 	}
988 
989 	return 0;
990 }
991 
992 static int
993 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
994 {
995 	struct file *file = lo->lo_backing_file;
996 	struct kstat stat;
997 	int error;
998 
999 	if (lo->lo_state != Lo_bound)
1000 		return -ENXIO;
1001 	error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
1002 	if (error)
1003 		return error;
1004 	memset(info, 0, sizeof(*info));
1005 	info->lo_number = lo->lo_number;
1006 	info->lo_device = huge_encode_dev(stat.dev);
1007 	info->lo_inode = stat.ino;
1008 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1009 	info->lo_offset = lo->lo_offset;
1010 	info->lo_sizelimit = lo->lo_sizelimit;
1011 	info->lo_flags = lo->lo_flags;
1012 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1013 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1014 	info->lo_encrypt_type =
1015 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1016 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1017 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1018 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1019 		       lo->lo_encrypt_key_size);
1020 	}
1021 	return 0;
1022 }
1023 
1024 static void
1025 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1026 {
1027 	memset(info64, 0, sizeof(*info64));
1028 	info64->lo_number = info->lo_number;
1029 	info64->lo_device = info->lo_device;
1030 	info64->lo_inode = info->lo_inode;
1031 	info64->lo_rdevice = info->lo_rdevice;
1032 	info64->lo_offset = info->lo_offset;
1033 	info64->lo_sizelimit = 0;
1034 	info64->lo_encrypt_type = info->lo_encrypt_type;
1035 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1036 	info64->lo_flags = info->lo_flags;
1037 	info64->lo_init[0] = info->lo_init[0];
1038 	info64->lo_init[1] = info->lo_init[1];
1039 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1040 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1041 	else
1042 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1043 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1044 }
1045 
1046 static int
1047 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1048 {
1049 	memset(info, 0, sizeof(*info));
1050 	info->lo_number = info64->lo_number;
1051 	info->lo_device = info64->lo_device;
1052 	info->lo_inode = info64->lo_inode;
1053 	info->lo_rdevice = info64->lo_rdevice;
1054 	info->lo_offset = info64->lo_offset;
1055 	info->lo_encrypt_type = info64->lo_encrypt_type;
1056 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1057 	info->lo_flags = info64->lo_flags;
1058 	info->lo_init[0] = info64->lo_init[0];
1059 	info->lo_init[1] = info64->lo_init[1];
1060 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1061 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1062 	else
1063 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1064 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1065 
1066 	/* error in case values were truncated */
1067 	if (info->lo_device != info64->lo_device ||
1068 	    info->lo_rdevice != info64->lo_rdevice ||
1069 	    info->lo_inode != info64->lo_inode ||
1070 	    info->lo_offset != info64->lo_offset)
1071 		return -EOVERFLOW;
1072 
1073 	return 0;
1074 }
1075 
1076 static int
1077 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1078 {
1079 	struct loop_info info;
1080 	struct loop_info64 info64;
1081 
1082 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1083 		return -EFAULT;
1084 	loop_info64_from_old(&info, &info64);
1085 	return loop_set_status(lo, &info64);
1086 }
1087 
1088 static int
1089 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1090 {
1091 	struct loop_info64 info64;
1092 
1093 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1094 		return -EFAULT;
1095 	return loop_set_status(lo, &info64);
1096 }
1097 
1098 static int
1099 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1100 	struct loop_info info;
1101 	struct loop_info64 info64;
1102 	int err = 0;
1103 
1104 	if (!arg)
1105 		err = -EINVAL;
1106 	if (!err)
1107 		err = loop_get_status(lo, &info64);
1108 	if (!err)
1109 		err = loop_info64_to_old(&info64, &info);
1110 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1111 		err = -EFAULT;
1112 
1113 	return err;
1114 }
1115 
1116 static int
1117 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1118 	struct loop_info64 info64;
1119 	int err = 0;
1120 
1121 	if (!arg)
1122 		err = -EINVAL;
1123 	if (!err)
1124 		err = loop_get_status(lo, &info64);
1125 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1126 		err = -EFAULT;
1127 
1128 	return err;
1129 }
1130 
1131 static int lo_ioctl(struct inode * inode, struct file * file,
1132 	unsigned int cmd, unsigned long arg)
1133 {
1134 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1135 	int err;
1136 
1137 	down(&lo->lo_ctl_mutex);
1138 	switch (cmd) {
1139 	case LOOP_SET_FD:
1140 		err = loop_set_fd(lo, file, inode->i_bdev, arg);
1141 		break;
1142 	case LOOP_CHANGE_FD:
1143 		err = loop_change_fd(lo, file, inode->i_bdev, arg);
1144 		break;
1145 	case LOOP_CLR_FD:
1146 		err = loop_clr_fd(lo, inode->i_bdev);
1147 		break;
1148 	case LOOP_SET_STATUS:
1149 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1150 		break;
1151 	case LOOP_GET_STATUS:
1152 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1153 		break;
1154 	case LOOP_SET_STATUS64:
1155 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1156 		break;
1157 	case LOOP_GET_STATUS64:
1158 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1159 		break;
1160 	default:
1161 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1162 	}
1163 	up(&lo->lo_ctl_mutex);
1164 	return err;
1165 }
1166 
1167 static int lo_open(struct inode *inode, struct file *file)
1168 {
1169 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1170 
1171 	down(&lo->lo_ctl_mutex);
1172 	lo->lo_refcnt++;
1173 	up(&lo->lo_ctl_mutex);
1174 
1175 	return 0;
1176 }
1177 
1178 static int lo_release(struct inode *inode, struct file *file)
1179 {
1180 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1181 
1182 	down(&lo->lo_ctl_mutex);
1183 	--lo->lo_refcnt;
1184 	up(&lo->lo_ctl_mutex);
1185 
1186 	return 0;
1187 }
1188 
1189 static struct block_device_operations lo_fops = {
1190 	.owner =	THIS_MODULE,
1191 	.open =		lo_open,
1192 	.release =	lo_release,
1193 	.ioctl =	lo_ioctl,
1194 };
1195 
1196 /*
1197  * And now the modules code and kernel interface.
1198  */
1199 module_param(max_loop, int, 0);
1200 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
1201 MODULE_LICENSE("GPL");
1202 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1203 
1204 int loop_register_transfer(struct loop_func_table *funcs)
1205 {
1206 	unsigned int n = funcs->number;
1207 
1208 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1209 		return -EINVAL;
1210 	xfer_funcs[n] = funcs;
1211 	return 0;
1212 }
1213 
1214 int loop_unregister_transfer(int number)
1215 {
1216 	unsigned int n = number;
1217 	struct loop_device *lo;
1218 	struct loop_func_table *xfer;
1219 
1220 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1221 		return -EINVAL;
1222 
1223 	xfer_funcs[n] = NULL;
1224 
1225 	for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
1226 		down(&lo->lo_ctl_mutex);
1227 
1228 		if (lo->lo_encryption == xfer)
1229 			loop_release_xfer(lo);
1230 
1231 		up(&lo->lo_ctl_mutex);
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 EXPORT_SYMBOL(loop_register_transfer);
1238 EXPORT_SYMBOL(loop_unregister_transfer);
1239 
1240 static int __init loop_init(void)
1241 {
1242 	int	i;
1243 
1244 	if (max_loop < 1 || max_loop > 256) {
1245 		printk(KERN_WARNING "loop: invalid max_loop (must be between"
1246 				    " 1 and 256), using default (8)\n");
1247 		max_loop = 8;
1248 	}
1249 
1250 	if (register_blkdev(LOOP_MAJOR, "loop"))
1251 		return -EIO;
1252 
1253 	loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
1254 	if (!loop_dev)
1255 		goto out_mem1;
1256 	memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
1257 
1258 	disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
1259 	if (!disks)
1260 		goto out_mem2;
1261 
1262 	for (i = 0; i < max_loop; i++) {
1263 		disks[i] = alloc_disk(1);
1264 		if (!disks[i])
1265 			goto out_mem3;
1266 	}
1267 
1268 	devfs_mk_dir("loop");
1269 
1270 	for (i = 0; i < max_loop; i++) {
1271 		struct loop_device *lo = &loop_dev[i];
1272 		struct gendisk *disk = disks[i];
1273 
1274 		memset(lo, 0, sizeof(*lo));
1275 		lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1276 		if (!lo->lo_queue)
1277 			goto out_mem4;
1278 		init_MUTEX(&lo->lo_ctl_mutex);
1279 		init_MUTEX_LOCKED(&lo->lo_sem);
1280 		init_MUTEX_LOCKED(&lo->lo_bh_mutex);
1281 		lo->lo_number = i;
1282 		spin_lock_init(&lo->lo_lock);
1283 		disk->major = LOOP_MAJOR;
1284 		disk->first_minor = i;
1285 		disk->fops = &lo_fops;
1286 		sprintf(disk->disk_name, "loop%d", i);
1287 		sprintf(disk->devfs_name, "loop/%d", i);
1288 		disk->private_data = lo;
1289 		disk->queue = lo->lo_queue;
1290 	}
1291 
1292 	/* We cannot fail after we call this, so another loop!*/
1293 	for (i = 0; i < max_loop; i++)
1294 		add_disk(disks[i]);
1295 	printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
1296 	return 0;
1297 
1298 out_mem4:
1299 	while (i--)
1300 		blk_put_queue(loop_dev[i].lo_queue);
1301 	devfs_remove("loop");
1302 	i = max_loop;
1303 out_mem3:
1304 	while (i--)
1305 		put_disk(disks[i]);
1306 	kfree(disks);
1307 out_mem2:
1308 	kfree(loop_dev);
1309 out_mem1:
1310 	unregister_blkdev(LOOP_MAJOR, "loop");
1311 	printk(KERN_ERR "loop: ran out of memory\n");
1312 	return -ENOMEM;
1313 }
1314 
1315 static void loop_exit(void)
1316 {
1317 	int i;
1318 
1319 	for (i = 0; i < max_loop; i++) {
1320 		del_gendisk(disks[i]);
1321 		blk_put_queue(loop_dev[i].lo_queue);
1322 		put_disk(disks[i]);
1323 	}
1324 	devfs_remove("loop");
1325 	if (unregister_blkdev(LOOP_MAJOR, "loop"))
1326 		printk(KERN_WARNING "loop: cannot unregister blkdev\n");
1327 
1328 	kfree(disks);
1329 	kfree(loop_dev);
1330 }
1331 
1332 module_init(loop_init);
1333 module_exit(loop_exit);
1334 
1335 #ifndef MODULE
1336 static int __init max_loop_setup(char *str)
1337 {
1338 	max_loop = simple_strtol(str, NULL, 0);
1339 	return 1;
1340 }
1341 
1342 __setup("max_loop=", max_loop_setup);
1343 #endif
1344