1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/pagemap.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 #include <linux/sched/mm.h> 82 83 #include "loop.h" 84 85 #include <linux/uaccess.h> 86 87 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 88 89 static DEFINE_IDR(loop_index_idr); 90 static DEFINE_MUTEX(loop_ctl_mutex); 91 static DEFINE_MUTEX(loop_validate_mutex); 92 93 /** 94 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 95 * 96 * @lo: struct loop_device 97 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 98 * 99 * Returns 0 on success, -EINTR otherwise. 100 * 101 * Since loop_validate_file() traverses on other "struct loop_device" if 102 * is_loop_device() is true, we need a global lock for serializing concurrent 103 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 104 */ 105 static int loop_global_lock_killable(struct loop_device *lo, bool global) 106 { 107 int err; 108 109 if (global) { 110 err = mutex_lock_killable(&loop_validate_mutex); 111 if (err) 112 return err; 113 } 114 err = mutex_lock_killable(&lo->lo_mutex); 115 if (err && global) 116 mutex_unlock(&loop_validate_mutex); 117 return err; 118 } 119 120 /** 121 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 122 * 123 * @lo: struct loop_device 124 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 125 */ 126 static void loop_global_unlock(struct loop_device *lo, bool global) 127 { 128 mutex_unlock(&lo->lo_mutex); 129 if (global) 130 mutex_unlock(&loop_validate_mutex); 131 } 132 133 static int max_part; 134 static int part_shift; 135 136 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 137 { 138 loff_t loopsize; 139 140 /* Compute loopsize in bytes */ 141 loopsize = i_size_read(file->f_mapping->host); 142 if (offset > 0) 143 loopsize -= offset; 144 /* offset is beyond i_size, weird but possible */ 145 if (loopsize < 0) 146 return 0; 147 148 if (sizelimit > 0 && sizelimit < loopsize) 149 loopsize = sizelimit; 150 /* 151 * Unfortunately, if we want to do I/O on the device, 152 * the number of 512-byte sectors has to fit into a sector_t. 153 */ 154 return loopsize >> 9; 155 } 156 157 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 158 { 159 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 160 } 161 162 static void __loop_update_dio(struct loop_device *lo, bool dio) 163 { 164 struct file *file = lo->lo_backing_file; 165 struct address_space *mapping = file->f_mapping; 166 struct inode *inode = mapping->host; 167 unsigned short sb_bsize = 0; 168 unsigned dio_align = 0; 169 bool use_dio; 170 171 if (inode->i_sb->s_bdev) { 172 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 173 dio_align = sb_bsize - 1; 174 } 175 176 /* 177 * We support direct I/O only if lo_offset is aligned with the 178 * logical I/O size of backing device, and the logical block 179 * size of loop is bigger than the backing device's. 180 * 181 * TODO: the above condition may be loosed in the future, and 182 * direct I/O may be switched runtime at that time because most 183 * of requests in sane applications should be PAGE_SIZE aligned 184 */ 185 if (dio) { 186 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 187 !(lo->lo_offset & dio_align) && 188 mapping->a_ops->direct_IO) 189 use_dio = true; 190 else 191 use_dio = false; 192 } else { 193 use_dio = false; 194 } 195 196 if (lo->use_dio == use_dio) 197 return; 198 199 /* flush dirty pages before changing direct IO */ 200 vfs_fsync(file, 0); 201 202 /* 203 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 204 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 205 * will get updated by ioctl(LOOP_GET_STATUS) 206 */ 207 if (lo->lo_state == Lo_bound) 208 blk_mq_freeze_queue(lo->lo_queue); 209 lo->use_dio = use_dio; 210 if (use_dio) { 211 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 212 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 213 } else { 214 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 215 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 216 } 217 if (lo->lo_state == Lo_bound) 218 blk_mq_unfreeze_queue(lo->lo_queue); 219 } 220 221 /** 222 * loop_set_size() - sets device size and notifies userspace 223 * @lo: struct loop_device to set the size for 224 * @size: new size of the loop device 225 * 226 * Callers must validate that the size passed into this function fits into 227 * a sector_t, eg using loop_validate_size() 228 */ 229 static void loop_set_size(struct loop_device *lo, loff_t size) 230 { 231 if (!set_capacity_and_notify(lo->lo_disk, size)) 232 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 233 } 234 235 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 236 { 237 struct iov_iter i; 238 ssize_t bw; 239 240 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 241 242 file_start_write(file); 243 bw = vfs_iter_write(file, &i, ppos, 0); 244 file_end_write(file); 245 246 if (likely(bw == bvec->bv_len)) 247 return 0; 248 249 printk_ratelimited(KERN_ERR 250 "loop: Write error at byte offset %llu, length %i.\n", 251 (unsigned long long)*ppos, bvec->bv_len); 252 if (bw >= 0) 253 bw = -EIO; 254 return bw; 255 } 256 257 static int lo_write_simple(struct loop_device *lo, struct request *rq, 258 loff_t pos) 259 { 260 struct bio_vec bvec; 261 struct req_iterator iter; 262 int ret = 0; 263 264 rq_for_each_segment(bvec, rq, iter) { 265 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 266 if (ret < 0) 267 break; 268 cond_resched(); 269 } 270 271 return ret; 272 } 273 274 static int lo_read_simple(struct loop_device *lo, struct request *rq, 275 loff_t pos) 276 { 277 struct bio_vec bvec; 278 struct req_iterator iter; 279 struct iov_iter i; 280 ssize_t len; 281 282 rq_for_each_segment(bvec, rq, iter) { 283 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 284 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 285 if (len < 0) 286 return len; 287 288 flush_dcache_page(bvec.bv_page); 289 290 if (len != bvec.bv_len) { 291 struct bio *bio; 292 293 __rq_for_each_bio(bio, rq) 294 zero_fill_bio(bio); 295 break; 296 } 297 cond_resched(); 298 } 299 300 return 0; 301 } 302 303 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 304 int mode) 305 { 306 /* 307 * We use fallocate to manipulate the space mappings used by the image 308 * a.k.a. discard/zerorange. 309 */ 310 struct file *file = lo->lo_backing_file; 311 struct request_queue *q = lo->lo_queue; 312 int ret; 313 314 mode |= FALLOC_FL_KEEP_SIZE; 315 316 if (!blk_queue_discard(q)) { 317 ret = -EOPNOTSUPP; 318 goto out; 319 } 320 321 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 322 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 323 ret = -EIO; 324 out: 325 return ret; 326 } 327 328 static int lo_req_flush(struct loop_device *lo, struct request *rq) 329 { 330 struct file *file = lo->lo_backing_file; 331 int ret = vfs_fsync(file, 0); 332 if (unlikely(ret && ret != -EINVAL)) 333 ret = -EIO; 334 335 return ret; 336 } 337 338 static void lo_complete_rq(struct request *rq) 339 { 340 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 341 blk_status_t ret = BLK_STS_OK; 342 343 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 344 req_op(rq) != REQ_OP_READ) { 345 if (cmd->ret < 0) 346 ret = errno_to_blk_status(cmd->ret); 347 goto end_io; 348 } 349 350 /* 351 * Short READ - if we got some data, advance our request and 352 * retry it. If we got no data, end the rest with EIO. 353 */ 354 if (cmd->ret) { 355 blk_update_request(rq, BLK_STS_OK, cmd->ret); 356 cmd->ret = 0; 357 blk_mq_requeue_request(rq, true); 358 } else { 359 if (cmd->use_aio) { 360 struct bio *bio = rq->bio; 361 362 while (bio) { 363 zero_fill_bio(bio); 364 bio = bio->bi_next; 365 } 366 } 367 ret = BLK_STS_IOERR; 368 end_io: 369 blk_mq_end_request(rq, ret); 370 } 371 } 372 373 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 374 { 375 struct request *rq = blk_mq_rq_from_pdu(cmd); 376 377 if (!atomic_dec_and_test(&cmd->ref)) 378 return; 379 kfree(cmd->bvec); 380 cmd->bvec = NULL; 381 if (likely(!blk_should_fake_timeout(rq->q))) 382 blk_mq_complete_request(rq); 383 } 384 385 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 386 { 387 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 388 389 cmd->ret = ret; 390 lo_rw_aio_do_completion(cmd); 391 } 392 393 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 394 loff_t pos, bool rw) 395 { 396 struct iov_iter iter; 397 struct req_iterator rq_iter; 398 struct bio_vec *bvec; 399 struct request *rq = blk_mq_rq_from_pdu(cmd); 400 struct bio *bio = rq->bio; 401 struct file *file = lo->lo_backing_file; 402 struct bio_vec tmp; 403 unsigned int offset; 404 int nr_bvec = 0; 405 int ret; 406 407 rq_for_each_bvec(tmp, rq, rq_iter) 408 nr_bvec++; 409 410 if (rq->bio != rq->biotail) { 411 412 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 413 GFP_NOIO); 414 if (!bvec) 415 return -EIO; 416 cmd->bvec = bvec; 417 418 /* 419 * The bios of the request may be started from the middle of 420 * the 'bvec' because of bio splitting, so we can't directly 421 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 422 * API will take care of all details for us. 423 */ 424 rq_for_each_bvec(tmp, rq, rq_iter) { 425 *bvec = tmp; 426 bvec++; 427 } 428 bvec = cmd->bvec; 429 offset = 0; 430 } else { 431 /* 432 * Same here, this bio may be started from the middle of the 433 * 'bvec' because of bio splitting, so offset from the bvec 434 * must be passed to iov iterator 435 */ 436 offset = bio->bi_iter.bi_bvec_done; 437 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 438 } 439 atomic_set(&cmd->ref, 2); 440 441 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 442 iter.iov_offset = offset; 443 444 cmd->iocb.ki_pos = pos; 445 cmd->iocb.ki_filp = file; 446 cmd->iocb.ki_complete = lo_rw_aio_complete; 447 cmd->iocb.ki_flags = IOCB_DIRECT; 448 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 449 450 if (rw == WRITE) 451 ret = call_write_iter(file, &cmd->iocb, &iter); 452 else 453 ret = call_read_iter(file, &cmd->iocb, &iter); 454 455 lo_rw_aio_do_completion(cmd); 456 457 if (ret != -EIOCBQUEUED) 458 lo_rw_aio_complete(&cmd->iocb, ret); 459 return 0; 460 } 461 462 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 463 { 464 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 465 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 466 467 /* 468 * lo_write_simple and lo_read_simple should have been covered 469 * by io submit style function like lo_rw_aio(), one blocker 470 * is that lo_read_simple() need to call flush_dcache_page after 471 * the page is written from kernel, and it isn't easy to handle 472 * this in io submit style function which submits all segments 473 * of the req at one time. And direct read IO doesn't need to 474 * run flush_dcache_page(). 475 */ 476 switch (req_op(rq)) { 477 case REQ_OP_FLUSH: 478 return lo_req_flush(lo, rq); 479 case REQ_OP_WRITE_ZEROES: 480 /* 481 * If the caller doesn't want deallocation, call zeroout to 482 * write zeroes the range. Otherwise, punch them out. 483 */ 484 return lo_fallocate(lo, rq, pos, 485 (rq->cmd_flags & REQ_NOUNMAP) ? 486 FALLOC_FL_ZERO_RANGE : 487 FALLOC_FL_PUNCH_HOLE); 488 case REQ_OP_DISCARD: 489 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 490 case REQ_OP_WRITE: 491 if (cmd->use_aio) 492 return lo_rw_aio(lo, cmd, pos, WRITE); 493 else 494 return lo_write_simple(lo, rq, pos); 495 case REQ_OP_READ: 496 if (cmd->use_aio) 497 return lo_rw_aio(lo, cmd, pos, READ); 498 else 499 return lo_read_simple(lo, rq, pos); 500 default: 501 WARN_ON_ONCE(1); 502 return -EIO; 503 } 504 } 505 506 static inline void loop_update_dio(struct loop_device *lo) 507 { 508 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 509 lo->use_dio); 510 } 511 512 static void loop_reread_partitions(struct loop_device *lo) 513 { 514 int rc; 515 516 mutex_lock(&lo->lo_disk->open_mutex); 517 rc = bdev_disk_changed(lo->lo_disk, false); 518 mutex_unlock(&lo->lo_disk->open_mutex); 519 if (rc) 520 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 521 __func__, lo->lo_number, lo->lo_file_name, rc); 522 } 523 524 static inline int is_loop_device(struct file *file) 525 { 526 struct inode *i = file->f_mapping->host; 527 528 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 529 } 530 531 static int loop_validate_file(struct file *file, struct block_device *bdev) 532 { 533 struct inode *inode = file->f_mapping->host; 534 struct file *f = file; 535 536 /* Avoid recursion */ 537 while (is_loop_device(f)) { 538 struct loop_device *l; 539 540 lockdep_assert_held(&loop_validate_mutex); 541 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 542 return -EBADF; 543 544 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 545 if (l->lo_state != Lo_bound) 546 return -EINVAL; 547 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 548 rmb(); 549 f = l->lo_backing_file; 550 } 551 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 552 return -EINVAL; 553 return 0; 554 } 555 556 /* 557 * loop_change_fd switched the backing store of a loopback device to 558 * a new file. This is useful for operating system installers to free up 559 * the original file and in High Availability environments to switch to 560 * an alternative location for the content in case of server meltdown. 561 * This can only work if the loop device is used read-only, and if the 562 * new backing store is the same size and type as the old backing store. 563 */ 564 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 565 unsigned int arg) 566 { 567 struct file *file = fget(arg); 568 struct file *old_file; 569 int error; 570 bool partscan; 571 bool is_loop; 572 573 if (!file) 574 return -EBADF; 575 is_loop = is_loop_device(file); 576 error = loop_global_lock_killable(lo, is_loop); 577 if (error) 578 goto out_putf; 579 error = -ENXIO; 580 if (lo->lo_state != Lo_bound) 581 goto out_err; 582 583 /* the loop device has to be read-only */ 584 error = -EINVAL; 585 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 586 goto out_err; 587 588 error = loop_validate_file(file, bdev); 589 if (error) 590 goto out_err; 591 592 old_file = lo->lo_backing_file; 593 594 error = -EINVAL; 595 596 /* size of the new backing store needs to be the same */ 597 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 598 goto out_err; 599 600 /* and ... switch */ 601 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 602 blk_mq_freeze_queue(lo->lo_queue); 603 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 604 lo->lo_backing_file = file; 605 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 606 mapping_set_gfp_mask(file->f_mapping, 607 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 608 loop_update_dio(lo); 609 blk_mq_unfreeze_queue(lo->lo_queue); 610 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 611 loop_global_unlock(lo, is_loop); 612 613 /* 614 * Flush loop_validate_file() before fput(), for l->lo_backing_file 615 * might be pointing at old_file which might be the last reference. 616 */ 617 if (!is_loop) { 618 mutex_lock(&loop_validate_mutex); 619 mutex_unlock(&loop_validate_mutex); 620 } 621 /* 622 * We must drop file reference outside of lo_mutex as dropping 623 * the file ref can take open_mutex which creates circular locking 624 * dependency. 625 */ 626 fput(old_file); 627 if (partscan) 628 loop_reread_partitions(lo); 629 return 0; 630 631 out_err: 632 loop_global_unlock(lo, is_loop); 633 out_putf: 634 fput(file); 635 return error; 636 } 637 638 /* loop sysfs attributes */ 639 640 static ssize_t loop_attr_show(struct device *dev, char *page, 641 ssize_t (*callback)(struct loop_device *, char *)) 642 { 643 struct gendisk *disk = dev_to_disk(dev); 644 struct loop_device *lo = disk->private_data; 645 646 return callback(lo, page); 647 } 648 649 #define LOOP_ATTR_RO(_name) \ 650 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 651 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 652 struct device_attribute *attr, char *b) \ 653 { \ 654 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 655 } \ 656 static struct device_attribute loop_attr_##_name = \ 657 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 658 659 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 660 { 661 ssize_t ret; 662 char *p = NULL; 663 664 spin_lock_irq(&lo->lo_lock); 665 if (lo->lo_backing_file) 666 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 667 spin_unlock_irq(&lo->lo_lock); 668 669 if (IS_ERR_OR_NULL(p)) 670 ret = PTR_ERR(p); 671 else { 672 ret = strlen(p); 673 memmove(buf, p, ret); 674 buf[ret++] = '\n'; 675 buf[ret] = 0; 676 } 677 678 return ret; 679 } 680 681 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 682 { 683 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 684 } 685 686 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 687 { 688 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 689 } 690 691 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 692 { 693 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 694 695 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 696 } 697 698 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 699 { 700 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 701 702 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 703 } 704 705 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 706 { 707 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 708 709 return sprintf(buf, "%s\n", dio ? "1" : "0"); 710 } 711 712 LOOP_ATTR_RO(backing_file); 713 LOOP_ATTR_RO(offset); 714 LOOP_ATTR_RO(sizelimit); 715 LOOP_ATTR_RO(autoclear); 716 LOOP_ATTR_RO(partscan); 717 LOOP_ATTR_RO(dio); 718 719 static struct attribute *loop_attrs[] = { 720 &loop_attr_backing_file.attr, 721 &loop_attr_offset.attr, 722 &loop_attr_sizelimit.attr, 723 &loop_attr_autoclear.attr, 724 &loop_attr_partscan.attr, 725 &loop_attr_dio.attr, 726 NULL, 727 }; 728 729 static struct attribute_group loop_attribute_group = { 730 .name = "loop", 731 .attrs= loop_attrs, 732 }; 733 734 static void loop_sysfs_init(struct loop_device *lo) 735 { 736 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 737 &loop_attribute_group); 738 } 739 740 static void loop_sysfs_exit(struct loop_device *lo) 741 { 742 if (lo->sysfs_inited) 743 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 744 &loop_attribute_group); 745 } 746 747 static void loop_config_discard(struct loop_device *lo) 748 { 749 struct file *file = lo->lo_backing_file; 750 struct inode *inode = file->f_mapping->host; 751 struct request_queue *q = lo->lo_queue; 752 u32 granularity, max_discard_sectors; 753 754 /* 755 * If the backing device is a block device, mirror its zeroing 756 * capability. Set the discard sectors to the block device's zeroing 757 * capabilities because loop discards result in blkdev_issue_zeroout(), 758 * not blkdev_issue_discard(). This maintains consistent behavior with 759 * file-backed loop devices: discarded regions read back as zero. 760 */ 761 if (S_ISBLK(inode->i_mode)) { 762 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 763 764 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 765 granularity = backingq->limits.discard_granularity ?: 766 queue_physical_block_size(backingq); 767 768 /* 769 * We use punch hole to reclaim the free space used by the 770 * image a.k.a. discard. 771 */ 772 } else if (!file->f_op->fallocate) { 773 max_discard_sectors = 0; 774 granularity = 0; 775 776 } else { 777 max_discard_sectors = UINT_MAX >> 9; 778 granularity = inode->i_sb->s_blocksize; 779 } 780 781 if (max_discard_sectors) { 782 q->limits.discard_granularity = granularity; 783 blk_queue_max_discard_sectors(q, max_discard_sectors); 784 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 785 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 786 } else { 787 q->limits.discard_granularity = 0; 788 blk_queue_max_discard_sectors(q, 0); 789 blk_queue_max_write_zeroes_sectors(q, 0); 790 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 791 } 792 q->limits.discard_alignment = 0; 793 } 794 795 struct loop_worker { 796 struct rb_node rb_node; 797 struct work_struct work; 798 struct list_head cmd_list; 799 struct list_head idle_list; 800 struct loop_device *lo; 801 struct cgroup_subsys_state *blkcg_css; 802 unsigned long last_ran_at; 803 }; 804 805 static void loop_workfn(struct work_struct *work); 806 static void loop_rootcg_workfn(struct work_struct *work); 807 static void loop_free_idle_workers(struct timer_list *timer); 808 809 #ifdef CONFIG_BLK_CGROUP 810 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 811 { 812 return !css || css == blkcg_root_css; 813 } 814 #else 815 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 816 { 817 return !css; 818 } 819 #endif 820 821 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 822 { 823 struct rb_node **node, *parent = NULL; 824 struct loop_worker *cur_worker, *worker = NULL; 825 struct work_struct *work; 826 struct list_head *cmd_list; 827 828 spin_lock_irq(&lo->lo_work_lock); 829 830 if (queue_on_root_worker(cmd->blkcg_css)) 831 goto queue_work; 832 833 node = &lo->worker_tree.rb_node; 834 835 while (*node) { 836 parent = *node; 837 cur_worker = container_of(*node, struct loop_worker, rb_node); 838 if (cur_worker->blkcg_css == cmd->blkcg_css) { 839 worker = cur_worker; 840 break; 841 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 842 node = &(*node)->rb_left; 843 } else { 844 node = &(*node)->rb_right; 845 } 846 } 847 if (worker) 848 goto queue_work; 849 850 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 851 /* 852 * In the event we cannot allocate a worker, just queue on the 853 * rootcg worker and issue the I/O as the rootcg 854 */ 855 if (!worker) { 856 cmd->blkcg_css = NULL; 857 if (cmd->memcg_css) 858 css_put(cmd->memcg_css); 859 cmd->memcg_css = NULL; 860 goto queue_work; 861 } 862 863 worker->blkcg_css = cmd->blkcg_css; 864 css_get(worker->blkcg_css); 865 INIT_WORK(&worker->work, loop_workfn); 866 INIT_LIST_HEAD(&worker->cmd_list); 867 INIT_LIST_HEAD(&worker->idle_list); 868 worker->lo = lo; 869 rb_link_node(&worker->rb_node, parent, node); 870 rb_insert_color(&worker->rb_node, &lo->worker_tree); 871 queue_work: 872 if (worker) { 873 /* 874 * We need to remove from the idle list here while 875 * holding the lock so that the idle timer doesn't 876 * free the worker 877 */ 878 if (!list_empty(&worker->idle_list)) 879 list_del_init(&worker->idle_list); 880 work = &worker->work; 881 cmd_list = &worker->cmd_list; 882 } else { 883 work = &lo->rootcg_work; 884 cmd_list = &lo->rootcg_cmd_list; 885 } 886 list_add_tail(&cmd->list_entry, cmd_list); 887 queue_work(lo->workqueue, work); 888 spin_unlock_irq(&lo->lo_work_lock); 889 } 890 891 static void loop_update_rotational(struct loop_device *lo) 892 { 893 struct file *file = lo->lo_backing_file; 894 struct inode *file_inode = file->f_mapping->host; 895 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 896 struct request_queue *q = lo->lo_queue; 897 bool nonrot = true; 898 899 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 900 if (file_bdev) 901 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 902 903 if (nonrot) 904 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 905 else 906 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 907 } 908 909 /** 910 * loop_set_status_from_info - configure device from loop_info 911 * @lo: struct loop_device to configure 912 * @info: struct loop_info64 to configure the device with 913 * 914 * Configures the loop device parameters according to the passed 915 * in loop_info64 configuration. 916 */ 917 static int 918 loop_set_status_from_info(struct loop_device *lo, 919 const struct loop_info64 *info) 920 { 921 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 922 return -EINVAL; 923 924 switch (info->lo_encrypt_type) { 925 case LO_CRYPT_NONE: 926 break; 927 case LO_CRYPT_XOR: 928 pr_warn("support for the xor transformation has been removed.\n"); 929 return -EINVAL; 930 case LO_CRYPT_CRYPTOAPI: 931 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 932 return -EINVAL; 933 default: 934 return -EINVAL; 935 } 936 937 lo->lo_offset = info->lo_offset; 938 lo->lo_sizelimit = info->lo_sizelimit; 939 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 940 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 941 lo->lo_flags = info->lo_flags; 942 return 0; 943 } 944 945 static int loop_configure(struct loop_device *lo, fmode_t mode, 946 struct block_device *bdev, 947 const struct loop_config *config) 948 { 949 struct file *file = fget(config->fd); 950 struct inode *inode; 951 struct address_space *mapping; 952 int error; 953 loff_t size; 954 bool partscan; 955 unsigned short bsize; 956 bool is_loop; 957 958 if (!file) 959 return -EBADF; 960 is_loop = is_loop_device(file); 961 962 /* This is safe, since we have a reference from open(). */ 963 __module_get(THIS_MODULE); 964 965 /* 966 * If we don't hold exclusive handle for the device, upgrade to it 967 * here to avoid changing device under exclusive owner. 968 */ 969 if (!(mode & FMODE_EXCL)) { 970 error = bd_prepare_to_claim(bdev, loop_configure); 971 if (error) 972 goto out_putf; 973 } 974 975 error = loop_global_lock_killable(lo, is_loop); 976 if (error) 977 goto out_bdev; 978 979 error = -EBUSY; 980 if (lo->lo_state != Lo_unbound) 981 goto out_unlock; 982 983 error = loop_validate_file(file, bdev); 984 if (error) 985 goto out_unlock; 986 987 mapping = file->f_mapping; 988 inode = mapping->host; 989 990 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 991 error = -EINVAL; 992 goto out_unlock; 993 } 994 995 if (config->block_size) { 996 error = blk_validate_block_size(config->block_size); 997 if (error) 998 goto out_unlock; 999 } 1000 1001 error = loop_set_status_from_info(lo, &config->info); 1002 if (error) 1003 goto out_unlock; 1004 1005 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1006 !file->f_op->write_iter) 1007 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1008 1009 lo->workqueue = alloc_workqueue("loop%d", 1010 WQ_UNBOUND | WQ_FREEZABLE, 1011 0, 1012 lo->lo_number); 1013 if (!lo->workqueue) { 1014 error = -ENOMEM; 1015 goto out_unlock; 1016 } 1017 1018 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1019 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1020 1021 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 1022 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 1023 INIT_LIST_HEAD(&lo->idle_worker_list); 1024 lo->worker_tree = RB_ROOT; 1025 timer_setup(&lo->timer, loop_free_idle_workers, 1026 TIMER_DEFERRABLE); 1027 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1028 lo->lo_device = bdev; 1029 lo->lo_backing_file = file; 1030 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1031 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1032 1033 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1034 blk_queue_write_cache(lo->lo_queue, true, false); 1035 1036 if (config->block_size) 1037 bsize = config->block_size; 1038 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1039 /* In case of direct I/O, match underlying block size */ 1040 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1041 else 1042 bsize = 512; 1043 1044 blk_queue_logical_block_size(lo->lo_queue, bsize); 1045 blk_queue_physical_block_size(lo->lo_queue, bsize); 1046 blk_queue_io_min(lo->lo_queue, bsize); 1047 1048 loop_config_discard(lo); 1049 loop_update_rotational(lo); 1050 loop_update_dio(lo); 1051 loop_sysfs_init(lo); 1052 1053 size = get_loop_size(lo, file); 1054 loop_set_size(lo, size); 1055 1056 /* Order wrt reading lo_state in loop_validate_file(). */ 1057 wmb(); 1058 1059 lo->lo_state = Lo_bound; 1060 if (part_shift) 1061 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1062 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1063 if (partscan) 1064 lo->lo_disk->flags &= ~GENHD_FL_NO_PART; 1065 1066 loop_global_unlock(lo, is_loop); 1067 if (partscan) 1068 loop_reread_partitions(lo); 1069 if (!(mode & FMODE_EXCL)) 1070 bd_abort_claiming(bdev, loop_configure); 1071 return 0; 1072 1073 out_unlock: 1074 loop_global_unlock(lo, is_loop); 1075 out_bdev: 1076 if (!(mode & FMODE_EXCL)) 1077 bd_abort_claiming(bdev, loop_configure); 1078 out_putf: 1079 fput(file); 1080 /* This is safe: open() is still holding a reference. */ 1081 module_put(THIS_MODULE); 1082 return error; 1083 } 1084 1085 static void __loop_clr_fd(struct loop_device *lo) 1086 { 1087 struct file *filp; 1088 gfp_t gfp = lo->old_gfp_mask; 1089 struct loop_worker *pos, *worker; 1090 1091 /* 1092 * Flush loop_configure() and loop_change_fd(). It is acceptable for 1093 * loop_validate_file() to succeed, for actual clear operation has not 1094 * started yet. 1095 */ 1096 mutex_lock(&loop_validate_mutex); 1097 mutex_unlock(&loop_validate_mutex); 1098 /* 1099 * loop_validate_file() now fails because l->lo_state != Lo_bound 1100 * became visible. 1101 */ 1102 1103 /* 1104 * Since this function is called upon "ioctl(LOOP_CLR_FD)" xor "close() 1105 * after ioctl(LOOP_CLR_FD)", it is a sign of something going wrong if 1106 * lo->lo_state has changed while waiting for lo->lo_mutex. 1107 */ 1108 mutex_lock(&lo->lo_mutex); 1109 BUG_ON(lo->lo_state != Lo_rundown); 1110 mutex_unlock(&lo->lo_mutex); 1111 1112 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1113 blk_queue_write_cache(lo->lo_queue, false, false); 1114 1115 /* freeze request queue during the transition */ 1116 blk_mq_freeze_queue(lo->lo_queue); 1117 1118 destroy_workqueue(lo->workqueue); 1119 spin_lock_irq(&lo->lo_work_lock); 1120 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1121 idle_list) { 1122 list_del(&worker->idle_list); 1123 rb_erase(&worker->rb_node, &lo->worker_tree); 1124 css_put(worker->blkcg_css); 1125 kfree(worker); 1126 } 1127 spin_unlock_irq(&lo->lo_work_lock); 1128 del_timer_sync(&lo->timer); 1129 1130 spin_lock_irq(&lo->lo_lock); 1131 filp = lo->lo_backing_file; 1132 lo->lo_backing_file = NULL; 1133 spin_unlock_irq(&lo->lo_lock); 1134 1135 lo->lo_device = NULL; 1136 lo->lo_offset = 0; 1137 lo->lo_sizelimit = 0; 1138 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1139 blk_queue_logical_block_size(lo->lo_queue, 512); 1140 blk_queue_physical_block_size(lo->lo_queue, 512); 1141 blk_queue_io_min(lo->lo_queue, 512); 1142 invalidate_disk(lo->lo_disk); 1143 loop_sysfs_exit(lo); 1144 /* let user-space know about this change */ 1145 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1146 mapping_set_gfp_mask(filp->f_mapping, gfp); 1147 blk_mq_unfreeze_queue(lo->lo_queue); 1148 1149 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE); 1150 1151 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1152 int err; 1153 1154 mutex_lock(&lo->lo_disk->open_mutex); 1155 err = bdev_disk_changed(lo->lo_disk, false); 1156 mutex_unlock(&lo->lo_disk->open_mutex); 1157 if (err) 1158 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1159 __func__, lo->lo_number, err); 1160 /* Device is gone, no point in returning error */ 1161 } 1162 1163 lo->lo_flags = 0; 1164 if (!part_shift) 1165 lo->lo_disk->flags |= GENHD_FL_NO_PART; 1166 1167 fput(filp); 1168 } 1169 1170 static void loop_rundown_completed(struct loop_device *lo) 1171 { 1172 mutex_lock(&lo->lo_mutex); 1173 lo->lo_state = Lo_unbound; 1174 mutex_unlock(&lo->lo_mutex); 1175 module_put(THIS_MODULE); 1176 } 1177 1178 static void loop_rundown_workfn(struct work_struct *work) 1179 { 1180 struct loop_device *lo = container_of(work, struct loop_device, 1181 rundown_work); 1182 struct block_device *bdev = lo->lo_device; 1183 struct gendisk *disk = lo->lo_disk; 1184 1185 __loop_clr_fd(lo); 1186 kobject_put(&bdev->bd_device.kobj); 1187 module_put(disk->fops->owner); 1188 loop_rundown_completed(lo); 1189 } 1190 1191 static void loop_schedule_rundown(struct loop_device *lo) 1192 { 1193 struct block_device *bdev = lo->lo_device; 1194 struct gendisk *disk = lo->lo_disk; 1195 1196 __module_get(disk->fops->owner); 1197 kobject_get(&bdev->bd_device.kobj); 1198 INIT_WORK(&lo->rundown_work, loop_rundown_workfn); 1199 queue_work(system_long_wq, &lo->rundown_work); 1200 } 1201 1202 static int loop_clr_fd(struct loop_device *lo) 1203 { 1204 int err; 1205 1206 err = mutex_lock_killable(&lo->lo_mutex); 1207 if (err) 1208 return err; 1209 if (lo->lo_state != Lo_bound) { 1210 mutex_unlock(&lo->lo_mutex); 1211 return -ENXIO; 1212 } 1213 /* 1214 * If we've explicitly asked to tear down the loop device, 1215 * and it has an elevated reference count, set it for auto-teardown when 1216 * the last reference goes away. This stops $!~#$@ udev from 1217 * preventing teardown because it decided that it needs to run blkid on 1218 * the loopback device whenever they appear. xfstests is notorious for 1219 * failing tests because blkid via udev races with a losetup 1220 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1221 * command to fail with EBUSY. 1222 */ 1223 if (atomic_read(&lo->lo_refcnt) > 1) { 1224 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1225 mutex_unlock(&lo->lo_mutex); 1226 return 0; 1227 } 1228 lo->lo_state = Lo_rundown; 1229 mutex_unlock(&lo->lo_mutex); 1230 1231 __loop_clr_fd(lo); 1232 loop_rundown_completed(lo); 1233 return 0; 1234 } 1235 1236 static int 1237 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1238 { 1239 int err; 1240 int prev_lo_flags; 1241 bool partscan = false; 1242 bool size_changed = false; 1243 1244 err = mutex_lock_killable(&lo->lo_mutex); 1245 if (err) 1246 return err; 1247 if (lo->lo_state != Lo_bound) { 1248 err = -ENXIO; 1249 goto out_unlock; 1250 } 1251 1252 if (lo->lo_offset != info->lo_offset || 1253 lo->lo_sizelimit != info->lo_sizelimit) { 1254 size_changed = true; 1255 sync_blockdev(lo->lo_device); 1256 invalidate_bdev(lo->lo_device); 1257 } 1258 1259 /* I/O need to be drained during transfer transition */ 1260 blk_mq_freeze_queue(lo->lo_queue); 1261 1262 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1263 /* If any pages were dirtied after invalidate_bdev(), try again */ 1264 err = -EAGAIN; 1265 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1266 __func__, lo->lo_number, lo->lo_file_name, 1267 lo->lo_device->bd_inode->i_mapping->nrpages); 1268 goto out_unfreeze; 1269 } 1270 1271 prev_lo_flags = lo->lo_flags; 1272 1273 err = loop_set_status_from_info(lo, info); 1274 if (err) 1275 goto out_unfreeze; 1276 1277 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1278 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1279 /* For those flags, use the previous values instead */ 1280 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1281 /* For flags that can't be cleared, use previous values too */ 1282 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1283 1284 if (size_changed) { 1285 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1286 lo->lo_backing_file); 1287 loop_set_size(lo, new_size); 1288 } 1289 1290 loop_config_discard(lo); 1291 1292 /* update dio if lo_offset or transfer is changed */ 1293 __loop_update_dio(lo, lo->use_dio); 1294 1295 out_unfreeze: 1296 blk_mq_unfreeze_queue(lo->lo_queue); 1297 1298 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1299 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1300 lo->lo_disk->flags &= ~GENHD_FL_NO_PART; 1301 partscan = true; 1302 } 1303 out_unlock: 1304 mutex_unlock(&lo->lo_mutex); 1305 if (partscan) 1306 loop_reread_partitions(lo); 1307 1308 return err; 1309 } 1310 1311 static int 1312 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1313 { 1314 struct path path; 1315 struct kstat stat; 1316 int ret; 1317 1318 ret = mutex_lock_killable(&lo->lo_mutex); 1319 if (ret) 1320 return ret; 1321 if (lo->lo_state != Lo_bound) { 1322 mutex_unlock(&lo->lo_mutex); 1323 return -ENXIO; 1324 } 1325 1326 memset(info, 0, sizeof(*info)); 1327 info->lo_number = lo->lo_number; 1328 info->lo_offset = lo->lo_offset; 1329 info->lo_sizelimit = lo->lo_sizelimit; 1330 info->lo_flags = lo->lo_flags; 1331 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1332 1333 /* Drop lo_mutex while we call into the filesystem. */ 1334 path = lo->lo_backing_file->f_path; 1335 path_get(&path); 1336 mutex_unlock(&lo->lo_mutex); 1337 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1338 if (!ret) { 1339 info->lo_device = huge_encode_dev(stat.dev); 1340 info->lo_inode = stat.ino; 1341 info->lo_rdevice = huge_encode_dev(stat.rdev); 1342 } 1343 path_put(&path); 1344 return ret; 1345 } 1346 1347 static void 1348 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1349 { 1350 memset(info64, 0, sizeof(*info64)); 1351 info64->lo_number = info->lo_number; 1352 info64->lo_device = info->lo_device; 1353 info64->lo_inode = info->lo_inode; 1354 info64->lo_rdevice = info->lo_rdevice; 1355 info64->lo_offset = info->lo_offset; 1356 info64->lo_sizelimit = 0; 1357 info64->lo_flags = info->lo_flags; 1358 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1359 } 1360 1361 static int 1362 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1363 { 1364 memset(info, 0, sizeof(*info)); 1365 info->lo_number = info64->lo_number; 1366 info->lo_device = info64->lo_device; 1367 info->lo_inode = info64->lo_inode; 1368 info->lo_rdevice = info64->lo_rdevice; 1369 info->lo_offset = info64->lo_offset; 1370 info->lo_flags = info64->lo_flags; 1371 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1372 1373 /* error in case values were truncated */ 1374 if (info->lo_device != info64->lo_device || 1375 info->lo_rdevice != info64->lo_rdevice || 1376 info->lo_inode != info64->lo_inode || 1377 info->lo_offset != info64->lo_offset) 1378 return -EOVERFLOW; 1379 1380 return 0; 1381 } 1382 1383 static int 1384 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1385 { 1386 struct loop_info info; 1387 struct loop_info64 info64; 1388 1389 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1390 return -EFAULT; 1391 loop_info64_from_old(&info, &info64); 1392 return loop_set_status(lo, &info64); 1393 } 1394 1395 static int 1396 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1397 { 1398 struct loop_info64 info64; 1399 1400 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1401 return -EFAULT; 1402 return loop_set_status(lo, &info64); 1403 } 1404 1405 static int 1406 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1407 struct loop_info info; 1408 struct loop_info64 info64; 1409 int err; 1410 1411 if (!arg) 1412 return -EINVAL; 1413 err = loop_get_status(lo, &info64); 1414 if (!err) 1415 err = loop_info64_to_old(&info64, &info); 1416 if (!err && copy_to_user(arg, &info, sizeof(info))) 1417 err = -EFAULT; 1418 1419 return err; 1420 } 1421 1422 static int 1423 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1424 struct loop_info64 info64; 1425 int err; 1426 1427 if (!arg) 1428 return -EINVAL; 1429 err = loop_get_status(lo, &info64); 1430 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1431 err = -EFAULT; 1432 1433 return err; 1434 } 1435 1436 static int loop_set_capacity(struct loop_device *lo) 1437 { 1438 loff_t size; 1439 1440 if (unlikely(lo->lo_state != Lo_bound)) 1441 return -ENXIO; 1442 1443 size = get_loop_size(lo, lo->lo_backing_file); 1444 loop_set_size(lo, size); 1445 1446 return 0; 1447 } 1448 1449 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1450 { 1451 int error = -ENXIO; 1452 if (lo->lo_state != Lo_bound) 1453 goto out; 1454 1455 __loop_update_dio(lo, !!arg); 1456 if (lo->use_dio == !!arg) 1457 return 0; 1458 error = -EINVAL; 1459 out: 1460 return error; 1461 } 1462 1463 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1464 { 1465 int err = 0; 1466 1467 if (lo->lo_state != Lo_bound) 1468 return -ENXIO; 1469 1470 err = blk_validate_block_size(arg); 1471 if (err) 1472 return err; 1473 1474 if (lo->lo_queue->limits.logical_block_size == arg) 1475 return 0; 1476 1477 sync_blockdev(lo->lo_device); 1478 invalidate_bdev(lo->lo_device); 1479 1480 blk_mq_freeze_queue(lo->lo_queue); 1481 1482 /* invalidate_bdev should have truncated all the pages */ 1483 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1484 err = -EAGAIN; 1485 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1486 __func__, lo->lo_number, lo->lo_file_name, 1487 lo->lo_device->bd_inode->i_mapping->nrpages); 1488 goto out_unfreeze; 1489 } 1490 1491 blk_queue_logical_block_size(lo->lo_queue, arg); 1492 blk_queue_physical_block_size(lo->lo_queue, arg); 1493 blk_queue_io_min(lo->lo_queue, arg); 1494 loop_update_dio(lo); 1495 out_unfreeze: 1496 blk_mq_unfreeze_queue(lo->lo_queue); 1497 1498 return err; 1499 } 1500 1501 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1502 unsigned long arg) 1503 { 1504 int err; 1505 1506 err = mutex_lock_killable(&lo->lo_mutex); 1507 if (err) 1508 return err; 1509 switch (cmd) { 1510 case LOOP_SET_CAPACITY: 1511 err = loop_set_capacity(lo); 1512 break; 1513 case LOOP_SET_DIRECT_IO: 1514 err = loop_set_dio(lo, arg); 1515 break; 1516 case LOOP_SET_BLOCK_SIZE: 1517 err = loop_set_block_size(lo, arg); 1518 break; 1519 default: 1520 err = -EINVAL; 1521 } 1522 mutex_unlock(&lo->lo_mutex); 1523 return err; 1524 } 1525 1526 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1527 unsigned int cmd, unsigned long arg) 1528 { 1529 struct loop_device *lo = bdev->bd_disk->private_data; 1530 void __user *argp = (void __user *) arg; 1531 int err; 1532 1533 switch (cmd) { 1534 case LOOP_SET_FD: { 1535 /* 1536 * Legacy case - pass in a zeroed out struct loop_config with 1537 * only the file descriptor set , which corresponds with the 1538 * default parameters we'd have used otherwise. 1539 */ 1540 struct loop_config config; 1541 1542 memset(&config, 0, sizeof(config)); 1543 config.fd = arg; 1544 1545 return loop_configure(lo, mode, bdev, &config); 1546 } 1547 case LOOP_CONFIGURE: { 1548 struct loop_config config; 1549 1550 if (copy_from_user(&config, argp, sizeof(config))) 1551 return -EFAULT; 1552 1553 return loop_configure(lo, mode, bdev, &config); 1554 } 1555 case LOOP_CHANGE_FD: 1556 return loop_change_fd(lo, bdev, arg); 1557 case LOOP_CLR_FD: 1558 return loop_clr_fd(lo); 1559 case LOOP_SET_STATUS: 1560 err = -EPERM; 1561 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1562 err = loop_set_status_old(lo, argp); 1563 } 1564 break; 1565 case LOOP_GET_STATUS: 1566 return loop_get_status_old(lo, argp); 1567 case LOOP_SET_STATUS64: 1568 err = -EPERM; 1569 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1570 err = loop_set_status64(lo, argp); 1571 } 1572 break; 1573 case LOOP_GET_STATUS64: 1574 return loop_get_status64(lo, argp); 1575 case LOOP_SET_CAPACITY: 1576 case LOOP_SET_DIRECT_IO: 1577 case LOOP_SET_BLOCK_SIZE: 1578 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1579 return -EPERM; 1580 fallthrough; 1581 default: 1582 err = lo_simple_ioctl(lo, cmd, arg); 1583 break; 1584 } 1585 1586 return err; 1587 } 1588 1589 #ifdef CONFIG_COMPAT 1590 struct compat_loop_info { 1591 compat_int_t lo_number; /* ioctl r/o */ 1592 compat_dev_t lo_device; /* ioctl r/o */ 1593 compat_ulong_t lo_inode; /* ioctl r/o */ 1594 compat_dev_t lo_rdevice; /* ioctl r/o */ 1595 compat_int_t lo_offset; 1596 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1597 compat_int_t lo_flags; /* ioctl r/o */ 1598 char lo_name[LO_NAME_SIZE]; 1599 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1600 compat_ulong_t lo_init[2]; 1601 char reserved[4]; 1602 }; 1603 1604 /* 1605 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1606 * - noinlined to reduce stack space usage in main part of driver 1607 */ 1608 static noinline int 1609 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1610 struct loop_info64 *info64) 1611 { 1612 struct compat_loop_info info; 1613 1614 if (copy_from_user(&info, arg, sizeof(info))) 1615 return -EFAULT; 1616 1617 memset(info64, 0, sizeof(*info64)); 1618 info64->lo_number = info.lo_number; 1619 info64->lo_device = info.lo_device; 1620 info64->lo_inode = info.lo_inode; 1621 info64->lo_rdevice = info.lo_rdevice; 1622 info64->lo_offset = info.lo_offset; 1623 info64->lo_sizelimit = 0; 1624 info64->lo_flags = info.lo_flags; 1625 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1626 return 0; 1627 } 1628 1629 /* 1630 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1631 * - noinlined to reduce stack space usage in main part of driver 1632 */ 1633 static noinline int 1634 loop_info64_to_compat(const struct loop_info64 *info64, 1635 struct compat_loop_info __user *arg) 1636 { 1637 struct compat_loop_info info; 1638 1639 memset(&info, 0, sizeof(info)); 1640 info.lo_number = info64->lo_number; 1641 info.lo_device = info64->lo_device; 1642 info.lo_inode = info64->lo_inode; 1643 info.lo_rdevice = info64->lo_rdevice; 1644 info.lo_offset = info64->lo_offset; 1645 info.lo_flags = info64->lo_flags; 1646 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1647 1648 /* error in case values were truncated */ 1649 if (info.lo_device != info64->lo_device || 1650 info.lo_rdevice != info64->lo_rdevice || 1651 info.lo_inode != info64->lo_inode || 1652 info.lo_offset != info64->lo_offset) 1653 return -EOVERFLOW; 1654 1655 if (copy_to_user(arg, &info, sizeof(info))) 1656 return -EFAULT; 1657 return 0; 1658 } 1659 1660 static int 1661 loop_set_status_compat(struct loop_device *lo, 1662 const struct compat_loop_info __user *arg) 1663 { 1664 struct loop_info64 info64; 1665 int ret; 1666 1667 ret = loop_info64_from_compat(arg, &info64); 1668 if (ret < 0) 1669 return ret; 1670 return loop_set_status(lo, &info64); 1671 } 1672 1673 static int 1674 loop_get_status_compat(struct loop_device *lo, 1675 struct compat_loop_info __user *arg) 1676 { 1677 struct loop_info64 info64; 1678 int err; 1679 1680 if (!arg) 1681 return -EINVAL; 1682 err = loop_get_status(lo, &info64); 1683 if (!err) 1684 err = loop_info64_to_compat(&info64, arg); 1685 return err; 1686 } 1687 1688 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1689 unsigned int cmd, unsigned long arg) 1690 { 1691 struct loop_device *lo = bdev->bd_disk->private_data; 1692 int err; 1693 1694 switch(cmd) { 1695 case LOOP_SET_STATUS: 1696 err = loop_set_status_compat(lo, 1697 (const struct compat_loop_info __user *)arg); 1698 break; 1699 case LOOP_GET_STATUS: 1700 err = loop_get_status_compat(lo, 1701 (struct compat_loop_info __user *)arg); 1702 break; 1703 case LOOP_SET_CAPACITY: 1704 case LOOP_CLR_FD: 1705 case LOOP_GET_STATUS64: 1706 case LOOP_SET_STATUS64: 1707 case LOOP_CONFIGURE: 1708 arg = (unsigned long) compat_ptr(arg); 1709 fallthrough; 1710 case LOOP_SET_FD: 1711 case LOOP_CHANGE_FD: 1712 case LOOP_SET_BLOCK_SIZE: 1713 case LOOP_SET_DIRECT_IO: 1714 err = lo_ioctl(bdev, mode, cmd, arg); 1715 break; 1716 default: 1717 err = -ENOIOCTLCMD; 1718 break; 1719 } 1720 return err; 1721 } 1722 #endif 1723 1724 static int lo_open(struct block_device *bdev, fmode_t mode) 1725 { 1726 struct loop_device *lo = bdev->bd_disk->private_data; 1727 int err; 1728 1729 err = mutex_lock_killable(&lo->lo_mutex); 1730 if (err) 1731 return err; 1732 if (lo->lo_state == Lo_deleting) 1733 err = -ENXIO; 1734 else 1735 atomic_inc(&lo->lo_refcnt); 1736 mutex_unlock(&lo->lo_mutex); 1737 return err; 1738 } 1739 1740 static void lo_release(struct gendisk *disk, fmode_t mode) 1741 { 1742 struct loop_device *lo = disk->private_data; 1743 1744 mutex_lock(&lo->lo_mutex); 1745 if (atomic_dec_return(&lo->lo_refcnt)) 1746 goto out_unlock; 1747 1748 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1749 if (lo->lo_state != Lo_bound) 1750 goto out_unlock; 1751 lo->lo_state = Lo_rundown; 1752 mutex_unlock(&lo->lo_mutex); 1753 /* 1754 * In autoclear mode, stop the loop thread 1755 * and remove configuration after last close. 1756 */ 1757 loop_schedule_rundown(lo); 1758 return; 1759 } else if (lo->lo_state == Lo_bound) { 1760 /* 1761 * Otherwise keep thread (if running) and config, 1762 * but flush possible ongoing bios in thread. 1763 */ 1764 blk_mq_freeze_queue(lo->lo_queue); 1765 blk_mq_unfreeze_queue(lo->lo_queue); 1766 } 1767 1768 out_unlock: 1769 mutex_unlock(&lo->lo_mutex); 1770 } 1771 1772 static const struct block_device_operations lo_fops = { 1773 .owner = THIS_MODULE, 1774 .open = lo_open, 1775 .release = lo_release, 1776 .ioctl = lo_ioctl, 1777 #ifdef CONFIG_COMPAT 1778 .compat_ioctl = lo_compat_ioctl, 1779 #endif 1780 }; 1781 1782 /* 1783 * And now the modules code and kernel interface. 1784 */ 1785 static int max_loop; 1786 module_param(max_loop, int, 0444); 1787 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1788 module_param(max_part, int, 0444); 1789 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1790 MODULE_LICENSE("GPL"); 1791 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1792 1793 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1794 const struct blk_mq_queue_data *bd) 1795 { 1796 struct request *rq = bd->rq; 1797 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1798 struct loop_device *lo = rq->q->queuedata; 1799 1800 blk_mq_start_request(rq); 1801 1802 if (lo->lo_state != Lo_bound) 1803 return BLK_STS_IOERR; 1804 1805 switch (req_op(rq)) { 1806 case REQ_OP_FLUSH: 1807 case REQ_OP_DISCARD: 1808 case REQ_OP_WRITE_ZEROES: 1809 cmd->use_aio = false; 1810 break; 1811 default: 1812 cmd->use_aio = lo->use_dio; 1813 break; 1814 } 1815 1816 /* always use the first bio's css */ 1817 cmd->blkcg_css = NULL; 1818 cmd->memcg_css = NULL; 1819 #ifdef CONFIG_BLK_CGROUP 1820 if (rq->bio && rq->bio->bi_blkg) { 1821 cmd->blkcg_css = &bio_blkcg(rq->bio)->css; 1822 #ifdef CONFIG_MEMCG 1823 cmd->memcg_css = 1824 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1825 &memory_cgrp_subsys); 1826 #endif 1827 } 1828 #endif 1829 loop_queue_work(lo, cmd); 1830 1831 return BLK_STS_OK; 1832 } 1833 1834 static void loop_handle_cmd(struct loop_cmd *cmd) 1835 { 1836 struct request *rq = blk_mq_rq_from_pdu(cmd); 1837 const bool write = op_is_write(req_op(rq)); 1838 struct loop_device *lo = rq->q->queuedata; 1839 int ret = 0; 1840 struct mem_cgroup *old_memcg = NULL; 1841 1842 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1843 ret = -EIO; 1844 goto failed; 1845 } 1846 1847 if (cmd->blkcg_css) 1848 kthread_associate_blkcg(cmd->blkcg_css); 1849 if (cmd->memcg_css) 1850 old_memcg = set_active_memcg( 1851 mem_cgroup_from_css(cmd->memcg_css)); 1852 1853 ret = do_req_filebacked(lo, rq); 1854 1855 if (cmd->blkcg_css) 1856 kthread_associate_blkcg(NULL); 1857 1858 if (cmd->memcg_css) { 1859 set_active_memcg(old_memcg); 1860 css_put(cmd->memcg_css); 1861 } 1862 failed: 1863 /* complete non-aio request */ 1864 if (!cmd->use_aio || ret) { 1865 if (ret == -EOPNOTSUPP) 1866 cmd->ret = ret; 1867 else 1868 cmd->ret = ret ? -EIO : 0; 1869 if (likely(!blk_should_fake_timeout(rq->q))) 1870 blk_mq_complete_request(rq); 1871 } 1872 } 1873 1874 static void loop_set_timer(struct loop_device *lo) 1875 { 1876 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 1877 } 1878 1879 static void loop_process_work(struct loop_worker *worker, 1880 struct list_head *cmd_list, struct loop_device *lo) 1881 { 1882 int orig_flags = current->flags; 1883 struct loop_cmd *cmd; 1884 1885 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1886 spin_lock_irq(&lo->lo_work_lock); 1887 while (!list_empty(cmd_list)) { 1888 cmd = container_of( 1889 cmd_list->next, struct loop_cmd, list_entry); 1890 list_del(cmd_list->next); 1891 spin_unlock_irq(&lo->lo_work_lock); 1892 1893 loop_handle_cmd(cmd); 1894 cond_resched(); 1895 1896 spin_lock_irq(&lo->lo_work_lock); 1897 } 1898 1899 /* 1900 * We only add to the idle list if there are no pending cmds 1901 * *and* the worker will not run again which ensures that it 1902 * is safe to free any worker on the idle list 1903 */ 1904 if (worker && !work_pending(&worker->work)) { 1905 worker->last_ran_at = jiffies; 1906 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1907 loop_set_timer(lo); 1908 } 1909 spin_unlock_irq(&lo->lo_work_lock); 1910 current->flags = orig_flags; 1911 } 1912 1913 static void loop_workfn(struct work_struct *work) 1914 { 1915 struct loop_worker *worker = 1916 container_of(work, struct loop_worker, work); 1917 loop_process_work(worker, &worker->cmd_list, worker->lo); 1918 } 1919 1920 static void loop_rootcg_workfn(struct work_struct *work) 1921 { 1922 struct loop_device *lo = 1923 container_of(work, struct loop_device, rootcg_work); 1924 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1925 } 1926 1927 static void loop_free_idle_workers(struct timer_list *timer) 1928 { 1929 struct loop_device *lo = container_of(timer, struct loop_device, timer); 1930 struct loop_worker *pos, *worker; 1931 1932 spin_lock_irq(&lo->lo_work_lock); 1933 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 1934 idle_list) { 1935 if (time_is_after_jiffies(worker->last_ran_at + 1936 LOOP_IDLE_WORKER_TIMEOUT)) 1937 break; 1938 list_del(&worker->idle_list); 1939 rb_erase(&worker->rb_node, &lo->worker_tree); 1940 css_put(worker->blkcg_css); 1941 kfree(worker); 1942 } 1943 if (!list_empty(&lo->idle_worker_list)) 1944 loop_set_timer(lo); 1945 spin_unlock_irq(&lo->lo_work_lock); 1946 } 1947 1948 static const struct blk_mq_ops loop_mq_ops = { 1949 .queue_rq = loop_queue_rq, 1950 .complete = lo_complete_rq, 1951 }; 1952 1953 static int loop_add(int i) 1954 { 1955 struct loop_device *lo; 1956 struct gendisk *disk; 1957 int err; 1958 1959 err = -ENOMEM; 1960 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1961 if (!lo) 1962 goto out; 1963 lo->lo_state = Lo_unbound; 1964 1965 err = mutex_lock_killable(&loop_ctl_mutex); 1966 if (err) 1967 goto out_free_dev; 1968 1969 /* allocate id, if @id >= 0, we're requesting that specific id */ 1970 if (i >= 0) { 1971 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1972 if (err == -ENOSPC) 1973 err = -EEXIST; 1974 } else { 1975 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1976 } 1977 mutex_unlock(&loop_ctl_mutex); 1978 if (err < 0) 1979 goto out_free_dev; 1980 i = err; 1981 1982 lo->tag_set.ops = &loop_mq_ops; 1983 lo->tag_set.nr_hw_queues = 1; 1984 lo->tag_set.queue_depth = 128; 1985 lo->tag_set.numa_node = NUMA_NO_NODE; 1986 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1987 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 1988 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1989 lo->tag_set.driver_data = lo; 1990 1991 err = blk_mq_alloc_tag_set(&lo->tag_set); 1992 if (err) 1993 goto out_free_idr; 1994 1995 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo); 1996 if (IS_ERR(disk)) { 1997 err = PTR_ERR(disk); 1998 goto out_cleanup_tags; 1999 } 2000 lo->lo_queue = lo->lo_disk->queue; 2001 2002 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2003 2004 /* 2005 * By default, we do buffer IO, so it doesn't make sense to enable 2006 * merge because the I/O submitted to backing file is handled page by 2007 * page. For directio mode, merge does help to dispatch bigger request 2008 * to underlayer disk. We will enable merge once directio is enabled. 2009 */ 2010 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2011 2012 /* 2013 * Disable partition scanning by default. The in-kernel partition 2014 * scanning can be requested individually per-device during its 2015 * setup. Userspace can always add and remove partitions from all 2016 * devices. The needed partition minors are allocated from the 2017 * extended minor space, the main loop device numbers will continue 2018 * to match the loop minors, regardless of the number of partitions 2019 * used. 2020 * 2021 * If max_part is given, partition scanning is globally enabled for 2022 * all loop devices. The minors for the main loop devices will be 2023 * multiples of max_part. 2024 * 2025 * Note: Global-for-all-devices, set-only-at-init, read-only module 2026 * parameteters like 'max_loop' and 'max_part' make things needlessly 2027 * complicated, are too static, inflexible and may surprise 2028 * userspace tools. Parameters like this in general should be avoided. 2029 */ 2030 if (!part_shift) 2031 disk->flags |= GENHD_FL_NO_PART; 2032 atomic_set(&lo->lo_refcnt, 0); 2033 mutex_init(&lo->lo_mutex); 2034 lo->lo_number = i; 2035 spin_lock_init(&lo->lo_lock); 2036 spin_lock_init(&lo->lo_work_lock); 2037 disk->major = LOOP_MAJOR; 2038 disk->first_minor = i << part_shift; 2039 disk->minors = 1 << part_shift; 2040 disk->fops = &lo_fops; 2041 disk->private_data = lo; 2042 disk->queue = lo->lo_queue; 2043 disk->events = DISK_EVENT_MEDIA_CHANGE; 2044 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2045 sprintf(disk->disk_name, "loop%d", i); 2046 /* Make this loop device reachable from pathname. */ 2047 err = add_disk(disk); 2048 if (err) 2049 goto out_cleanup_disk; 2050 2051 /* Show this loop device. */ 2052 mutex_lock(&loop_ctl_mutex); 2053 lo->idr_visible = true; 2054 mutex_unlock(&loop_ctl_mutex); 2055 2056 return i; 2057 2058 out_cleanup_disk: 2059 blk_cleanup_disk(disk); 2060 out_cleanup_tags: 2061 blk_mq_free_tag_set(&lo->tag_set); 2062 out_free_idr: 2063 mutex_lock(&loop_ctl_mutex); 2064 idr_remove(&loop_index_idr, i); 2065 mutex_unlock(&loop_ctl_mutex); 2066 out_free_dev: 2067 kfree(lo); 2068 out: 2069 return err; 2070 } 2071 2072 static void loop_remove(struct loop_device *lo) 2073 { 2074 /* Make this loop device unreachable from pathname. */ 2075 del_gendisk(lo->lo_disk); 2076 blk_cleanup_disk(lo->lo_disk); 2077 blk_mq_free_tag_set(&lo->tag_set); 2078 mutex_lock(&loop_ctl_mutex); 2079 idr_remove(&loop_index_idr, lo->lo_number); 2080 mutex_unlock(&loop_ctl_mutex); 2081 /* There is no route which can find this loop device. */ 2082 mutex_destroy(&lo->lo_mutex); 2083 kfree(lo); 2084 } 2085 2086 static void loop_probe(dev_t dev) 2087 { 2088 int idx = MINOR(dev) >> part_shift; 2089 2090 if (max_loop && idx >= max_loop) 2091 return; 2092 loop_add(idx); 2093 } 2094 2095 static int loop_control_remove(int idx) 2096 { 2097 struct loop_device *lo; 2098 int ret; 2099 2100 if (idx < 0) { 2101 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2102 return -EINVAL; 2103 } 2104 2105 /* Hide this loop device for serialization. */ 2106 ret = mutex_lock_killable(&loop_ctl_mutex); 2107 if (ret) 2108 return ret; 2109 lo = idr_find(&loop_index_idr, idx); 2110 if (!lo || !lo->idr_visible) 2111 ret = -ENODEV; 2112 else 2113 lo->idr_visible = false; 2114 mutex_unlock(&loop_ctl_mutex); 2115 if (ret) 2116 return ret; 2117 2118 /* Check whether this loop device can be removed. */ 2119 ret = mutex_lock_killable(&lo->lo_mutex); 2120 if (ret) 2121 goto mark_visible; 2122 if (lo->lo_state != Lo_unbound || 2123 atomic_read(&lo->lo_refcnt) > 0) { 2124 mutex_unlock(&lo->lo_mutex); 2125 ret = -EBUSY; 2126 goto mark_visible; 2127 } 2128 /* Mark this loop device no longer open()-able. */ 2129 lo->lo_state = Lo_deleting; 2130 mutex_unlock(&lo->lo_mutex); 2131 2132 loop_remove(lo); 2133 return 0; 2134 2135 mark_visible: 2136 /* Show this loop device again. */ 2137 mutex_lock(&loop_ctl_mutex); 2138 lo->idr_visible = true; 2139 mutex_unlock(&loop_ctl_mutex); 2140 return ret; 2141 } 2142 2143 static int loop_control_get_free(int idx) 2144 { 2145 struct loop_device *lo; 2146 int id, ret; 2147 2148 ret = mutex_lock_killable(&loop_ctl_mutex); 2149 if (ret) 2150 return ret; 2151 idr_for_each_entry(&loop_index_idr, lo, id) { 2152 /* Hitting a race results in creating a new loop device which is harmless. */ 2153 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2154 goto found; 2155 } 2156 mutex_unlock(&loop_ctl_mutex); 2157 return loop_add(-1); 2158 found: 2159 mutex_unlock(&loop_ctl_mutex); 2160 return id; 2161 } 2162 2163 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2164 unsigned long parm) 2165 { 2166 switch (cmd) { 2167 case LOOP_CTL_ADD: 2168 return loop_add(parm); 2169 case LOOP_CTL_REMOVE: 2170 return loop_control_remove(parm); 2171 case LOOP_CTL_GET_FREE: 2172 return loop_control_get_free(parm); 2173 default: 2174 return -ENOSYS; 2175 } 2176 } 2177 2178 static const struct file_operations loop_ctl_fops = { 2179 .open = nonseekable_open, 2180 .unlocked_ioctl = loop_control_ioctl, 2181 .compat_ioctl = loop_control_ioctl, 2182 .owner = THIS_MODULE, 2183 .llseek = noop_llseek, 2184 }; 2185 2186 static struct miscdevice loop_misc = { 2187 .minor = LOOP_CTRL_MINOR, 2188 .name = "loop-control", 2189 .fops = &loop_ctl_fops, 2190 }; 2191 2192 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2193 MODULE_ALIAS("devname:loop-control"); 2194 2195 static int __init loop_init(void) 2196 { 2197 int i, nr; 2198 int err; 2199 2200 part_shift = 0; 2201 if (max_part > 0) { 2202 part_shift = fls(max_part); 2203 2204 /* 2205 * Adjust max_part according to part_shift as it is exported 2206 * to user space so that user can decide correct minor number 2207 * if [s]he want to create more devices. 2208 * 2209 * Note that -1 is required because partition 0 is reserved 2210 * for the whole disk. 2211 */ 2212 max_part = (1UL << part_shift) - 1; 2213 } 2214 2215 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2216 err = -EINVAL; 2217 goto err_out; 2218 } 2219 2220 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2221 err = -EINVAL; 2222 goto err_out; 2223 } 2224 2225 /* 2226 * If max_loop is specified, create that many devices upfront. 2227 * This also becomes a hard limit. If max_loop is not specified, 2228 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2229 * init time. Loop devices can be requested on-demand with the 2230 * /dev/loop-control interface, or be instantiated by accessing 2231 * a 'dead' device node. 2232 */ 2233 if (max_loop) 2234 nr = max_loop; 2235 else 2236 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2237 2238 err = misc_register(&loop_misc); 2239 if (err < 0) 2240 goto err_out; 2241 2242 2243 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2244 err = -EIO; 2245 goto misc_out; 2246 } 2247 2248 /* pre-create number of devices given by config or max_loop */ 2249 for (i = 0; i < nr; i++) 2250 loop_add(i); 2251 2252 printk(KERN_INFO "loop: module loaded\n"); 2253 return 0; 2254 2255 misc_out: 2256 misc_deregister(&loop_misc); 2257 err_out: 2258 return err; 2259 } 2260 2261 static void __exit loop_exit(void) 2262 { 2263 struct loop_device *lo; 2264 int id; 2265 2266 unregister_blkdev(LOOP_MAJOR, "loop"); 2267 misc_deregister(&loop_misc); 2268 2269 /* 2270 * There is no need to use loop_ctl_mutex here, for nobody else can 2271 * access loop_index_idr when this module is unloading (unless forced 2272 * module unloading is requested). If this is not a clean unloading, 2273 * we have no means to avoid kernel crash. 2274 */ 2275 idr_for_each_entry(&loop_index_idr, lo, id) 2276 loop_remove(lo); 2277 2278 idr_destroy(&loop_index_idr); 2279 } 2280 2281 module_init(loop_init); 2282 module_exit(loop_exit); 2283 2284 #ifndef MODULE 2285 static int __init max_loop_setup(char *str) 2286 { 2287 max_loop = simple_strtol(str, NULL, 0); 2288 return 1; 2289 } 2290 2291 __setup("max_loop=", max_loop_setup); 2292 #endif 2293