1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include "loop.h" 80 81 #include <asm/uaccess.h> 82 83 static DEFINE_IDR(loop_index_idr); 84 static DEFINE_MUTEX(loop_index_mutex); 85 86 static int max_part; 87 static int part_shift; 88 89 static int transfer_xor(struct loop_device *lo, int cmd, 90 struct page *raw_page, unsigned raw_off, 91 struct page *loop_page, unsigned loop_off, 92 int size, sector_t real_block) 93 { 94 char *raw_buf = kmap_atomic(raw_page) + raw_off; 95 char *loop_buf = kmap_atomic(loop_page) + loop_off; 96 char *in, *out, *key; 97 int i, keysize; 98 99 if (cmd == READ) { 100 in = raw_buf; 101 out = loop_buf; 102 } else { 103 in = loop_buf; 104 out = raw_buf; 105 } 106 107 key = lo->lo_encrypt_key; 108 keysize = lo->lo_encrypt_key_size; 109 for (i = 0; i < size; i++) 110 *out++ = *in++ ^ key[(i & 511) % keysize]; 111 112 kunmap_atomic(loop_buf); 113 kunmap_atomic(raw_buf); 114 cond_resched(); 115 return 0; 116 } 117 118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 119 { 120 if (unlikely(info->lo_encrypt_key_size <= 0)) 121 return -EINVAL; 122 return 0; 123 } 124 125 static struct loop_func_table none_funcs = { 126 .number = LO_CRYPT_NONE, 127 }; 128 129 static struct loop_func_table xor_funcs = { 130 .number = LO_CRYPT_XOR, 131 .transfer = transfer_xor, 132 .init = xor_init 133 }; 134 135 /* xfer_funcs[0] is special - its release function is never called */ 136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 137 &none_funcs, 138 &xor_funcs 139 }; 140 141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 142 { 143 loff_t loopsize; 144 145 /* Compute loopsize in bytes */ 146 loopsize = i_size_read(file->f_mapping->host); 147 if (offset > 0) 148 loopsize -= offset; 149 /* offset is beyond i_size, weird but possible */ 150 if (loopsize < 0) 151 return 0; 152 153 if (sizelimit > 0 && sizelimit < loopsize) 154 loopsize = sizelimit; 155 /* 156 * Unfortunately, if we want to do I/O on the device, 157 * the number of 512-byte sectors has to fit into a sector_t. 158 */ 159 return loopsize >> 9; 160 } 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 165 } 166 167 static void __loop_update_dio(struct loop_device *lo, bool dio) 168 { 169 struct file *file = lo->lo_backing_file; 170 struct address_space *mapping = file->f_mapping; 171 struct inode *inode = mapping->host; 172 unsigned short sb_bsize = 0; 173 unsigned dio_align = 0; 174 bool use_dio; 175 176 if (inode->i_sb->s_bdev) { 177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 178 dio_align = sb_bsize - 1; 179 } 180 181 /* 182 * We support direct I/O only if lo_offset is aligned with the 183 * logical I/O size of backing device, and the logical block 184 * size of loop is bigger than the backing device's and the loop 185 * needn't transform transfer. 186 * 187 * TODO: the above condition may be loosed in the future, and 188 * direct I/O may be switched runtime at that time because most 189 * of requests in sane appplications should be PAGE_SIZE algined 190 */ 191 if (dio) { 192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 193 !(lo->lo_offset & dio_align) && 194 mapping->a_ops->direct_IO && 195 !lo->transfer) 196 use_dio = true; 197 else 198 use_dio = false; 199 } else { 200 use_dio = false; 201 } 202 203 if (lo->use_dio == use_dio) 204 return; 205 206 /* flush dirty pages before changing direct IO */ 207 vfs_fsync(file, 0); 208 209 /* 210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 212 * will get updated by ioctl(LOOP_GET_STATUS) 213 */ 214 blk_mq_freeze_queue(lo->lo_queue); 215 lo->use_dio = use_dio; 216 if (use_dio) 217 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 218 else 219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 220 blk_mq_unfreeze_queue(lo->lo_queue); 221 } 222 223 static int 224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 225 { 226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 227 sector_t x = (sector_t)size; 228 struct block_device *bdev = lo->lo_device; 229 230 if (unlikely((loff_t)x != size)) 231 return -EFBIG; 232 if (lo->lo_offset != offset) 233 lo->lo_offset = offset; 234 if (lo->lo_sizelimit != sizelimit) 235 lo->lo_sizelimit = sizelimit; 236 set_capacity(lo->lo_disk, x); 237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 238 /* let user-space know about the new size */ 239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 240 return 0; 241 } 242 243 static inline int 244 lo_do_transfer(struct loop_device *lo, int cmd, 245 struct page *rpage, unsigned roffs, 246 struct page *lpage, unsigned loffs, 247 int size, sector_t rblock) 248 { 249 int ret; 250 251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 252 if (likely(!ret)) 253 return 0; 254 255 printk_ratelimited(KERN_ERR 256 "loop: Transfer error at byte offset %llu, length %i.\n", 257 (unsigned long long)rblock << 9, size); 258 return ret; 259 } 260 261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 262 { 263 struct iov_iter i; 264 ssize_t bw; 265 266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len); 267 268 file_start_write(file); 269 bw = vfs_iter_write(file, &i, ppos); 270 file_end_write(file); 271 272 if (likely(bw == bvec->bv_len)) 273 return 0; 274 275 printk_ratelimited(KERN_ERR 276 "loop: Write error at byte offset %llu, length %i.\n", 277 (unsigned long long)*ppos, bvec->bv_len); 278 if (bw >= 0) 279 bw = -EIO; 280 return bw; 281 } 282 283 static int lo_write_simple(struct loop_device *lo, struct request *rq, 284 loff_t pos) 285 { 286 struct bio_vec bvec; 287 struct req_iterator iter; 288 int ret = 0; 289 290 rq_for_each_segment(bvec, rq, iter) { 291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 292 if (ret < 0) 293 break; 294 cond_resched(); 295 } 296 297 return ret; 298 } 299 300 /* 301 * This is the slow, transforming version that needs to double buffer the 302 * data as it cannot do the transformations in place without having direct 303 * access to the destination pages of the backing file. 304 */ 305 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 306 loff_t pos) 307 { 308 struct bio_vec bvec, b; 309 struct req_iterator iter; 310 struct page *page; 311 int ret = 0; 312 313 page = alloc_page(GFP_NOIO); 314 if (unlikely(!page)) 315 return -ENOMEM; 316 317 rq_for_each_segment(bvec, rq, iter) { 318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 319 bvec.bv_offset, bvec.bv_len, pos >> 9); 320 if (unlikely(ret)) 321 break; 322 323 b.bv_page = page; 324 b.bv_offset = 0; 325 b.bv_len = bvec.bv_len; 326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 327 if (ret < 0) 328 break; 329 } 330 331 __free_page(page); 332 return ret; 333 } 334 335 static int lo_read_simple(struct loop_device *lo, struct request *rq, 336 loff_t pos) 337 { 338 struct bio_vec bvec; 339 struct req_iterator iter; 340 struct iov_iter i; 341 ssize_t len; 342 343 rq_for_each_segment(bvec, rq, iter) { 344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 346 if (len < 0) 347 return len; 348 349 flush_dcache_page(bvec.bv_page); 350 351 if (len != bvec.bv_len) { 352 struct bio *bio; 353 354 __rq_for_each_bio(bio, rq) 355 zero_fill_bio(bio); 356 break; 357 } 358 cond_resched(); 359 } 360 361 return 0; 362 } 363 364 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 365 loff_t pos) 366 { 367 struct bio_vec bvec, b; 368 struct req_iterator iter; 369 struct iov_iter i; 370 struct page *page; 371 ssize_t len; 372 int ret = 0; 373 374 page = alloc_page(GFP_NOIO); 375 if (unlikely(!page)) 376 return -ENOMEM; 377 378 rq_for_each_segment(bvec, rq, iter) { 379 loff_t offset = pos; 380 381 b.bv_page = page; 382 b.bv_offset = 0; 383 b.bv_len = bvec.bv_len; 384 385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos); 387 if (len < 0) { 388 ret = len; 389 goto out_free_page; 390 } 391 392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 393 bvec.bv_offset, len, offset >> 9); 394 if (ret) 395 goto out_free_page; 396 397 flush_dcache_page(bvec.bv_page); 398 399 if (len != bvec.bv_len) { 400 struct bio *bio; 401 402 __rq_for_each_bio(bio, rq) 403 zero_fill_bio(bio); 404 break; 405 } 406 } 407 408 ret = 0; 409 out_free_page: 410 __free_page(page); 411 return ret; 412 } 413 414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 415 { 416 /* 417 * We use punch hole to reclaim the free space used by the 418 * image a.k.a. discard. However we do not support discard if 419 * encryption is enabled, because it may give an attacker 420 * useful information. 421 */ 422 struct file *file = lo->lo_backing_file; 423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 424 int ret; 425 426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 427 ret = -EOPNOTSUPP; 428 goto out; 429 } 430 431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 433 ret = -EIO; 434 out: 435 return ret; 436 } 437 438 static int lo_req_flush(struct loop_device *lo, struct request *rq) 439 { 440 struct file *file = lo->lo_backing_file; 441 int ret = vfs_fsync(file, 0); 442 if (unlikely(ret && ret != -EINVAL)) 443 ret = -EIO; 444 445 return ret; 446 } 447 448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes) 449 { 450 if (bytes < 0 || op_is_write(req_op(cmd->rq))) 451 return; 452 453 if (unlikely(bytes < blk_rq_bytes(cmd->rq))) { 454 struct bio *bio = cmd->rq->bio; 455 456 bio_advance(bio, bytes); 457 zero_fill_bio(bio); 458 } 459 } 460 461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 462 { 463 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 464 struct request *rq = cmd->rq; 465 466 handle_partial_read(cmd, ret); 467 468 if (ret > 0) 469 ret = 0; 470 else if (ret < 0) 471 ret = -EIO; 472 473 blk_mq_complete_request(rq, ret); 474 } 475 476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 477 loff_t pos, bool rw) 478 { 479 struct iov_iter iter; 480 struct bio_vec *bvec; 481 struct bio *bio = cmd->rq->bio; 482 struct file *file = lo->lo_backing_file; 483 int ret; 484 485 /* nomerge for loop request queue */ 486 WARN_ON(cmd->rq->bio != cmd->rq->biotail); 487 488 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 489 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 490 bio_segments(bio), blk_rq_bytes(cmd->rq)); 491 /* 492 * This bio may be started from the middle of the 'bvec' 493 * because of bio splitting, so offset from the bvec must 494 * be passed to iov iterator 495 */ 496 iter.iov_offset = bio->bi_iter.bi_bvec_done; 497 498 cmd->iocb.ki_pos = pos; 499 cmd->iocb.ki_filp = file; 500 cmd->iocb.ki_complete = lo_rw_aio_complete; 501 cmd->iocb.ki_flags = IOCB_DIRECT; 502 503 if (rw == WRITE) 504 ret = file->f_op->write_iter(&cmd->iocb, &iter); 505 else 506 ret = file->f_op->read_iter(&cmd->iocb, &iter); 507 508 if (ret != -EIOCBQUEUED) 509 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 510 return 0; 511 } 512 513 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 514 { 515 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 516 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 517 518 /* 519 * lo_write_simple and lo_read_simple should have been covered 520 * by io submit style function like lo_rw_aio(), one blocker 521 * is that lo_read_simple() need to call flush_dcache_page after 522 * the page is written from kernel, and it isn't easy to handle 523 * this in io submit style function which submits all segments 524 * of the req at one time. And direct read IO doesn't need to 525 * run flush_dcache_page(). 526 */ 527 switch (req_op(rq)) { 528 case REQ_OP_FLUSH: 529 return lo_req_flush(lo, rq); 530 case REQ_OP_DISCARD: 531 return lo_discard(lo, rq, pos); 532 case REQ_OP_WRITE: 533 if (lo->transfer) 534 return lo_write_transfer(lo, rq, pos); 535 else if (cmd->use_aio) 536 return lo_rw_aio(lo, cmd, pos, WRITE); 537 else 538 return lo_write_simple(lo, rq, pos); 539 case REQ_OP_READ: 540 if (lo->transfer) 541 return lo_read_transfer(lo, rq, pos); 542 else if (cmd->use_aio) 543 return lo_rw_aio(lo, cmd, pos, READ); 544 else 545 return lo_read_simple(lo, rq, pos); 546 default: 547 WARN_ON_ONCE(1); 548 return -EIO; 549 break; 550 } 551 } 552 553 struct switch_request { 554 struct file *file; 555 struct completion wait; 556 }; 557 558 static inline void loop_update_dio(struct loop_device *lo) 559 { 560 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 561 lo->use_dio); 562 } 563 564 /* 565 * Do the actual switch; called from the BIO completion routine 566 */ 567 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 568 { 569 struct file *file = p->file; 570 struct file *old_file = lo->lo_backing_file; 571 struct address_space *mapping; 572 573 /* if no new file, only flush of queued bios requested */ 574 if (!file) 575 return; 576 577 mapping = file->f_mapping; 578 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 579 lo->lo_backing_file = file; 580 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 581 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 582 lo->old_gfp_mask = mapping_gfp_mask(mapping); 583 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 584 loop_update_dio(lo); 585 } 586 587 /* 588 * loop_switch performs the hard work of switching a backing store. 589 * First it needs to flush existing IO, it does this by sending a magic 590 * BIO down the pipe. The completion of this BIO does the actual switch. 591 */ 592 static int loop_switch(struct loop_device *lo, struct file *file) 593 { 594 struct switch_request w; 595 596 w.file = file; 597 598 /* freeze queue and wait for completion of scheduled requests */ 599 blk_mq_freeze_queue(lo->lo_queue); 600 601 /* do the switch action */ 602 do_loop_switch(lo, &w); 603 604 /* unfreeze */ 605 blk_mq_unfreeze_queue(lo->lo_queue); 606 607 return 0; 608 } 609 610 /* 611 * Helper to flush the IOs in loop, but keeping loop thread running 612 */ 613 static int loop_flush(struct loop_device *lo) 614 { 615 return loop_switch(lo, NULL); 616 } 617 618 static void loop_reread_partitions(struct loop_device *lo, 619 struct block_device *bdev) 620 { 621 int rc; 622 623 /* 624 * bd_mutex has been held already in release path, so don't 625 * acquire it if this function is called in such case. 626 * 627 * If the reread partition isn't from release path, lo_refcnt 628 * must be at least one and it can only become zero when the 629 * current holder is released. 630 */ 631 if (!atomic_read(&lo->lo_refcnt)) 632 rc = __blkdev_reread_part(bdev); 633 else 634 rc = blkdev_reread_part(bdev); 635 if (rc) 636 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 637 __func__, lo->lo_number, lo->lo_file_name, rc); 638 } 639 640 /* 641 * loop_change_fd switched the backing store of a loopback device to 642 * a new file. This is useful for operating system installers to free up 643 * the original file and in High Availability environments to switch to 644 * an alternative location for the content in case of server meltdown. 645 * This can only work if the loop device is used read-only, and if the 646 * new backing store is the same size and type as the old backing store. 647 */ 648 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 649 unsigned int arg) 650 { 651 struct file *file, *old_file; 652 struct inode *inode; 653 int error; 654 655 error = -ENXIO; 656 if (lo->lo_state != Lo_bound) 657 goto out; 658 659 /* the loop device has to be read-only */ 660 error = -EINVAL; 661 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 662 goto out; 663 664 error = -EBADF; 665 file = fget(arg); 666 if (!file) 667 goto out; 668 669 inode = file->f_mapping->host; 670 old_file = lo->lo_backing_file; 671 672 error = -EINVAL; 673 674 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 675 goto out_putf; 676 677 /* size of the new backing store needs to be the same */ 678 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 679 goto out_putf; 680 681 /* and ... switch */ 682 error = loop_switch(lo, file); 683 if (error) 684 goto out_putf; 685 686 fput(old_file); 687 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 688 loop_reread_partitions(lo, bdev); 689 return 0; 690 691 out_putf: 692 fput(file); 693 out: 694 return error; 695 } 696 697 static inline int is_loop_device(struct file *file) 698 { 699 struct inode *i = file->f_mapping->host; 700 701 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 702 } 703 704 /* loop sysfs attributes */ 705 706 static ssize_t loop_attr_show(struct device *dev, char *page, 707 ssize_t (*callback)(struct loop_device *, char *)) 708 { 709 struct gendisk *disk = dev_to_disk(dev); 710 struct loop_device *lo = disk->private_data; 711 712 return callback(lo, page); 713 } 714 715 #define LOOP_ATTR_RO(_name) \ 716 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 717 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 718 struct device_attribute *attr, char *b) \ 719 { \ 720 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 721 } \ 722 static struct device_attribute loop_attr_##_name = \ 723 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 724 725 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 726 { 727 ssize_t ret; 728 char *p = NULL; 729 730 spin_lock_irq(&lo->lo_lock); 731 if (lo->lo_backing_file) 732 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 733 spin_unlock_irq(&lo->lo_lock); 734 735 if (IS_ERR_OR_NULL(p)) 736 ret = PTR_ERR(p); 737 else { 738 ret = strlen(p); 739 memmove(buf, p, ret); 740 buf[ret++] = '\n'; 741 buf[ret] = 0; 742 } 743 744 return ret; 745 } 746 747 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 748 { 749 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 750 } 751 752 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 753 { 754 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 755 } 756 757 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 758 { 759 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 760 761 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 762 } 763 764 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 765 { 766 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 767 768 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 769 } 770 771 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 772 { 773 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 774 775 return sprintf(buf, "%s\n", dio ? "1" : "0"); 776 } 777 778 LOOP_ATTR_RO(backing_file); 779 LOOP_ATTR_RO(offset); 780 LOOP_ATTR_RO(sizelimit); 781 LOOP_ATTR_RO(autoclear); 782 LOOP_ATTR_RO(partscan); 783 LOOP_ATTR_RO(dio); 784 785 static struct attribute *loop_attrs[] = { 786 &loop_attr_backing_file.attr, 787 &loop_attr_offset.attr, 788 &loop_attr_sizelimit.attr, 789 &loop_attr_autoclear.attr, 790 &loop_attr_partscan.attr, 791 &loop_attr_dio.attr, 792 NULL, 793 }; 794 795 static struct attribute_group loop_attribute_group = { 796 .name = "loop", 797 .attrs= loop_attrs, 798 }; 799 800 static int loop_sysfs_init(struct loop_device *lo) 801 { 802 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 803 &loop_attribute_group); 804 } 805 806 static void loop_sysfs_exit(struct loop_device *lo) 807 { 808 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 809 &loop_attribute_group); 810 } 811 812 static void loop_config_discard(struct loop_device *lo) 813 { 814 struct file *file = lo->lo_backing_file; 815 struct inode *inode = file->f_mapping->host; 816 struct request_queue *q = lo->lo_queue; 817 818 /* 819 * We use punch hole to reclaim the free space used by the 820 * image a.k.a. discard. However we do not support discard if 821 * encryption is enabled, because it may give an attacker 822 * useful information. 823 */ 824 if ((!file->f_op->fallocate) || 825 lo->lo_encrypt_key_size) { 826 q->limits.discard_granularity = 0; 827 q->limits.discard_alignment = 0; 828 blk_queue_max_discard_sectors(q, 0); 829 q->limits.discard_zeroes_data = 0; 830 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 831 return; 832 } 833 834 q->limits.discard_granularity = inode->i_sb->s_blocksize; 835 q->limits.discard_alignment = 0; 836 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 837 q->limits.discard_zeroes_data = 1; 838 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 839 } 840 841 static void loop_unprepare_queue(struct loop_device *lo) 842 { 843 flush_kthread_worker(&lo->worker); 844 kthread_stop(lo->worker_task); 845 } 846 847 static int loop_prepare_queue(struct loop_device *lo) 848 { 849 init_kthread_worker(&lo->worker); 850 lo->worker_task = kthread_run(kthread_worker_fn, 851 &lo->worker, "loop%d", lo->lo_number); 852 if (IS_ERR(lo->worker_task)) 853 return -ENOMEM; 854 set_user_nice(lo->worker_task, MIN_NICE); 855 return 0; 856 } 857 858 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 859 struct block_device *bdev, unsigned int arg) 860 { 861 struct file *file, *f; 862 struct inode *inode; 863 struct address_space *mapping; 864 unsigned lo_blocksize; 865 int lo_flags = 0; 866 int error; 867 loff_t size; 868 869 /* This is safe, since we have a reference from open(). */ 870 __module_get(THIS_MODULE); 871 872 error = -EBADF; 873 file = fget(arg); 874 if (!file) 875 goto out; 876 877 error = -EBUSY; 878 if (lo->lo_state != Lo_unbound) 879 goto out_putf; 880 881 /* Avoid recursion */ 882 f = file; 883 while (is_loop_device(f)) { 884 struct loop_device *l; 885 886 if (f->f_mapping->host->i_bdev == bdev) 887 goto out_putf; 888 889 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 890 if (l->lo_state == Lo_unbound) { 891 error = -EINVAL; 892 goto out_putf; 893 } 894 f = l->lo_backing_file; 895 } 896 897 mapping = file->f_mapping; 898 inode = mapping->host; 899 900 error = -EINVAL; 901 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 902 goto out_putf; 903 904 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 905 !file->f_op->write_iter) 906 lo_flags |= LO_FLAGS_READ_ONLY; 907 908 lo_blocksize = S_ISBLK(inode->i_mode) ? 909 inode->i_bdev->bd_block_size : PAGE_SIZE; 910 911 error = -EFBIG; 912 size = get_loop_size(lo, file); 913 if ((loff_t)(sector_t)size != size) 914 goto out_putf; 915 error = loop_prepare_queue(lo); 916 if (error) 917 goto out_putf; 918 919 error = 0; 920 921 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 922 923 lo->use_dio = false; 924 lo->lo_blocksize = lo_blocksize; 925 lo->lo_device = bdev; 926 lo->lo_flags = lo_flags; 927 lo->lo_backing_file = file; 928 lo->transfer = NULL; 929 lo->ioctl = NULL; 930 lo->lo_sizelimit = 0; 931 lo->old_gfp_mask = mapping_gfp_mask(mapping); 932 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 933 934 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 935 blk_queue_write_cache(lo->lo_queue, true, false); 936 937 loop_update_dio(lo); 938 set_capacity(lo->lo_disk, size); 939 bd_set_size(bdev, size << 9); 940 loop_sysfs_init(lo); 941 /* let user-space know about the new size */ 942 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 943 944 set_blocksize(bdev, lo_blocksize); 945 946 lo->lo_state = Lo_bound; 947 if (part_shift) 948 lo->lo_flags |= LO_FLAGS_PARTSCAN; 949 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 950 loop_reread_partitions(lo, bdev); 951 952 /* Grab the block_device to prevent its destruction after we 953 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 954 */ 955 bdgrab(bdev); 956 return 0; 957 958 out_putf: 959 fput(file); 960 out: 961 /* This is safe: open() is still holding a reference. */ 962 module_put(THIS_MODULE); 963 return error; 964 } 965 966 static int 967 loop_release_xfer(struct loop_device *lo) 968 { 969 int err = 0; 970 struct loop_func_table *xfer = lo->lo_encryption; 971 972 if (xfer) { 973 if (xfer->release) 974 err = xfer->release(lo); 975 lo->transfer = NULL; 976 lo->lo_encryption = NULL; 977 module_put(xfer->owner); 978 } 979 return err; 980 } 981 982 static int 983 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 984 const struct loop_info64 *i) 985 { 986 int err = 0; 987 988 if (xfer) { 989 struct module *owner = xfer->owner; 990 991 if (!try_module_get(owner)) 992 return -EINVAL; 993 if (xfer->init) 994 err = xfer->init(lo, i); 995 if (err) 996 module_put(owner); 997 else 998 lo->lo_encryption = xfer; 999 } 1000 return err; 1001 } 1002 1003 static int loop_clr_fd(struct loop_device *lo) 1004 { 1005 struct file *filp = lo->lo_backing_file; 1006 gfp_t gfp = lo->old_gfp_mask; 1007 struct block_device *bdev = lo->lo_device; 1008 1009 if (lo->lo_state != Lo_bound) 1010 return -ENXIO; 1011 1012 /* 1013 * If we've explicitly asked to tear down the loop device, 1014 * and it has an elevated reference count, set it for auto-teardown when 1015 * the last reference goes away. This stops $!~#$@ udev from 1016 * preventing teardown because it decided that it needs to run blkid on 1017 * the loopback device whenever they appear. xfstests is notorious for 1018 * failing tests because blkid via udev races with a losetup 1019 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1020 * command to fail with EBUSY. 1021 */ 1022 if (atomic_read(&lo->lo_refcnt) > 1) { 1023 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1024 mutex_unlock(&lo->lo_ctl_mutex); 1025 return 0; 1026 } 1027 1028 if (filp == NULL) 1029 return -EINVAL; 1030 1031 /* freeze request queue during the transition */ 1032 blk_mq_freeze_queue(lo->lo_queue); 1033 1034 spin_lock_irq(&lo->lo_lock); 1035 lo->lo_state = Lo_rundown; 1036 lo->lo_backing_file = NULL; 1037 spin_unlock_irq(&lo->lo_lock); 1038 1039 loop_release_xfer(lo); 1040 lo->transfer = NULL; 1041 lo->ioctl = NULL; 1042 lo->lo_device = NULL; 1043 lo->lo_encryption = NULL; 1044 lo->lo_offset = 0; 1045 lo->lo_sizelimit = 0; 1046 lo->lo_encrypt_key_size = 0; 1047 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1048 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1049 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1050 if (bdev) { 1051 bdput(bdev); 1052 invalidate_bdev(bdev); 1053 } 1054 set_capacity(lo->lo_disk, 0); 1055 loop_sysfs_exit(lo); 1056 if (bdev) { 1057 bd_set_size(bdev, 0); 1058 /* let user-space know about this change */ 1059 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1060 } 1061 mapping_set_gfp_mask(filp->f_mapping, gfp); 1062 lo->lo_state = Lo_unbound; 1063 /* This is safe: open() is still holding a reference. */ 1064 module_put(THIS_MODULE); 1065 blk_mq_unfreeze_queue(lo->lo_queue); 1066 1067 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1068 loop_reread_partitions(lo, bdev); 1069 lo->lo_flags = 0; 1070 if (!part_shift) 1071 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1072 loop_unprepare_queue(lo); 1073 mutex_unlock(&lo->lo_ctl_mutex); 1074 /* 1075 * Need not hold lo_ctl_mutex to fput backing file. 1076 * Calling fput holding lo_ctl_mutex triggers a circular 1077 * lock dependency possibility warning as fput can take 1078 * bd_mutex which is usually taken before lo_ctl_mutex. 1079 */ 1080 fput(filp); 1081 return 0; 1082 } 1083 1084 static int 1085 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1086 { 1087 int err; 1088 struct loop_func_table *xfer; 1089 kuid_t uid = current_uid(); 1090 1091 if (lo->lo_encrypt_key_size && 1092 !uid_eq(lo->lo_key_owner, uid) && 1093 !capable(CAP_SYS_ADMIN)) 1094 return -EPERM; 1095 if (lo->lo_state != Lo_bound) 1096 return -ENXIO; 1097 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1098 return -EINVAL; 1099 1100 err = loop_release_xfer(lo); 1101 if (err) 1102 return err; 1103 1104 if (info->lo_encrypt_type) { 1105 unsigned int type = info->lo_encrypt_type; 1106 1107 if (type >= MAX_LO_CRYPT) 1108 return -EINVAL; 1109 xfer = xfer_funcs[type]; 1110 if (xfer == NULL) 1111 return -EINVAL; 1112 } else 1113 xfer = NULL; 1114 1115 err = loop_init_xfer(lo, xfer, info); 1116 if (err) 1117 return err; 1118 1119 if (lo->lo_offset != info->lo_offset || 1120 lo->lo_sizelimit != info->lo_sizelimit) 1121 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1122 return -EFBIG; 1123 1124 loop_config_discard(lo); 1125 1126 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1127 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1128 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1129 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1130 1131 if (!xfer) 1132 xfer = &none_funcs; 1133 lo->transfer = xfer->transfer; 1134 lo->ioctl = xfer->ioctl; 1135 1136 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1137 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1138 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1139 1140 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1141 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1142 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1143 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1144 loop_reread_partitions(lo, lo->lo_device); 1145 } 1146 1147 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1148 lo->lo_init[0] = info->lo_init[0]; 1149 lo->lo_init[1] = info->lo_init[1]; 1150 if (info->lo_encrypt_key_size) { 1151 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1152 info->lo_encrypt_key_size); 1153 lo->lo_key_owner = uid; 1154 } 1155 1156 /* update dio if lo_offset or transfer is changed */ 1157 __loop_update_dio(lo, lo->use_dio); 1158 1159 return 0; 1160 } 1161 1162 static int 1163 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1164 { 1165 struct file *file = lo->lo_backing_file; 1166 struct kstat stat; 1167 int error; 1168 1169 if (lo->lo_state != Lo_bound) 1170 return -ENXIO; 1171 error = vfs_getattr(&file->f_path, &stat); 1172 if (error) 1173 return error; 1174 memset(info, 0, sizeof(*info)); 1175 info->lo_number = lo->lo_number; 1176 info->lo_device = huge_encode_dev(stat.dev); 1177 info->lo_inode = stat.ino; 1178 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1179 info->lo_offset = lo->lo_offset; 1180 info->lo_sizelimit = lo->lo_sizelimit; 1181 info->lo_flags = lo->lo_flags; 1182 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1183 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1184 info->lo_encrypt_type = 1185 lo->lo_encryption ? lo->lo_encryption->number : 0; 1186 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1187 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1188 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1189 lo->lo_encrypt_key_size); 1190 } 1191 return 0; 1192 } 1193 1194 static void 1195 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1196 { 1197 memset(info64, 0, sizeof(*info64)); 1198 info64->lo_number = info->lo_number; 1199 info64->lo_device = info->lo_device; 1200 info64->lo_inode = info->lo_inode; 1201 info64->lo_rdevice = info->lo_rdevice; 1202 info64->lo_offset = info->lo_offset; 1203 info64->lo_sizelimit = 0; 1204 info64->lo_encrypt_type = info->lo_encrypt_type; 1205 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1206 info64->lo_flags = info->lo_flags; 1207 info64->lo_init[0] = info->lo_init[0]; 1208 info64->lo_init[1] = info->lo_init[1]; 1209 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1210 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1211 else 1212 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1213 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1214 } 1215 1216 static int 1217 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1218 { 1219 memset(info, 0, sizeof(*info)); 1220 info->lo_number = info64->lo_number; 1221 info->lo_device = info64->lo_device; 1222 info->lo_inode = info64->lo_inode; 1223 info->lo_rdevice = info64->lo_rdevice; 1224 info->lo_offset = info64->lo_offset; 1225 info->lo_encrypt_type = info64->lo_encrypt_type; 1226 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1227 info->lo_flags = info64->lo_flags; 1228 info->lo_init[0] = info64->lo_init[0]; 1229 info->lo_init[1] = info64->lo_init[1]; 1230 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1231 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1232 else 1233 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1234 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1235 1236 /* error in case values were truncated */ 1237 if (info->lo_device != info64->lo_device || 1238 info->lo_rdevice != info64->lo_rdevice || 1239 info->lo_inode != info64->lo_inode || 1240 info->lo_offset != info64->lo_offset) 1241 return -EOVERFLOW; 1242 1243 return 0; 1244 } 1245 1246 static int 1247 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1248 { 1249 struct loop_info info; 1250 struct loop_info64 info64; 1251 1252 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1253 return -EFAULT; 1254 loop_info64_from_old(&info, &info64); 1255 return loop_set_status(lo, &info64); 1256 } 1257 1258 static int 1259 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1260 { 1261 struct loop_info64 info64; 1262 1263 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1264 return -EFAULT; 1265 return loop_set_status(lo, &info64); 1266 } 1267 1268 static int 1269 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1270 struct loop_info info; 1271 struct loop_info64 info64; 1272 int err = 0; 1273 1274 if (!arg) 1275 err = -EINVAL; 1276 if (!err) 1277 err = loop_get_status(lo, &info64); 1278 if (!err) 1279 err = loop_info64_to_old(&info64, &info); 1280 if (!err && copy_to_user(arg, &info, sizeof(info))) 1281 err = -EFAULT; 1282 1283 return err; 1284 } 1285 1286 static int 1287 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1288 struct loop_info64 info64; 1289 int err = 0; 1290 1291 if (!arg) 1292 err = -EINVAL; 1293 if (!err) 1294 err = loop_get_status(lo, &info64); 1295 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1296 err = -EFAULT; 1297 1298 return err; 1299 } 1300 1301 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1302 { 1303 if (unlikely(lo->lo_state != Lo_bound)) 1304 return -ENXIO; 1305 1306 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1307 } 1308 1309 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1310 { 1311 int error = -ENXIO; 1312 if (lo->lo_state != Lo_bound) 1313 goto out; 1314 1315 __loop_update_dio(lo, !!arg); 1316 if (lo->use_dio == !!arg) 1317 return 0; 1318 error = -EINVAL; 1319 out: 1320 return error; 1321 } 1322 1323 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1324 unsigned int cmd, unsigned long arg) 1325 { 1326 struct loop_device *lo = bdev->bd_disk->private_data; 1327 int err; 1328 1329 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1330 switch (cmd) { 1331 case LOOP_SET_FD: 1332 err = loop_set_fd(lo, mode, bdev, arg); 1333 break; 1334 case LOOP_CHANGE_FD: 1335 err = loop_change_fd(lo, bdev, arg); 1336 break; 1337 case LOOP_CLR_FD: 1338 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1339 err = loop_clr_fd(lo); 1340 if (!err) 1341 goto out_unlocked; 1342 break; 1343 case LOOP_SET_STATUS: 1344 err = -EPERM; 1345 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1346 err = loop_set_status_old(lo, 1347 (struct loop_info __user *)arg); 1348 break; 1349 case LOOP_GET_STATUS: 1350 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1351 break; 1352 case LOOP_SET_STATUS64: 1353 err = -EPERM; 1354 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1355 err = loop_set_status64(lo, 1356 (struct loop_info64 __user *) arg); 1357 break; 1358 case LOOP_GET_STATUS64: 1359 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1360 break; 1361 case LOOP_SET_CAPACITY: 1362 err = -EPERM; 1363 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1364 err = loop_set_capacity(lo, bdev); 1365 break; 1366 case LOOP_SET_DIRECT_IO: 1367 err = -EPERM; 1368 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1369 err = loop_set_dio(lo, arg); 1370 break; 1371 default: 1372 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1373 } 1374 mutex_unlock(&lo->lo_ctl_mutex); 1375 1376 out_unlocked: 1377 return err; 1378 } 1379 1380 #ifdef CONFIG_COMPAT 1381 struct compat_loop_info { 1382 compat_int_t lo_number; /* ioctl r/o */ 1383 compat_dev_t lo_device; /* ioctl r/o */ 1384 compat_ulong_t lo_inode; /* ioctl r/o */ 1385 compat_dev_t lo_rdevice; /* ioctl r/o */ 1386 compat_int_t lo_offset; 1387 compat_int_t lo_encrypt_type; 1388 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1389 compat_int_t lo_flags; /* ioctl r/o */ 1390 char lo_name[LO_NAME_SIZE]; 1391 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1392 compat_ulong_t lo_init[2]; 1393 char reserved[4]; 1394 }; 1395 1396 /* 1397 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1398 * - noinlined to reduce stack space usage in main part of driver 1399 */ 1400 static noinline int 1401 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1402 struct loop_info64 *info64) 1403 { 1404 struct compat_loop_info info; 1405 1406 if (copy_from_user(&info, arg, sizeof(info))) 1407 return -EFAULT; 1408 1409 memset(info64, 0, sizeof(*info64)); 1410 info64->lo_number = info.lo_number; 1411 info64->lo_device = info.lo_device; 1412 info64->lo_inode = info.lo_inode; 1413 info64->lo_rdevice = info.lo_rdevice; 1414 info64->lo_offset = info.lo_offset; 1415 info64->lo_sizelimit = 0; 1416 info64->lo_encrypt_type = info.lo_encrypt_type; 1417 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1418 info64->lo_flags = info.lo_flags; 1419 info64->lo_init[0] = info.lo_init[0]; 1420 info64->lo_init[1] = info.lo_init[1]; 1421 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1422 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1423 else 1424 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1425 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1426 return 0; 1427 } 1428 1429 /* 1430 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1431 * - noinlined to reduce stack space usage in main part of driver 1432 */ 1433 static noinline int 1434 loop_info64_to_compat(const struct loop_info64 *info64, 1435 struct compat_loop_info __user *arg) 1436 { 1437 struct compat_loop_info info; 1438 1439 memset(&info, 0, sizeof(info)); 1440 info.lo_number = info64->lo_number; 1441 info.lo_device = info64->lo_device; 1442 info.lo_inode = info64->lo_inode; 1443 info.lo_rdevice = info64->lo_rdevice; 1444 info.lo_offset = info64->lo_offset; 1445 info.lo_encrypt_type = info64->lo_encrypt_type; 1446 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1447 info.lo_flags = info64->lo_flags; 1448 info.lo_init[0] = info64->lo_init[0]; 1449 info.lo_init[1] = info64->lo_init[1]; 1450 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1451 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1452 else 1453 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1454 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1455 1456 /* error in case values were truncated */ 1457 if (info.lo_device != info64->lo_device || 1458 info.lo_rdevice != info64->lo_rdevice || 1459 info.lo_inode != info64->lo_inode || 1460 info.lo_offset != info64->lo_offset || 1461 info.lo_init[0] != info64->lo_init[0] || 1462 info.lo_init[1] != info64->lo_init[1]) 1463 return -EOVERFLOW; 1464 1465 if (copy_to_user(arg, &info, sizeof(info))) 1466 return -EFAULT; 1467 return 0; 1468 } 1469 1470 static int 1471 loop_set_status_compat(struct loop_device *lo, 1472 const struct compat_loop_info __user *arg) 1473 { 1474 struct loop_info64 info64; 1475 int ret; 1476 1477 ret = loop_info64_from_compat(arg, &info64); 1478 if (ret < 0) 1479 return ret; 1480 return loop_set_status(lo, &info64); 1481 } 1482 1483 static int 1484 loop_get_status_compat(struct loop_device *lo, 1485 struct compat_loop_info __user *arg) 1486 { 1487 struct loop_info64 info64; 1488 int err = 0; 1489 1490 if (!arg) 1491 err = -EINVAL; 1492 if (!err) 1493 err = loop_get_status(lo, &info64); 1494 if (!err) 1495 err = loop_info64_to_compat(&info64, arg); 1496 return err; 1497 } 1498 1499 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1500 unsigned int cmd, unsigned long arg) 1501 { 1502 struct loop_device *lo = bdev->bd_disk->private_data; 1503 int err; 1504 1505 switch(cmd) { 1506 case LOOP_SET_STATUS: 1507 mutex_lock(&lo->lo_ctl_mutex); 1508 err = loop_set_status_compat( 1509 lo, (const struct compat_loop_info __user *) arg); 1510 mutex_unlock(&lo->lo_ctl_mutex); 1511 break; 1512 case LOOP_GET_STATUS: 1513 mutex_lock(&lo->lo_ctl_mutex); 1514 err = loop_get_status_compat( 1515 lo, (struct compat_loop_info __user *) arg); 1516 mutex_unlock(&lo->lo_ctl_mutex); 1517 break; 1518 case LOOP_SET_CAPACITY: 1519 case LOOP_CLR_FD: 1520 case LOOP_GET_STATUS64: 1521 case LOOP_SET_STATUS64: 1522 arg = (unsigned long) compat_ptr(arg); 1523 case LOOP_SET_FD: 1524 case LOOP_CHANGE_FD: 1525 err = lo_ioctl(bdev, mode, cmd, arg); 1526 break; 1527 default: 1528 err = -ENOIOCTLCMD; 1529 break; 1530 } 1531 return err; 1532 } 1533 #endif 1534 1535 static int lo_open(struct block_device *bdev, fmode_t mode) 1536 { 1537 struct loop_device *lo; 1538 int err = 0; 1539 1540 mutex_lock(&loop_index_mutex); 1541 lo = bdev->bd_disk->private_data; 1542 if (!lo) { 1543 err = -ENXIO; 1544 goto out; 1545 } 1546 1547 atomic_inc(&lo->lo_refcnt); 1548 out: 1549 mutex_unlock(&loop_index_mutex); 1550 return err; 1551 } 1552 1553 static void lo_release(struct gendisk *disk, fmode_t mode) 1554 { 1555 struct loop_device *lo = disk->private_data; 1556 int err; 1557 1558 if (atomic_dec_return(&lo->lo_refcnt)) 1559 return; 1560 1561 mutex_lock(&lo->lo_ctl_mutex); 1562 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1563 /* 1564 * In autoclear mode, stop the loop thread 1565 * and remove configuration after last close. 1566 */ 1567 err = loop_clr_fd(lo); 1568 if (!err) 1569 return; 1570 } else { 1571 /* 1572 * Otherwise keep thread (if running) and config, 1573 * but flush possible ongoing bios in thread. 1574 */ 1575 loop_flush(lo); 1576 } 1577 1578 mutex_unlock(&lo->lo_ctl_mutex); 1579 } 1580 1581 static const struct block_device_operations lo_fops = { 1582 .owner = THIS_MODULE, 1583 .open = lo_open, 1584 .release = lo_release, 1585 .ioctl = lo_ioctl, 1586 #ifdef CONFIG_COMPAT 1587 .compat_ioctl = lo_compat_ioctl, 1588 #endif 1589 }; 1590 1591 /* 1592 * And now the modules code and kernel interface. 1593 */ 1594 static int max_loop; 1595 module_param(max_loop, int, S_IRUGO); 1596 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1597 module_param(max_part, int, S_IRUGO); 1598 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1599 MODULE_LICENSE("GPL"); 1600 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1601 1602 int loop_register_transfer(struct loop_func_table *funcs) 1603 { 1604 unsigned int n = funcs->number; 1605 1606 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1607 return -EINVAL; 1608 xfer_funcs[n] = funcs; 1609 return 0; 1610 } 1611 1612 static int unregister_transfer_cb(int id, void *ptr, void *data) 1613 { 1614 struct loop_device *lo = ptr; 1615 struct loop_func_table *xfer = data; 1616 1617 mutex_lock(&lo->lo_ctl_mutex); 1618 if (lo->lo_encryption == xfer) 1619 loop_release_xfer(lo); 1620 mutex_unlock(&lo->lo_ctl_mutex); 1621 return 0; 1622 } 1623 1624 int loop_unregister_transfer(int number) 1625 { 1626 unsigned int n = number; 1627 struct loop_func_table *xfer; 1628 1629 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1630 return -EINVAL; 1631 1632 xfer_funcs[n] = NULL; 1633 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1634 return 0; 1635 } 1636 1637 EXPORT_SYMBOL(loop_register_transfer); 1638 EXPORT_SYMBOL(loop_unregister_transfer); 1639 1640 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1641 const struct blk_mq_queue_data *bd) 1642 { 1643 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); 1644 struct loop_device *lo = cmd->rq->q->queuedata; 1645 1646 blk_mq_start_request(bd->rq); 1647 1648 if (lo->lo_state != Lo_bound) 1649 return -EIO; 1650 1651 switch (req_op(cmd->rq)) { 1652 case REQ_OP_FLUSH: 1653 case REQ_OP_DISCARD: 1654 cmd->use_aio = false; 1655 break; 1656 default: 1657 cmd->use_aio = lo->use_dio; 1658 break; 1659 } 1660 1661 queue_kthread_work(&lo->worker, &cmd->work); 1662 1663 return BLK_MQ_RQ_QUEUE_OK; 1664 } 1665 1666 static void loop_handle_cmd(struct loop_cmd *cmd) 1667 { 1668 const bool write = op_is_write(req_op(cmd->rq)); 1669 struct loop_device *lo = cmd->rq->q->queuedata; 1670 int ret = 0; 1671 1672 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1673 ret = -EIO; 1674 goto failed; 1675 } 1676 1677 ret = do_req_filebacked(lo, cmd->rq); 1678 failed: 1679 /* complete non-aio request */ 1680 if (!cmd->use_aio || ret) 1681 blk_mq_complete_request(cmd->rq, ret ? -EIO : 0); 1682 } 1683 1684 static void loop_queue_work(struct kthread_work *work) 1685 { 1686 struct loop_cmd *cmd = 1687 container_of(work, struct loop_cmd, work); 1688 1689 loop_handle_cmd(cmd); 1690 } 1691 1692 static int loop_init_request(void *data, struct request *rq, 1693 unsigned int hctx_idx, unsigned int request_idx, 1694 unsigned int numa_node) 1695 { 1696 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1697 1698 cmd->rq = rq; 1699 init_kthread_work(&cmd->work, loop_queue_work); 1700 1701 return 0; 1702 } 1703 1704 static struct blk_mq_ops loop_mq_ops = { 1705 .queue_rq = loop_queue_rq, 1706 .map_queue = blk_mq_map_queue, 1707 .init_request = loop_init_request, 1708 }; 1709 1710 static int loop_add(struct loop_device **l, int i) 1711 { 1712 struct loop_device *lo; 1713 struct gendisk *disk; 1714 int err; 1715 1716 err = -ENOMEM; 1717 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1718 if (!lo) 1719 goto out; 1720 1721 lo->lo_state = Lo_unbound; 1722 1723 /* allocate id, if @id >= 0, we're requesting that specific id */ 1724 if (i >= 0) { 1725 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1726 if (err == -ENOSPC) 1727 err = -EEXIST; 1728 } else { 1729 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1730 } 1731 if (err < 0) 1732 goto out_free_dev; 1733 i = err; 1734 1735 err = -ENOMEM; 1736 lo->tag_set.ops = &loop_mq_ops; 1737 lo->tag_set.nr_hw_queues = 1; 1738 lo->tag_set.queue_depth = 128; 1739 lo->tag_set.numa_node = NUMA_NO_NODE; 1740 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1741 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1742 lo->tag_set.driver_data = lo; 1743 1744 err = blk_mq_alloc_tag_set(&lo->tag_set); 1745 if (err) 1746 goto out_free_idr; 1747 1748 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1749 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1750 err = PTR_ERR(lo->lo_queue); 1751 goto out_cleanup_tags; 1752 } 1753 lo->lo_queue->queuedata = lo; 1754 1755 /* 1756 * It doesn't make sense to enable merge because the I/O 1757 * submitted to backing file is handled page by page. 1758 */ 1759 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1760 1761 err = -ENOMEM; 1762 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1763 if (!disk) 1764 goto out_free_queue; 1765 1766 /* 1767 * Disable partition scanning by default. The in-kernel partition 1768 * scanning can be requested individually per-device during its 1769 * setup. Userspace can always add and remove partitions from all 1770 * devices. The needed partition minors are allocated from the 1771 * extended minor space, the main loop device numbers will continue 1772 * to match the loop minors, regardless of the number of partitions 1773 * used. 1774 * 1775 * If max_part is given, partition scanning is globally enabled for 1776 * all loop devices. The minors for the main loop devices will be 1777 * multiples of max_part. 1778 * 1779 * Note: Global-for-all-devices, set-only-at-init, read-only module 1780 * parameteters like 'max_loop' and 'max_part' make things needlessly 1781 * complicated, are too static, inflexible and may surprise 1782 * userspace tools. Parameters like this in general should be avoided. 1783 */ 1784 if (!part_shift) 1785 disk->flags |= GENHD_FL_NO_PART_SCAN; 1786 disk->flags |= GENHD_FL_EXT_DEVT; 1787 mutex_init(&lo->lo_ctl_mutex); 1788 atomic_set(&lo->lo_refcnt, 0); 1789 lo->lo_number = i; 1790 spin_lock_init(&lo->lo_lock); 1791 disk->major = LOOP_MAJOR; 1792 disk->first_minor = i << part_shift; 1793 disk->fops = &lo_fops; 1794 disk->private_data = lo; 1795 disk->queue = lo->lo_queue; 1796 sprintf(disk->disk_name, "loop%d", i); 1797 add_disk(disk); 1798 *l = lo; 1799 return lo->lo_number; 1800 1801 out_free_queue: 1802 blk_cleanup_queue(lo->lo_queue); 1803 out_cleanup_tags: 1804 blk_mq_free_tag_set(&lo->tag_set); 1805 out_free_idr: 1806 idr_remove(&loop_index_idr, i); 1807 out_free_dev: 1808 kfree(lo); 1809 out: 1810 return err; 1811 } 1812 1813 static void loop_remove(struct loop_device *lo) 1814 { 1815 blk_cleanup_queue(lo->lo_queue); 1816 del_gendisk(lo->lo_disk); 1817 blk_mq_free_tag_set(&lo->tag_set); 1818 put_disk(lo->lo_disk); 1819 kfree(lo); 1820 } 1821 1822 static int find_free_cb(int id, void *ptr, void *data) 1823 { 1824 struct loop_device *lo = ptr; 1825 struct loop_device **l = data; 1826 1827 if (lo->lo_state == Lo_unbound) { 1828 *l = lo; 1829 return 1; 1830 } 1831 return 0; 1832 } 1833 1834 static int loop_lookup(struct loop_device **l, int i) 1835 { 1836 struct loop_device *lo; 1837 int ret = -ENODEV; 1838 1839 if (i < 0) { 1840 int err; 1841 1842 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1843 if (err == 1) { 1844 *l = lo; 1845 ret = lo->lo_number; 1846 } 1847 goto out; 1848 } 1849 1850 /* lookup and return a specific i */ 1851 lo = idr_find(&loop_index_idr, i); 1852 if (lo) { 1853 *l = lo; 1854 ret = lo->lo_number; 1855 } 1856 out: 1857 return ret; 1858 } 1859 1860 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1861 { 1862 struct loop_device *lo; 1863 struct kobject *kobj; 1864 int err; 1865 1866 mutex_lock(&loop_index_mutex); 1867 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1868 if (err < 0) 1869 err = loop_add(&lo, MINOR(dev) >> part_shift); 1870 if (err < 0) 1871 kobj = NULL; 1872 else 1873 kobj = get_disk(lo->lo_disk); 1874 mutex_unlock(&loop_index_mutex); 1875 1876 *part = 0; 1877 return kobj; 1878 } 1879 1880 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1881 unsigned long parm) 1882 { 1883 struct loop_device *lo; 1884 int ret = -ENOSYS; 1885 1886 mutex_lock(&loop_index_mutex); 1887 switch (cmd) { 1888 case LOOP_CTL_ADD: 1889 ret = loop_lookup(&lo, parm); 1890 if (ret >= 0) { 1891 ret = -EEXIST; 1892 break; 1893 } 1894 ret = loop_add(&lo, parm); 1895 break; 1896 case LOOP_CTL_REMOVE: 1897 ret = loop_lookup(&lo, parm); 1898 if (ret < 0) 1899 break; 1900 mutex_lock(&lo->lo_ctl_mutex); 1901 if (lo->lo_state != Lo_unbound) { 1902 ret = -EBUSY; 1903 mutex_unlock(&lo->lo_ctl_mutex); 1904 break; 1905 } 1906 if (atomic_read(&lo->lo_refcnt) > 0) { 1907 ret = -EBUSY; 1908 mutex_unlock(&lo->lo_ctl_mutex); 1909 break; 1910 } 1911 lo->lo_disk->private_data = NULL; 1912 mutex_unlock(&lo->lo_ctl_mutex); 1913 idr_remove(&loop_index_idr, lo->lo_number); 1914 loop_remove(lo); 1915 break; 1916 case LOOP_CTL_GET_FREE: 1917 ret = loop_lookup(&lo, -1); 1918 if (ret >= 0) 1919 break; 1920 ret = loop_add(&lo, -1); 1921 } 1922 mutex_unlock(&loop_index_mutex); 1923 1924 return ret; 1925 } 1926 1927 static const struct file_operations loop_ctl_fops = { 1928 .open = nonseekable_open, 1929 .unlocked_ioctl = loop_control_ioctl, 1930 .compat_ioctl = loop_control_ioctl, 1931 .owner = THIS_MODULE, 1932 .llseek = noop_llseek, 1933 }; 1934 1935 static struct miscdevice loop_misc = { 1936 .minor = LOOP_CTRL_MINOR, 1937 .name = "loop-control", 1938 .fops = &loop_ctl_fops, 1939 }; 1940 1941 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1942 MODULE_ALIAS("devname:loop-control"); 1943 1944 static int __init loop_init(void) 1945 { 1946 int i, nr; 1947 unsigned long range; 1948 struct loop_device *lo; 1949 int err; 1950 1951 err = misc_register(&loop_misc); 1952 if (err < 0) 1953 return err; 1954 1955 part_shift = 0; 1956 if (max_part > 0) { 1957 part_shift = fls(max_part); 1958 1959 /* 1960 * Adjust max_part according to part_shift as it is exported 1961 * to user space so that user can decide correct minor number 1962 * if [s]he want to create more devices. 1963 * 1964 * Note that -1 is required because partition 0 is reserved 1965 * for the whole disk. 1966 */ 1967 max_part = (1UL << part_shift) - 1; 1968 } 1969 1970 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1971 err = -EINVAL; 1972 goto misc_out; 1973 } 1974 1975 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1976 err = -EINVAL; 1977 goto misc_out; 1978 } 1979 1980 /* 1981 * If max_loop is specified, create that many devices upfront. 1982 * This also becomes a hard limit. If max_loop is not specified, 1983 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1984 * init time. Loop devices can be requested on-demand with the 1985 * /dev/loop-control interface, or be instantiated by accessing 1986 * a 'dead' device node. 1987 */ 1988 if (max_loop) { 1989 nr = max_loop; 1990 range = max_loop << part_shift; 1991 } else { 1992 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1993 range = 1UL << MINORBITS; 1994 } 1995 1996 if (register_blkdev(LOOP_MAJOR, "loop")) { 1997 err = -EIO; 1998 goto misc_out; 1999 } 2000 2001 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2002 THIS_MODULE, loop_probe, NULL, NULL); 2003 2004 /* pre-create number of devices given by config or max_loop */ 2005 mutex_lock(&loop_index_mutex); 2006 for (i = 0; i < nr; i++) 2007 loop_add(&lo, i); 2008 mutex_unlock(&loop_index_mutex); 2009 2010 printk(KERN_INFO "loop: module loaded\n"); 2011 return 0; 2012 2013 misc_out: 2014 misc_deregister(&loop_misc); 2015 return err; 2016 } 2017 2018 static int loop_exit_cb(int id, void *ptr, void *data) 2019 { 2020 struct loop_device *lo = ptr; 2021 2022 loop_remove(lo); 2023 return 0; 2024 } 2025 2026 static void __exit loop_exit(void) 2027 { 2028 unsigned long range; 2029 2030 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2031 2032 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2033 idr_destroy(&loop_index_idr); 2034 2035 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2036 unregister_blkdev(LOOP_MAJOR, "loop"); 2037 2038 misc_deregister(&loop_misc); 2039 } 2040 2041 module_init(loop_init); 2042 module_exit(loop_exit); 2043 2044 #ifndef MODULE 2045 static int __init max_loop_setup(char *str) 2046 { 2047 max_loop = simple_strtol(str, NULL, 0); 2048 return 1; 2049 } 2050 2051 __setup("max_loop=", max_loop_setup); 2052 #endif 2053