xref: /openbmc/linux/drivers/block/loop.c (revision 276e552e)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/pagemap.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79 #include <linux/uio.h>
80 #include <linux/ioprio.h>
81 #include <linux/blk-cgroup.h>
82 
83 #include "loop.h"
84 
85 #include <linux/uaccess.h>
86 
87 static DEFINE_IDR(loop_index_idr);
88 static DEFINE_MUTEX(loop_ctl_mutex);
89 
90 static int max_part;
91 static int part_shift;
92 
93 static int transfer_xor(struct loop_device *lo, int cmd,
94 			struct page *raw_page, unsigned raw_off,
95 			struct page *loop_page, unsigned loop_off,
96 			int size, sector_t real_block)
97 {
98 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
99 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
100 	char *in, *out, *key;
101 	int i, keysize;
102 
103 	if (cmd == READ) {
104 		in = raw_buf;
105 		out = loop_buf;
106 	} else {
107 		in = loop_buf;
108 		out = raw_buf;
109 	}
110 
111 	key = lo->lo_encrypt_key;
112 	keysize = lo->lo_encrypt_key_size;
113 	for (i = 0; i < size; i++)
114 		*out++ = *in++ ^ key[(i & 511) % keysize];
115 
116 	kunmap_atomic(loop_buf);
117 	kunmap_atomic(raw_buf);
118 	cond_resched();
119 	return 0;
120 }
121 
122 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
123 {
124 	if (unlikely(info->lo_encrypt_key_size <= 0))
125 		return -EINVAL;
126 	return 0;
127 }
128 
129 static struct loop_func_table none_funcs = {
130 	.number = LO_CRYPT_NONE,
131 };
132 
133 static struct loop_func_table xor_funcs = {
134 	.number = LO_CRYPT_XOR,
135 	.transfer = transfer_xor,
136 	.init = xor_init
137 };
138 
139 /* xfer_funcs[0] is special - its release function is never called */
140 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
141 	&none_funcs,
142 	&xor_funcs
143 };
144 
145 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
146 {
147 	loff_t loopsize;
148 
149 	/* Compute loopsize in bytes */
150 	loopsize = i_size_read(file->f_mapping->host);
151 	if (offset > 0)
152 		loopsize -= offset;
153 	/* offset is beyond i_size, weird but possible */
154 	if (loopsize < 0)
155 		return 0;
156 
157 	if (sizelimit > 0 && sizelimit < loopsize)
158 		loopsize = sizelimit;
159 	/*
160 	 * Unfortunately, if we want to do I/O on the device,
161 	 * the number of 512-byte sectors has to fit into a sector_t.
162 	 */
163 	return loopsize >> 9;
164 }
165 
166 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
167 {
168 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
169 }
170 
171 static void __loop_update_dio(struct loop_device *lo, bool dio)
172 {
173 	struct file *file = lo->lo_backing_file;
174 	struct address_space *mapping = file->f_mapping;
175 	struct inode *inode = mapping->host;
176 	unsigned short sb_bsize = 0;
177 	unsigned dio_align = 0;
178 	bool use_dio;
179 
180 	if (inode->i_sb->s_bdev) {
181 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
182 		dio_align = sb_bsize - 1;
183 	}
184 
185 	/*
186 	 * We support direct I/O only if lo_offset is aligned with the
187 	 * logical I/O size of backing device, and the logical block
188 	 * size of loop is bigger than the backing device's and the loop
189 	 * needn't transform transfer.
190 	 *
191 	 * TODO: the above condition may be loosed in the future, and
192 	 * direct I/O may be switched runtime at that time because most
193 	 * of requests in sane applications should be PAGE_SIZE aligned
194 	 */
195 	if (dio) {
196 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
197 				!(lo->lo_offset & dio_align) &&
198 				mapping->a_ops->direct_IO &&
199 				!lo->transfer)
200 			use_dio = true;
201 		else
202 			use_dio = false;
203 	} else {
204 		use_dio = false;
205 	}
206 
207 	if (lo->use_dio == use_dio)
208 		return;
209 
210 	/* flush dirty pages before changing direct IO */
211 	vfs_fsync(file, 0);
212 
213 	/*
214 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
215 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
216 	 * will get updated by ioctl(LOOP_GET_STATUS)
217 	 */
218 	if (lo->lo_state == Lo_bound)
219 		blk_mq_freeze_queue(lo->lo_queue);
220 	lo->use_dio = use_dio;
221 	if (use_dio) {
222 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
223 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
224 	} else {
225 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
226 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
227 	}
228 	if (lo->lo_state == Lo_bound)
229 		blk_mq_unfreeze_queue(lo->lo_queue);
230 }
231 
232 /**
233  * loop_validate_block_size() - validates the passed in block size
234  * @bsize: size to validate
235  */
236 static int
237 loop_validate_block_size(unsigned short bsize)
238 {
239 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
240 		return -EINVAL;
241 
242 	return 0;
243 }
244 
245 /**
246  * loop_set_size() - sets device size and notifies userspace
247  * @lo: struct loop_device to set the size for
248  * @size: new size of the loop device
249  *
250  * Callers must validate that the size passed into this function fits into
251  * a sector_t, eg using loop_validate_size()
252  */
253 static void loop_set_size(struct loop_device *lo, loff_t size)
254 {
255 	if (!set_capacity_and_notify(lo->lo_disk, size))
256 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
257 }
258 
259 static inline int
260 lo_do_transfer(struct loop_device *lo, int cmd,
261 	       struct page *rpage, unsigned roffs,
262 	       struct page *lpage, unsigned loffs,
263 	       int size, sector_t rblock)
264 {
265 	int ret;
266 
267 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
268 	if (likely(!ret))
269 		return 0;
270 
271 	printk_ratelimited(KERN_ERR
272 		"loop: Transfer error at byte offset %llu, length %i.\n",
273 		(unsigned long long)rblock << 9, size);
274 	return ret;
275 }
276 
277 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
278 {
279 	struct iov_iter i;
280 	ssize_t bw;
281 
282 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
283 
284 	file_start_write(file);
285 	bw = vfs_iter_write(file, &i, ppos, 0);
286 	file_end_write(file);
287 
288 	if (likely(bw ==  bvec->bv_len))
289 		return 0;
290 
291 	printk_ratelimited(KERN_ERR
292 		"loop: Write error at byte offset %llu, length %i.\n",
293 		(unsigned long long)*ppos, bvec->bv_len);
294 	if (bw >= 0)
295 		bw = -EIO;
296 	return bw;
297 }
298 
299 static int lo_write_simple(struct loop_device *lo, struct request *rq,
300 		loff_t pos)
301 {
302 	struct bio_vec bvec;
303 	struct req_iterator iter;
304 	int ret = 0;
305 
306 	rq_for_each_segment(bvec, rq, iter) {
307 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
308 		if (ret < 0)
309 			break;
310 		cond_resched();
311 	}
312 
313 	return ret;
314 }
315 
316 /*
317  * This is the slow, transforming version that needs to double buffer the
318  * data as it cannot do the transformations in place without having direct
319  * access to the destination pages of the backing file.
320  */
321 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
322 		loff_t pos)
323 {
324 	struct bio_vec bvec, b;
325 	struct req_iterator iter;
326 	struct page *page;
327 	int ret = 0;
328 
329 	page = alloc_page(GFP_NOIO);
330 	if (unlikely(!page))
331 		return -ENOMEM;
332 
333 	rq_for_each_segment(bvec, rq, iter) {
334 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
335 			bvec.bv_offset, bvec.bv_len, pos >> 9);
336 		if (unlikely(ret))
337 			break;
338 
339 		b.bv_page = page;
340 		b.bv_offset = 0;
341 		b.bv_len = bvec.bv_len;
342 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
343 		if (ret < 0)
344 			break;
345 	}
346 
347 	__free_page(page);
348 	return ret;
349 }
350 
351 static int lo_read_simple(struct loop_device *lo, struct request *rq,
352 		loff_t pos)
353 {
354 	struct bio_vec bvec;
355 	struct req_iterator iter;
356 	struct iov_iter i;
357 	ssize_t len;
358 
359 	rq_for_each_segment(bvec, rq, iter) {
360 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
361 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
362 		if (len < 0)
363 			return len;
364 
365 		flush_dcache_page(bvec.bv_page);
366 
367 		if (len != bvec.bv_len) {
368 			struct bio *bio;
369 
370 			__rq_for_each_bio(bio, rq)
371 				zero_fill_bio(bio);
372 			break;
373 		}
374 		cond_resched();
375 	}
376 
377 	return 0;
378 }
379 
380 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
381 		loff_t pos)
382 {
383 	struct bio_vec bvec, b;
384 	struct req_iterator iter;
385 	struct iov_iter i;
386 	struct page *page;
387 	ssize_t len;
388 	int ret = 0;
389 
390 	page = alloc_page(GFP_NOIO);
391 	if (unlikely(!page))
392 		return -ENOMEM;
393 
394 	rq_for_each_segment(bvec, rq, iter) {
395 		loff_t offset = pos;
396 
397 		b.bv_page = page;
398 		b.bv_offset = 0;
399 		b.bv_len = bvec.bv_len;
400 
401 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
402 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
403 		if (len < 0) {
404 			ret = len;
405 			goto out_free_page;
406 		}
407 
408 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
409 			bvec.bv_offset, len, offset >> 9);
410 		if (ret)
411 			goto out_free_page;
412 
413 		flush_dcache_page(bvec.bv_page);
414 
415 		if (len != bvec.bv_len) {
416 			struct bio *bio;
417 
418 			__rq_for_each_bio(bio, rq)
419 				zero_fill_bio(bio);
420 			break;
421 		}
422 	}
423 
424 	ret = 0;
425 out_free_page:
426 	__free_page(page);
427 	return ret;
428 }
429 
430 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
431 			int mode)
432 {
433 	/*
434 	 * We use fallocate to manipulate the space mappings used by the image
435 	 * a.k.a. discard/zerorange. However we do not support this if
436 	 * encryption is enabled, because it may give an attacker useful
437 	 * information.
438 	 */
439 	struct file *file = lo->lo_backing_file;
440 	struct request_queue *q = lo->lo_queue;
441 	int ret;
442 
443 	mode |= FALLOC_FL_KEEP_SIZE;
444 
445 	if (!blk_queue_discard(q)) {
446 		ret = -EOPNOTSUPP;
447 		goto out;
448 	}
449 
450 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
451 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
452 		ret = -EIO;
453  out:
454 	return ret;
455 }
456 
457 static int lo_req_flush(struct loop_device *lo, struct request *rq)
458 {
459 	struct file *file = lo->lo_backing_file;
460 	int ret = vfs_fsync(file, 0);
461 	if (unlikely(ret && ret != -EINVAL))
462 		ret = -EIO;
463 
464 	return ret;
465 }
466 
467 static void lo_complete_rq(struct request *rq)
468 {
469 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
470 	blk_status_t ret = BLK_STS_OK;
471 
472 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
473 	    req_op(rq) != REQ_OP_READ) {
474 		if (cmd->ret < 0)
475 			ret = errno_to_blk_status(cmd->ret);
476 		goto end_io;
477 	}
478 
479 	/*
480 	 * Short READ - if we got some data, advance our request and
481 	 * retry it. If we got no data, end the rest with EIO.
482 	 */
483 	if (cmd->ret) {
484 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
485 		cmd->ret = 0;
486 		blk_mq_requeue_request(rq, true);
487 	} else {
488 		if (cmd->use_aio) {
489 			struct bio *bio = rq->bio;
490 
491 			while (bio) {
492 				zero_fill_bio(bio);
493 				bio = bio->bi_next;
494 			}
495 		}
496 		ret = BLK_STS_IOERR;
497 end_io:
498 		blk_mq_end_request(rq, ret);
499 	}
500 }
501 
502 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
503 {
504 	struct request *rq = blk_mq_rq_from_pdu(cmd);
505 
506 	if (!atomic_dec_and_test(&cmd->ref))
507 		return;
508 	kfree(cmd->bvec);
509 	cmd->bvec = NULL;
510 	if (likely(!blk_should_fake_timeout(rq->q)))
511 		blk_mq_complete_request(rq);
512 }
513 
514 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
515 {
516 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
517 
518 	if (cmd->css)
519 		css_put(cmd->css);
520 	cmd->ret = ret;
521 	lo_rw_aio_do_completion(cmd);
522 }
523 
524 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
525 		     loff_t pos, bool rw)
526 {
527 	struct iov_iter iter;
528 	struct req_iterator rq_iter;
529 	struct bio_vec *bvec;
530 	struct request *rq = blk_mq_rq_from_pdu(cmd);
531 	struct bio *bio = rq->bio;
532 	struct file *file = lo->lo_backing_file;
533 	struct bio_vec tmp;
534 	unsigned int offset;
535 	int nr_bvec = 0;
536 	int ret;
537 
538 	rq_for_each_bvec(tmp, rq, rq_iter)
539 		nr_bvec++;
540 
541 	if (rq->bio != rq->biotail) {
542 
543 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
544 				     GFP_NOIO);
545 		if (!bvec)
546 			return -EIO;
547 		cmd->bvec = bvec;
548 
549 		/*
550 		 * The bios of the request may be started from the middle of
551 		 * the 'bvec' because of bio splitting, so we can't directly
552 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
553 		 * API will take care of all details for us.
554 		 */
555 		rq_for_each_bvec(tmp, rq, rq_iter) {
556 			*bvec = tmp;
557 			bvec++;
558 		}
559 		bvec = cmd->bvec;
560 		offset = 0;
561 	} else {
562 		/*
563 		 * Same here, this bio may be started from the middle of the
564 		 * 'bvec' because of bio splitting, so offset from the bvec
565 		 * must be passed to iov iterator
566 		 */
567 		offset = bio->bi_iter.bi_bvec_done;
568 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
569 	}
570 	atomic_set(&cmd->ref, 2);
571 
572 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
573 	iter.iov_offset = offset;
574 
575 	cmd->iocb.ki_pos = pos;
576 	cmd->iocb.ki_filp = file;
577 	cmd->iocb.ki_complete = lo_rw_aio_complete;
578 	cmd->iocb.ki_flags = IOCB_DIRECT;
579 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
580 	if (cmd->css)
581 		kthread_associate_blkcg(cmd->css);
582 
583 	if (rw == WRITE)
584 		ret = call_write_iter(file, &cmd->iocb, &iter);
585 	else
586 		ret = call_read_iter(file, &cmd->iocb, &iter);
587 
588 	lo_rw_aio_do_completion(cmd);
589 	kthread_associate_blkcg(NULL);
590 
591 	if (ret != -EIOCBQUEUED)
592 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
593 	return 0;
594 }
595 
596 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
597 {
598 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
599 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
600 
601 	/*
602 	 * lo_write_simple and lo_read_simple should have been covered
603 	 * by io submit style function like lo_rw_aio(), one blocker
604 	 * is that lo_read_simple() need to call flush_dcache_page after
605 	 * the page is written from kernel, and it isn't easy to handle
606 	 * this in io submit style function which submits all segments
607 	 * of the req at one time. And direct read IO doesn't need to
608 	 * run flush_dcache_page().
609 	 */
610 	switch (req_op(rq)) {
611 	case REQ_OP_FLUSH:
612 		return lo_req_flush(lo, rq);
613 	case REQ_OP_WRITE_ZEROES:
614 		/*
615 		 * If the caller doesn't want deallocation, call zeroout to
616 		 * write zeroes the range.  Otherwise, punch them out.
617 		 */
618 		return lo_fallocate(lo, rq, pos,
619 			(rq->cmd_flags & REQ_NOUNMAP) ?
620 				FALLOC_FL_ZERO_RANGE :
621 				FALLOC_FL_PUNCH_HOLE);
622 	case REQ_OP_DISCARD:
623 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
624 	case REQ_OP_WRITE:
625 		if (lo->transfer)
626 			return lo_write_transfer(lo, rq, pos);
627 		else if (cmd->use_aio)
628 			return lo_rw_aio(lo, cmd, pos, WRITE);
629 		else
630 			return lo_write_simple(lo, rq, pos);
631 	case REQ_OP_READ:
632 		if (lo->transfer)
633 			return lo_read_transfer(lo, rq, pos);
634 		else if (cmd->use_aio)
635 			return lo_rw_aio(lo, cmd, pos, READ);
636 		else
637 			return lo_read_simple(lo, rq, pos);
638 	default:
639 		WARN_ON_ONCE(1);
640 		return -EIO;
641 	}
642 }
643 
644 static inline void loop_update_dio(struct loop_device *lo)
645 {
646 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
647 				lo->use_dio);
648 }
649 
650 static void loop_reread_partitions(struct loop_device *lo,
651 				   struct block_device *bdev)
652 {
653 	int rc;
654 
655 	mutex_lock(&bdev->bd_mutex);
656 	rc = bdev_disk_changed(bdev, false);
657 	mutex_unlock(&bdev->bd_mutex);
658 	if (rc)
659 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
660 			__func__, lo->lo_number, lo->lo_file_name, rc);
661 }
662 
663 static inline int is_loop_device(struct file *file)
664 {
665 	struct inode *i = file->f_mapping->host;
666 
667 	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
668 }
669 
670 static int loop_validate_file(struct file *file, struct block_device *bdev)
671 {
672 	struct inode	*inode = file->f_mapping->host;
673 	struct file	*f = file;
674 
675 	/* Avoid recursion */
676 	while (is_loop_device(f)) {
677 		struct loop_device *l;
678 
679 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
680 			return -EBADF;
681 
682 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
683 		if (l->lo_state != Lo_bound) {
684 			return -EINVAL;
685 		}
686 		f = l->lo_backing_file;
687 	}
688 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
689 		return -EINVAL;
690 	return 0;
691 }
692 
693 /*
694  * loop_change_fd switched the backing store of a loopback device to
695  * a new file. This is useful for operating system installers to free up
696  * the original file and in High Availability environments to switch to
697  * an alternative location for the content in case of server meltdown.
698  * This can only work if the loop device is used read-only, and if the
699  * new backing store is the same size and type as the old backing store.
700  */
701 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
702 			  unsigned int arg)
703 {
704 	struct file	*file = NULL, *old_file;
705 	int		error;
706 	bool		partscan;
707 
708 	error = mutex_lock_killable(&lo->lo_mutex);
709 	if (error)
710 		return error;
711 	error = -ENXIO;
712 	if (lo->lo_state != Lo_bound)
713 		goto out_err;
714 
715 	/* the loop device has to be read-only */
716 	error = -EINVAL;
717 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
718 		goto out_err;
719 
720 	error = -EBADF;
721 	file = fget(arg);
722 	if (!file)
723 		goto out_err;
724 
725 	error = loop_validate_file(file, bdev);
726 	if (error)
727 		goto out_err;
728 
729 	old_file = lo->lo_backing_file;
730 
731 	error = -EINVAL;
732 
733 	/* size of the new backing store needs to be the same */
734 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
735 		goto out_err;
736 
737 	/* and ... switch */
738 	blk_mq_freeze_queue(lo->lo_queue);
739 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
740 	lo->lo_backing_file = file;
741 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
742 	mapping_set_gfp_mask(file->f_mapping,
743 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
744 	loop_update_dio(lo);
745 	blk_mq_unfreeze_queue(lo->lo_queue);
746 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
747 	mutex_unlock(&lo->lo_mutex);
748 	/*
749 	 * We must drop file reference outside of lo_mutex as dropping
750 	 * the file ref can take bd_mutex which creates circular locking
751 	 * dependency.
752 	 */
753 	fput(old_file);
754 	if (partscan)
755 		loop_reread_partitions(lo, bdev);
756 	return 0;
757 
758 out_err:
759 	mutex_unlock(&lo->lo_mutex);
760 	if (file)
761 		fput(file);
762 	return error;
763 }
764 
765 /* loop sysfs attributes */
766 
767 static ssize_t loop_attr_show(struct device *dev, char *page,
768 			      ssize_t (*callback)(struct loop_device *, char *))
769 {
770 	struct gendisk *disk = dev_to_disk(dev);
771 	struct loop_device *lo = disk->private_data;
772 
773 	return callback(lo, page);
774 }
775 
776 #define LOOP_ATTR_RO(_name)						\
777 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
778 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
779 				struct device_attribute *attr, char *b)	\
780 {									\
781 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
782 }									\
783 static struct device_attribute loop_attr_##_name =			\
784 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
785 
786 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
787 {
788 	ssize_t ret;
789 	char *p = NULL;
790 
791 	spin_lock_irq(&lo->lo_lock);
792 	if (lo->lo_backing_file)
793 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
794 	spin_unlock_irq(&lo->lo_lock);
795 
796 	if (IS_ERR_OR_NULL(p))
797 		ret = PTR_ERR(p);
798 	else {
799 		ret = strlen(p);
800 		memmove(buf, p, ret);
801 		buf[ret++] = '\n';
802 		buf[ret] = 0;
803 	}
804 
805 	return ret;
806 }
807 
808 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
809 {
810 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
811 }
812 
813 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
814 {
815 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
816 }
817 
818 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
819 {
820 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
821 
822 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
823 }
824 
825 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
826 {
827 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
828 
829 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
830 }
831 
832 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
833 {
834 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
835 
836 	return sprintf(buf, "%s\n", dio ? "1" : "0");
837 }
838 
839 LOOP_ATTR_RO(backing_file);
840 LOOP_ATTR_RO(offset);
841 LOOP_ATTR_RO(sizelimit);
842 LOOP_ATTR_RO(autoclear);
843 LOOP_ATTR_RO(partscan);
844 LOOP_ATTR_RO(dio);
845 
846 static struct attribute *loop_attrs[] = {
847 	&loop_attr_backing_file.attr,
848 	&loop_attr_offset.attr,
849 	&loop_attr_sizelimit.attr,
850 	&loop_attr_autoclear.attr,
851 	&loop_attr_partscan.attr,
852 	&loop_attr_dio.attr,
853 	NULL,
854 };
855 
856 static struct attribute_group loop_attribute_group = {
857 	.name = "loop",
858 	.attrs= loop_attrs,
859 };
860 
861 static void loop_sysfs_init(struct loop_device *lo)
862 {
863 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
864 						&loop_attribute_group);
865 }
866 
867 static void loop_sysfs_exit(struct loop_device *lo)
868 {
869 	if (lo->sysfs_inited)
870 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
871 				   &loop_attribute_group);
872 }
873 
874 static void loop_config_discard(struct loop_device *lo)
875 {
876 	struct file *file = lo->lo_backing_file;
877 	struct inode *inode = file->f_mapping->host;
878 	struct request_queue *q = lo->lo_queue;
879 	u32 granularity, max_discard_sectors;
880 
881 	/*
882 	 * If the backing device is a block device, mirror its zeroing
883 	 * capability. Set the discard sectors to the block device's zeroing
884 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
885 	 * not blkdev_issue_discard(). This maintains consistent behavior with
886 	 * file-backed loop devices: discarded regions read back as zero.
887 	 */
888 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
889 		struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
890 
891 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
892 		granularity = backingq->limits.discard_granularity ?:
893 			queue_physical_block_size(backingq);
894 
895 	/*
896 	 * We use punch hole to reclaim the free space used by the
897 	 * image a.k.a. discard. However we do not support discard if
898 	 * encryption is enabled, because it may give an attacker
899 	 * useful information.
900 	 */
901 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
902 		max_discard_sectors = 0;
903 		granularity = 0;
904 
905 	} else {
906 		max_discard_sectors = UINT_MAX >> 9;
907 		granularity = inode->i_sb->s_blocksize;
908 	}
909 
910 	if (max_discard_sectors) {
911 		q->limits.discard_granularity = granularity;
912 		blk_queue_max_discard_sectors(q, max_discard_sectors);
913 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
914 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
915 	} else {
916 		q->limits.discard_granularity = 0;
917 		blk_queue_max_discard_sectors(q, 0);
918 		blk_queue_max_write_zeroes_sectors(q, 0);
919 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
920 	}
921 	q->limits.discard_alignment = 0;
922 }
923 
924 static void loop_unprepare_queue(struct loop_device *lo)
925 {
926 	kthread_flush_worker(&lo->worker);
927 	kthread_stop(lo->worker_task);
928 }
929 
930 static int loop_kthread_worker_fn(void *worker_ptr)
931 {
932 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
933 	return kthread_worker_fn(worker_ptr);
934 }
935 
936 static int loop_prepare_queue(struct loop_device *lo)
937 {
938 	kthread_init_worker(&lo->worker);
939 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
940 			&lo->worker, "loop%d", lo->lo_number);
941 	if (IS_ERR(lo->worker_task))
942 		return -ENOMEM;
943 	set_user_nice(lo->worker_task, MIN_NICE);
944 	return 0;
945 }
946 
947 static void loop_update_rotational(struct loop_device *lo)
948 {
949 	struct file *file = lo->lo_backing_file;
950 	struct inode *file_inode = file->f_mapping->host;
951 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
952 	struct request_queue *q = lo->lo_queue;
953 	bool nonrot = true;
954 
955 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
956 	if (file_bdev)
957 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
958 
959 	if (nonrot)
960 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
961 	else
962 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
963 }
964 
965 static int
966 loop_release_xfer(struct loop_device *lo)
967 {
968 	int err = 0;
969 	struct loop_func_table *xfer = lo->lo_encryption;
970 
971 	if (xfer) {
972 		if (xfer->release)
973 			err = xfer->release(lo);
974 		lo->transfer = NULL;
975 		lo->lo_encryption = NULL;
976 		module_put(xfer->owner);
977 	}
978 	return err;
979 }
980 
981 static int
982 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
983 	       const struct loop_info64 *i)
984 {
985 	int err = 0;
986 
987 	if (xfer) {
988 		struct module *owner = xfer->owner;
989 
990 		if (!try_module_get(owner))
991 			return -EINVAL;
992 		if (xfer->init)
993 			err = xfer->init(lo, i);
994 		if (err)
995 			module_put(owner);
996 		else
997 			lo->lo_encryption = xfer;
998 	}
999 	return err;
1000 }
1001 
1002 /**
1003  * loop_set_status_from_info - configure device from loop_info
1004  * @lo: struct loop_device to configure
1005  * @info: struct loop_info64 to configure the device with
1006  *
1007  * Configures the loop device parameters according to the passed
1008  * in loop_info64 configuration.
1009  */
1010 static int
1011 loop_set_status_from_info(struct loop_device *lo,
1012 			  const struct loop_info64 *info)
1013 {
1014 	int err;
1015 	struct loop_func_table *xfer;
1016 	kuid_t uid = current_uid();
1017 
1018 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1019 		return -EINVAL;
1020 
1021 	err = loop_release_xfer(lo);
1022 	if (err)
1023 		return err;
1024 
1025 	if (info->lo_encrypt_type) {
1026 		unsigned int type = info->lo_encrypt_type;
1027 
1028 		if (type >= MAX_LO_CRYPT)
1029 			return -EINVAL;
1030 		xfer = xfer_funcs[type];
1031 		if (xfer == NULL)
1032 			return -EINVAL;
1033 	} else
1034 		xfer = NULL;
1035 
1036 	err = loop_init_xfer(lo, xfer, info);
1037 	if (err)
1038 		return err;
1039 
1040 	lo->lo_offset = info->lo_offset;
1041 	lo->lo_sizelimit = info->lo_sizelimit;
1042 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1043 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1044 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1045 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1046 
1047 	if (!xfer)
1048 		xfer = &none_funcs;
1049 	lo->transfer = xfer->transfer;
1050 	lo->ioctl = xfer->ioctl;
1051 
1052 	lo->lo_flags = info->lo_flags;
1053 
1054 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1055 	lo->lo_init[0] = info->lo_init[0];
1056 	lo->lo_init[1] = info->lo_init[1];
1057 	if (info->lo_encrypt_key_size) {
1058 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1059 		       info->lo_encrypt_key_size);
1060 		lo->lo_key_owner = uid;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static int loop_configure(struct loop_device *lo, fmode_t mode,
1067 			  struct block_device *bdev,
1068 			  const struct loop_config *config)
1069 {
1070 	struct file	*file;
1071 	struct inode	*inode;
1072 	struct address_space *mapping;
1073 	int		error;
1074 	loff_t		size;
1075 	bool		partscan;
1076 	unsigned short  bsize;
1077 
1078 	/* This is safe, since we have a reference from open(). */
1079 	__module_get(THIS_MODULE);
1080 
1081 	error = -EBADF;
1082 	file = fget(config->fd);
1083 	if (!file)
1084 		goto out;
1085 
1086 	/*
1087 	 * If we don't hold exclusive handle for the device, upgrade to it
1088 	 * here to avoid changing device under exclusive owner.
1089 	 */
1090 	if (!(mode & FMODE_EXCL)) {
1091 		error = bd_prepare_to_claim(bdev, loop_configure);
1092 		if (error)
1093 			goto out_putf;
1094 	}
1095 
1096 	error = mutex_lock_killable(&lo->lo_mutex);
1097 	if (error)
1098 		goto out_bdev;
1099 
1100 	error = -EBUSY;
1101 	if (lo->lo_state != Lo_unbound)
1102 		goto out_unlock;
1103 
1104 	error = loop_validate_file(file, bdev);
1105 	if (error)
1106 		goto out_unlock;
1107 
1108 	mapping = file->f_mapping;
1109 	inode = mapping->host;
1110 
1111 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1112 		error = -EINVAL;
1113 		goto out_unlock;
1114 	}
1115 
1116 	if (config->block_size) {
1117 		error = loop_validate_block_size(config->block_size);
1118 		if (error)
1119 			goto out_unlock;
1120 	}
1121 
1122 	error = loop_set_status_from_info(lo, &config->info);
1123 	if (error)
1124 		goto out_unlock;
1125 
1126 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1127 	    !file->f_op->write_iter)
1128 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1129 
1130 	error = loop_prepare_queue(lo);
1131 	if (error)
1132 		goto out_unlock;
1133 
1134 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1135 
1136 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1137 	lo->lo_device = bdev;
1138 	lo->lo_backing_file = file;
1139 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1140 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1141 
1142 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1143 		blk_queue_write_cache(lo->lo_queue, true, false);
1144 
1145 	if (config->block_size)
1146 		bsize = config->block_size;
1147 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1148 		/* In case of direct I/O, match underlying block size */
1149 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1150 	else
1151 		bsize = 512;
1152 
1153 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1154 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1155 	blk_queue_io_min(lo->lo_queue, bsize);
1156 
1157 	loop_update_rotational(lo);
1158 	loop_update_dio(lo);
1159 	loop_sysfs_init(lo);
1160 
1161 	size = get_loop_size(lo, file);
1162 	loop_set_size(lo, size);
1163 
1164 	lo->lo_state = Lo_bound;
1165 	if (part_shift)
1166 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1167 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1168 	if (partscan)
1169 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1170 
1171 	/* Grab the block_device to prevent its destruction after we
1172 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1173 	 */
1174 	bdgrab(bdev);
1175 	mutex_unlock(&lo->lo_mutex);
1176 	if (partscan)
1177 		loop_reread_partitions(lo, bdev);
1178 	if (!(mode & FMODE_EXCL))
1179 		bd_abort_claiming(bdev, loop_configure);
1180 	return 0;
1181 
1182 out_unlock:
1183 	mutex_unlock(&lo->lo_mutex);
1184 out_bdev:
1185 	if (!(mode & FMODE_EXCL))
1186 		bd_abort_claiming(bdev, loop_configure);
1187 out_putf:
1188 	fput(file);
1189 out:
1190 	/* This is safe: open() is still holding a reference. */
1191 	module_put(THIS_MODULE);
1192 	return error;
1193 }
1194 
1195 static int __loop_clr_fd(struct loop_device *lo, bool release)
1196 {
1197 	struct file *filp = NULL;
1198 	gfp_t gfp = lo->old_gfp_mask;
1199 	struct block_device *bdev = lo->lo_device;
1200 	int err = 0;
1201 	bool partscan = false;
1202 	int lo_number;
1203 
1204 	mutex_lock(&lo->lo_mutex);
1205 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1206 		err = -ENXIO;
1207 		goto out_unlock;
1208 	}
1209 
1210 	filp = lo->lo_backing_file;
1211 	if (filp == NULL) {
1212 		err = -EINVAL;
1213 		goto out_unlock;
1214 	}
1215 
1216 	if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1217 		blk_queue_write_cache(lo->lo_queue, false, false);
1218 
1219 	/* freeze request queue during the transition */
1220 	blk_mq_freeze_queue(lo->lo_queue);
1221 
1222 	spin_lock_irq(&lo->lo_lock);
1223 	lo->lo_backing_file = NULL;
1224 	spin_unlock_irq(&lo->lo_lock);
1225 
1226 	loop_release_xfer(lo);
1227 	lo->transfer = NULL;
1228 	lo->ioctl = NULL;
1229 	lo->lo_device = NULL;
1230 	lo->lo_encryption = NULL;
1231 	lo->lo_offset = 0;
1232 	lo->lo_sizelimit = 0;
1233 	lo->lo_encrypt_key_size = 0;
1234 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1235 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1236 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1237 	blk_queue_logical_block_size(lo->lo_queue, 512);
1238 	blk_queue_physical_block_size(lo->lo_queue, 512);
1239 	blk_queue_io_min(lo->lo_queue, 512);
1240 	if (bdev) {
1241 		bdput(bdev);
1242 		invalidate_bdev(bdev);
1243 		bdev->bd_inode->i_mapping->wb_err = 0;
1244 	}
1245 	set_capacity(lo->lo_disk, 0);
1246 	loop_sysfs_exit(lo);
1247 	if (bdev) {
1248 		/* let user-space know about this change */
1249 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1250 	}
1251 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1252 	/* This is safe: open() is still holding a reference. */
1253 	module_put(THIS_MODULE);
1254 	blk_mq_unfreeze_queue(lo->lo_queue);
1255 
1256 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1257 	lo_number = lo->lo_number;
1258 	loop_unprepare_queue(lo);
1259 out_unlock:
1260 	mutex_unlock(&lo->lo_mutex);
1261 	if (partscan) {
1262 		/*
1263 		 * bd_mutex has been held already in release path, so don't
1264 		 * acquire it if this function is called in such case.
1265 		 *
1266 		 * If the reread partition isn't from release path, lo_refcnt
1267 		 * must be at least one and it can only become zero when the
1268 		 * current holder is released.
1269 		 */
1270 		if (!release)
1271 			mutex_lock(&bdev->bd_mutex);
1272 		err = bdev_disk_changed(bdev, false);
1273 		if (!release)
1274 			mutex_unlock(&bdev->bd_mutex);
1275 		if (err)
1276 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1277 				__func__, lo_number, err);
1278 		/* Device is gone, no point in returning error */
1279 		err = 0;
1280 	}
1281 
1282 	/*
1283 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1284 	 * finished.
1285 	 *
1286 	 * There cannot be anybody else entering __loop_clr_fd() as
1287 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1288 	 * protects us from all the other places trying to change the 'lo'
1289 	 * device.
1290 	 */
1291 	mutex_lock(&lo->lo_mutex);
1292 	lo->lo_flags = 0;
1293 	if (!part_shift)
1294 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1295 	lo->lo_state = Lo_unbound;
1296 	mutex_unlock(&lo->lo_mutex);
1297 
1298 	/*
1299 	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1300 	 * lo_mutex triggers a circular lock dependency possibility warning as
1301 	 * fput can take bd_mutex which is usually taken before lo_mutex.
1302 	 */
1303 	if (filp)
1304 		fput(filp);
1305 	return err;
1306 }
1307 
1308 static int loop_clr_fd(struct loop_device *lo)
1309 {
1310 	int err;
1311 
1312 	err = mutex_lock_killable(&lo->lo_mutex);
1313 	if (err)
1314 		return err;
1315 	if (lo->lo_state != Lo_bound) {
1316 		mutex_unlock(&lo->lo_mutex);
1317 		return -ENXIO;
1318 	}
1319 	/*
1320 	 * If we've explicitly asked to tear down the loop device,
1321 	 * and it has an elevated reference count, set it for auto-teardown when
1322 	 * the last reference goes away. This stops $!~#$@ udev from
1323 	 * preventing teardown because it decided that it needs to run blkid on
1324 	 * the loopback device whenever they appear. xfstests is notorious for
1325 	 * failing tests because blkid via udev races with a losetup
1326 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1327 	 * command to fail with EBUSY.
1328 	 */
1329 	if (atomic_read(&lo->lo_refcnt) > 1) {
1330 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1331 		mutex_unlock(&lo->lo_mutex);
1332 		return 0;
1333 	}
1334 	lo->lo_state = Lo_rundown;
1335 	mutex_unlock(&lo->lo_mutex);
1336 
1337 	return __loop_clr_fd(lo, false);
1338 }
1339 
1340 static int
1341 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1342 {
1343 	int err;
1344 	struct block_device *bdev;
1345 	kuid_t uid = current_uid();
1346 	int prev_lo_flags;
1347 	bool partscan = false;
1348 	bool size_changed = false;
1349 
1350 	err = mutex_lock_killable(&lo->lo_mutex);
1351 	if (err)
1352 		return err;
1353 	if (lo->lo_encrypt_key_size &&
1354 	    !uid_eq(lo->lo_key_owner, uid) &&
1355 	    !capable(CAP_SYS_ADMIN)) {
1356 		err = -EPERM;
1357 		goto out_unlock;
1358 	}
1359 	if (lo->lo_state != Lo_bound) {
1360 		err = -ENXIO;
1361 		goto out_unlock;
1362 	}
1363 
1364 	if (lo->lo_offset != info->lo_offset ||
1365 	    lo->lo_sizelimit != info->lo_sizelimit) {
1366 		size_changed = true;
1367 		sync_blockdev(lo->lo_device);
1368 		invalidate_bdev(lo->lo_device);
1369 	}
1370 
1371 	/* I/O need to be drained during transfer transition */
1372 	blk_mq_freeze_queue(lo->lo_queue);
1373 
1374 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1375 		/* If any pages were dirtied after invalidate_bdev(), try again */
1376 		err = -EAGAIN;
1377 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1378 			__func__, lo->lo_number, lo->lo_file_name,
1379 			lo->lo_device->bd_inode->i_mapping->nrpages);
1380 		goto out_unfreeze;
1381 	}
1382 
1383 	prev_lo_flags = lo->lo_flags;
1384 
1385 	err = loop_set_status_from_info(lo, info);
1386 	if (err)
1387 		goto out_unfreeze;
1388 
1389 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1390 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1391 	/* For those flags, use the previous values instead */
1392 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1393 	/* For flags that can't be cleared, use previous values too */
1394 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1395 
1396 	if (size_changed) {
1397 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1398 					   lo->lo_backing_file);
1399 		loop_set_size(lo, new_size);
1400 	}
1401 
1402 	loop_config_discard(lo);
1403 
1404 	/* update dio if lo_offset or transfer is changed */
1405 	__loop_update_dio(lo, lo->use_dio);
1406 
1407 out_unfreeze:
1408 	blk_mq_unfreeze_queue(lo->lo_queue);
1409 
1410 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1411 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1412 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1413 		bdev = lo->lo_device;
1414 		partscan = true;
1415 	}
1416 out_unlock:
1417 	mutex_unlock(&lo->lo_mutex);
1418 	if (partscan)
1419 		loop_reread_partitions(lo, bdev);
1420 
1421 	return err;
1422 }
1423 
1424 static int
1425 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1426 {
1427 	struct path path;
1428 	struct kstat stat;
1429 	int ret;
1430 
1431 	ret = mutex_lock_killable(&lo->lo_mutex);
1432 	if (ret)
1433 		return ret;
1434 	if (lo->lo_state != Lo_bound) {
1435 		mutex_unlock(&lo->lo_mutex);
1436 		return -ENXIO;
1437 	}
1438 
1439 	memset(info, 0, sizeof(*info));
1440 	info->lo_number = lo->lo_number;
1441 	info->lo_offset = lo->lo_offset;
1442 	info->lo_sizelimit = lo->lo_sizelimit;
1443 	info->lo_flags = lo->lo_flags;
1444 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1445 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1446 	info->lo_encrypt_type =
1447 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1448 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1449 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1450 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1451 		       lo->lo_encrypt_key_size);
1452 	}
1453 
1454 	/* Drop lo_mutex while we call into the filesystem. */
1455 	path = lo->lo_backing_file->f_path;
1456 	path_get(&path);
1457 	mutex_unlock(&lo->lo_mutex);
1458 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1459 	if (!ret) {
1460 		info->lo_device = huge_encode_dev(stat.dev);
1461 		info->lo_inode = stat.ino;
1462 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1463 	}
1464 	path_put(&path);
1465 	return ret;
1466 }
1467 
1468 static void
1469 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1470 {
1471 	memset(info64, 0, sizeof(*info64));
1472 	info64->lo_number = info->lo_number;
1473 	info64->lo_device = info->lo_device;
1474 	info64->lo_inode = info->lo_inode;
1475 	info64->lo_rdevice = info->lo_rdevice;
1476 	info64->lo_offset = info->lo_offset;
1477 	info64->lo_sizelimit = 0;
1478 	info64->lo_encrypt_type = info->lo_encrypt_type;
1479 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1480 	info64->lo_flags = info->lo_flags;
1481 	info64->lo_init[0] = info->lo_init[0];
1482 	info64->lo_init[1] = info->lo_init[1];
1483 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1484 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1485 	else
1486 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1487 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1488 }
1489 
1490 static int
1491 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1492 {
1493 	memset(info, 0, sizeof(*info));
1494 	info->lo_number = info64->lo_number;
1495 	info->lo_device = info64->lo_device;
1496 	info->lo_inode = info64->lo_inode;
1497 	info->lo_rdevice = info64->lo_rdevice;
1498 	info->lo_offset = info64->lo_offset;
1499 	info->lo_encrypt_type = info64->lo_encrypt_type;
1500 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1501 	info->lo_flags = info64->lo_flags;
1502 	info->lo_init[0] = info64->lo_init[0];
1503 	info->lo_init[1] = info64->lo_init[1];
1504 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1505 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1506 	else
1507 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1508 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1509 
1510 	/* error in case values were truncated */
1511 	if (info->lo_device != info64->lo_device ||
1512 	    info->lo_rdevice != info64->lo_rdevice ||
1513 	    info->lo_inode != info64->lo_inode ||
1514 	    info->lo_offset != info64->lo_offset)
1515 		return -EOVERFLOW;
1516 
1517 	return 0;
1518 }
1519 
1520 static int
1521 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1522 {
1523 	struct loop_info info;
1524 	struct loop_info64 info64;
1525 
1526 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1527 		return -EFAULT;
1528 	loop_info64_from_old(&info, &info64);
1529 	return loop_set_status(lo, &info64);
1530 }
1531 
1532 static int
1533 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1534 {
1535 	struct loop_info64 info64;
1536 
1537 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1538 		return -EFAULT;
1539 	return loop_set_status(lo, &info64);
1540 }
1541 
1542 static int
1543 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1544 	struct loop_info info;
1545 	struct loop_info64 info64;
1546 	int err;
1547 
1548 	if (!arg)
1549 		return -EINVAL;
1550 	err = loop_get_status(lo, &info64);
1551 	if (!err)
1552 		err = loop_info64_to_old(&info64, &info);
1553 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1554 		err = -EFAULT;
1555 
1556 	return err;
1557 }
1558 
1559 static int
1560 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1561 	struct loop_info64 info64;
1562 	int err;
1563 
1564 	if (!arg)
1565 		return -EINVAL;
1566 	err = loop_get_status(lo, &info64);
1567 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1568 		err = -EFAULT;
1569 
1570 	return err;
1571 }
1572 
1573 static int loop_set_capacity(struct loop_device *lo)
1574 {
1575 	loff_t size;
1576 
1577 	if (unlikely(lo->lo_state != Lo_bound))
1578 		return -ENXIO;
1579 
1580 	size = get_loop_size(lo, lo->lo_backing_file);
1581 	loop_set_size(lo, size);
1582 
1583 	return 0;
1584 }
1585 
1586 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1587 {
1588 	int error = -ENXIO;
1589 	if (lo->lo_state != Lo_bound)
1590 		goto out;
1591 
1592 	__loop_update_dio(lo, !!arg);
1593 	if (lo->use_dio == !!arg)
1594 		return 0;
1595 	error = -EINVAL;
1596  out:
1597 	return error;
1598 }
1599 
1600 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1601 {
1602 	int err = 0;
1603 
1604 	if (lo->lo_state != Lo_bound)
1605 		return -ENXIO;
1606 
1607 	err = loop_validate_block_size(arg);
1608 	if (err)
1609 		return err;
1610 
1611 	if (lo->lo_queue->limits.logical_block_size == arg)
1612 		return 0;
1613 
1614 	sync_blockdev(lo->lo_device);
1615 	invalidate_bdev(lo->lo_device);
1616 
1617 	blk_mq_freeze_queue(lo->lo_queue);
1618 
1619 	/* invalidate_bdev should have truncated all the pages */
1620 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1621 		err = -EAGAIN;
1622 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1623 			__func__, lo->lo_number, lo->lo_file_name,
1624 			lo->lo_device->bd_inode->i_mapping->nrpages);
1625 		goto out_unfreeze;
1626 	}
1627 
1628 	blk_queue_logical_block_size(lo->lo_queue, arg);
1629 	blk_queue_physical_block_size(lo->lo_queue, arg);
1630 	blk_queue_io_min(lo->lo_queue, arg);
1631 	loop_update_dio(lo);
1632 out_unfreeze:
1633 	blk_mq_unfreeze_queue(lo->lo_queue);
1634 
1635 	return err;
1636 }
1637 
1638 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1639 			   unsigned long arg)
1640 {
1641 	int err;
1642 
1643 	err = mutex_lock_killable(&lo->lo_mutex);
1644 	if (err)
1645 		return err;
1646 	switch (cmd) {
1647 	case LOOP_SET_CAPACITY:
1648 		err = loop_set_capacity(lo);
1649 		break;
1650 	case LOOP_SET_DIRECT_IO:
1651 		err = loop_set_dio(lo, arg);
1652 		break;
1653 	case LOOP_SET_BLOCK_SIZE:
1654 		err = loop_set_block_size(lo, arg);
1655 		break;
1656 	default:
1657 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1658 	}
1659 	mutex_unlock(&lo->lo_mutex);
1660 	return err;
1661 }
1662 
1663 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1664 	unsigned int cmd, unsigned long arg)
1665 {
1666 	struct loop_device *lo = bdev->bd_disk->private_data;
1667 	void __user *argp = (void __user *) arg;
1668 	int err;
1669 
1670 	switch (cmd) {
1671 	case LOOP_SET_FD: {
1672 		/*
1673 		 * Legacy case - pass in a zeroed out struct loop_config with
1674 		 * only the file descriptor set , which corresponds with the
1675 		 * default parameters we'd have used otherwise.
1676 		 */
1677 		struct loop_config config;
1678 
1679 		memset(&config, 0, sizeof(config));
1680 		config.fd = arg;
1681 
1682 		return loop_configure(lo, mode, bdev, &config);
1683 	}
1684 	case LOOP_CONFIGURE: {
1685 		struct loop_config config;
1686 
1687 		if (copy_from_user(&config, argp, sizeof(config)))
1688 			return -EFAULT;
1689 
1690 		return loop_configure(lo, mode, bdev, &config);
1691 	}
1692 	case LOOP_CHANGE_FD:
1693 		return loop_change_fd(lo, bdev, arg);
1694 	case LOOP_CLR_FD:
1695 		return loop_clr_fd(lo);
1696 	case LOOP_SET_STATUS:
1697 		err = -EPERM;
1698 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1699 			err = loop_set_status_old(lo, argp);
1700 		}
1701 		break;
1702 	case LOOP_GET_STATUS:
1703 		return loop_get_status_old(lo, argp);
1704 	case LOOP_SET_STATUS64:
1705 		err = -EPERM;
1706 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1707 			err = loop_set_status64(lo, argp);
1708 		}
1709 		break;
1710 	case LOOP_GET_STATUS64:
1711 		return loop_get_status64(lo, argp);
1712 	case LOOP_SET_CAPACITY:
1713 	case LOOP_SET_DIRECT_IO:
1714 	case LOOP_SET_BLOCK_SIZE:
1715 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1716 			return -EPERM;
1717 		fallthrough;
1718 	default:
1719 		err = lo_simple_ioctl(lo, cmd, arg);
1720 		break;
1721 	}
1722 
1723 	return err;
1724 }
1725 
1726 #ifdef CONFIG_COMPAT
1727 struct compat_loop_info {
1728 	compat_int_t	lo_number;      /* ioctl r/o */
1729 	compat_dev_t	lo_device;      /* ioctl r/o */
1730 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1731 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1732 	compat_int_t	lo_offset;
1733 	compat_int_t	lo_encrypt_type;
1734 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1735 	compat_int_t	lo_flags;       /* ioctl r/o */
1736 	char		lo_name[LO_NAME_SIZE];
1737 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1738 	compat_ulong_t	lo_init[2];
1739 	char		reserved[4];
1740 };
1741 
1742 /*
1743  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1744  * - noinlined to reduce stack space usage in main part of driver
1745  */
1746 static noinline int
1747 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1748 			struct loop_info64 *info64)
1749 {
1750 	struct compat_loop_info info;
1751 
1752 	if (copy_from_user(&info, arg, sizeof(info)))
1753 		return -EFAULT;
1754 
1755 	memset(info64, 0, sizeof(*info64));
1756 	info64->lo_number = info.lo_number;
1757 	info64->lo_device = info.lo_device;
1758 	info64->lo_inode = info.lo_inode;
1759 	info64->lo_rdevice = info.lo_rdevice;
1760 	info64->lo_offset = info.lo_offset;
1761 	info64->lo_sizelimit = 0;
1762 	info64->lo_encrypt_type = info.lo_encrypt_type;
1763 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1764 	info64->lo_flags = info.lo_flags;
1765 	info64->lo_init[0] = info.lo_init[0];
1766 	info64->lo_init[1] = info.lo_init[1];
1767 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1768 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1769 	else
1770 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1771 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1772 	return 0;
1773 }
1774 
1775 /*
1776  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1777  * - noinlined to reduce stack space usage in main part of driver
1778  */
1779 static noinline int
1780 loop_info64_to_compat(const struct loop_info64 *info64,
1781 		      struct compat_loop_info __user *arg)
1782 {
1783 	struct compat_loop_info info;
1784 
1785 	memset(&info, 0, sizeof(info));
1786 	info.lo_number = info64->lo_number;
1787 	info.lo_device = info64->lo_device;
1788 	info.lo_inode = info64->lo_inode;
1789 	info.lo_rdevice = info64->lo_rdevice;
1790 	info.lo_offset = info64->lo_offset;
1791 	info.lo_encrypt_type = info64->lo_encrypt_type;
1792 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1793 	info.lo_flags = info64->lo_flags;
1794 	info.lo_init[0] = info64->lo_init[0];
1795 	info.lo_init[1] = info64->lo_init[1];
1796 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1797 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1798 	else
1799 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1800 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1801 
1802 	/* error in case values were truncated */
1803 	if (info.lo_device != info64->lo_device ||
1804 	    info.lo_rdevice != info64->lo_rdevice ||
1805 	    info.lo_inode != info64->lo_inode ||
1806 	    info.lo_offset != info64->lo_offset ||
1807 	    info.lo_init[0] != info64->lo_init[0] ||
1808 	    info.lo_init[1] != info64->lo_init[1])
1809 		return -EOVERFLOW;
1810 
1811 	if (copy_to_user(arg, &info, sizeof(info)))
1812 		return -EFAULT;
1813 	return 0;
1814 }
1815 
1816 static int
1817 loop_set_status_compat(struct loop_device *lo,
1818 		       const struct compat_loop_info __user *arg)
1819 {
1820 	struct loop_info64 info64;
1821 	int ret;
1822 
1823 	ret = loop_info64_from_compat(arg, &info64);
1824 	if (ret < 0)
1825 		return ret;
1826 	return loop_set_status(lo, &info64);
1827 }
1828 
1829 static int
1830 loop_get_status_compat(struct loop_device *lo,
1831 		       struct compat_loop_info __user *arg)
1832 {
1833 	struct loop_info64 info64;
1834 	int err;
1835 
1836 	if (!arg)
1837 		return -EINVAL;
1838 	err = loop_get_status(lo, &info64);
1839 	if (!err)
1840 		err = loop_info64_to_compat(&info64, arg);
1841 	return err;
1842 }
1843 
1844 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1845 			   unsigned int cmd, unsigned long arg)
1846 {
1847 	struct loop_device *lo = bdev->bd_disk->private_data;
1848 	int err;
1849 
1850 	switch(cmd) {
1851 	case LOOP_SET_STATUS:
1852 		err = loop_set_status_compat(lo,
1853 			     (const struct compat_loop_info __user *)arg);
1854 		break;
1855 	case LOOP_GET_STATUS:
1856 		err = loop_get_status_compat(lo,
1857 				     (struct compat_loop_info __user *)arg);
1858 		break;
1859 	case LOOP_SET_CAPACITY:
1860 	case LOOP_CLR_FD:
1861 	case LOOP_GET_STATUS64:
1862 	case LOOP_SET_STATUS64:
1863 	case LOOP_CONFIGURE:
1864 		arg = (unsigned long) compat_ptr(arg);
1865 		fallthrough;
1866 	case LOOP_SET_FD:
1867 	case LOOP_CHANGE_FD:
1868 	case LOOP_SET_BLOCK_SIZE:
1869 	case LOOP_SET_DIRECT_IO:
1870 		err = lo_ioctl(bdev, mode, cmd, arg);
1871 		break;
1872 	default:
1873 		err = -ENOIOCTLCMD;
1874 		break;
1875 	}
1876 	return err;
1877 }
1878 #endif
1879 
1880 static int lo_open(struct block_device *bdev, fmode_t mode)
1881 {
1882 	struct loop_device *lo;
1883 	int err;
1884 
1885 	/*
1886 	 * take loop_ctl_mutex to protect lo pointer from race with
1887 	 * loop_control_ioctl(LOOP_CTL_REMOVE), however, to reduce contention
1888 	 * release it prior to updating lo->lo_refcnt.
1889 	 */
1890 	err = mutex_lock_killable(&loop_ctl_mutex);
1891 	if (err)
1892 		return err;
1893 	lo = bdev->bd_disk->private_data;
1894 	if (!lo) {
1895 		mutex_unlock(&loop_ctl_mutex);
1896 		return -ENXIO;
1897 	}
1898 	err = mutex_lock_killable(&lo->lo_mutex);
1899 	mutex_unlock(&loop_ctl_mutex);
1900 	if (err)
1901 		return err;
1902 	atomic_inc(&lo->lo_refcnt);
1903 	mutex_unlock(&lo->lo_mutex);
1904 	return 0;
1905 }
1906 
1907 static void lo_release(struct gendisk *disk, fmode_t mode)
1908 {
1909 	struct loop_device *lo = disk->private_data;
1910 
1911 	mutex_lock(&lo->lo_mutex);
1912 	if (atomic_dec_return(&lo->lo_refcnt))
1913 		goto out_unlock;
1914 
1915 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1916 		if (lo->lo_state != Lo_bound)
1917 			goto out_unlock;
1918 		lo->lo_state = Lo_rundown;
1919 		mutex_unlock(&lo->lo_mutex);
1920 		/*
1921 		 * In autoclear mode, stop the loop thread
1922 		 * and remove configuration after last close.
1923 		 */
1924 		__loop_clr_fd(lo, true);
1925 		return;
1926 	} else if (lo->lo_state == Lo_bound) {
1927 		/*
1928 		 * Otherwise keep thread (if running) and config,
1929 		 * but flush possible ongoing bios in thread.
1930 		 */
1931 		blk_mq_freeze_queue(lo->lo_queue);
1932 		blk_mq_unfreeze_queue(lo->lo_queue);
1933 	}
1934 
1935 out_unlock:
1936 	mutex_unlock(&lo->lo_mutex);
1937 }
1938 
1939 static const struct block_device_operations lo_fops = {
1940 	.owner =	THIS_MODULE,
1941 	.open =		lo_open,
1942 	.release =	lo_release,
1943 	.ioctl =	lo_ioctl,
1944 #ifdef CONFIG_COMPAT
1945 	.compat_ioctl =	lo_compat_ioctl,
1946 #endif
1947 };
1948 
1949 /*
1950  * And now the modules code and kernel interface.
1951  */
1952 static int max_loop;
1953 module_param(max_loop, int, 0444);
1954 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1955 module_param(max_part, int, 0444);
1956 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1957 MODULE_LICENSE("GPL");
1958 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1959 
1960 int loop_register_transfer(struct loop_func_table *funcs)
1961 {
1962 	unsigned int n = funcs->number;
1963 
1964 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1965 		return -EINVAL;
1966 	xfer_funcs[n] = funcs;
1967 	return 0;
1968 }
1969 
1970 static int unregister_transfer_cb(int id, void *ptr, void *data)
1971 {
1972 	struct loop_device *lo = ptr;
1973 	struct loop_func_table *xfer = data;
1974 
1975 	mutex_lock(&lo->lo_mutex);
1976 	if (lo->lo_encryption == xfer)
1977 		loop_release_xfer(lo);
1978 	mutex_unlock(&lo->lo_mutex);
1979 	return 0;
1980 }
1981 
1982 int loop_unregister_transfer(int number)
1983 {
1984 	unsigned int n = number;
1985 	struct loop_func_table *xfer;
1986 
1987 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1988 		return -EINVAL;
1989 
1990 	xfer_funcs[n] = NULL;
1991 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1992 	return 0;
1993 }
1994 
1995 EXPORT_SYMBOL(loop_register_transfer);
1996 EXPORT_SYMBOL(loop_unregister_transfer);
1997 
1998 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1999 		const struct blk_mq_queue_data *bd)
2000 {
2001 	struct request *rq = bd->rq;
2002 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2003 	struct loop_device *lo = rq->q->queuedata;
2004 
2005 	blk_mq_start_request(rq);
2006 
2007 	if (lo->lo_state != Lo_bound)
2008 		return BLK_STS_IOERR;
2009 
2010 	switch (req_op(rq)) {
2011 	case REQ_OP_FLUSH:
2012 	case REQ_OP_DISCARD:
2013 	case REQ_OP_WRITE_ZEROES:
2014 		cmd->use_aio = false;
2015 		break;
2016 	default:
2017 		cmd->use_aio = lo->use_dio;
2018 		break;
2019 	}
2020 
2021 	/* always use the first bio's css */
2022 #ifdef CONFIG_BLK_CGROUP
2023 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2024 		cmd->css = &bio_blkcg(rq->bio)->css;
2025 		css_get(cmd->css);
2026 	} else
2027 #endif
2028 		cmd->css = NULL;
2029 	kthread_queue_work(&lo->worker, &cmd->work);
2030 
2031 	return BLK_STS_OK;
2032 }
2033 
2034 static void loop_handle_cmd(struct loop_cmd *cmd)
2035 {
2036 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2037 	const bool write = op_is_write(req_op(rq));
2038 	struct loop_device *lo = rq->q->queuedata;
2039 	int ret = 0;
2040 
2041 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2042 		ret = -EIO;
2043 		goto failed;
2044 	}
2045 
2046 	ret = do_req_filebacked(lo, rq);
2047  failed:
2048 	/* complete non-aio request */
2049 	if (!cmd->use_aio || ret) {
2050 		if (ret == -EOPNOTSUPP)
2051 			cmd->ret = ret;
2052 		else
2053 			cmd->ret = ret ? -EIO : 0;
2054 		if (likely(!blk_should_fake_timeout(rq->q)))
2055 			blk_mq_complete_request(rq);
2056 	}
2057 }
2058 
2059 static void loop_queue_work(struct kthread_work *work)
2060 {
2061 	struct loop_cmd *cmd =
2062 		container_of(work, struct loop_cmd, work);
2063 
2064 	loop_handle_cmd(cmd);
2065 }
2066 
2067 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2068 		unsigned int hctx_idx, unsigned int numa_node)
2069 {
2070 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2071 
2072 	kthread_init_work(&cmd->work, loop_queue_work);
2073 	return 0;
2074 }
2075 
2076 static const struct blk_mq_ops loop_mq_ops = {
2077 	.queue_rq       = loop_queue_rq,
2078 	.init_request	= loop_init_request,
2079 	.complete	= lo_complete_rq,
2080 };
2081 
2082 static int loop_add(struct loop_device **l, int i)
2083 {
2084 	struct loop_device *lo;
2085 	struct gendisk *disk;
2086 	int err;
2087 
2088 	err = -ENOMEM;
2089 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2090 	if (!lo)
2091 		goto out;
2092 
2093 	lo->lo_state = Lo_unbound;
2094 
2095 	/* allocate id, if @id >= 0, we're requesting that specific id */
2096 	if (i >= 0) {
2097 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2098 		if (err == -ENOSPC)
2099 			err = -EEXIST;
2100 	} else {
2101 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2102 	}
2103 	if (err < 0)
2104 		goto out_free_dev;
2105 	i = err;
2106 
2107 	err = -ENOMEM;
2108 	lo->tag_set.ops = &loop_mq_ops;
2109 	lo->tag_set.nr_hw_queues = 1;
2110 	lo->tag_set.queue_depth = 128;
2111 	lo->tag_set.numa_node = NUMA_NO_NODE;
2112 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2113 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2114 	lo->tag_set.driver_data = lo;
2115 
2116 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2117 	if (err)
2118 		goto out_free_idr;
2119 
2120 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2121 	if (IS_ERR(lo->lo_queue)) {
2122 		err = PTR_ERR(lo->lo_queue);
2123 		goto out_cleanup_tags;
2124 	}
2125 	lo->lo_queue->queuedata = lo;
2126 
2127 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2128 
2129 	/*
2130 	 * By default, we do buffer IO, so it doesn't make sense to enable
2131 	 * merge because the I/O submitted to backing file is handled page by
2132 	 * page. For directio mode, merge does help to dispatch bigger request
2133 	 * to underlayer disk. We will enable merge once directio is enabled.
2134 	 */
2135 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2136 
2137 	err = -ENOMEM;
2138 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2139 	if (!disk)
2140 		goto out_free_queue;
2141 
2142 	/*
2143 	 * Disable partition scanning by default. The in-kernel partition
2144 	 * scanning can be requested individually per-device during its
2145 	 * setup. Userspace can always add and remove partitions from all
2146 	 * devices. The needed partition minors are allocated from the
2147 	 * extended minor space, the main loop device numbers will continue
2148 	 * to match the loop minors, regardless of the number of partitions
2149 	 * used.
2150 	 *
2151 	 * If max_part is given, partition scanning is globally enabled for
2152 	 * all loop devices. The minors for the main loop devices will be
2153 	 * multiples of max_part.
2154 	 *
2155 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2156 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2157 	 * complicated, are too static, inflexible and may surprise
2158 	 * userspace tools. Parameters like this in general should be avoided.
2159 	 */
2160 	if (!part_shift)
2161 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2162 	disk->flags |= GENHD_FL_EXT_DEVT;
2163 	atomic_set(&lo->lo_refcnt, 0);
2164 	mutex_init(&lo->lo_mutex);
2165 	lo->lo_number		= i;
2166 	spin_lock_init(&lo->lo_lock);
2167 	disk->major		= LOOP_MAJOR;
2168 	disk->first_minor	= i << part_shift;
2169 	disk->fops		= &lo_fops;
2170 	disk->private_data	= lo;
2171 	disk->queue		= lo->lo_queue;
2172 	sprintf(disk->disk_name, "loop%d", i);
2173 	add_disk(disk);
2174 	*l = lo;
2175 	return lo->lo_number;
2176 
2177 out_free_queue:
2178 	blk_cleanup_queue(lo->lo_queue);
2179 out_cleanup_tags:
2180 	blk_mq_free_tag_set(&lo->tag_set);
2181 out_free_idr:
2182 	idr_remove(&loop_index_idr, i);
2183 out_free_dev:
2184 	kfree(lo);
2185 out:
2186 	return err;
2187 }
2188 
2189 static void loop_remove(struct loop_device *lo)
2190 {
2191 	del_gendisk(lo->lo_disk);
2192 	blk_cleanup_queue(lo->lo_queue);
2193 	blk_mq_free_tag_set(&lo->tag_set);
2194 	put_disk(lo->lo_disk);
2195 	mutex_destroy(&lo->lo_mutex);
2196 	kfree(lo);
2197 }
2198 
2199 static int find_free_cb(int id, void *ptr, void *data)
2200 {
2201 	struct loop_device *lo = ptr;
2202 	struct loop_device **l = data;
2203 
2204 	if (lo->lo_state == Lo_unbound) {
2205 		*l = lo;
2206 		return 1;
2207 	}
2208 	return 0;
2209 }
2210 
2211 static int loop_lookup(struct loop_device **l, int i)
2212 {
2213 	struct loop_device *lo;
2214 	int ret = -ENODEV;
2215 
2216 	if (i < 0) {
2217 		int err;
2218 
2219 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2220 		if (err == 1) {
2221 			*l = lo;
2222 			ret = lo->lo_number;
2223 		}
2224 		goto out;
2225 	}
2226 
2227 	/* lookup and return a specific i */
2228 	lo = idr_find(&loop_index_idr, i);
2229 	if (lo) {
2230 		*l = lo;
2231 		ret = lo->lo_number;
2232 	}
2233 out:
2234 	return ret;
2235 }
2236 
2237 static void loop_probe(dev_t dev)
2238 {
2239 	int idx = MINOR(dev) >> part_shift;
2240 	struct loop_device *lo;
2241 
2242 	if (max_loop && idx >= max_loop)
2243 		return;
2244 
2245 	mutex_lock(&loop_ctl_mutex);
2246 	if (loop_lookup(&lo, idx) < 0)
2247 		loop_add(&lo, idx);
2248 	mutex_unlock(&loop_ctl_mutex);
2249 }
2250 
2251 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2252 			       unsigned long parm)
2253 {
2254 	struct loop_device *lo;
2255 	int ret;
2256 
2257 	ret = mutex_lock_killable(&loop_ctl_mutex);
2258 	if (ret)
2259 		return ret;
2260 
2261 	ret = -ENOSYS;
2262 	switch (cmd) {
2263 	case LOOP_CTL_ADD:
2264 		ret = loop_lookup(&lo, parm);
2265 		if (ret >= 0) {
2266 			ret = -EEXIST;
2267 			break;
2268 		}
2269 		ret = loop_add(&lo, parm);
2270 		break;
2271 	case LOOP_CTL_REMOVE:
2272 		ret = loop_lookup(&lo, parm);
2273 		if (ret < 0)
2274 			break;
2275 		ret = mutex_lock_killable(&lo->lo_mutex);
2276 		if (ret)
2277 			break;
2278 		if (lo->lo_state != Lo_unbound) {
2279 			ret = -EBUSY;
2280 			mutex_unlock(&lo->lo_mutex);
2281 			break;
2282 		}
2283 		if (atomic_read(&lo->lo_refcnt) > 0) {
2284 			ret = -EBUSY;
2285 			mutex_unlock(&lo->lo_mutex);
2286 			break;
2287 		}
2288 		lo->lo_disk->private_data = NULL;
2289 		mutex_unlock(&lo->lo_mutex);
2290 		idr_remove(&loop_index_idr, lo->lo_number);
2291 		loop_remove(lo);
2292 		break;
2293 	case LOOP_CTL_GET_FREE:
2294 		ret = loop_lookup(&lo, -1);
2295 		if (ret >= 0)
2296 			break;
2297 		ret = loop_add(&lo, -1);
2298 	}
2299 	mutex_unlock(&loop_ctl_mutex);
2300 
2301 	return ret;
2302 }
2303 
2304 static const struct file_operations loop_ctl_fops = {
2305 	.open		= nonseekable_open,
2306 	.unlocked_ioctl	= loop_control_ioctl,
2307 	.compat_ioctl	= loop_control_ioctl,
2308 	.owner		= THIS_MODULE,
2309 	.llseek		= noop_llseek,
2310 };
2311 
2312 static struct miscdevice loop_misc = {
2313 	.minor		= LOOP_CTRL_MINOR,
2314 	.name		= "loop-control",
2315 	.fops		= &loop_ctl_fops,
2316 };
2317 
2318 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2319 MODULE_ALIAS("devname:loop-control");
2320 
2321 static int __init loop_init(void)
2322 {
2323 	int i, nr;
2324 	struct loop_device *lo;
2325 	int err;
2326 
2327 	part_shift = 0;
2328 	if (max_part > 0) {
2329 		part_shift = fls(max_part);
2330 
2331 		/*
2332 		 * Adjust max_part according to part_shift as it is exported
2333 		 * to user space so that user can decide correct minor number
2334 		 * if [s]he want to create more devices.
2335 		 *
2336 		 * Note that -1 is required because partition 0 is reserved
2337 		 * for the whole disk.
2338 		 */
2339 		max_part = (1UL << part_shift) - 1;
2340 	}
2341 
2342 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2343 		err = -EINVAL;
2344 		goto err_out;
2345 	}
2346 
2347 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2348 		err = -EINVAL;
2349 		goto err_out;
2350 	}
2351 
2352 	/*
2353 	 * If max_loop is specified, create that many devices upfront.
2354 	 * This also becomes a hard limit. If max_loop is not specified,
2355 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2356 	 * init time. Loop devices can be requested on-demand with the
2357 	 * /dev/loop-control interface, or be instantiated by accessing
2358 	 * a 'dead' device node.
2359 	 */
2360 	if (max_loop)
2361 		nr = max_loop;
2362 	else
2363 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2364 
2365 	err = misc_register(&loop_misc);
2366 	if (err < 0)
2367 		goto err_out;
2368 
2369 
2370 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2371 		err = -EIO;
2372 		goto misc_out;
2373 	}
2374 
2375 	/* pre-create number of devices given by config or max_loop */
2376 	mutex_lock(&loop_ctl_mutex);
2377 	for (i = 0; i < nr; i++)
2378 		loop_add(&lo, i);
2379 	mutex_unlock(&loop_ctl_mutex);
2380 
2381 	printk(KERN_INFO "loop: module loaded\n");
2382 	return 0;
2383 
2384 misc_out:
2385 	misc_deregister(&loop_misc);
2386 err_out:
2387 	return err;
2388 }
2389 
2390 static int loop_exit_cb(int id, void *ptr, void *data)
2391 {
2392 	struct loop_device *lo = ptr;
2393 
2394 	loop_remove(lo);
2395 	return 0;
2396 }
2397 
2398 static void __exit loop_exit(void)
2399 {
2400 	mutex_lock(&loop_ctl_mutex);
2401 
2402 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2403 	idr_destroy(&loop_index_idr);
2404 
2405 	unregister_blkdev(LOOP_MAJOR, "loop");
2406 
2407 	misc_deregister(&loop_misc);
2408 
2409 	mutex_unlock(&loop_ctl_mutex);
2410 }
2411 
2412 module_init(loop_init);
2413 module_exit(loop_exit);
2414 
2415 #ifndef MODULE
2416 static int __init max_loop_setup(char *str)
2417 {
2418 	max_loop = simple_strtol(str, NULL, 0);
2419 	return 1;
2420 }
2421 
2422 __setup("max_loop=", max_loop_setup);
2423 #endif
2424