1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 if (lo->lo_state == Lo_bound) 218 blk_mq_freeze_queue(lo->lo_queue); 219 lo->use_dio = use_dio; 220 if (use_dio) { 221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 222 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 223 } else { 224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 226 } 227 if (lo->lo_state == Lo_bound) 228 blk_mq_unfreeze_queue(lo->lo_queue); 229 } 230 231 /** 232 * loop_validate_block_size() - validates the passed in block size 233 * @bsize: size to validate 234 */ 235 static int 236 loop_validate_block_size(unsigned short bsize) 237 { 238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /** 245 * loop_set_size() - sets device size and notifies userspace 246 * @lo: struct loop_device to set the size for 247 * @size: new size of the loop device 248 * 249 * Callers must validate that the size passed into this function fits into 250 * a sector_t, eg using loop_validate_size() 251 */ 252 static void loop_set_size(struct loop_device *lo, loff_t size) 253 { 254 struct block_device *bdev = lo->lo_device; 255 256 bd_set_nr_sectors(bdev, size); 257 258 set_capacity_revalidate_and_notify(lo->lo_disk, size, false); 259 } 260 261 static inline int 262 lo_do_transfer(struct loop_device *lo, int cmd, 263 struct page *rpage, unsigned roffs, 264 struct page *lpage, unsigned loffs, 265 int size, sector_t rblock) 266 { 267 int ret; 268 269 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 270 if (likely(!ret)) 271 return 0; 272 273 printk_ratelimited(KERN_ERR 274 "loop: Transfer error at byte offset %llu, length %i.\n", 275 (unsigned long long)rblock << 9, size); 276 return ret; 277 } 278 279 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 280 { 281 struct iov_iter i; 282 ssize_t bw; 283 284 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 285 286 file_start_write(file); 287 bw = vfs_iter_write(file, &i, ppos, 0); 288 file_end_write(file); 289 290 if (likely(bw == bvec->bv_len)) 291 return 0; 292 293 printk_ratelimited(KERN_ERR 294 "loop: Write error at byte offset %llu, length %i.\n", 295 (unsigned long long)*ppos, bvec->bv_len); 296 if (bw >= 0) 297 bw = -EIO; 298 return bw; 299 } 300 301 static int lo_write_simple(struct loop_device *lo, struct request *rq, 302 loff_t pos) 303 { 304 struct bio_vec bvec; 305 struct req_iterator iter; 306 int ret = 0; 307 308 rq_for_each_segment(bvec, rq, iter) { 309 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 310 if (ret < 0) 311 break; 312 cond_resched(); 313 } 314 315 return ret; 316 } 317 318 /* 319 * This is the slow, transforming version that needs to double buffer the 320 * data as it cannot do the transformations in place without having direct 321 * access to the destination pages of the backing file. 322 */ 323 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 324 loff_t pos) 325 { 326 struct bio_vec bvec, b; 327 struct req_iterator iter; 328 struct page *page; 329 int ret = 0; 330 331 page = alloc_page(GFP_NOIO); 332 if (unlikely(!page)) 333 return -ENOMEM; 334 335 rq_for_each_segment(bvec, rq, iter) { 336 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 337 bvec.bv_offset, bvec.bv_len, pos >> 9); 338 if (unlikely(ret)) 339 break; 340 341 b.bv_page = page; 342 b.bv_offset = 0; 343 b.bv_len = bvec.bv_len; 344 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 345 if (ret < 0) 346 break; 347 } 348 349 __free_page(page); 350 return ret; 351 } 352 353 static int lo_read_simple(struct loop_device *lo, struct request *rq, 354 loff_t pos) 355 { 356 struct bio_vec bvec; 357 struct req_iterator iter; 358 struct iov_iter i; 359 ssize_t len; 360 361 rq_for_each_segment(bvec, rq, iter) { 362 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 363 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 364 if (len < 0) 365 return len; 366 367 flush_dcache_page(bvec.bv_page); 368 369 if (len != bvec.bv_len) { 370 struct bio *bio; 371 372 __rq_for_each_bio(bio, rq) 373 zero_fill_bio(bio); 374 break; 375 } 376 cond_resched(); 377 } 378 379 return 0; 380 } 381 382 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 383 loff_t pos) 384 { 385 struct bio_vec bvec, b; 386 struct req_iterator iter; 387 struct iov_iter i; 388 struct page *page; 389 ssize_t len; 390 int ret = 0; 391 392 page = alloc_page(GFP_NOIO); 393 if (unlikely(!page)) 394 return -ENOMEM; 395 396 rq_for_each_segment(bvec, rq, iter) { 397 loff_t offset = pos; 398 399 b.bv_page = page; 400 b.bv_offset = 0; 401 b.bv_len = bvec.bv_len; 402 403 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 404 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 405 if (len < 0) { 406 ret = len; 407 goto out_free_page; 408 } 409 410 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 411 bvec.bv_offset, len, offset >> 9); 412 if (ret) 413 goto out_free_page; 414 415 flush_dcache_page(bvec.bv_page); 416 417 if (len != bvec.bv_len) { 418 struct bio *bio; 419 420 __rq_for_each_bio(bio, rq) 421 zero_fill_bio(bio); 422 break; 423 } 424 } 425 426 ret = 0; 427 out_free_page: 428 __free_page(page); 429 return ret; 430 } 431 432 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 433 int mode) 434 { 435 /* 436 * We use fallocate to manipulate the space mappings used by the image 437 * a.k.a. discard/zerorange. However we do not support this if 438 * encryption is enabled, because it may give an attacker useful 439 * information. 440 */ 441 struct file *file = lo->lo_backing_file; 442 struct request_queue *q = lo->lo_queue; 443 int ret; 444 445 mode |= FALLOC_FL_KEEP_SIZE; 446 447 if (!blk_queue_discard(q)) { 448 ret = -EOPNOTSUPP; 449 goto out; 450 } 451 452 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 453 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 454 ret = -EIO; 455 out: 456 return ret; 457 } 458 459 static int lo_req_flush(struct loop_device *lo, struct request *rq) 460 { 461 struct file *file = lo->lo_backing_file; 462 int ret = vfs_fsync(file, 0); 463 if (unlikely(ret && ret != -EINVAL)) 464 ret = -EIO; 465 466 return ret; 467 } 468 469 static void lo_complete_rq(struct request *rq) 470 { 471 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 472 blk_status_t ret = BLK_STS_OK; 473 474 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 475 req_op(rq) != REQ_OP_READ) { 476 if (cmd->ret < 0) 477 ret = errno_to_blk_status(cmd->ret); 478 goto end_io; 479 } 480 481 /* 482 * Short READ - if we got some data, advance our request and 483 * retry it. If we got no data, end the rest with EIO. 484 */ 485 if (cmd->ret) { 486 blk_update_request(rq, BLK_STS_OK, cmd->ret); 487 cmd->ret = 0; 488 blk_mq_requeue_request(rq, true); 489 } else { 490 if (cmd->use_aio) { 491 struct bio *bio = rq->bio; 492 493 while (bio) { 494 zero_fill_bio(bio); 495 bio = bio->bi_next; 496 } 497 } 498 ret = BLK_STS_IOERR; 499 end_io: 500 blk_mq_end_request(rq, ret); 501 } 502 } 503 504 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 505 { 506 struct request *rq = blk_mq_rq_from_pdu(cmd); 507 508 if (!atomic_dec_and_test(&cmd->ref)) 509 return; 510 kfree(cmd->bvec); 511 cmd->bvec = NULL; 512 if (likely(!blk_should_fake_timeout(rq->q))) 513 blk_mq_complete_request(rq); 514 } 515 516 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 517 { 518 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 519 520 if (cmd->css) 521 css_put(cmd->css); 522 cmd->ret = ret; 523 lo_rw_aio_do_completion(cmd); 524 } 525 526 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 527 loff_t pos, bool rw) 528 { 529 struct iov_iter iter; 530 struct req_iterator rq_iter; 531 struct bio_vec *bvec; 532 struct request *rq = blk_mq_rq_from_pdu(cmd); 533 struct bio *bio = rq->bio; 534 struct file *file = lo->lo_backing_file; 535 struct bio_vec tmp; 536 unsigned int offset; 537 int nr_bvec = 0; 538 int ret; 539 540 rq_for_each_bvec(tmp, rq, rq_iter) 541 nr_bvec++; 542 543 if (rq->bio != rq->biotail) { 544 545 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 546 GFP_NOIO); 547 if (!bvec) 548 return -EIO; 549 cmd->bvec = bvec; 550 551 /* 552 * The bios of the request may be started from the middle of 553 * the 'bvec' because of bio splitting, so we can't directly 554 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 555 * API will take care of all details for us. 556 */ 557 rq_for_each_bvec(tmp, rq, rq_iter) { 558 *bvec = tmp; 559 bvec++; 560 } 561 bvec = cmd->bvec; 562 offset = 0; 563 } else { 564 /* 565 * Same here, this bio may be started from the middle of the 566 * 'bvec' because of bio splitting, so offset from the bvec 567 * must be passed to iov iterator 568 */ 569 offset = bio->bi_iter.bi_bvec_done; 570 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 571 } 572 atomic_set(&cmd->ref, 2); 573 574 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 575 iter.iov_offset = offset; 576 577 cmd->iocb.ki_pos = pos; 578 cmd->iocb.ki_filp = file; 579 cmd->iocb.ki_complete = lo_rw_aio_complete; 580 cmd->iocb.ki_flags = IOCB_DIRECT; 581 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 582 if (cmd->css) 583 kthread_associate_blkcg(cmd->css); 584 585 if (rw == WRITE) 586 ret = call_write_iter(file, &cmd->iocb, &iter); 587 else 588 ret = call_read_iter(file, &cmd->iocb, &iter); 589 590 lo_rw_aio_do_completion(cmd); 591 kthread_associate_blkcg(NULL); 592 593 if (ret != -EIOCBQUEUED) 594 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 595 return 0; 596 } 597 598 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 599 { 600 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 601 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 602 603 /* 604 * lo_write_simple and lo_read_simple should have been covered 605 * by io submit style function like lo_rw_aio(), one blocker 606 * is that lo_read_simple() need to call flush_dcache_page after 607 * the page is written from kernel, and it isn't easy to handle 608 * this in io submit style function which submits all segments 609 * of the req at one time. And direct read IO doesn't need to 610 * run flush_dcache_page(). 611 */ 612 switch (req_op(rq)) { 613 case REQ_OP_FLUSH: 614 return lo_req_flush(lo, rq); 615 case REQ_OP_WRITE_ZEROES: 616 /* 617 * If the caller doesn't want deallocation, call zeroout to 618 * write zeroes the range. Otherwise, punch them out. 619 */ 620 return lo_fallocate(lo, rq, pos, 621 (rq->cmd_flags & REQ_NOUNMAP) ? 622 FALLOC_FL_ZERO_RANGE : 623 FALLOC_FL_PUNCH_HOLE); 624 case REQ_OP_DISCARD: 625 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 626 case REQ_OP_WRITE: 627 if (lo->transfer) 628 return lo_write_transfer(lo, rq, pos); 629 else if (cmd->use_aio) 630 return lo_rw_aio(lo, cmd, pos, WRITE); 631 else 632 return lo_write_simple(lo, rq, pos); 633 case REQ_OP_READ: 634 if (lo->transfer) 635 return lo_read_transfer(lo, rq, pos); 636 else if (cmd->use_aio) 637 return lo_rw_aio(lo, cmd, pos, READ); 638 else 639 return lo_read_simple(lo, rq, pos); 640 default: 641 WARN_ON_ONCE(1); 642 return -EIO; 643 } 644 } 645 646 static inline void loop_update_dio(struct loop_device *lo) 647 { 648 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 649 lo->use_dio); 650 } 651 652 static void loop_reread_partitions(struct loop_device *lo, 653 struct block_device *bdev) 654 { 655 int rc; 656 657 mutex_lock(&bdev->bd_mutex); 658 rc = bdev_disk_changed(bdev, false); 659 mutex_unlock(&bdev->bd_mutex); 660 if (rc) 661 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 662 __func__, lo->lo_number, lo->lo_file_name, rc); 663 } 664 665 static inline int is_loop_device(struct file *file) 666 { 667 struct inode *i = file->f_mapping->host; 668 669 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 670 } 671 672 static int loop_validate_file(struct file *file, struct block_device *bdev) 673 { 674 struct inode *inode = file->f_mapping->host; 675 struct file *f = file; 676 677 /* Avoid recursion */ 678 while (is_loop_device(f)) { 679 struct loop_device *l; 680 681 if (f->f_mapping->host->i_bdev == bdev) 682 return -EBADF; 683 684 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 685 if (l->lo_state != Lo_bound) { 686 return -EINVAL; 687 } 688 f = l->lo_backing_file; 689 } 690 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 691 return -EINVAL; 692 return 0; 693 } 694 695 /* 696 * loop_change_fd switched the backing store of a loopback device to 697 * a new file. This is useful for operating system installers to free up 698 * the original file and in High Availability environments to switch to 699 * an alternative location for the content in case of server meltdown. 700 * This can only work if the loop device is used read-only, and if the 701 * new backing store is the same size and type as the old backing store. 702 */ 703 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 704 unsigned int arg) 705 { 706 struct file *file = NULL, *old_file; 707 int error; 708 bool partscan; 709 710 error = mutex_lock_killable(&loop_ctl_mutex); 711 if (error) 712 return error; 713 error = -ENXIO; 714 if (lo->lo_state != Lo_bound) 715 goto out_err; 716 717 /* the loop device has to be read-only */ 718 error = -EINVAL; 719 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 720 goto out_err; 721 722 error = -EBADF; 723 file = fget(arg); 724 if (!file) 725 goto out_err; 726 727 error = loop_validate_file(file, bdev); 728 if (error) 729 goto out_err; 730 731 old_file = lo->lo_backing_file; 732 733 error = -EINVAL; 734 735 /* size of the new backing store needs to be the same */ 736 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 737 goto out_err; 738 739 /* and ... switch */ 740 blk_mq_freeze_queue(lo->lo_queue); 741 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 742 lo->lo_backing_file = file; 743 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 744 mapping_set_gfp_mask(file->f_mapping, 745 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 746 loop_update_dio(lo); 747 blk_mq_unfreeze_queue(lo->lo_queue); 748 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 749 mutex_unlock(&loop_ctl_mutex); 750 /* 751 * We must drop file reference outside of loop_ctl_mutex as dropping 752 * the file ref can take bd_mutex which creates circular locking 753 * dependency. 754 */ 755 fput(old_file); 756 if (partscan) 757 loop_reread_partitions(lo, bdev); 758 return 0; 759 760 out_err: 761 mutex_unlock(&loop_ctl_mutex); 762 if (file) 763 fput(file); 764 return error; 765 } 766 767 /* loop sysfs attributes */ 768 769 static ssize_t loop_attr_show(struct device *dev, char *page, 770 ssize_t (*callback)(struct loop_device *, char *)) 771 { 772 struct gendisk *disk = dev_to_disk(dev); 773 struct loop_device *lo = disk->private_data; 774 775 return callback(lo, page); 776 } 777 778 #define LOOP_ATTR_RO(_name) \ 779 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 780 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 781 struct device_attribute *attr, char *b) \ 782 { \ 783 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 784 } \ 785 static struct device_attribute loop_attr_##_name = \ 786 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 787 788 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 789 { 790 ssize_t ret; 791 char *p = NULL; 792 793 spin_lock_irq(&lo->lo_lock); 794 if (lo->lo_backing_file) 795 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 796 spin_unlock_irq(&lo->lo_lock); 797 798 if (IS_ERR_OR_NULL(p)) 799 ret = PTR_ERR(p); 800 else { 801 ret = strlen(p); 802 memmove(buf, p, ret); 803 buf[ret++] = '\n'; 804 buf[ret] = 0; 805 } 806 807 return ret; 808 } 809 810 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 811 { 812 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 813 } 814 815 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 816 { 817 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 818 } 819 820 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 821 { 822 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 823 824 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 825 } 826 827 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 828 { 829 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 830 831 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 832 } 833 834 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 835 { 836 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 837 838 return sprintf(buf, "%s\n", dio ? "1" : "0"); 839 } 840 841 LOOP_ATTR_RO(backing_file); 842 LOOP_ATTR_RO(offset); 843 LOOP_ATTR_RO(sizelimit); 844 LOOP_ATTR_RO(autoclear); 845 LOOP_ATTR_RO(partscan); 846 LOOP_ATTR_RO(dio); 847 848 static struct attribute *loop_attrs[] = { 849 &loop_attr_backing_file.attr, 850 &loop_attr_offset.attr, 851 &loop_attr_sizelimit.attr, 852 &loop_attr_autoclear.attr, 853 &loop_attr_partscan.attr, 854 &loop_attr_dio.attr, 855 NULL, 856 }; 857 858 static struct attribute_group loop_attribute_group = { 859 .name = "loop", 860 .attrs= loop_attrs, 861 }; 862 863 static void loop_sysfs_init(struct loop_device *lo) 864 { 865 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 866 &loop_attribute_group); 867 } 868 869 static void loop_sysfs_exit(struct loop_device *lo) 870 { 871 if (lo->sysfs_inited) 872 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 873 &loop_attribute_group); 874 } 875 876 static void loop_config_discard(struct loop_device *lo) 877 { 878 struct file *file = lo->lo_backing_file; 879 struct inode *inode = file->f_mapping->host; 880 struct request_queue *q = lo->lo_queue; 881 u32 granularity, max_discard_sectors; 882 883 /* 884 * If the backing device is a block device, mirror its zeroing 885 * capability. Set the discard sectors to the block device's zeroing 886 * capabilities because loop discards result in blkdev_issue_zeroout(), 887 * not blkdev_issue_discard(). This maintains consistent behavior with 888 * file-backed loop devices: discarded regions read back as zero. 889 */ 890 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 891 struct request_queue *backingq; 892 893 backingq = bdev_get_queue(inode->i_bdev); 894 895 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 896 granularity = backingq->limits.discard_granularity ?: 897 queue_physical_block_size(backingq); 898 899 /* 900 * We use punch hole to reclaim the free space used by the 901 * image a.k.a. discard. However we do not support discard if 902 * encryption is enabled, because it may give an attacker 903 * useful information. 904 */ 905 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 906 max_discard_sectors = 0; 907 granularity = 0; 908 909 } else { 910 max_discard_sectors = UINT_MAX >> 9; 911 granularity = inode->i_sb->s_blocksize; 912 } 913 914 if (max_discard_sectors) { 915 q->limits.discard_granularity = granularity; 916 blk_queue_max_discard_sectors(q, max_discard_sectors); 917 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 918 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 919 } else { 920 q->limits.discard_granularity = 0; 921 blk_queue_max_discard_sectors(q, 0); 922 blk_queue_max_write_zeroes_sectors(q, 0); 923 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 924 } 925 q->limits.discard_alignment = 0; 926 } 927 928 static void loop_unprepare_queue(struct loop_device *lo) 929 { 930 kthread_flush_worker(&lo->worker); 931 kthread_stop(lo->worker_task); 932 } 933 934 static int loop_kthread_worker_fn(void *worker_ptr) 935 { 936 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 937 return kthread_worker_fn(worker_ptr); 938 } 939 940 static int loop_prepare_queue(struct loop_device *lo) 941 { 942 kthread_init_worker(&lo->worker); 943 lo->worker_task = kthread_run(loop_kthread_worker_fn, 944 &lo->worker, "loop%d", lo->lo_number); 945 if (IS_ERR(lo->worker_task)) 946 return -ENOMEM; 947 set_user_nice(lo->worker_task, MIN_NICE); 948 return 0; 949 } 950 951 static void loop_update_rotational(struct loop_device *lo) 952 { 953 struct file *file = lo->lo_backing_file; 954 struct inode *file_inode = file->f_mapping->host; 955 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 956 struct request_queue *q = lo->lo_queue; 957 bool nonrot = true; 958 959 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 960 if (file_bdev) 961 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 962 963 if (nonrot) 964 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 965 else 966 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 967 } 968 969 static int 970 loop_release_xfer(struct loop_device *lo) 971 { 972 int err = 0; 973 struct loop_func_table *xfer = lo->lo_encryption; 974 975 if (xfer) { 976 if (xfer->release) 977 err = xfer->release(lo); 978 lo->transfer = NULL; 979 lo->lo_encryption = NULL; 980 module_put(xfer->owner); 981 } 982 return err; 983 } 984 985 static int 986 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 987 const struct loop_info64 *i) 988 { 989 int err = 0; 990 991 if (xfer) { 992 struct module *owner = xfer->owner; 993 994 if (!try_module_get(owner)) 995 return -EINVAL; 996 if (xfer->init) 997 err = xfer->init(lo, i); 998 if (err) 999 module_put(owner); 1000 else 1001 lo->lo_encryption = xfer; 1002 } 1003 return err; 1004 } 1005 1006 /** 1007 * loop_set_status_from_info - configure device from loop_info 1008 * @lo: struct loop_device to configure 1009 * @info: struct loop_info64 to configure the device with 1010 * 1011 * Configures the loop device parameters according to the passed 1012 * in loop_info64 configuration. 1013 */ 1014 static int 1015 loop_set_status_from_info(struct loop_device *lo, 1016 const struct loop_info64 *info) 1017 { 1018 int err; 1019 struct loop_func_table *xfer; 1020 kuid_t uid = current_uid(); 1021 1022 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1023 return -EINVAL; 1024 1025 err = loop_release_xfer(lo); 1026 if (err) 1027 return err; 1028 1029 if (info->lo_encrypt_type) { 1030 unsigned int type = info->lo_encrypt_type; 1031 1032 if (type >= MAX_LO_CRYPT) 1033 return -EINVAL; 1034 xfer = xfer_funcs[type]; 1035 if (xfer == NULL) 1036 return -EINVAL; 1037 } else 1038 xfer = NULL; 1039 1040 err = loop_init_xfer(lo, xfer, info); 1041 if (err) 1042 return err; 1043 1044 lo->lo_offset = info->lo_offset; 1045 lo->lo_sizelimit = info->lo_sizelimit; 1046 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1047 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1048 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1049 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1050 1051 if (!xfer) 1052 xfer = &none_funcs; 1053 lo->transfer = xfer->transfer; 1054 lo->ioctl = xfer->ioctl; 1055 1056 lo->lo_flags = info->lo_flags; 1057 1058 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1059 lo->lo_init[0] = info->lo_init[0]; 1060 lo->lo_init[1] = info->lo_init[1]; 1061 if (info->lo_encrypt_key_size) { 1062 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1063 info->lo_encrypt_key_size); 1064 lo->lo_key_owner = uid; 1065 } 1066 1067 return 0; 1068 } 1069 1070 static int loop_configure(struct loop_device *lo, fmode_t mode, 1071 struct block_device *bdev, 1072 const struct loop_config *config) 1073 { 1074 struct file *file; 1075 struct inode *inode; 1076 struct address_space *mapping; 1077 struct block_device *claimed_bdev = NULL; 1078 int error; 1079 loff_t size; 1080 bool partscan; 1081 unsigned short bsize; 1082 1083 /* This is safe, since we have a reference from open(). */ 1084 __module_get(THIS_MODULE); 1085 1086 error = -EBADF; 1087 file = fget(config->fd); 1088 if (!file) 1089 goto out; 1090 1091 /* 1092 * If we don't hold exclusive handle for the device, upgrade to it 1093 * here to avoid changing device under exclusive owner. 1094 */ 1095 if (!(mode & FMODE_EXCL)) { 1096 claimed_bdev = bdev->bd_contains; 1097 error = bd_prepare_to_claim(bdev, claimed_bdev, loop_configure); 1098 if (error) 1099 goto out_putf; 1100 } 1101 1102 error = mutex_lock_killable(&loop_ctl_mutex); 1103 if (error) 1104 goto out_bdev; 1105 1106 error = -EBUSY; 1107 if (lo->lo_state != Lo_unbound) 1108 goto out_unlock; 1109 1110 error = loop_validate_file(file, bdev); 1111 if (error) 1112 goto out_unlock; 1113 1114 mapping = file->f_mapping; 1115 inode = mapping->host; 1116 1117 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1118 error = -EINVAL; 1119 goto out_unlock; 1120 } 1121 1122 if (config->block_size) { 1123 error = loop_validate_block_size(config->block_size); 1124 if (error) 1125 goto out_unlock; 1126 } 1127 1128 error = loop_set_status_from_info(lo, &config->info); 1129 if (error) 1130 goto out_unlock; 1131 1132 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1133 !file->f_op->write_iter) 1134 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1135 1136 error = loop_prepare_queue(lo); 1137 if (error) 1138 goto out_unlock; 1139 1140 set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1141 1142 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1143 lo->lo_device = bdev; 1144 lo->lo_backing_file = file; 1145 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1146 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1147 1148 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1149 blk_queue_write_cache(lo->lo_queue, true, false); 1150 1151 if (config->block_size) 1152 bsize = config->block_size; 1153 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1154 /* In case of direct I/O, match underlying block size */ 1155 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1156 else 1157 bsize = 512; 1158 1159 blk_queue_logical_block_size(lo->lo_queue, bsize); 1160 blk_queue_physical_block_size(lo->lo_queue, bsize); 1161 blk_queue_io_min(lo->lo_queue, bsize); 1162 1163 loop_update_rotational(lo); 1164 loop_update_dio(lo); 1165 loop_sysfs_init(lo); 1166 1167 size = get_loop_size(lo, file); 1168 loop_set_size(lo, size); 1169 1170 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1171 block_size(inode->i_bdev) : PAGE_SIZE); 1172 1173 lo->lo_state = Lo_bound; 1174 if (part_shift) 1175 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1176 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1177 if (partscan) 1178 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1179 1180 /* Grab the block_device to prevent its destruction after we 1181 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1182 */ 1183 bdgrab(bdev); 1184 mutex_unlock(&loop_ctl_mutex); 1185 if (partscan) 1186 loop_reread_partitions(lo, bdev); 1187 if (claimed_bdev) 1188 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1189 return 0; 1190 1191 out_unlock: 1192 mutex_unlock(&loop_ctl_mutex); 1193 out_bdev: 1194 if (claimed_bdev) 1195 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1196 out_putf: 1197 fput(file); 1198 out: 1199 /* This is safe: open() is still holding a reference. */ 1200 module_put(THIS_MODULE); 1201 return error; 1202 } 1203 1204 static int __loop_clr_fd(struct loop_device *lo, bool release) 1205 { 1206 struct file *filp = NULL; 1207 gfp_t gfp = lo->old_gfp_mask; 1208 struct block_device *bdev = lo->lo_device; 1209 int err = 0; 1210 bool partscan = false; 1211 int lo_number; 1212 1213 mutex_lock(&loop_ctl_mutex); 1214 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1215 err = -ENXIO; 1216 goto out_unlock; 1217 } 1218 1219 filp = lo->lo_backing_file; 1220 if (filp == NULL) { 1221 err = -EINVAL; 1222 goto out_unlock; 1223 } 1224 1225 /* freeze request queue during the transition */ 1226 blk_mq_freeze_queue(lo->lo_queue); 1227 1228 spin_lock_irq(&lo->lo_lock); 1229 lo->lo_backing_file = NULL; 1230 spin_unlock_irq(&lo->lo_lock); 1231 1232 loop_release_xfer(lo); 1233 lo->transfer = NULL; 1234 lo->ioctl = NULL; 1235 lo->lo_device = NULL; 1236 lo->lo_encryption = NULL; 1237 lo->lo_offset = 0; 1238 lo->lo_sizelimit = 0; 1239 lo->lo_encrypt_key_size = 0; 1240 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1241 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1242 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1243 blk_queue_logical_block_size(lo->lo_queue, 512); 1244 blk_queue_physical_block_size(lo->lo_queue, 512); 1245 blk_queue_io_min(lo->lo_queue, 512); 1246 if (bdev) { 1247 bdput(bdev); 1248 invalidate_bdev(bdev); 1249 bdev->bd_inode->i_mapping->wb_err = 0; 1250 } 1251 set_capacity(lo->lo_disk, 0); 1252 loop_sysfs_exit(lo); 1253 if (bdev) { 1254 bd_set_nr_sectors(bdev, 0); 1255 /* let user-space know about this change */ 1256 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1257 } 1258 mapping_set_gfp_mask(filp->f_mapping, gfp); 1259 /* This is safe: open() is still holding a reference. */ 1260 module_put(THIS_MODULE); 1261 blk_mq_unfreeze_queue(lo->lo_queue); 1262 1263 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1264 lo_number = lo->lo_number; 1265 loop_unprepare_queue(lo); 1266 out_unlock: 1267 mutex_unlock(&loop_ctl_mutex); 1268 if (partscan) { 1269 /* 1270 * bd_mutex has been held already in release path, so don't 1271 * acquire it if this function is called in such case. 1272 * 1273 * If the reread partition isn't from release path, lo_refcnt 1274 * must be at least one and it can only become zero when the 1275 * current holder is released. 1276 */ 1277 if (!release) 1278 mutex_lock(&bdev->bd_mutex); 1279 err = bdev_disk_changed(bdev, false); 1280 if (!release) 1281 mutex_unlock(&bdev->bd_mutex); 1282 if (err) 1283 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1284 __func__, lo_number, err); 1285 /* Device is gone, no point in returning error */ 1286 err = 0; 1287 } 1288 1289 /* 1290 * lo->lo_state is set to Lo_unbound here after above partscan has 1291 * finished. 1292 * 1293 * There cannot be anybody else entering __loop_clr_fd() as 1294 * lo->lo_backing_file is already cleared and Lo_rundown state 1295 * protects us from all the other places trying to change the 'lo' 1296 * device. 1297 */ 1298 mutex_lock(&loop_ctl_mutex); 1299 lo->lo_flags = 0; 1300 if (!part_shift) 1301 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1302 lo->lo_state = Lo_unbound; 1303 mutex_unlock(&loop_ctl_mutex); 1304 1305 /* 1306 * Need not hold loop_ctl_mutex to fput backing file. 1307 * Calling fput holding loop_ctl_mutex triggers a circular 1308 * lock dependency possibility warning as fput can take 1309 * bd_mutex which is usually taken before loop_ctl_mutex. 1310 */ 1311 if (filp) 1312 fput(filp); 1313 return err; 1314 } 1315 1316 static int loop_clr_fd(struct loop_device *lo) 1317 { 1318 int err; 1319 1320 err = mutex_lock_killable(&loop_ctl_mutex); 1321 if (err) 1322 return err; 1323 if (lo->lo_state != Lo_bound) { 1324 mutex_unlock(&loop_ctl_mutex); 1325 return -ENXIO; 1326 } 1327 /* 1328 * If we've explicitly asked to tear down the loop device, 1329 * and it has an elevated reference count, set it for auto-teardown when 1330 * the last reference goes away. This stops $!~#$@ udev from 1331 * preventing teardown because it decided that it needs to run blkid on 1332 * the loopback device whenever they appear. xfstests is notorious for 1333 * failing tests because blkid via udev races with a losetup 1334 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1335 * command to fail with EBUSY. 1336 */ 1337 if (atomic_read(&lo->lo_refcnt) > 1) { 1338 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1339 mutex_unlock(&loop_ctl_mutex); 1340 return 0; 1341 } 1342 lo->lo_state = Lo_rundown; 1343 mutex_unlock(&loop_ctl_mutex); 1344 1345 return __loop_clr_fd(lo, false); 1346 } 1347 1348 static int 1349 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1350 { 1351 int err; 1352 struct block_device *bdev; 1353 kuid_t uid = current_uid(); 1354 int prev_lo_flags; 1355 bool partscan = false; 1356 bool size_changed = false; 1357 1358 err = mutex_lock_killable(&loop_ctl_mutex); 1359 if (err) 1360 return err; 1361 if (lo->lo_encrypt_key_size && 1362 !uid_eq(lo->lo_key_owner, uid) && 1363 !capable(CAP_SYS_ADMIN)) { 1364 err = -EPERM; 1365 goto out_unlock; 1366 } 1367 if (lo->lo_state != Lo_bound) { 1368 err = -ENXIO; 1369 goto out_unlock; 1370 } 1371 1372 if (lo->lo_offset != info->lo_offset || 1373 lo->lo_sizelimit != info->lo_sizelimit) { 1374 size_changed = true; 1375 sync_blockdev(lo->lo_device); 1376 invalidate_bdev(lo->lo_device); 1377 } 1378 1379 /* I/O need to be drained during transfer transition */ 1380 blk_mq_freeze_queue(lo->lo_queue); 1381 1382 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1383 /* If any pages were dirtied after invalidate_bdev(), try again */ 1384 err = -EAGAIN; 1385 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1386 __func__, lo->lo_number, lo->lo_file_name, 1387 lo->lo_device->bd_inode->i_mapping->nrpages); 1388 goto out_unfreeze; 1389 } 1390 1391 prev_lo_flags = lo->lo_flags; 1392 1393 err = loop_set_status_from_info(lo, info); 1394 if (err) 1395 goto out_unfreeze; 1396 1397 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1398 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1399 /* For those flags, use the previous values instead */ 1400 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1401 /* For flags that can't be cleared, use previous values too */ 1402 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1403 1404 if (size_changed) { 1405 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1406 lo->lo_backing_file); 1407 loop_set_size(lo, new_size); 1408 } 1409 1410 loop_config_discard(lo); 1411 1412 /* update dio if lo_offset or transfer is changed */ 1413 __loop_update_dio(lo, lo->use_dio); 1414 1415 out_unfreeze: 1416 blk_mq_unfreeze_queue(lo->lo_queue); 1417 1418 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1419 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1420 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1421 bdev = lo->lo_device; 1422 partscan = true; 1423 } 1424 out_unlock: 1425 mutex_unlock(&loop_ctl_mutex); 1426 if (partscan) 1427 loop_reread_partitions(lo, bdev); 1428 1429 return err; 1430 } 1431 1432 static int 1433 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1434 { 1435 struct path path; 1436 struct kstat stat; 1437 int ret; 1438 1439 ret = mutex_lock_killable(&loop_ctl_mutex); 1440 if (ret) 1441 return ret; 1442 if (lo->lo_state != Lo_bound) { 1443 mutex_unlock(&loop_ctl_mutex); 1444 return -ENXIO; 1445 } 1446 1447 memset(info, 0, sizeof(*info)); 1448 info->lo_number = lo->lo_number; 1449 info->lo_offset = lo->lo_offset; 1450 info->lo_sizelimit = lo->lo_sizelimit; 1451 info->lo_flags = lo->lo_flags; 1452 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1453 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1454 info->lo_encrypt_type = 1455 lo->lo_encryption ? lo->lo_encryption->number : 0; 1456 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1457 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1458 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1459 lo->lo_encrypt_key_size); 1460 } 1461 1462 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1463 path = lo->lo_backing_file->f_path; 1464 path_get(&path); 1465 mutex_unlock(&loop_ctl_mutex); 1466 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1467 if (!ret) { 1468 info->lo_device = huge_encode_dev(stat.dev); 1469 info->lo_inode = stat.ino; 1470 info->lo_rdevice = huge_encode_dev(stat.rdev); 1471 } 1472 path_put(&path); 1473 return ret; 1474 } 1475 1476 static void 1477 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1478 { 1479 memset(info64, 0, sizeof(*info64)); 1480 info64->lo_number = info->lo_number; 1481 info64->lo_device = info->lo_device; 1482 info64->lo_inode = info->lo_inode; 1483 info64->lo_rdevice = info->lo_rdevice; 1484 info64->lo_offset = info->lo_offset; 1485 info64->lo_sizelimit = 0; 1486 info64->lo_encrypt_type = info->lo_encrypt_type; 1487 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1488 info64->lo_flags = info->lo_flags; 1489 info64->lo_init[0] = info->lo_init[0]; 1490 info64->lo_init[1] = info->lo_init[1]; 1491 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1492 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1493 else 1494 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1495 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1496 } 1497 1498 static int 1499 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1500 { 1501 memset(info, 0, sizeof(*info)); 1502 info->lo_number = info64->lo_number; 1503 info->lo_device = info64->lo_device; 1504 info->lo_inode = info64->lo_inode; 1505 info->lo_rdevice = info64->lo_rdevice; 1506 info->lo_offset = info64->lo_offset; 1507 info->lo_encrypt_type = info64->lo_encrypt_type; 1508 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1509 info->lo_flags = info64->lo_flags; 1510 info->lo_init[0] = info64->lo_init[0]; 1511 info->lo_init[1] = info64->lo_init[1]; 1512 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1513 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1514 else 1515 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1516 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1517 1518 /* error in case values were truncated */ 1519 if (info->lo_device != info64->lo_device || 1520 info->lo_rdevice != info64->lo_rdevice || 1521 info->lo_inode != info64->lo_inode || 1522 info->lo_offset != info64->lo_offset) 1523 return -EOVERFLOW; 1524 1525 return 0; 1526 } 1527 1528 static int 1529 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1530 { 1531 struct loop_info info; 1532 struct loop_info64 info64; 1533 1534 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1535 return -EFAULT; 1536 loop_info64_from_old(&info, &info64); 1537 return loop_set_status(lo, &info64); 1538 } 1539 1540 static int 1541 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1542 { 1543 struct loop_info64 info64; 1544 1545 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1546 return -EFAULT; 1547 return loop_set_status(lo, &info64); 1548 } 1549 1550 static int 1551 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1552 struct loop_info info; 1553 struct loop_info64 info64; 1554 int err; 1555 1556 if (!arg) 1557 return -EINVAL; 1558 err = loop_get_status(lo, &info64); 1559 if (!err) 1560 err = loop_info64_to_old(&info64, &info); 1561 if (!err && copy_to_user(arg, &info, sizeof(info))) 1562 err = -EFAULT; 1563 1564 return err; 1565 } 1566 1567 static int 1568 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1569 struct loop_info64 info64; 1570 int err; 1571 1572 if (!arg) 1573 return -EINVAL; 1574 err = loop_get_status(lo, &info64); 1575 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1576 err = -EFAULT; 1577 1578 return err; 1579 } 1580 1581 static int loop_set_capacity(struct loop_device *lo) 1582 { 1583 loff_t size; 1584 1585 if (unlikely(lo->lo_state != Lo_bound)) 1586 return -ENXIO; 1587 1588 size = get_loop_size(lo, lo->lo_backing_file); 1589 loop_set_size(lo, size); 1590 1591 return 0; 1592 } 1593 1594 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1595 { 1596 int error = -ENXIO; 1597 if (lo->lo_state != Lo_bound) 1598 goto out; 1599 1600 __loop_update_dio(lo, !!arg); 1601 if (lo->use_dio == !!arg) 1602 return 0; 1603 error = -EINVAL; 1604 out: 1605 return error; 1606 } 1607 1608 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1609 { 1610 int err = 0; 1611 1612 if (lo->lo_state != Lo_bound) 1613 return -ENXIO; 1614 1615 err = loop_validate_block_size(arg); 1616 if (err) 1617 return err; 1618 1619 if (lo->lo_queue->limits.logical_block_size == arg) 1620 return 0; 1621 1622 sync_blockdev(lo->lo_device); 1623 invalidate_bdev(lo->lo_device); 1624 1625 blk_mq_freeze_queue(lo->lo_queue); 1626 1627 /* invalidate_bdev should have truncated all the pages */ 1628 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1629 err = -EAGAIN; 1630 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1631 __func__, lo->lo_number, lo->lo_file_name, 1632 lo->lo_device->bd_inode->i_mapping->nrpages); 1633 goto out_unfreeze; 1634 } 1635 1636 blk_queue_logical_block_size(lo->lo_queue, arg); 1637 blk_queue_physical_block_size(lo->lo_queue, arg); 1638 blk_queue_io_min(lo->lo_queue, arg); 1639 loop_update_dio(lo); 1640 out_unfreeze: 1641 blk_mq_unfreeze_queue(lo->lo_queue); 1642 1643 return err; 1644 } 1645 1646 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1647 unsigned long arg) 1648 { 1649 int err; 1650 1651 err = mutex_lock_killable(&loop_ctl_mutex); 1652 if (err) 1653 return err; 1654 switch (cmd) { 1655 case LOOP_SET_CAPACITY: 1656 err = loop_set_capacity(lo); 1657 break; 1658 case LOOP_SET_DIRECT_IO: 1659 err = loop_set_dio(lo, arg); 1660 break; 1661 case LOOP_SET_BLOCK_SIZE: 1662 err = loop_set_block_size(lo, arg); 1663 break; 1664 default: 1665 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1666 } 1667 mutex_unlock(&loop_ctl_mutex); 1668 return err; 1669 } 1670 1671 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1672 unsigned int cmd, unsigned long arg) 1673 { 1674 struct loop_device *lo = bdev->bd_disk->private_data; 1675 void __user *argp = (void __user *) arg; 1676 int err; 1677 1678 switch (cmd) { 1679 case LOOP_SET_FD: { 1680 /* 1681 * Legacy case - pass in a zeroed out struct loop_config with 1682 * only the file descriptor set , which corresponds with the 1683 * default parameters we'd have used otherwise. 1684 */ 1685 struct loop_config config; 1686 1687 memset(&config, 0, sizeof(config)); 1688 config.fd = arg; 1689 1690 return loop_configure(lo, mode, bdev, &config); 1691 } 1692 case LOOP_CONFIGURE: { 1693 struct loop_config config; 1694 1695 if (copy_from_user(&config, argp, sizeof(config))) 1696 return -EFAULT; 1697 1698 return loop_configure(lo, mode, bdev, &config); 1699 } 1700 case LOOP_CHANGE_FD: 1701 return loop_change_fd(lo, bdev, arg); 1702 case LOOP_CLR_FD: 1703 return loop_clr_fd(lo); 1704 case LOOP_SET_STATUS: 1705 err = -EPERM; 1706 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1707 err = loop_set_status_old(lo, argp); 1708 } 1709 break; 1710 case LOOP_GET_STATUS: 1711 return loop_get_status_old(lo, argp); 1712 case LOOP_SET_STATUS64: 1713 err = -EPERM; 1714 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1715 err = loop_set_status64(lo, argp); 1716 } 1717 break; 1718 case LOOP_GET_STATUS64: 1719 return loop_get_status64(lo, argp); 1720 case LOOP_SET_CAPACITY: 1721 case LOOP_SET_DIRECT_IO: 1722 case LOOP_SET_BLOCK_SIZE: 1723 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1724 return -EPERM; 1725 fallthrough; 1726 default: 1727 err = lo_simple_ioctl(lo, cmd, arg); 1728 break; 1729 } 1730 1731 return err; 1732 } 1733 1734 #ifdef CONFIG_COMPAT 1735 struct compat_loop_info { 1736 compat_int_t lo_number; /* ioctl r/o */ 1737 compat_dev_t lo_device; /* ioctl r/o */ 1738 compat_ulong_t lo_inode; /* ioctl r/o */ 1739 compat_dev_t lo_rdevice; /* ioctl r/o */ 1740 compat_int_t lo_offset; 1741 compat_int_t lo_encrypt_type; 1742 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1743 compat_int_t lo_flags; /* ioctl r/o */ 1744 char lo_name[LO_NAME_SIZE]; 1745 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1746 compat_ulong_t lo_init[2]; 1747 char reserved[4]; 1748 }; 1749 1750 /* 1751 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1752 * - noinlined to reduce stack space usage in main part of driver 1753 */ 1754 static noinline int 1755 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1756 struct loop_info64 *info64) 1757 { 1758 struct compat_loop_info info; 1759 1760 if (copy_from_user(&info, arg, sizeof(info))) 1761 return -EFAULT; 1762 1763 memset(info64, 0, sizeof(*info64)); 1764 info64->lo_number = info.lo_number; 1765 info64->lo_device = info.lo_device; 1766 info64->lo_inode = info.lo_inode; 1767 info64->lo_rdevice = info.lo_rdevice; 1768 info64->lo_offset = info.lo_offset; 1769 info64->lo_sizelimit = 0; 1770 info64->lo_encrypt_type = info.lo_encrypt_type; 1771 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1772 info64->lo_flags = info.lo_flags; 1773 info64->lo_init[0] = info.lo_init[0]; 1774 info64->lo_init[1] = info.lo_init[1]; 1775 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1776 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1777 else 1778 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1779 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1780 return 0; 1781 } 1782 1783 /* 1784 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1785 * - noinlined to reduce stack space usage in main part of driver 1786 */ 1787 static noinline int 1788 loop_info64_to_compat(const struct loop_info64 *info64, 1789 struct compat_loop_info __user *arg) 1790 { 1791 struct compat_loop_info info; 1792 1793 memset(&info, 0, sizeof(info)); 1794 info.lo_number = info64->lo_number; 1795 info.lo_device = info64->lo_device; 1796 info.lo_inode = info64->lo_inode; 1797 info.lo_rdevice = info64->lo_rdevice; 1798 info.lo_offset = info64->lo_offset; 1799 info.lo_encrypt_type = info64->lo_encrypt_type; 1800 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1801 info.lo_flags = info64->lo_flags; 1802 info.lo_init[0] = info64->lo_init[0]; 1803 info.lo_init[1] = info64->lo_init[1]; 1804 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1805 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1806 else 1807 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1808 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1809 1810 /* error in case values were truncated */ 1811 if (info.lo_device != info64->lo_device || 1812 info.lo_rdevice != info64->lo_rdevice || 1813 info.lo_inode != info64->lo_inode || 1814 info.lo_offset != info64->lo_offset || 1815 info.lo_init[0] != info64->lo_init[0] || 1816 info.lo_init[1] != info64->lo_init[1]) 1817 return -EOVERFLOW; 1818 1819 if (copy_to_user(arg, &info, sizeof(info))) 1820 return -EFAULT; 1821 return 0; 1822 } 1823 1824 static int 1825 loop_set_status_compat(struct loop_device *lo, 1826 const struct compat_loop_info __user *arg) 1827 { 1828 struct loop_info64 info64; 1829 int ret; 1830 1831 ret = loop_info64_from_compat(arg, &info64); 1832 if (ret < 0) 1833 return ret; 1834 return loop_set_status(lo, &info64); 1835 } 1836 1837 static int 1838 loop_get_status_compat(struct loop_device *lo, 1839 struct compat_loop_info __user *arg) 1840 { 1841 struct loop_info64 info64; 1842 int err; 1843 1844 if (!arg) 1845 return -EINVAL; 1846 err = loop_get_status(lo, &info64); 1847 if (!err) 1848 err = loop_info64_to_compat(&info64, arg); 1849 return err; 1850 } 1851 1852 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1853 unsigned int cmd, unsigned long arg) 1854 { 1855 struct loop_device *lo = bdev->bd_disk->private_data; 1856 int err; 1857 1858 switch(cmd) { 1859 case LOOP_SET_STATUS: 1860 err = loop_set_status_compat(lo, 1861 (const struct compat_loop_info __user *)arg); 1862 break; 1863 case LOOP_GET_STATUS: 1864 err = loop_get_status_compat(lo, 1865 (struct compat_loop_info __user *)arg); 1866 break; 1867 case LOOP_SET_CAPACITY: 1868 case LOOP_CLR_FD: 1869 case LOOP_GET_STATUS64: 1870 case LOOP_SET_STATUS64: 1871 case LOOP_CONFIGURE: 1872 arg = (unsigned long) compat_ptr(arg); 1873 fallthrough; 1874 case LOOP_SET_FD: 1875 case LOOP_CHANGE_FD: 1876 case LOOP_SET_BLOCK_SIZE: 1877 case LOOP_SET_DIRECT_IO: 1878 err = lo_ioctl(bdev, mode, cmd, arg); 1879 break; 1880 default: 1881 err = -ENOIOCTLCMD; 1882 break; 1883 } 1884 return err; 1885 } 1886 #endif 1887 1888 static int lo_open(struct block_device *bdev, fmode_t mode) 1889 { 1890 struct loop_device *lo; 1891 int err; 1892 1893 err = mutex_lock_killable(&loop_ctl_mutex); 1894 if (err) 1895 return err; 1896 lo = bdev->bd_disk->private_data; 1897 if (!lo) { 1898 err = -ENXIO; 1899 goto out; 1900 } 1901 1902 atomic_inc(&lo->lo_refcnt); 1903 out: 1904 mutex_unlock(&loop_ctl_mutex); 1905 return err; 1906 } 1907 1908 static void lo_release(struct gendisk *disk, fmode_t mode) 1909 { 1910 struct loop_device *lo; 1911 1912 mutex_lock(&loop_ctl_mutex); 1913 lo = disk->private_data; 1914 if (atomic_dec_return(&lo->lo_refcnt)) 1915 goto out_unlock; 1916 1917 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1918 if (lo->lo_state != Lo_bound) 1919 goto out_unlock; 1920 lo->lo_state = Lo_rundown; 1921 mutex_unlock(&loop_ctl_mutex); 1922 /* 1923 * In autoclear mode, stop the loop thread 1924 * and remove configuration after last close. 1925 */ 1926 __loop_clr_fd(lo, true); 1927 return; 1928 } else if (lo->lo_state == Lo_bound) { 1929 /* 1930 * Otherwise keep thread (if running) and config, 1931 * but flush possible ongoing bios in thread. 1932 */ 1933 blk_mq_freeze_queue(lo->lo_queue); 1934 blk_mq_unfreeze_queue(lo->lo_queue); 1935 } 1936 1937 out_unlock: 1938 mutex_unlock(&loop_ctl_mutex); 1939 } 1940 1941 static const struct block_device_operations lo_fops = { 1942 .owner = THIS_MODULE, 1943 .open = lo_open, 1944 .release = lo_release, 1945 .ioctl = lo_ioctl, 1946 #ifdef CONFIG_COMPAT 1947 .compat_ioctl = lo_compat_ioctl, 1948 #endif 1949 }; 1950 1951 /* 1952 * And now the modules code and kernel interface. 1953 */ 1954 static int max_loop; 1955 module_param(max_loop, int, 0444); 1956 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1957 module_param(max_part, int, 0444); 1958 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1959 MODULE_LICENSE("GPL"); 1960 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1961 1962 int loop_register_transfer(struct loop_func_table *funcs) 1963 { 1964 unsigned int n = funcs->number; 1965 1966 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1967 return -EINVAL; 1968 xfer_funcs[n] = funcs; 1969 return 0; 1970 } 1971 1972 static int unregister_transfer_cb(int id, void *ptr, void *data) 1973 { 1974 struct loop_device *lo = ptr; 1975 struct loop_func_table *xfer = data; 1976 1977 mutex_lock(&loop_ctl_mutex); 1978 if (lo->lo_encryption == xfer) 1979 loop_release_xfer(lo); 1980 mutex_unlock(&loop_ctl_mutex); 1981 return 0; 1982 } 1983 1984 int loop_unregister_transfer(int number) 1985 { 1986 unsigned int n = number; 1987 struct loop_func_table *xfer; 1988 1989 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1990 return -EINVAL; 1991 1992 xfer_funcs[n] = NULL; 1993 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1994 return 0; 1995 } 1996 1997 EXPORT_SYMBOL(loop_register_transfer); 1998 EXPORT_SYMBOL(loop_unregister_transfer); 1999 2000 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 2001 const struct blk_mq_queue_data *bd) 2002 { 2003 struct request *rq = bd->rq; 2004 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2005 struct loop_device *lo = rq->q->queuedata; 2006 2007 blk_mq_start_request(rq); 2008 2009 if (lo->lo_state != Lo_bound) 2010 return BLK_STS_IOERR; 2011 2012 switch (req_op(rq)) { 2013 case REQ_OP_FLUSH: 2014 case REQ_OP_DISCARD: 2015 case REQ_OP_WRITE_ZEROES: 2016 cmd->use_aio = false; 2017 break; 2018 default: 2019 cmd->use_aio = lo->use_dio; 2020 break; 2021 } 2022 2023 /* always use the first bio's css */ 2024 #ifdef CONFIG_BLK_CGROUP 2025 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 2026 cmd->css = &bio_blkcg(rq->bio)->css; 2027 css_get(cmd->css); 2028 } else 2029 #endif 2030 cmd->css = NULL; 2031 kthread_queue_work(&lo->worker, &cmd->work); 2032 2033 return BLK_STS_OK; 2034 } 2035 2036 static void loop_handle_cmd(struct loop_cmd *cmd) 2037 { 2038 struct request *rq = blk_mq_rq_from_pdu(cmd); 2039 const bool write = op_is_write(req_op(rq)); 2040 struct loop_device *lo = rq->q->queuedata; 2041 int ret = 0; 2042 2043 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 2044 ret = -EIO; 2045 goto failed; 2046 } 2047 2048 ret = do_req_filebacked(lo, rq); 2049 failed: 2050 /* complete non-aio request */ 2051 if (!cmd->use_aio || ret) { 2052 if (ret == -EOPNOTSUPP) 2053 cmd->ret = ret; 2054 else 2055 cmd->ret = ret ? -EIO : 0; 2056 if (likely(!blk_should_fake_timeout(rq->q))) 2057 blk_mq_complete_request(rq); 2058 } 2059 } 2060 2061 static void loop_queue_work(struct kthread_work *work) 2062 { 2063 struct loop_cmd *cmd = 2064 container_of(work, struct loop_cmd, work); 2065 2066 loop_handle_cmd(cmd); 2067 } 2068 2069 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 2070 unsigned int hctx_idx, unsigned int numa_node) 2071 { 2072 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2073 2074 kthread_init_work(&cmd->work, loop_queue_work); 2075 return 0; 2076 } 2077 2078 static const struct blk_mq_ops loop_mq_ops = { 2079 .queue_rq = loop_queue_rq, 2080 .init_request = loop_init_request, 2081 .complete = lo_complete_rq, 2082 }; 2083 2084 static int loop_add(struct loop_device **l, int i) 2085 { 2086 struct loop_device *lo; 2087 struct gendisk *disk; 2088 int err; 2089 2090 err = -ENOMEM; 2091 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2092 if (!lo) 2093 goto out; 2094 2095 lo->lo_state = Lo_unbound; 2096 2097 /* allocate id, if @id >= 0, we're requesting that specific id */ 2098 if (i >= 0) { 2099 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2100 if (err == -ENOSPC) 2101 err = -EEXIST; 2102 } else { 2103 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2104 } 2105 if (err < 0) 2106 goto out_free_dev; 2107 i = err; 2108 2109 err = -ENOMEM; 2110 lo->tag_set.ops = &loop_mq_ops; 2111 lo->tag_set.nr_hw_queues = 1; 2112 lo->tag_set.queue_depth = 128; 2113 lo->tag_set.numa_node = NUMA_NO_NODE; 2114 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2115 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING; 2116 lo->tag_set.driver_data = lo; 2117 2118 err = blk_mq_alloc_tag_set(&lo->tag_set); 2119 if (err) 2120 goto out_free_idr; 2121 2122 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2123 if (IS_ERR(lo->lo_queue)) { 2124 err = PTR_ERR(lo->lo_queue); 2125 goto out_cleanup_tags; 2126 } 2127 lo->lo_queue->queuedata = lo; 2128 2129 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2130 2131 /* 2132 * By default, we do buffer IO, so it doesn't make sense to enable 2133 * merge because the I/O submitted to backing file is handled page by 2134 * page. For directio mode, merge does help to dispatch bigger request 2135 * to underlayer disk. We will enable merge once directio is enabled. 2136 */ 2137 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2138 2139 err = -ENOMEM; 2140 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2141 if (!disk) 2142 goto out_free_queue; 2143 2144 /* 2145 * Disable partition scanning by default. The in-kernel partition 2146 * scanning can be requested individually per-device during its 2147 * setup. Userspace can always add and remove partitions from all 2148 * devices. The needed partition minors are allocated from the 2149 * extended minor space, the main loop device numbers will continue 2150 * to match the loop minors, regardless of the number of partitions 2151 * used. 2152 * 2153 * If max_part is given, partition scanning is globally enabled for 2154 * all loop devices. The minors for the main loop devices will be 2155 * multiples of max_part. 2156 * 2157 * Note: Global-for-all-devices, set-only-at-init, read-only module 2158 * parameteters like 'max_loop' and 'max_part' make things needlessly 2159 * complicated, are too static, inflexible and may surprise 2160 * userspace tools. Parameters like this in general should be avoided. 2161 */ 2162 if (!part_shift) 2163 disk->flags |= GENHD_FL_NO_PART_SCAN; 2164 disk->flags |= GENHD_FL_EXT_DEVT; 2165 atomic_set(&lo->lo_refcnt, 0); 2166 lo->lo_number = i; 2167 spin_lock_init(&lo->lo_lock); 2168 disk->major = LOOP_MAJOR; 2169 disk->first_minor = i << part_shift; 2170 disk->fops = &lo_fops; 2171 disk->private_data = lo; 2172 disk->queue = lo->lo_queue; 2173 sprintf(disk->disk_name, "loop%d", i); 2174 add_disk(disk); 2175 *l = lo; 2176 return lo->lo_number; 2177 2178 out_free_queue: 2179 blk_cleanup_queue(lo->lo_queue); 2180 out_cleanup_tags: 2181 blk_mq_free_tag_set(&lo->tag_set); 2182 out_free_idr: 2183 idr_remove(&loop_index_idr, i); 2184 out_free_dev: 2185 kfree(lo); 2186 out: 2187 return err; 2188 } 2189 2190 static void loop_remove(struct loop_device *lo) 2191 { 2192 del_gendisk(lo->lo_disk); 2193 blk_cleanup_queue(lo->lo_queue); 2194 blk_mq_free_tag_set(&lo->tag_set); 2195 put_disk(lo->lo_disk); 2196 kfree(lo); 2197 } 2198 2199 static int find_free_cb(int id, void *ptr, void *data) 2200 { 2201 struct loop_device *lo = ptr; 2202 struct loop_device **l = data; 2203 2204 if (lo->lo_state == Lo_unbound) { 2205 *l = lo; 2206 return 1; 2207 } 2208 return 0; 2209 } 2210 2211 static int loop_lookup(struct loop_device **l, int i) 2212 { 2213 struct loop_device *lo; 2214 int ret = -ENODEV; 2215 2216 if (i < 0) { 2217 int err; 2218 2219 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2220 if (err == 1) { 2221 *l = lo; 2222 ret = lo->lo_number; 2223 } 2224 goto out; 2225 } 2226 2227 /* lookup and return a specific i */ 2228 lo = idr_find(&loop_index_idr, i); 2229 if (lo) { 2230 *l = lo; 2231 ret = lo->lo_number; 2232 } 2233 out: 2234 return ret; 2235 } 2236 2237 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2238 { 2239 struct loop_device *lo; 2240 struct kobject *kobj; 2241 int err; 2242 2243 mutex_lock(&loop_ctl_mutex); 2244 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2245 if (err < 0) 2246 err = loop_add(&lo, MINOR(dev) >> part_shift); 2247 if (err < 0) 2248 kobj = NULL; 2249 else 2250 kobj = get_disk_and_module(lo->lo_disk); 2251 mutex_unlock(&loop_ctl_mutex); 2252 2253 *part = 0; 2254 return kobj; 2255 } 2256 2257 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2258 unsigned long parm) 2259 { 2260 struct loop_device *lo; 2261 int ret; 2262 2263 ret = mutex_lock_killable(&loop_ctl_mutex); 2264 if (ret) 2265 return ret; 2266 2267 ret = -ENOSYS; 2268 switch (cmd) { 2269 case LOOP_CTL_ADD: 2270 ret = loop_lookup(&lo, parm); 2271 if (ret >= 0) { 2272 ret = -EEXIST; 2273 break; 2274 } 2275 ret = loop_add(&lo, parm); 2276 break; 2277 case LOOP_CTL_REMOVE: 2278 ret = loop_lookup(&lo, parm); 2279 if (ret < 0) 2280 break; 2281 if (lo->lo_state != Lo_unbound) { 2282 ret = -EBUSY; 2283 break; 2284 } 2285 if (atomic_read(&lo->lo_refcnt) > 0) { 2286 ret = -EBUSY; 2287 break; 2288 } 2289 lo->lo_disk->private_data = NULL; 2290 idr_remove(&loop_index_idr, lo->lo_number); 2291 loop_remove(lo); 2292 break; 2293 case LOOP_CTL_GET_FREE: 2294 ret = loop_lookup(&lo, -1); 2295 if (ret >= 0) 2296 break; 2297 ret = loop_add(&lo, -1); 2298 } 2299 mutex_unlock(&loop_ctl_mutex); 2300 2301 return ret; 2302 } 2303 2304 static const struct file_operations loop_ctl_fops = { 2305 .open = nonseekable_open, 2306 .unlocked_ioctl = loop_control_ioctl, 2307 .compat_ioctl = loop_control_ioctl, 2308 .owner = THIS_MODULE, 2309 .llseek = noop_llseek, 2310 }; 2311 2312 static struct miscdevice loop_misc = { 2313 .minor = LOOP_CTRL_MINOR, 2314 .name = "loop-control", 2315 .fops = &loop_ctl_fops, 2316 }; 2317 2318 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2319 MODULE_ALIAS("devname:loop-control"); 2320 2321 static int __init loop_init(void) 2322 { 2323 int i, nr; 2324 unsigned long range; 2325 struct loop_device *lo; 2326 int err; 2327 2328 part_shift = 0; 2329 if (max_part > 0) { 2330 part_shift = fls(max_part); 2331 2332 /* 2333 * Adjust max_part according to part_shift as it is exported 2334 * to user space so that user can decide correct minor number 2335 * if [s]he want to create more devices. 2336 * 2337 * Note that -1 is required because partition 0 is reserved 2338 * for the whole disk. 2339 */ 2340 max_part = (1UL << part_shift) - 1; 2341 } 2342 2343 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2344 err = -EINVAL; 2345 goto err_out; 2346 } 2347 2348 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2349 err = -EINVAL; 2350 goto err_out; 2351 } 2352 2353 /* 2354 * If max_loop is specified, create that many devices upfront. 2355 * This also becomes a hard limit. If max_loop is not specified, 2356 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2357 * init time. Loop devices can be requested on-demand with the 2358 * /dev/loop-control interface, or be instantiated by accessing 2359 * a 'dead' device node. 2360 */ 2361 if (max_loop) { 2362 nr = max_loop; 2363 range = max_loop << part_shift; 2364 } else { 2365 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2366 range = 1UL << MINORBITS; 2367 } 2368 2369 err = misc_register(&loop_misc); 2370 if (err < 0) 2371 goto err_out; 2372 2373 2374 if (register_blkdev(LOOP_MAJOR, "loop")) { 2375 err = -EIO; 2376 goto misc_out; 2377 } 2378 2379 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2380 THIS_MODULE, loop_probe, NULL, NULL); 2381 2382 /* pre-create number of devices given by config or max_loop */ 2383 mutex_lock(&loop_ctl_mutex); 2384 for (i = 0; i < nr; i++) 2385 loop_add(&lo, i); 2386 mutex_unlock(&loop_ctl_mutex); 2387 2388 printk(KERN_INFO "loop: module loaded\n"); 2389 return 0; 2390 2391 misc_out: 2392 misc_deregister(&loop_misc); 2393 err_out: 2394 return err; 2395 } 2396 2397 static int loop_exit_cb(int id, void *ptr, void *data) 2398 { 2399 struct loop_device *lo = ptr; 2400 2401 loop_remove(lo); 2402 return 0; 2403 } 2404 2405 static void __exit loop_exit(void) 2406 { 2407 unsigned long range; 2408 2409 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2410 2411 mutex_lock(&loop_ctl_mutex); 2412 2413 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2414 idr_destroy(&loop_index_idr); 2415 2416 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2417 unregister_blkdev(LOOP_MAJOR, "loop"); 2418 2419 misc_deregister(&loop_misc); 2420 2421 mutex_unlock(&loop_ctl_mutex); 2422 } 2423 2424 module_init(loop_init); 2425 module_exit(loop_exit); 2426 2427 #ifndef MODULE 2428 static int __init max_loop_setup(char *str) 2429 { 2430 max_loop = simple_strtol(str, NULL, 0); 2431 return 1; 2432 } 2433 2434 __setup("max_loop=", max_loop_setup); 2435 #endif 2436