1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include "loop.h" 79 80 #include <asm/uaccess.h> 81 82 static DEFINE_IDR(loop_index_idr); 83 static DEFINE_MUTEX(loop_index_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf); 105 kunmap_atomic(raw_buf); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf); 134 kunmap_atomic(raw_buf); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 164 { 165 loff_t loopsize; 166 167 /* Compute loopsize in bytes */ 168 loopsize = i_size_read(file->f_mapping->host); 169 if (offset > 0) 170 loopsize -= offset; 171 /* offset is beyond i_size, weird but possible */ 172 if (loopsize < 0) 173 return 0; 174 175 if (sizelimit > 0 && sizelimit < loopsize) 176 loopsize = sizelimit; 177 /* 178 * Unfortunately, if we want to do I/O on the device, 179 * the number of 512-byte sectors has to fit into a sector_t. 180 */ 181 return loopsize >> 9; 182 } 183 184 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 185 { 186 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 187 } 188 189 static int 190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 191 { 192 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 193 sector_t x = (sector_t)size; 194 struct block_device *bdev = lo->lo_device; 195 196 if (unlikely((loff_t)x != size)) 197 return -EFBIG; 198 if (lo->lo_offset != offset) 199 lo->lo_offset = offset; 200 if (lo->lo_sizelimit != sizelimit) 201 lo->lo_sizelimit = sizelimit; 202 set_capacity(lo->lo_disk, x); 203 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 204 /* let user-space know about the new size */ 205 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 206 return 0; 207 } 208 209 static inline int 210 lo_do_transfer(struct loop_device *lo, int cmd, 211 struct page *rpage, unsigned roffs, 212 struct page *lpage, unsigned loffs, 213 int size, sector_t rblock) 214 { 215 if (unlikely(!lo->transfer)) 216 return 0; 217 218 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 219 } 220 221 /** 222 * __do_lo_send_write - helper for writing data to a loop device 223 * 224 * This helper just factors out common code between do_lo_send_direct_write() 225 * and do_lo_send_write(). 226 */ 227 static int __do_lo_send_write(struct file *file, 228 u8 *buf, const int len, loff_t pos) 229 { 230 ssize_t bw; 231 mm_segment_t old_fs = get_fs(); 232 233 file_start_write(file); 234 set_fs(get_ds()); 235 bw = file->f_op->write(file, buf, len, &pos); 236 set_fs(old_fs); 237 file_end_write(file); 238 if (likely(bw == len)) 239 return 0; 240 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 241 (unsigned long long)pos, len); 242 if (bw >= 0) 243 bw = -EIO; 244 return bw; 245 } 246 247 /** 248 * do_lo_send_direct_write - helper for writing data to a loop device 249 * 250 * This is the fast, non-transforming version that does not need double 251 * buffering. 252 */ 253 static int do_lo_send_direct_write(struct loop_device *lo, 254 struct bio_vec *bvec, loff_t pos, struct page *page) 255 { 256 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 257 kmap(bvec->bv_page) + bvec->bv_offset, 258 bvec->bv_len, pos); 259 kunmap(bvec->bv_page); 260 cond_resched(); 261 return bw; 262 } 263 264 /** 265 * do_lo_send_write - helper for writing data to a loop device 266 * 267 * This is the slow, transforming version that needs to double buffer the 268 * data as it cannot do the transformations in place without having direct 269 * access to the destination pages of the backing file. 270 */ 271 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 272 loff_t pos, struct page *page) 273 { 274 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 275 bvec->bv_offset, bvec->bv_len, pos >> 9); 276 if (likely(!ret)) 277 return __do_lo_send_write(lo->lo_backing_file, 278 page_address(page), bvec->bv_len, 279 pos); 280 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 281 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 282 if (ret > 0) 283 ret = -EIO; 284 return ret; 285 } 286 287 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 288 { 289 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 290 struct page *page); 291 struct bio_vec *bvec; 292 struct page *page = NULL; 293 int i, ret = 0; 294 295 if (lo->transfer != transfer_none) { 296 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 297 if (unlikely(!page)) 298 goto fail; 299 kmap(page); 300 do_lo_send = do_lo_send_write; 301 } else { 302 do_lo_send = do_lo_send_direct_write; 303 } 304 305 bio_for_each_segment(bvec, bio, i) { 306 ret = do_lo_send(lo, bvec, pos, page); 307 if (ret < 0) 308 break; 309 pos += bvec->bv_len; 310 } 311 if (page) { 312 kunmap(page); 313 __free_page(page); 314 } 315 out: 316 return ret; 317 fail: 318 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 319 ret = -ENOMEM; 320 goto out; 321 } 322 323 struct lo_read_data { 324 struct loop_device *lo; 325 struct page *page; 326 unsigned offset; 327 int bsize; 328 }; 329 330 static int 331 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 332 struct splice_desc *sd) 333 { 334 struct lo_read_data *p = sd->u.data; 335 struct loop_device *lo = p->lo; 336 struct page *page = buf->page; 337 sector_t IV; 338 int size; 339 340 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 341 (buf->offset >> 9); 342 size = sd->len; 343 if (size > p->bsize) 344 size = p->bsize; 345 346 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 347 printk(KERN_ERR "loop: transfer error block %ld\n", 348 page->index); 349 size = -EINVAL; 350 } 351 352 flush_dcache_page(p->page); 353 354 if (size > 0) 355 p->offset += size; 356 357 return size; 358 } 359 360 static int 361 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 362 { 363 return __splice_from_pipe(pipe, sd, lo_splice_actor); 364 } 365 366 static ssize_t 367 do_lo_receive(struct loop_device *lo, 368 struct bio_vec *bvec, int bsize, loff_t pos) 369 { 370 struct lo_read_data cookie; 371 struct splice_desc sd; 372 struct file *file; 373 ssize_t retval; 374 375 cookie.lo = lo; 376 cookie.page = bvec->bv_page; 377 cookie.offset = bvec->bv_offset; 378 cookie.bsize = bsize; 379 380 sd.len = 0; 381 sd.total_len = bvec->bv_len; 382 sd.flags = 0; 383 sd.pos = pos; 384 sd.u.data = &cookie; 385 386 file = lo->lo_backing_file; 387 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 388 389 return retval; 390 } 391 392 static int 393 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 394 { 395 struct bio_vec *bvec; 396 ssize_t s; 397 int i; 398 399 bio_for_each_segment(bvec, bio, i) { 400 s = do_lo_receive(lo, bvec, bsize, pos); 401 if (s < 0) 402 return s; 403 404 if (s != bvec->bv_len) { 405 zero_fill_bio(bio); 406 break; 407 } 408 pos += bvec->bv_len; 409 } 410 return 0; 411 } 412 413 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 414 { 415 loff_t pos; 416 int ret; 417 418 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 419 420 if (bio_rw(bio) == WRITE) { 421 struct file *file = lo->lo_backing_file; 422 423 if (bio->bi_rw & REQ_FLUSH) { 424 ret = vfs_fsync(file, 0); 425 if (unlikely(ret && ret != -EINVAL)) { 426 ret = -EIO; 427 goto out; 428 } 429 } 430 431 /* 432 * We use punch hole to reclaim the free space used by the 433 * image a.k.a. discard. However we do not support discard if 434 * encryption is enabled, because it may give an attacker 435 * useful information. 436 */ 437 if (bio->bi_rw & REQ_DISCARD) { 438 struct file *file = lo->lo_backing_file; 439 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 440 441 if ((!file->f_op->fallocate) || 442 lo->lo_encrypt_key_size) { 443 ret = -EOPNOTSUPP; 444 goto out; 445 } 446 ret = file->f_op->fallocate(file, mode, pos, 447 bio->bi_size); 448 if (unlikely(ret && ret != -EINVAL && 449 ret != -EOPNOTSUPP)) 450 ret = -EIO; 451 goto out; 452 } 453 454 ret = lo_send(lo, bio, pos); 455 456 if ((bio->bi_rw & REQ_FUA) && !ret) { 457 ret = vfs_fsync(file, 0); 458 if (unlikely(ret && ret != -EINVAL)) 459 ret = -EIO; 460 } 461 } else 462 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 463 464 out: 465 return ret; 466 } 467 468 /* 469 * Add bio to back of pending list 470 */ 471 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 472 { 473 lo->lo_bio_count++; 474 bio_list_add(&lo->lo_bio_list, bio); 475 } 476 477 /* 478 * Grab first pending buffer 479 */ 480 static struct bio *loop_get_bio(struct loop_device *lo) 481 { 482 lo->lo_bio_count--; 483 return bio_list_pop(&lo->lo_bio_list); 484 } 485 486 static void loop_make_request(struct request_queue *q, struct bio *old_bio) 487 { 488 struct loop_device *lo = q->queuedata; 489 int rw = bio_rw(old_bio); 490 491 if (rw == READA) 492 rw = READ; 493 494 BUG_ON(!lo || (rw != READ && rw != WRITE)); 495 496 spin_lock_irq(&lo->lo_lock); 497 if (lo->lo_state != Lo_bound) 498 goto out; 499 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 500 goto out; 501 if (lo->lo_bio_count >= q->nr_congestion_on) 502 wait_event_lock_irq(lo->lo_req_wait, 503 lo->lo_bio_count < q->nr_congestion_off, 504 lo->lo_lock); 505 loop_add_bio(lo, old_bio); 506 wake_up(&lo->lo_event); 507 spin_unlock_irq(&lo->lo_lock); 508 return; 509 510 out: 511 spin_unlock_irq(&lo->lo_lock); 512 bio_io_error(old_bio); 513 } 514 515 struct switch_request { 516 struct file *file; 517 struct completion wait; 518 }; 519 520 static void do_loop_switch(struct loop_device *, struct switch_request *); 521 522 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 523 { 524 if (unlikely(!bio->bi_bdev)) { 525 do_loop_switch(lo, bio->bi_private); 526 bio_put(bio); 527 } else { 528 int ret = do_bio_filebacked(lo, bio); 529 bio_endio(bio, ret); 530 } 531 } 532 533 /* 534 * worker thread that handles reads/writes to file backed loop devices, 535 * to avoid blocking in our make_request_fn. it also does loop decrypting 536 * on reads for block backed loop, as that is too heavy to do from 537 * b_end_io context where irqs may be disabled. 538 * 539 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 540 * calling kthread_stop(). Therefore once kthread_should_stop() is 541 * true, make_request will not place any more requests. Therefore 542 * once kthread_should_stop() is true and lo_bio is NULL, we are 543 * done with the loop. 544 */ 545 static int loop_thread(void *data) 546 { 547 struct loop_device *lo = data; 548 struct bio *bio; 549 550 set_user_nice(current, -20); 551 552 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 553 554 wait_event_interruptible(lo->lo_event, 555 !bio_list_empty(&lo->lo_bio_list) || 556 kthread_should_stop()); 557 558 if (bio_list_empty(&lo->lo_bio_list)) 559 continue; 560 spin_lock_irq(&lo->lo_lock); 561 bio = loop_get_bio(lo); 562 if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off) 563 wake_up(&lo->lo_req_wait); 564 spin_unlock_irq(&lo->lo_lock); 565 566 BUG_ON(!bio); 567 loop_handle_bio(lo, bio); 568 } 569 570 return 0; 571 } 572 573 /* 574 * loop_switch performs the hard work of switching a backing store. 575 * First it needs to flush existing IO, it does this by sending a magic 576 * BIO down the pipe. The completion of this BIO does the actual switch. 577 */ 578 static int loop_switch(struct loop_device *lo, struct file *file) 579 { 580 struct switch_request w; 581 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 582 if (!bio) 583 return -ENOMEM; 584 init_completion(&w.wait); 585 w.file = file; 586 bio->bi_private = &w; 587 bio->bi_bdev = NULL; 588 loop_make_request(lo->lo_queue, bio); 589 wait_for_completion(&w.wait); 590 return 0; 591 } 592 593 /* 594 * Helper to flush the IOs in loop, but keeping loop thread running 595 */ 596 static int loop_flush(struct loop_device *lo) 597 { 598 /* loop not yet configured, no running thread, nothing to flush */ 599 if (!lo->lo_thread) 600 return 0; 601 602 return loop_switch(lo, NULL); 603 } 604 605 /* 606 * Do the actual switch; called from the BIO completion routine 607 */ 608 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 609 { 610 struct file *file = p->file; 611 struct file *old_file = lo->lo_backing_file; 612 struct address_space *mapping; 613 614 /* if no new file, only flush of queued bios requested */ 615 if (!file) 616 goto out; 617 618 mapping = file->f_mapping; 619 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 620 lo->lo_backing_file = file; 621 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 622 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 623 lo->old_gfp_mask = mapping_gfp_mask(mapping); 624 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 625 out: 626 complete(&p->wait); 627 } 628 629 630 /* 631 * loop_change_fd switched the backing store of a loopback device to 632 * a new file. This is useful for operating system installers to free up 633 * the original file and in High Availability environments to switch to 634 * an alternative location for the content in case of server meltdown. 635 * This can only work if the loop device is used read-only, and if the 636 * new backing store is the same size and type as the old backing store. 637 */ 638 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 639 unsigned int arg) 640 { 641 struct file *file, *old_file; 642 struct inode *inode; 643 int error; 644 645 error = -ENXIO; 646 if (lo->lo_state != Lo_bound) 647 goto out; 648 649 /* the loop device has to be read-only */ 650 error = -EINVAL; 651 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 652 goto out; 653 654 error = -EBADF; 655 file = fget(arg); 656 if (!file) 657 goto out; 658 659 inode = file->f_mapping->host; 660 old_file = lo->lo_backing_file; 661 662 error = -EINVAL; 663 664 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 665 goto out_putf; 666 667 /* size of the new backing store needs to be the same */ 668 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 669 goto out_putf; 670 671 /* and ... switch */ 672 error = loop_switch(lo, file); 673 if (error) 674 goto out_putf; 675 676 fput(old_file); 677 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 678 ioctl_by_bdev(bdev, BLKRRPART, 0); 679 return 0; 680 681 out_putf: 682 fput(file); 683 out: 684 return error; 685 } 686 687 static inline int is_loop_device(struct file *file) 688 { 689 struct inode *i = file->f_mapping->host; 690 691 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 692 } 693 694 /* loop sysfs attributes */ 695 696 static ssize_t loop_attr_show(struct device *dev, char *page, 697 ssize_t (*callback)(struct loop_device *, char *)) 698 { 699 struct gendisk *disk = dev_to_disk(dev); 700 struct loop_device *lo = disk->private_data; 701 702 return callback(lo, page); 703 } 704 705 #define LOOP_ATTR_RO(_name) \ 706 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 707 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 708 struct device_attribute *attr, char *b) \ 709 { \ 710 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 711 } \ 712 static struct device_attribute loop_attr_##_name = \ 713 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 714 715 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 716 { 717 ssize_t ret; 718 char *p = NULL; 719 720 spin_lock_irq(&lo->lo_lock); 721 if (lo->lo_backing_file) 722 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 723 spin_unlock_irq(&lo->lo_lock); 724 725 if (IS_ERR_OR_NULL(p)) 726 ret = PTR_ERR(p); 727 else { 728 ret = strlen(p); 729 memmove(buf, p, ret); 730 buf[ret++] = '\n'; 731 buf[ret] = 0; 732 } 733 734 return ret; 735 } 736 737 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 738 { 739 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 740 } 741 742 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 743 { 744 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 745 } 746 747 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 748 { 749 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 750 751 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 752 } 753 754 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 755 { 756 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 757 758 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 759 } 760 761 LOOP_ATTR_RO(backing_file); 762 LOOP_ATTR_RO(offset); 763 LOOP_ATTR_RO(sizelimit); 764 LOOP_ATTR_RO(autoclear); 765 LOOP_ATTR_RO(partscan); 766 767 static struct attribute *loop_attrs[] = { 768 &loop_attr_backing_file.attr, 769 &loop_attr_offset.attr, 770 &loop_attr_sizelimit.attr, 771 &loop_attr_autoclear.attr, 772 &loop_attr_partscan.attr, 773 NULL, 774 }; 775 776 static struct attribute_group loop_attribute_group = { 777 .name = "loop", 778 .attrs= loop_attrs, 779 }; 780 781 static int loop_sysfs_init(struct loop_device *lo) 782 { 783 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 784 &loop_attribute_group); 785 } 786 787 static void loop_sysfs_exit(struct loop_device *lo) 788 { 789 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 790 &loop_attribute_group); 791 } 792 793 static void loop_config_discard(struct loop_device *lo) 794 { 795 struct file *file = lo->lo_backing_file; 796 struct inode *inode = file->f_mapping->host; 797 struct request_queue *q = lo->lo_queue; 798 799 /* 800 * We use punch hole to reclaim the free space used by the 801 * image a.k.a. discard. However we do support discard if 802 * encryption is enabled, because it may give an attacker 803 * useful information. 804 */ 805 if ((!file->f_op->fallocate) || 806 lo->lo_encrypt_key_size) { 807 q->limits.discard_granularity = 0; 808 q->limits.discard_alignment = 0; 809 q->limits.max_discard_sectors = 0; 810 q->limits.discard_zeroes_data = 0; 811 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 812 return; 813 } 814 815 q->limits.discard_granularity = inode->i_sb->s_blocksize; 816 q->limits.discard_alignment = 0; 817 q->limits.max_discard_sectors = UINT_MAX >> 9; 818 q->limits.discard_zeroes_data = 1; 819 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 820 } 821 822 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 823 struct block_device *bdev, unsigned int arg) 824 { 825 struct file *file, *f; 826 struct inode *inode; 827 struct address_space *mapping; 828 unsigned lo_blocksize; 829 int lo_flags = 0; 830 int error; 831 loff_t size; 832 833 /* This is safe, since we have a reference from open(). */ 834 __module_get(THIS_MODULE); 835 836 error = -EBADF; 837 file = fget(arg); 838 if (!file) 839 goto out; 840 841 error = -EBUSY; 842 if (lo->lo_state != Lo_unbound) 843 goto out_putf; 844 845 /* Avoid recursion */ 846 f = file; 847 while (is_loop_device(f)) { 848 struct loop_device *l; 849 850 if (f->f_mapping->host->i_bdev == bdev) 851 goto out_putf; 852 853 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 854 if (l->lo_state == Lo_unbound) { 855 error = -EINVAL; 856 goto out_putf; 857 } 858 f = l->lo_backing_file; 859 } 860 861 mapping = file->f_mapping; 862 inode = mapping->host; 863 864 error = -EINVAL; 865 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 866 goto out_putf; 867 868 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 869 !file->f_op->write) 870 lo_flags |= LO_FLAGS_READ_ONLY; 871 872 lo_blocksize = S_ISBLK(inode->i_mode) ? 873 inode->i_bdev->bd_block_size : PAGE_SIZE; 874 875 error = -EFBIG; 876 size = get_loop_size(lo, file); 877 if ((loff_t)(sector_t)size != size) 878 goto out_putf; 879 880 error = 0; 881 882 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 883 884 lo->lo_blocksize = lo_blocksize; 885 lo->lo_device = bdev; 886 lo->lo_flags = lo_flags; 887 lo->lo_backing_file = file; 888 lo->transfer = transfer_none; 889 lo->ioctl = NULL; 890 lo->lo_sizelimit = 0; 891 lo->lo_bio_count = 0; 892 lo->old_gfp_mask = mapping_gfp_mask(mapping); 893 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 894 895 bio_list_init(&lo->lo_bio_list); 896 897 /* 898 * set queue make_request_fn, and add limits based on lower level 899 * device 900 */ 901 blk_queue_make_request(lo->lo_queue, loop_make_request); 902 lo->lo_queue->queuedata = lo; 903 904 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 905 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 906 907 set_capacity(lo->lo_disk, size); 908 bd_set_size(bdev, size << 9); 909 loop_sysfs_init(lo); 910 /* let user-space know about the new size */ 911 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 912 913 set_blocksize(bdev, lo_blocksize); 914 915 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 916 lo->lo_number); 917 if (IS_ERR(lo->lo_thread)) { 918 error = PTR_ERR(lo->lo_thread); 919 goto out_clr; 920 } 921 lo->lo_state = Lo_bound; 922 wake_up_process(lo->lo_thread); 923 if (part_shift) 924 lo->lo_flags |= LO_FLAGS_PARTSCAN; 925 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 926 ioctl_by_bdev(bdev, BLKRRPART, 0); 927 928 /* Grab the block_device to prevent its destruction after we 929 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 930 */ 931 bdgrab(bdev); 932 return 0; 933 934 out_clr: 935 loop_sysfs_exit(lo); 936 lo->lo_thread = NULL; 937 lo->lo_device = NULL; 938 lo->lo_backing_file = NULL; 939 lo->lo_flags = 0; 940 set_capacity(lo->lo_disk, 0); 941 invalidate_bdev(bdev); 942 bd_set_size(bdev, 0); 943 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 944 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 945 lo->lo_state = Lo_unbound; 946 out_putf: 947 fput(file); 948 out: 949 /* This is safe: open() is still holding a reference. */ 950 module_put(THIS_MODULE); 951 return error; 952 } 953 954 static int 955 loop_release_xfer(struct loop_device *lo) 956 { 957 int err = 0; 958 struct loop_func_table *xfer = lo->lo_encryption; 959 960 if (xfer) { 961 if (xfer->release) 962 err = xfer->release(lo); 963 lo->transfer = NULL; 964 lo->lo_encryption = NULL; 965 module_put(xfer->owner); 966 } 967 return err; 968 } 969 970 static int 971 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 972 const struct loop_info64 *i) 973 { 974 int err = 0; 975 976 if (xfer) { 977 struct module *owner = xfer->owner; 978 979 if (!try_module_get(owner)) 980 return -EINVAL; 981 if (xfer->init) 982 err = xfer->init(lo, i); 983 if (err) 984 module_put(owner); 985 else 986 lo->lo_encryption = xfer; 987 } 988 return err; 989 } 990 991 static int loop_clr_fd(struct loop_device *lo) 992 { 993 struct file *filp = lo->lo_backing_file; 994 gfp_t gfp = lo->old_gfp_mask; 995 struct block_device *bdev = lo->lo_device; 996 997 if (lo->lo_state != Lo_bound) 998 return -ENXIO; 999 1000 /* 1001 * If we've explicitly asked to tear down the loop device, 1002 * and it has an elevated reference count, set it for auto-teardown when 1003 * the last reference goes away. This stops $!~#$@ udev from 1004 * preventing teardown because it decided that it needs to run blkid on 1005 * the loopback device whenever they appear. xfstests is notorious for 1006 * failing tests because blkid via udev races with a losetup 1007 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1008 * command to fail with EBUSY. 1009 */ 1010 if (lo->lo_refcnt > 1) { 1011 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1012 mutex_unlock(&lo->lo_ctl_mutex); 1013 return 0; 1014 } 1015 1016 if (filp == NULL) 1017 return -EINVAL; 1018 1019 spin_lock_irq(&lo->lo_lock); 1020 lo->lo_state = Lo_rundown; 1021 spin_unlock_irq(&lo->lo_lock); 1022 1023 kthread_stop(lo->lo_thread); 1024 1025 spin_lock_irq(&lo->lo_lock); 1026 lo->lo_backing_file = NULL; 1027 spin_unlock_irq(&lo->lo_lock); 1028 1029 loop_release_xfer(lo); 1030 lo->transfer = NULL; 1031 lo->ioctl = NULL; 1032 lo->lo_device = NULL; 1033 lo->lo_encryption = NULL; 1034 lo->lo_offset = 0; 1035 lo->lo_sizelimit = 0; 1036 lo->lo_encrypt_key_size = 0; 1037 lo->lo_thread = NULL; 1038 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1039 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1040 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1041 if (bdev) { 1042 bdput(bdev); 1043 invalidate_bdev(bdev); 1044 } 1045 set_capacity(lo->lo_disk, 0); 1046 loop_sysfs_exit(lo); 1047 if (bdev) { 1048 bd_set_size(bdev, 0); 1049 /* let user-space know about this change */ 1050 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1051 } 1052 mapping_set_gfp_mask(filp->f_mapping, gfp); 1053 lo->lo_state = Lo_unbound; 1054 /* This is safe: open() is still holding a reference. */ 1055 module_put(THIS_MODULE); 1056 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1057 ioctl_by_bdev(bdev, BLKRRPART, 0); 1058 lo->lo_flags = 0; 1059 if (!part_shift) 1060 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1061 mutex_unlock(&lo->lo_ctl_mutex); 1062 /* 1063 * Need not hold lo_ctl_mutex to fput backing file. 1064 * Calling fput holding lo_ctl_mutex triggers a circular 1065 * lock dependency possibility warning as fput can take 1066 * bd_mutex which is usually taken before lo_ctl_mutex. 1067 */ 1068 fput(filp); 1069 return 0; 1070 } 1071 1072 static int 1073 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1074 { 1075 int err; 1076 struct loop_func_table *xfer; 1077 kuid_t uid = current_uid(); 1078 1079 if (lo->lo_encrypt_key_size && 1080 !uid_eq(lo->lo_key_owner, uid) && 1081 !capable(CAP_SYS_ADMIN)) 1082 return -EPERM; 1083 if (lo->lo_state != Lo_bound) 1084 return -ENXIO; 1085 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1086 return -EINVAL; 1087 1088 err = loop_release_xfer(lo); 1089 if (err) 1090 return err; 1091 1092 if (info->lo_encrypt_type) { 1093 unsigned int type = info->lo_encrypt_type; 1094 1095 if (type >= MAX_LO_CRYPT) 1096 return -EINVAL; 1097 xfer = xfer_funcs[type]; 1098 if (xfer == NULL) 1099 return -EINVAL; 1100 } else 1101 xfer = NULL; 1102 1103 err = loop_init_xfer(lo, xfer, info); 1104 if (err) 1105 return err; 1106 1107 if (lo->lo_offset != info->lo_offset || 1108 lo->lo_sizelimit != info->lo_sizelimit) 1109 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1110 return -EFBIG; 1111 1112 loop_config_discard(lo); 1113 1114 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1115 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1116 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1117 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1118 1119 if (!xfer) 1120 xfer = &none_funcs; 1121 lo->transfer = xfer->transfer; 1122 lo->ioctl = xfer->ioctl; 1123 1124 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1125 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1126 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1127 1128 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1129 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1130 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1131 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1132 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0); 1133 } 1134 1135 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1136 lo->lo_init[0] = info->lo_init[0]; 1137 lo->lo_init[1] = info->lo_init[1]; 1138 if (info->lo_encrypt_key_size) { 1139 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1140 info->lo_encrypt_key_size); 1141 lo->lo_key_owner = uid; 1142 } 1143 1144 return 0; 1145 } 1146 1147 static int 1148 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1149 { 1150 struct file *file = lo->lo_backing_file; 1151 struct kstat stat; 1152 int error; 1153 1154 if (lo->lo_state != Lo_bound) 1155 return -ENXIO; 1156 error = vfs_getattr(&file->f_path, &stat); 1157 if (error) 1158 return error; 1159 memset(info, 0, sizeof(*info)); 1160 info->lo_number = lo->lo_number; 1161 info->lo_device = huge_encode_dev(stat.dev); 1162 info->lo_inode = stat.ino; 1163 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1164 info->lo_offset = lo->lo_offset; 1165 info->lo_sizelimit = lo->lo_sizelimit; 1166 info->lo_flags = lo->lo_flags; 1167 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1168 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1169 info->lo_encrypt_type = 1170 lo->lo_encryption ? lo->lo_encryption->number : 0; 1171 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1172 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1173 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1174 lo->lo_encrypt_key_size); 1175 } 1176 return 0; 1177 } 1178 1179 static void 1180 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1181 { 1182 memset(info64, 0, sizeof(*info64)); 1183 info64->lo_number = info->lo_number; 1184 info64->lo_device = info->lo_device; 1185 info64->lo_inode = info->lo_inode; 1186 info64->lo_rdevice = info->lo_rdevice; 1187 info64->lo_offset = info->lo_offset; 1188 info64->lo_sizelimit = 0; 1189 info64->lo_encrypt_type = info->lo_encrypt_type; 1190 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1191 info64->lo_flags = info->lo_flags; 1192 info64->lo_init[0] = info->lo_init[0]; 1193 info64->lo_init[1] = info->lo_init[1]; 1194 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1195 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1196 else 1197 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1198 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1199 } 1200 1201 static int 1202 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1203 { 1204 memset(info, 0, sizeof(*info)); 1205 info->lo_number = info64->lo_number; 1206 info->lo_device = info64->lo_device; 1207 info->lo_inode = info64->lo_inode; 1208 info->lo_rdevice = info64->lo_rdevice; 1209 info->lo_offset = info64->lo_offset; 1210 info->lo_encrypt_type = info64->lo_encrypt_type; 1211 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1212 info->lo_flags = info64->lo_flags; 1213 info->lo_init[0] = info64->lo_init[0]; 1214 info->lo_init[1] = info64->lo_init[1]; 1215 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1216 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1217 else 1218 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1219 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1220 1221 /* error in case values were truncated */ 1222 if (info->lo_device != info64->lo_device || 1223 info->lo_rdevice != info64->lo_rdevice || 1224 info->lo_inode != info64->lo_inode || 1225 info->lo_offset != info64->lo_offset) 1226 return -EOVERFLOW; 1227 1228 return 0; 1229 } 1230 1231 static int 1232 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1233 { 1234 struct loop_info info; 1235 struct loop_info64 info64; 1236 1237 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1238 return -EFAULT; 1239 loop_info64_from_old(&info, &info64); 1240 return loop_set_status(lo, &info64); 1241 } 1242 1243 static int 1244 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1245 { 1246 struct loop_info64 info64; 1247 1248 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1249 return -EFAULT; 1250 return loop_set_status(lo, &info64); 1251 } 1252 1253 static int 1254 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1255 struct loop_info info; 1256 struct loop_info64 info64; 1257 int err = 0; 1258 1259 if (!arg) 1260 err = -EINVAL; 1261 if (!err) 1262 err = loop_get_status(lo, &info64); 1263 if (!err) 1264 err = loop_info64_to_old(&info64, &info); 1265 if (!err && copy_to_user(arg, &info, sizeof(info))) 1266 err = -EFAULT; 1267 1268 return err; 1269 } 1270 1271 static int 1272 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1273 struct loop_info64 info64; 1274 int err = 0; 1275 1276 if (!arg) 1277 err = -EINVAL; 1278 if (!err) 1279 err = loop_get_status(lo, &info64); 1280 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1281 err = -EFAULT; 1282 1283 return err; 1284 } 1285 1286 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1287 { 1288 if (unlikely(lo->lo_state != Lo_bound)) 1289 return -ENXIO; 1290 1291 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1292 } 1293 1294 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1295 unsigned int cmd, unsigned long arg) 1296 { 1297 struct loop_device *lo = bdev->bd_disk->private_data; 1298 int err; 1299 1300 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1301 switch (cmd) { 1302 case LOOP_SET_FD: 1303 err = loop_set_fd(lo, mode, bdev, arg); 1304 break; 1305 case LOOP_CHANGE_FD: 1306 err = loop_change_fd(lo, bdev, arg); 1307 break; 1308 case LOOP_CLR_FD: 1309 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1310 err = loop_clr_fd(lo); 1311 if (!err) 1312 goto out_unlocked; 1313 break; 1314 case LOOP_SET_STATUS: 1315 err = -EPERM; 1316 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1317 err = loop_set_status_old(lo, 1318 (struct loop_info __user *)arg); 1319 break; 1320 case LOOP_GET_STATUS: 1321 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1322 break; 1323 case LOOP_SET_STATUS64: 1324 err = -EPERM; 1325 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1326 err = loop_set_status64(lo, 1327 (struct loop_info64 __user *) arg); 1328 break; 1329 case LOOP_GET_STATUS64: 1330 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1331 break; 1332 case LOOP_SET_CAPACITY: 1333 err = -EPERM; 1334 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1335 err = loop_set_capacity(lo, bdev); 1336 break; 1337 default: 1338 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1339 } 1340 mutex_unlock(&lo->lo_ctl_mutex); 1341 1342 out_unlocked: 1343 return err; 1344 } 1345 1346 #ifdef CONFIG_COMPAT 1347 struct compat_loop_info { 1348 compat_int_t lo_number; /* ioctl r/o */ 1349 compat_dev_t lo_device; /* ioctl r/o */ 1350 compat_ulong_t lo_inode; /* ioctl r/o */ 1351 compat_dev_t lo_rdevice; /* ioctl r/o */ 1352 compat_int_t lo_offset; 1353 compat_int_t lo_encrypt_type; 1354 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1355 compat_int_t lo_flags; /* ioctl r/o */ 1356 char lo_name[LO_NAME_SIZE]; 1357 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1358 compat_ulong_t lo_init[2]; 1359 char reserved[4]; 1360 }; 1361 1362 /* 1363 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1364 * - noinlined to reduce stack space usage in main part of driver 1365 */ 1366 static noinline int 1367 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1368 struct loop_info64 *info64) 1369 { 1370 struct compat_loop_info info; 1371 1372 if (copy_from_user(&info, arg, sizeof(info))) 1373 return -EFAULT; 1374 1375 memset(info64, 0, sizeof(*info64)); 1376 info64->lo_number = info.lo_number; 1377 info64->lo_device = info.lo_device; 1378 info64->lo_inode = info.lo_inode; 1379 info64->lo_rdevice = info.lo_rdevice; 1380 info64->lo_offset = info.lo_offset; 1381 info64->lo_sizelimit = 0; 1382 info64->lo_encrypt_type = info.lo_encrypt_type; 1383 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1384 info64->lo_flags = info.lo_flags; 1385 info64->lo_init[0] = info.lo_init[0]; 1386 info64->lo_init[1] = info.lo_init[1]; 1387 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1388 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1389 else 1390 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1391 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1392 return 0; 1393 } 1394 1395 /* 1396 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1397 * - noinlined to reduce stack space usage in main part of driver 1398 */ 1399 static noinline int 1400 loop_info64_to_compat(const struct loop_info64 *info64, 1401 struct compat_loop_info __user *arg) 1402 { 1403 struct compat_loop_info info; 1404 1405 memset(&info, 0, sizeof(info)); 1406 info.lo_number = info64->lo_number; 1407 info.lo_device = info64->lo_device; 1408 info.lo_inode = info64->lo_inode; 1409 info.lo_rdevice = info64->lo_rdevice; 1410 info.lo_offset = info64->lo_offset; 1411 info.lo_encrypt_type = info64->lo_encrypt_type; 1412 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1413 info.lo_flags = info64->lo_flags; 1414 info.lo_init[0] = info64->lo_init[0]; 1415 info.lo_init[1] = info64->lo_init[1]; 1416 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1417 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1418 else 1419 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1420 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1421 1422 /* error in case values were truncated */ 1423 if (info.lo_device != info64->lo_device || 1424 info.lo_rdevice != info64->lo_rdevice || 1425 info.lo_inode != info64->lo_inode || 1426 info.lo_offset != info64->lo_offset || 1427 info.lo_init[0] != info64->lo_init[0] || 1428 info.lo_init[1] != info64->lo_init[1]) 1429 return -EOVERFLOW; 1430 1431 if (copy_to_user(arg, &info, sizeof(info))) 1432 return -EFAULT; 1433 return 0; 1434 } 1435 1436 static int 1437 loop_set_status_compat(struct loop_device *lo, 1438 const struct compat_loop_info __user *arg) 1439 { 1440 struct loop_info64 info64; 1441 int ret; 1442 1443 ret = loop_info64_from_compat(arg, &info64); 1444 if (ret < 0) 1445 return ret; 1446 return loop_set_status(lo, &info64); 1447 } 1448 1449 static int 1450 loop_get_status_compat(struct loop_device *lo, 1451 struct compat_loop_info __user *arg) 1452 { 1453 struct loop_info64 info64; 1454 int err = 0; 1455 1456 if (!arg) 1457 err = -EINVAL; 1458 if (!err) 1459 err = loop_get_status(lo, &info64); 1460 if (!err) 1461 err = loop_info64_to_compat(&info64, arg); 1462 return err; 1463 } 1464 1465 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1466 unsigned int cmd, unsigned long arg) 1467 { 1468 struct loop_device *lo = bdev->bd_disk->private_data; 1469 int err; 1470 1471 switch(cmd) { 1472 case LOOP_SET_STATUS: 1473 mutex_lock(&lo->lo_ctl_mutex); 1474 err = loop_set_status_compat( 1475 lo, (const struct compat_loop_info __user *) arg); 1476 mutex_unlock(&lo->lo_ctl_mutex); 1477 break; 1478 case LOOP_GET_STATUS: 1479 mutex_lock(&lo->lo_ctl_mutex); 1480 err = loop_get_status_compat( 1481 lo, (struct compat_loop_info __user *) arg); 1482 mutex_unlock(&lo->lo_ctl_mutex); 1483 break; 1484 case LOOP_SET_CAPACITY: 1485 case LOOP_CLR_FD: 1486 case LOOP_GET_STATUS64: 1487 case LOOP_SET_STATUS64: 1488 arg = (unsigned long) compat_ptr(arg); 1489 case LOOP_SET_FD: 1490 case LOOP_CHANGE_FD: 1491 err = lo_ioctl(bdev, mode, cmd, arg); 1492 break; 1493 default: 1494 err = -ENOIOCTLCMD; 1495 break; 1496 } 1497 return err; 1498 } 1499 #endif 1500 1501 static int lo_open(struct block_device *bdev, fmode_t mode) 1502 { 1503 struct loop_device *lo; 1504 int err = 0; 1505 1506 mutex_lock(&loop_index_mutex); 1507 lo = bdev->bd_disk->private_data; 1508 if (!lo) { 1509 err = -ENXIO; 1510 goto out; 1511 } 1512 1513 mutex_lock(&lo->lo_ctl_mutex); 1514 lo->lo_refcnt++; 1515 mutex_unlock(&lo->lo_ctl_mutex); 1516 out: 1517 mutex_unlock(&loop_index_mutex); 1518 return err; 1519 } 1520 1521 static void lo_release(struct gendisk *disk, fmode_t mode) 1522 { 1523 struct loop_device *lo = disk->private_data; 1524 int err; 1525 1526 mutex_lock(&lo->lo_ctl_mutex); 1527 1528 if (--lo->lo_refcnt) 1529 goto out; 1530 1531 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1532 /* 1533 * In autoclear mode, stop the loop thread 1534 * and remove configuration after last close. 1535 */ 1536 err = loop_clr_fd(lo); 1537 if (!err) 1538 return; 1539 } else { 1540 /* 1541 * Otherwise keep thread (if running) and config, 1542 * but flush possible ongoing bios in thread. 1543 */ 1544 loop_flush(lo); 1545 } 1546 1547 out: 1548 mutex_unlock(&lo->lo_ctl_mutex); 1549 } 1550 1551 static const struct block_device_operations lo_fops = { 1552 .owner = THIS_MODULE, 1553 .open = lo_open, 1554 .release = lo_release, 1555 .ioctl = lo_ioctl, 1556 #ifdef CONFIG_COMPAT 1557 .compat_ioctl = lo_compat_ioctl, 1558 #endif 1559 }; 1560 1561 /* 1562 * And now the modules code and kernel interface. 1563 */ 1564 static int max_loop; 1565 module_param(max_loop, int, S_IRUGO); 1566 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1567 module_param(max_part, int, S_IRUGO); 1568 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1569 MODULE_LICENSE("GPL"); 1570 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1571 1572 int loop_register_transfer(struct loop_func_table *funcs) 1573 { 1574 unsigned int n = funcs->number; 1575 1576 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1577 return -EINVAL; 1578 xfer_funcs[n] = funcs; 1579 return 0; 1580 } 1581 1582 static int unregister_transfer_cb(int id, void *ptr, void *data) 1583 { 1584 struct loop_device *lo = ptr; 1585 struct loop_func_table *xfer = data; 1586 1587 mutex_lock(&lo->lo_ctl_mutex); 1588 if (lo->lo_encryption == xfer) 1589 loop_release_xfer(lo); 1590 mutex_unlock(&lo->lo_ctl_mutex); 1591 return 0; 1592 } 1593 1594 int loop_unregister_transfer(int number) 1595 { 1596 unsigned int n = number; 1597 struct loop_func_table *xfer; 1598 1599 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1600 return -EINVAL; 1601 1602 xfer_funcs[n] = NULL; 1603 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1604 return 0; 1605 } 1606 1607 EXPORT_SYMBOL(loop_register_transfer); 1608 EXPORT_SYMBOL(loop_unregister_transfer); 1609 1610 static int loop_add(struct loop_device **l, int i) 1611 { 1612 struct loop_device *lo; 1613 struct gendisk *disk; 1614 int err; 1615 1616 err = -ENOMEM; 1617 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1618 if (!lo) 1619 goto out; 1620 1621 /* allocate id, if @id >= 0, we're requesting that specific id */ 1622 if (i >= 0) { 1623 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1624 if (err == -ENOSPC) 1625 err = -EEXIST; 1626 } else { 1627 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1628 } 1629 if (err < 0) 1630 goto out_free_dev; 1631 i = err; 1632 1633 err = -ENOMEM; 1634 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1635 if (!lo->lo_queue) 1636 goto out_free_dev; 1637 1638 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1639 if (!disk) 1640 goto out_free_queue; 1641 1642 /* 1643 * Disable partition scanning by default. The in-kernel partition 1644 * scanning can be requested individually per-device during its 1645 * setup. Userspace can always add and remove partitions from all 1646 * devices. The needed partition minors are allocated from the 1647 * extended minor space, the main loop device numbers will continue 1648 * to match the loop minors, regardless of the number of partitions 1649 * used. 1650 * 1651 * If max_part is given, partition scanning is globally enabled for 1652 * all loop devices. The minors for the main loop devices will be 1653 * multiples of max_part. 1654 * 1655 * Note: Global-for-all-devices, set-only-at-init, read-only module 1656 * parameteters like 'max_loop' and 'max_part' make things needlessly 1657 * complicated, are too static, inflexible and may surprise 1658 * userspace tools. Parameters like this in general should be avoided. 1659 */ 1660 if (!part_shift) 1661 disk->flags |= GENHD_FL_NO_PART_SCAN; 1662 disk->flags |= GENHD_FL_EXT_DEVT; 1663 mutex_init(&lo->lo_ctl_mutex); 1664 lo->lo_number = i; 1665 lo->lo_thread = NULL; 1666 init_waitqueue_head(&lo->lo_event); 1667 init_waitqueue_head(&lo->lo_req_wait); 1668 spin_lock_init(&lo->lo_lock); 1669 disk->major = LOOP_MAJOR; 1670 disk->first_minor = i << part_shift; 1671 disk->fops = &lo_fops; 1672 disk->private_data = lo; 1673 disk->queue = lo->lo_queue; 1674 sprintf(disk->disk_name, "loop%d", i); 1675 add_disk(disk); 1676 *l = lo; 1677 return lo->lo_number; 1678 1679 out_free_queue: 1680 blk_cleanup_queue(lo->lo_queue); 1681 out_free_dev: 1682 kfree(lo); 1683 out: 1684 return err; 1685 } 1686 1687 static void loop_remove(struct loop_device *lo) 1688 { 1689 del_gendisk(lo->lo_disk); 1690 blk_cleanup_queue(lo->lo_queue); 1691 put_disk(lo->lo_disk); 1692 kfree(lo); 1693 } 1694 1695 static int find_free_cb(int id, void *ptr, void *data) 1696 { 1697 struct loop_device *lo = ptr; 1698 struct loop_device **l = data; 1699 1700 if (lo->lo_state == Lo_unbound) { 1701 *l = lo; 1702 return 1; 1703 } 1704 return 0; 1705 } 1706 1707 static int loop_lookup(struct loop_device **l, int i) 1708 { 1709 struct loop_device *lo; 1710 int ret = -ENODEV; 1711 1712 if (i < 0) { 1713 int err; 1714 1715 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1716 if (err == 1) { 1717 *l = lo; 1718 ret = lo->lo_number; 1719 } 1720 goto out; 1721 } 1722 1723 /* lookup and return a specific i */ 1724 lo = idr_find(&loop_index_idr, i); 1725 if (lo) { 1726 *l = lo; 1727 ret = lo->lo_number; 1728 } 1729 out: 1730 return ret; 1731 } 1732 1733 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1734 { 1735 struct loop_device *lo; 1736 struct kobject *kobj; 1737 int err; 1738 1739 mutex_lock(&loop_index_mutex); 1740 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1741 if (err < 0) 1742 err = loop_add(&lo, MINOR(dev) >> part_shift); 1743 if (err < 0) 1744 kobj = ERR_PTR(err); 1745 else 1746 kobj = get_disk(lo->lo_disk); 1747 mutex_unlock(&loop_index_mutex); 1748 1749 *part = 0; 1750 return kobj; 1751 } 1752 1753 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1754 unsigned long parm) 1755 { 1756 struct loop_device *lo; 1757 int ret = -ENOSYS; 1758 1759 mutex_lock(&loop_index_mutex); 1760 switch (cmd) { 1761 case LOOP_CTL_ADD: 1762 ret = loop_lookup(&lo, parm); 1763 if (ret >= 0) { 1764 ret = -EEXIST; 1765 break; 1766 } 1767 ret = loop_add(&lo, parm); 1768 break; 1769 case LOOP_CTL_REMOVE: 1770 ret = loop_lookup(&lo, parm); 1771 if (ret < 0) 1772 break; 1773 mutex_lock(&lo->lo_ctl_mutex); 1774 if (lo->lo_state != Lo_unbound) { 1775 ret = -EBUSY; 1776 mutex_unlock(&lo->lo_ctl_mutex); 1777 break; 1778 } 1779 if (lo->lo_refcnt > 0) { 1780 ret = -EBUSY; 1781 mutex_unlock(&lo->lo_ctl_mutex); 1782 break; 1783 } 1784 lo->lo_disk->private_data = NULL; 1785 mutex_unlock(&lo->lo_ctl_mutex); 1786 idr_remove(&loop_index_idr, lo->lo_number); 1787 loop_remove(lo); 1788 break; 1789 case LOOP_CTL_GET_FREE: 1790 ret = loop_lookup(&lo, -1); 1791 if (ret >= 0) 1792 break; 1793 ret = loop_add(&lo, -1); 1794 } 1795 mutex_unlock(&loop_index_mutex); 1796 1797 return ret; 1798 } 1799 1800 static const struct file_operations loop_ctl_fops = { 1801 .open = nonseekable_open, 1802 .unlocked_ioctl = loop_control_ioctl, 1803 .compat_ioctl = loop_control_ioctl, 1804 .owner = THIS_MODULE, 1805 .llseek = noop_llseek, 1806 }; 1807 1808 static struct miscdevice loop_misc = { 1809 .minor = LOOP_CTRL_MINOR, 1810 .name = "loop-control", 1811 .fops = &loop_ctl_fops, 1812 }; 1813 1814 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1815 MODULE_ALIAS("devname:loop-control"); 1816 1817 static int __init loop_init(void) 1818 { 1819 int i, nr; 1820 unsigned long range; 1821 struct loop_device *lo; 1822 int err; 1823 1824 err = misc_register(&loop_misc); 1825 if (err < 0) 1826 return err; 1827 1828 part_shift = 0; 1829 if (max_part > 0) { 1830 part_shift = fls(max_part); 1831 1832 /* 1833 * Adjust max_part according to part_shift as it is exported 1834 * to user space so that user can decide correct minor number 1835 * if [s]he want to create more devices. 1836 * 1837 * Note that -1 is required because partition 0 is reserved 1838 * for the whole disk. 1839 */ 1840 max_part = (1UL << part_shift) - 1; 1841 } 1842 1843 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1844 err = -EINVAL; 1845 goto misc_out; 1846 } 1847 1848 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1849 err = -EINVAL; 1850 goto misc_out; 1851 } 1852 1853 /* 1854 * If max_loop is specified, create that many devices upfront. 1855 * This also becomes a hard limit. If max_loop is not specified, 1856 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1857 * init time. Loop devices can be requested on-demand with the 1858 * /dev/loop-control interface, or be instantiated by accessing 1859 * a 'dead' device node. 1860 */ 1861 if (max_loop) { 1862 nr = max_loop; 1863 range = max_loop << part_shift; 1864 } else { 1865 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1866 range = 1UL << MINORBITS; 1867 } 1868 1869 if (register_blkdev(LOOP_MAJOR, "loop")) { 1870 err = -EIO; 1871 goto misc_out; 1872 } 1873 1874 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1875 THIS_MODULE, loop_probe, NULL, NULL); 1876 1877 /* pre-create number of devices given by config or max_loop */ 1878 mutex_lock(&loop_index_mutex); 1879 for (i = 0; i < nr; i++) 1880 loop_add(&lo, i); 1881 mutex_unlock(&loop_index_mutex); 1882 1883 printk(KERN_INFO "loop: module loaded\n"); 1884 return 0; 1885 1886 misc_out: 1887 misc_deregister(&loop_misc); 1888 return err; 1889 } 1890 1891 static int loop_exit_cb(int id, void *ptr, void *data) 1892 { 1893 struct loop_device *lo = ptr; 1894 1895 loop_remove(lo); 1896 return 0; 1897 } 1898 1899 static void __exit loop_exit(void) 1900 { 1901 unsigned long range; 1902 1903 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 1904 1905 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 1906 idr_destroy(&loop_index_idr); 1907 1908 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1909 unregister_blkdev(LOOP_MAJOR, "loop"); 1910 1911 misc_deregister(&loop_misc); 1912 } 1913 1914 module_init(loop_init); 1915 module_exit(loop_exit); 1916 1917 #ifndef MODULE 1918 static int __init max_loop_setup(char *str) 1919 { 1920 max_loop = simple_strtol(str, NULL, 0); 1921 return 1; 1922 } 1923 1924 __setup("max_loop=", max_loop_setup); 1925 #endif 1926